基于脑电和肌电多特征的自动睡眠分期方法

为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法。以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采用离散小波变换对原始数据进行滤波预处理,提取EEG的α,β,θ,δ节律波和高频成分的能量比,利用样本熵算法提取EEG的非线性特征。将特征参数输入支持向量机分类器中进行样本训练与分类识别。实验结果表明,该方法的分期准确率可以达到92.94%,相比基于EEG的睡眠分期方法平均准确率提高3.96%,交叉验证平均准确率达82.68%,具有较好的泛化能力。...

Full description

Saved in:
Bibliographic Details
Published in计算机工程 Vol. 43; no. 10; pp. 283 - 288
Main Author 吕甜甜 王心醉 俞乾 于涌 蒋蓁
Format Journal Article
LanguageChinese
Published 上海大学机电工程与自动化学院,上海200072 2017
中国科学院苏州生物医学工程技术研究所,江苏苏州215163%中国科学院苏州生物医学工程技术研究所,江苏苏州,215163%上海大学机电工程与自动化学院,上海,200072
Subjects
Online AccessGet full text
ISSN1000-3428
DOI10.3969/j.issn.1000-3428.2017.10.047

Cover

Abstract 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法。以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采用离散小波变换对原始数据进行滤波预处理,提取EEG的α,β,θ,δ节律波和高频成分的能量比,利用样本熵算法提取EEG的非线性特征。将特征参数输入支持向量机分类器中进行样本训练与分类识别。实验结果表明,该方法的分期准确率可以达到92.94%,相比基于EEG的睡眠分期方法平均准确率提高3.96%,交叉验证平均准确率达82.68%,具有较好的泛化能力。
AbstractList 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法。以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采用离散小波变换对原始数据进行滤波预处理,提取EEG的α,β,θ,δ节律波和高频成分的能量比,利用样本熵算法提取EEG的非线性特征。将特征参数输入支持向量机分类器中进行样本训练与分类识别。实验结果表明,该方法的分期准确率可以达到92.94%,相比基于EEG的睡眠分期方法平均准确率提高3.96%,交叉验证平均准确率达82.68%,具有较好的泛化能力。
TP391; 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法.以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采用离散小波变换对原始数据进行滤波预处理,提取EEG的α,β,θ,δ节律波和高频成分的能量比,利用样本熵算法提取EEG的非线性特征.将特征参数输入支持向量机分类器中进行样本训练与分类识别.实验结果表明,该方法的分期准确率可以达到92.94%,相比基于EEG的睡眠分期方法平均准确率提高3.96%,交叉验证平均准确率达82.68%,具有较好的泛化能力.
Abstract_FL In order to achieve accurate automatic sleep staging and meet the needs of generalization ability,an automatic sleep staging method based on multi-features of Electroencephalogram (EEG) and Electromyography (EMG) is proposed.EEG and EMG of MIT-BIH polysomnographic database samples are chosen as the analysis object.The Discrete Wavelet Transform(DWT) is used to make filter processing of the raw data.The energy ratio of α,β,0,δ rhythm waves and the high frequency component from EMG are extracted.The nonlinear characteristics of EEG are also extracted by Sample Entropy(SampEn) algorithm.These feature parameters are inputted Support Vector Machine(SVM) classifier for sample training and classification recognition.Experimental results show that the periodization accuracy of the proposed method reaches 92.94%.The average accuracy raises 3.96% compared with the sleep staging method based on EEG and the average accuracy of cross validation is 82.68%.The proposed method has better generalization ability.
Author 吕甜甜 王心醉 俞乾 于涌 蒋蓁
AuthorAffiliation 上海大学机电工程与自动化学院,上海200072 中国科学院苏州生物医学工程技术研究所,江苏苏州215163
AuthorAffiliation_xml – name: 上海大学机电工程与自动化学院,上海200072;中国科学院苏州生物医学工程技术研究所,江苏苏州215163%中国科学院苏州生物医学工程技术研究所,江苏苏州,215163%上海大学机电工程与自动化学院,上海,200072
Author_FL YU Yong
JIANG Zhen
YU Qian
L(U) Tiantian
WANG Xinzui
Author_FL_xml – sequence: 1
  fullname: L(U) Tiantian
– sequence: 2
  fullname: WANG Xinzui
– sequence: 3
  fullname: YU Qian
– sequence: 4
  fullname: YU Yong
– sequence: 5
  fullname: JIANG Zhen
Author_xml – sequence: 1
  fullname: 吕甜甜 王心醉 俞乾 于涌 蒋蓁
BookMark eNo9jz1Lw1AYhe9QwVr7J0TcEt-b-z1K8QsKLt3LTZrUBL3RBhFHpaiVIijqUCpVcBBXcWgHf41p8jNMqTid9xwe3sNZQiUTGx-hVQw2UVytR3aYJMbGAGAR6kjbASwKawMVJVT-zxdRNUlCFxgmggkiy0ilo8nP5Dbv3mUPX-l9P7_oz463QdYbp9_n2aCbX32kN-_Z82s2fEmvL6fD0fRpPP18XEYLgT5I_OqfVlBja7NR27Hqe9u7tY265TEpLA2YMuFxypVWIArruxq7WkrVUpRpD1hAOBcQuMphoIFTn5GA4ZbTwj73SQWtzd-eahNo025G8UnHFIXNKIna3mxoMY-KAlyZg95-bNrHYYEedcJD3TlrckGIxFIA-QVTQ2rl
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1000-3428.2017.10.047
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Automatic Sleep Staging Method Based on Multi-features of Electroencephalogram and Electromyogram
DocumentTitle_FL Automatic Sleep Staging Method Based on Multi-features of Electroencephalogram and Electromyogram
EndPage 288
ExternalDocumentID jsjgc201710047
673381870
GrantInformation_xml – fundername: 国家自然科学基金; 苏州市科技计划项目
  funderid: (61433016); (ZXY201427,ZXY201429)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c587-a01457c6469a907a01eba1ba889d945ac05f36670fb9250a064e53f51d2d1e6e3
ISSN 1000-3428
IngestDate Thu May 29 04:21:02 EDT 2025
Wed Feb 14 09:56:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords 支持向量机
Discrete Wavelet Transform (DWT)
Support Vector Machine (SVM)
sample entropy
sleep staging
能量特征
Electromyogram (EMG)
脑电
样本熵
睡眠分期
energy feature
离散小波变换
肌电
Electroencephalogram (EEG)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c587-a01457c6469a907a01eba1ba889d945ac05f36670fb9250a064e53f51d2d1e6e3
Notes 31-1289/TP
LU Tiantian1,2 ,WANG Xinzui2, YU Qian2, YU Yong2, JIANG Zhen1 ( 1. College of Electromechanical Engineering and Automation, Shanghai University, Shanghai 200072,China ; 2. S uzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China)
sleep staging ; Electroencephalogram (EEG) ; Electromyogram (EMG) ; Discrete Wavelet Transform (DWT) ;energy feature ; sample entropy; Support Vector Machine (SVM)
In order to achieve accurate automatic sleep staging and meet the needs of generalization ability, an automatic sleep staging method based on multi-features of Electroencephalogram (EEG) and Electromyography (EMG) is proposed. EEG and EMG of MIT-BIH polysomnographic database samples are chosen as the analysis object. The Discrete Wavelet Transform (DWT) is used to make filter processing of the raw data. The energy ratio of α,β,θ,δ rhythm waves and the high frequency component from EMG are extracted. The nonlinear characteristics of EEG are also extracted
PageCount 6
ParticipantIDs wanfang_journals_jsjgc201710047
chongqing_primary_673381870
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机工程
PublicationTitleAlternate Computer Engineering
PublicationTitle_FL Computer Engineering
PublicationYear 2017
Publisher 上海大学机电工程与自动化学院,上海200072
中国科学院苏州生物医学工程技术研究所,江苏苏州215163%中国科学院苏州生物医学工程技术研究所,江苏苏州,215163%上海大学机电工程与自动化学院,上海,200072
Publisher_xml – name: 上海大学机电工程与自动化学院,上海200072
– name: 中国科学院苏州生物医学工程技术研究所,江苏苏州215163%中国科学院苏州生物医学工程技术研究所,江苏苏州,215163%上海大学机电工程与自动化学院,上海,200072
SSID ssib051375738
ssib017479294
ssj0042200
ssib001102934
ssib023646288
Score 2.0891197
Snippet 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法。以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采...
TP391; 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法.以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 283
SubjectTerms 支持向量机
样本熵
睡眠分期
离散小波变换
肌电
能量特征
脑电
Title 基于脑电和肌电多特征的自动睡眠分期方法
URI http://lib.cqvip.com/qk/95200X/201710/673381870.html
https://d.wanfangdata.com.cn/periodical/jsjgc201710047
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1000-3428
  databaseCode: DOA
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0042200
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiE4IJ6ilEcP9Wm1S16O7aOzZFUhwWmRelsl2aRVD9tCt5feQBUvVUgg4FAVFSQOiCvi0B74GfwC9vEzmLG9IapQBVysyXg8mXic-HOSGROykLl54eZu1kgznjWCxOMNKbO00QtYCoAklGGK0ch374WL94M7S2ypVvtR-Wtpc5A2s60_xpX8j1eBB37FKNl_8GypFBhAg3-hBA9D-Vc-pjGjsk0jReMASxHTWFARUOnSmFMJTKZlPCpausoQlSoFwgo5QtJIIieKAV1qGYWqsBWnSmGVUFQJXXWbKiPTosrRVSAW0jhEDpiERKgVQulTs8PlFASjThVbDUBIbhtG-iwRMJmuAp3lFyF9HQ5osubLVknUtf1gdqSbt6nwaSzRHiHrumvaVMaagIuM65XeAutACjUI3UuRJnxqNniZvg4xcZ_22Y1B8n5gY83tw93kgJoOYqf6qDYb6NhZ3zObCx6dUHwYrXpCwTM0yzPgL4G8iX8FmnShR1J2h9xHIMSdE-SkxwEBVZb6GqYCqpO_0_LBopADSi2PMac_7gI9PWauz5lOk2cQRuB5jsmyYc05RRasrbeOsxTTh6ys9ZcfACjSMWr9IukvV-BU5xw5a9dB88oM6vOktrVygZypZMe8SORw__Dn4cvJ9qvxm2_D1zuTxztIfNodPz8Yfn803t2ePP0yfPF5_P7jeO_D8NmT0d7-6N3B6OvbS6TTjjutxYbd6aORMZjkEvy2zTO4aplIh8NhniZumgghezJgSeawwg9D7hSpBMieAIzOmV8wt-f13DzM_ctkpr_Wz6-Q-dAFRB4UieMXYZCxHHQ5BSwToGVPcj-YJXNlH3TXTUKXbumvWXLT9krX3uYb3dWN1eUMexFzK_Krx7afI6dR0ryiu0ZmBg838-sAWgfpDT0CfgEaHnIy
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%84%91%E7%94%B5%E5%92%8C%E8%82%8C%E7%94%B5%E5%A4%9A%E7%89%B9%E5%BE%81%E7%9A%84%E8%87%AA%E5%8A%A8%E7%9D%A1%E7%9C%A0%E5%88%86%E6%9C%9F%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E5%90%95%E7%94%9C%E7%94%9C+%E7%8E%8B%E5%BF%83%E9%86%89+%E4%BF%9E%E4%B9%BE+%E4%BA%8E%E6%B6%8C+%E8%92%8B%E8%93%81&rft.date=2017&rft.issn=1000-3428&rft.volume=43&rft.issue=10&rft.spage=283&rft.epage=288&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2017.10.047&rft.externalDocID=673381870
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg