基于脑电和肌电多特征的自动睡眠分期方法
为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法。以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采用离散小波变换对原始数据进行滤波预处理,提取EEG的α,β,θ,δ节律波和高频成分的能量比,利用样本熵算法提取EEG的非线性特征。将特征参数输入支持向量机分类器中进行样本训练与分类识别。实验结果表明,该方法的分期准确率可以达到92.94%,相比基于EEG的睡眠分期方法平均准确率提高3.96%,交叉验证平均准确率达82.68%,具有较好的泛化能力。...
Saved in:
Published in | 计算机工程 Vol. 43; no. 10; pp. 283 - 288 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
上海大学机电工程与自动化学院,上海200072
2017
中国科学院苏州生物医学工程技术研究所,江苏苏州215163%中国科学院苏州生物医学工程技术研究所,江苏苏州,215163%上海大学机电工程与自动化学院,上海,200072 |
Subjects | |
Online Access | Get full text |
ISSN | 1000-3428 |
DOI | 10.3969/j.issn.1000-3428.2017.10.047 |
Cover
Abstract | 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法。以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采用离散小波变换对原始数据进行滤波预处理,提取EEG的α,β,θ,δ节律波和高频成分的能量比,利用样本熵算法提取EEG的非线性特征。将特征参数输入支持向量机分类器中进行样本训练与分类识别。实验结果表明,该方法的分期准确率可以达到92.94%,相比基于EEG的睡眠分期方法平均准确率提高3.96%,交叉验证平均准确率达82.68%,具有较好的泛化能力。 |
---|---|
AbstractList | 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法。以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采用离散小波变换对原始数据进行滤波预处理,提取EEG的α,β,θ,δ节律波和高频成分的能量比,利用样本熵算法提取EEG的非线性特征。将特征参数输入支持向量机分类器中进行样本训练与分类识别。实验结果表明,该方法的分期准确率可以达到92.94%,相比基于EEG的睡眠分期方法平均准确率提高3.96%,交叉验证平均准确率达82.68%,具有较好的泛化能力。 TP391; 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法.以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采用离散小波变换对原始数据进行滤波预处理,提取EEG的α,β,θ,δ节律波和高频成分的能量比,利用样本熵算法提取EEG的非线性特征.将特征参数输入支持向量机分类器中进行样本训练与分类识别.实验结果表明,该方法的分期准确率可以达到92.94%,相比基于EEG的睡眠分期方法平均准确率提高3.96%,交叉验证平均准确率达82.68%,具有较好的泛化能力. |
Abstract_FL | In order to achieve accurate automatic sleep staging and meet the needs of generalization ability,an automatic sleep staging method based on multi-features of Electroencephalogram (EEG) and Electromyography (EMG) is proposed.EEG and EMG of MIT-BIH polysomnographic database samples are chosen as the analysis object.The Discrete Wavelet Transform(DWT) is used to make filter processing of the raw data.The energy ratio of α,β,0,δ rhythm waves and the high frequency component from EMG are extracted.The nonlinear characteristics of EEG are also extracted by Sample Entropy(SampEn) algorithm.These feature parameters are inputted Support Vector Machine(SVM) classifier for sample training and classification recognition.Experimental results show that the periodization accuracy of the proposed method reaches 92.94%.The average accuracy raises 3.96% compared with the sleep staging method based on EEG and the average accuracy of cross validation is 82.68%.The proposed method has better generalization ability. |
Author | 吕甜甜 王心醉 俞乾 于涌 蒋蓁 |
AuthorAffiliation | 上海大学机电工程与自动化学院,上海200072 中国科学院苏州生物医学工程技术研究所,江苏苏州215163 |
AuthorAffiliation_xml | – name: 上海大学机电工程与自动化学院,上海200072;中国科学院苏州生物医学工程技术研究所,江苏苏州215163%中国科学院苏州生物医学工程技术研究所,江苏苏州,215163%上海大学机电工程与自动化学院,上海,200072 |
Author_FL | YU Yong JIANG Zhen YU Qian L(U) Tiantian WANG Xinzui |
Author_FL_xml | – sequence: 1 fullname: L(U) Tiantian – sequence: 2 fullname: WANG Xinzui – sequence: 3 fullname: YU Qian – sequence: 4 fullname: YU Yong – sequence: 5 fullname: JIANG Zhen |
Author_xml | – sequence: 1 fullname: 吕甜甜 王心醉 俞乾 于涌 蒋蓁 |
BookMark | eNo9jz1Lw1AYhe9QwVr7J0TcEt-b-z1K8QsKLt3LTZrUBL3RBhFHpaiVIijqUCpVcBBXcWgHf41p8jNMqTid9xwe3sNZQiUTGx-hVQw2UVytR3aYJMbGAGAR6kjbASwKawMVJVT-zxdRNUlCFxgmggkiy0ilo8nP5Dbv3mUPX-l9P7_oz463QdYbp9_n2aCbX32kN-_Z82s2fEmvL6fD0fRpPP18XEYLgT5I_OqfVlBja7NR27Hqe9u7tY265TEpLA2YMuFxypVWIArruxq7WkrVUpRpD1hAOBcQuMphoIFTn5GA4ZbTwj73SQWtzd-eahNo025G8UnHFIXNKIna3mxoMY-KAlyZg95-bNrHYYEedcJD3TlrckGIxFIA-QVTQ2rl |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1000-3428.2017.10.047 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Automatic Sleep Staging Method Based on Multi-features of Electroencephalogram and Electromyogram |
DocumentTitle_FL | Automatic Sleep Staging Method Based on Multi-features of Electroencephalogram and Electromyogram |
EndPage | 288 |
ExternalDocumentID | jsjgc201710047 673381870 |
GrantInformation_xml | – fundername: 国家自然科学基金; 苏州市科技计划项目 funderid: (61433016); (ZXY201427,ZXY201429) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c587-a01457c6469a907a01eba1ba889d945ac05f36670fb9250a064e53f51d2d1e6e3 |
ISSN | 1000-3428 |
IngestDate | Thu May 29 04:21:02 EDT 2025 Wed Feb 14 09:56:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | 支持向量机 Discrete Wavelet Transform (DWT) Support Vector Machine (SVM) sample entropy sleep staging 能量特征 Electromyogram (EMG) 脑电 样本熵 睡眠分期 energy feature 离散小波变换 肌电 Electroencephalogram (EEG) |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c587-a01457c6469a907a01eba1ba889d945ac05f36670fb9250a064e53f51d2d1e6e3 |
Notes | 31-1289/TP LU Tiantian1,2 ,WANG Xinzui2, YU Qian2, YU Yong2, JIANG Zhen1 ( 1. College of Electromechanical Engineering and Automation, Shanghai University, Shanghai 200072,China ; 2. S uzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China) sleep staging ; Electroencephalogram (EEG) ; Electromyogram (EMG) ; Discrete Wavelet Transform (DWT) ;energy feature ; sample entropy; Support Vector Machine (SVM) In order to achieve accurate automatic sleep staging and meet the needs of generalization ability, an automatic sleep staging method based on multi-features of Electroencephalogram (EEG) and Electromyography (EMG) is proposed. EEG and EMG of MIT-BIH polysomnographic database samples are chosen as the analysis object. The Discrete Wavelet Transform (DWT) is used to make filter processing of the raw data. The energy ratio of α,β,θ,δ rhythm waves and the high frequency component from EMG are extracted. The nonlinear characteristics of EEG are also extracted |
PageCount | 6 |
ParticipantIDs | wanfang_journals_jsjgc201710047 chongqing_primary_673381870 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 计算机工程 |
PublicationTitleAlternate | Computer Engineering |
PublicationTitle_FL | Computer Engineering |
PublicationYear | 2017 |
Publisher | 上海大学机电工程与自动化学院,上海200072 中国科学院苏州生物医学工程技术研究所,江苏苏州215163%中国科学院苏州生物医学工程技术研究所,江苏苏州,215163%上海大学机电工程与自动化学院,上海,200072 |
Publisher_xml | – name: 上海大学机电工程与自动化学院,上海200072 – name: 中国科学院苏州生物医学工程技术研究所,江苏苏州215163%中国科学院苏州生物医学工程技术研究所,江苏苏州,215163%上海大学机电工程与自动化学院,上海,200072 |
SSID | ssib051375738 ssib017479294 ssj0042200 ssib001102934 ssib023646288 |
Score | 2.0891197 |
Snippet | 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法。以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,采... TP391; 为实现准确的自动睡眠分期,且满足泛化能力的需求,基于脑电(EEG)和肌电(EMG)多特征,提出一种自动睡眠分期方法.以MIT-BIH多导睡眠数据库中样本的EEG和EMG为分析对象,... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 283 |
SubjectTerms | 支持向量机 样本熵 睡眠分期 离散小波变换 肌电 能量特征 脑电 |
Title | 基于脑电和肌电多特征的自动睡眠分期方法 |
URI | http://lib.cqvip.com/qk/95200X/201710/673381870.html https://d.wanfangdata.com.cn/periodical/jsjgc201710047 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1000-3428 databaseCode: DOA dateStart: 20160101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0042200 providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiE4IJ6ilEcP9Wm1S16O7aOzZFUhwWmRelsl2aRVD9tCt5feQBUvVUgg4FAVFSQOiCvi0B74GfwC9vEzmLG9IapQBVysyXg8mXic-HOSGROykLl54eZu1kgznjWCxOMNKbO00QtYCoAklGGK0ch374WL94M7S2ypVvtR-Wtpc5A2s60_xpX8j1eBB37FKNl_8GypFBhAg3-hBA9D-Vc-pjGjsk0jReMASxHTWFARUOnSmFMJTKZlPCpausoQlSoFwgo5QtJIIieKAV1qGYWqsBWnSmGVUFQJXXWbKiPTosrRVSAW0jhEDpiERKgVQulTs8PlFASjThVbDUBIbhtG-iwRMJmuAp3lFyF9HQ5osubLVknUtf1gdqSbt6nwaSzRHiHrumvaVMaagIuM65XeAutACjUI3UuRJnxqNniZvg4xcZ_22Y1B8n5gY83tw93kgJoOYqf6qDYb6NhZ3zObCx6dUHwYrXpCwTM0yzPgL4G8iX8FmnShR1J2h9xHIMSdE-SkxwEBVZb6GqYCqpO_0_LBopADSi2PMac_7gI9PWauz5lOk2cQRuB5jsmyYc05RRasrbeOsxTTh6ys9ZcfACjSMWr9IukvV-BU5xw5a9dB88oM6vOktrVygZypZMe8SORw__Dn4cvJ9qvxm2_D1zuTxztIfNodPz8Yfn803t2ePP0yfPF5_P7jeO_D8NmT0d7-6N3B6OvbS6TTjjutxYbd6aORMZjkEvy2zTO4aplIh8NhniZumgghezJgSeawwg9D7hSpBMieAIzOmV8wt-f13DzM_ctkpr_Wz6-Q-dAFRB4UieMXYZCxHHQ5BSwToGVPcj-YJXNlH3TXTUKXbumvWXLT9krX3uYb3dWN1eUMexFzK_Krx7afI6dR0ryiu0ZmBg838-sAWgfpDT0CfgEaHnIy |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%84%91%E7%94%B5%E5%92%8C%E8%82%8C%E7%94%B5%E5%A4%9A%E7%89%B9%E5%BE%81%E7%9A%84%E8%87%AA%E5%8A%A8%E7%9D%A1%E7%9C%A0%E5%88%86%E6%9C%9F%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E5%90%95%E7%94%9C%E7%94%9C+%E7%8E%8B%E5%BF%83%E9%86%89+%E4%BF%9E%E4%B9%BE+%E4%BA%8E%E6%B6%8C+%E8%92%8B%E8%93%81&rft.date=2017&rft.issn=1000-3428&rft.volume=43&rft.issue=10&rft.spage=283&rft.epage=288&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2017.10.047&rft.externalDocID=673381870 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg |