基于误差补偿的复杂场景下背景建模方法
在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型.然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补偿过程的准确性和稳定性会受到一定的影响.针对这些问题,本文提出了一种基于误差补偿的增量子空间背景建模方法.该方法可以实现复杂场景下的背景建模.首先,本文在误差补偿的过程中考虑了前景的空间连续性约束,在补偿前景信息的同时减少了动态背景的干扰,提高了背景建模的准确性.其次,本文将误差估计过程归结为一个凸优化问题,并根据不同的应用场合设计了相应的精确求解算法和快速求解方法.再次,本文设计了一种基于Alpha通道的误差补偿策略,提高了算法对...
Saved in:
Published in | 自动化学报 Vol. 42; no. 9; pp. 1356 - 1366 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
北京理工大学计算机学院 北京 100081
2016
智能信息技术北京市重点实验室 北京 100081 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.16383/j.aas.2016.c150857 |
Cover
Abstract | 在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型.然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补偿过程的准确性和稳定性会受到一定的影响.针对这些问题,本文提出了一种基于误差补偿的增量子空间背景建模方法.该方法可以实现复杂场景下的背景建模.首先,本文在误差补偿的过程中考虑了前景的空间连续性约束,在补偿前景信息的同时减少了动态背景的干扰,提高了背景建模的准确性.其次,本文将误差估计过程归结为一个凸优化问题,并根据不同的应用场合设计了相应的精确求解算法和快速求解方法.再次,本文设计了一种基于Alpha通道的误差补偿策略,提高了算法对复杂前景的抗干扰能力.最后,本文构建了不依赖于子空间模型的背景模板,减少了由前景信息反馈引起的背景更新失效,提高了算法的鲁棒性.多项对比实验表明,本文算法在干扰因素存在的情况下仍然可以实现对背景的准确建模,表现出较强的抗扰性和鲁棒性. |
---|---|
AbstractList | 在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型.然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补偿过程的准确性和稳定性会受到一定的影响.针对这些问题,本文提出了一种基于误差补偿的增量子空间背景建模方法.该方法可以实现复杂场景下的背景建模.首先,本文在误差补偿的过程中考虑了前景的空间连续性约束,在补偿前景信息的同时减少了动态背景的干扰,提高了背景建模的准确性.其次,本文将误差估计过程归结为一个凸优化问题,并根据不同的应用场合设计了相应的精确求解算法和快速求解方法.再次,本文设计了一种基于Alpha通道的误差补偿策略,提高了算法对复杂前景的抗干扰能力.最后,本文构建了不依赖于子空间模型的背景模板,减少了由前景信息反馈引起的背景更新失效,提高了算法的鲁棒性.多项对比实验表明,本文算法在干扰因素存在的情况下仍然可以实现对背景的准确建模,表现出较强的抗扰性和鲁棒性. 在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型。然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补偿过程的准确性和稳定性会受到一定的影响。针对这些问题,本文提出了一种基于误差补偿的增量子空间背景建模方法。该方法可以实现复杂场景下的背景建模。首先,本文在误差补偿的过程中考虑了前景的空间连续性约束,在补偿前景信息的同时减少了动态背景的干扰,提高了背景建模的准确性。其次,本文将误差估计过程归结为一个凸优化问题,并根据不同的应用场合设计了相应的精确求解算法和快速求解方法。再次,本文设计了一种基于Alpha 通道的误差补偿策略,提高了算法对复杂前景的抗干扰能力。最后,本文构建了不依赖于子空间模型的背景模板,减少了由前景信息反馈引起的背景更新失效,提高了算法的鲁棒性。多项对比实验表明,本文算法在干扰因素存在的情况下仍然可以实现对背景的准确建模,表现出较强的抗扰性和鲁棒性。 |
Abstract_FL | Compensating foreground error with background information usually helps to build an accurate background model for the subspace learning based background modeling method. However, dynamic background (swaying tree or waving water surface) and complex foreground signal may have bad influences on the compensation process. To solve the problem, we propose an error compensation based incremental subspace method for background modeling, which aims to build an accurate background model in complex scenarios. First, we bring a spatial continuity constraint to the foreground error estimation process, which helps to preserve more dynamic background information and increase the accuracy of the background model. Second, we formulate the foreground estimation task into a convex optimization problem, and design an accurate optimization algorithm and a fast optimization algorithm, respectively for different applications. Third, an alpha-mating based error compensation strategy is designed, which increases the anti-interference performance of our algorithm. At last, a median background template which does not rely on background model is constructed, which increases the robustness of our algorithm. Multiple experiments show that the proposed method is able to model background accurately even in complex scenarios, demonstrating the anti-interference performance and the robustness of our method. |
Author | 秦明 陆耀 邸慧军 吕峰 |
AuthorAffiliation | 北京理工大学计算机学院,北京100081 智能信息技术北京市重点实验室,北京100081 |
AuthorAffiliation_xml | – name: 北京理工大学计算机学院 北京 100081; 智能信息技术北京市重点实验室 北京 100081 |
Author_FL | LV Feng QIN Ming LU Yao DI Hui-Jun |
Author_FL_xml | – sequence: 1 fullname: QIN Ming – sequence: 2 fullname: LU Yao – sequence: 3 fullname: DI Hui-Jun – sequence: 4 fullname: LV Feng |
Author_xml | – sequence: 1 fullname: 秦明 陆耀 邸慧军 吕峰 |
BookMark | eNotjzlLA0EcxQeJYIz5BHYWdrvO9Z-jlOAFAZv0YWaSyYFuNIt4dB6dR6egKBJQsDKFhboWfpnsmo_hSqzeK378Hm8WFaJe1ERonuCQCKbYUjc0Jg4pJiJ0BLACOYWKREkeEEx1ARUxBR5wAmIGleO4YzGRXGrKcBGJ9DEZJVfj4TB9fx0PntPj75-7s_TpMns4Se-T7HY4-jgfn17kJf1KspdBdvOZvV3PoWlvtuJm-T9LqLa6UqusB9XNtY3KcjVwoGQAVgssKKdGcSWlkt6DcQDKECMblgLlThjw1lnKFbcgNVjiBePSK-YsK6HFiXbfRN5ErXq3t9eP8sH6UaN9YP8uY42xzMGFCejavai128nRnX5n2_QP60JojYkCwX4BGz1p_Q |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.2016.c150857 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | An Error Compensation Based Background Modeling Method for Complex Scenarios |
DocumentTitle_FL | An Error Compensation Based Background Modeling Method for Complex Scenarios |
EISSN | 1874-1029 |
EndPage | 1366 |
ExternalDocumentID | zdhxb201609007 669901856 |
GrantInformation_xml | – fundername: 国家自然科学基金; 高等学校博士学科点专项科研基金; 北京市教委共建项目资助Supported by National Natural Science Foundation of China; Research Fund for the Doctoral Program of Higher Education of China; Specialized Fund for Joint Building Project of Beijing Municipal Education Commission funderid: (61273273,61175096,61271374); (2012110110034); (61273273,61175096,61271374); (2012110110034); Specialized Fund for Joint Building Project of Beijing Municipal Education Commission |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c587-5b9606242a8487787ff5ac558a1a7db2524c6a5fbcb2484b5795b1f6347f83cb3 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 10:15:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | alpha-mating 抗干扰的误差补偿 背景建模 spatial continuity median tem-plate Alpha通道 anti-interference error compensation 空间连续性 中值模板 Background modeling |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c587-5b9606242a8487787ff5ac558a1a7db2524c6a5fbcb2484b5795b1f6347f83cb3 |
Notes | Background modeling, anti-interference error compensation, spatial continuity, alpha-mating, median template QIN Ming, LU Yao,DI Hui-Jun, LV Feng (1. School of Computer Science, Beijing Institute of Technology, Beijing 100081; 2. Beijing Laboratory of Intelligent Information Technology, Beijing 100081) 11-2109/TP Compensating foreground error with background information usually helps to build an accurate background model for the subspace learning based background modeling method. However, dynamic background (swaying tree or waving water surface) and complex foreground signal may have bad influences on the compensation process. To solve the problem, we propose an error compensation based incremental subspace method for background modeling, which aims to build an accurate background model in complex scenarios. First, we bring a spatial continuity constraint to the foreground error estimation process, which helps to preserve more dynamic background information and increase the accuracy of the background model. Seco |
PageCount | 11 |
ParticipantIDs | wanfang_journals_zdhxb201609007 chongqing_primary_669901856 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 自动化学报 |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2016 |
Publisher | 北京理工大学计算机学院 北京 100081 智能信息技术北京市重点实验室 北京 100081 |
Publisher_xml | – name: 北京理工大学计算机学院 北京 100081 – name: 智能信息技术北京市重点实验室 北京 100081 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.152717 |
Snippet | 在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型.然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补... 在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型。然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 1356 |
SubjectTerms | Alpha通道 中值模板 抗干扰的误差补偿 空间连续性 背景建模 |
Title | 基于误差补偿的复杂场景下背景建模方法 |
URI | http://lib.cqvip.com/qk/90250X/201609/669901856.html https://d.wanfangdata.com.cn/periodical/zdhxb201609007 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1874-1029 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059721 issn: 0254-4156 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LjtMw0CrdCxwQT7Esjz3g06pLXn7kmLQpKwScCtpbFeexPXV5dCXUG48bjxtIIBBaCSRO9MABKEL8zKb0M5hx3DZiEQKkyLLHmcnYY41n7HhMyAVmC-UosNysTOLSjUgbKhVWg7EcbylPJEvxoPDVa3zjund5k23Wat8qfy3tDNR6MvztuZL_kSrAQK54SvYfJDsnCgDIg3whBQlD-lcyphGjfpuGAY08TGVEI0mDNj5QFQoalBCbBgwh0qYhVAnqw8seQgKwJVs04tRvUelogk1NECC-pgOUJZUh0pEulc1KFXwiNC8H-itYxWnoYyZ0aXmx5cz21RSApUBzEiAKZpqIgpy0aMAREavYbCAgs4EwNT4QiNZo5CMDkmuCFjwaBNwDo4jPEANJA0a4pttkAS-aX5eGVnWlozyCaVQhuLENdDXLWatU1VJ4MImY9RKjyz2nMmb9imK23RmyKZZ3veybQEAduXoGiWMM5m7z9QQj5pdBtH-JzM05bipKxg-QJUeAoVMnS5fCKzeChT2K_FUUKPNBR1bsLc4wHuCiLHBXu7INDWXXXfh34D1iuMd5GYP_84o_z2wXvE_0p0tThGFoJr3IaLrPhN3CRl7c30QML9Lb7m_dAqNJn2Hr53F_q2JudY6Qw8ZPWg3KQX-U1Ia9Y-RQJXrmccKLN-O98dPpaFR8-jDdfVfc-_7j5cPi7ZPJ6_vFq_HkxWjv86Ppg8eQKb6OJ-93J8-_TD4-O0E67ajT3GiYa0AaCYMZkCl0ssGSjCU41zC_5DmLE8ZkbMciVQ5zvITHLFeJcjzpKSZ8puycu57IpZso9ySp97f72SmyKpRQLMscO4Fey12lZJZaKub6jgHbS5bJyrwDujfLaC_duZSXyXnTJV2jA-50h2nvrsI-tHyQ1uk_4q-Qg_hmuX53htQHt3eys2DRDtQ5M25-AjI0e1I |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%AF%AF%E5%B7%AE%E8%A1%A5%E5%81%BF%E7%9A%84%E5%A4%8D%E6%9D%82%E5%9C%BA%E6%99%AF%E4%B8%8B%E8%83%8C%E6%99%AF%E5%BB%BA%E6%A8%A1%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E7%A7%A6%E6%98%8E+%E9%99%86%E8%80%80+%E9%82%B8%E6%85%A7%E5%86%9B+%E5%90%95%E5%B3%B0&rft.date=2016&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=42&rft.issue=9&rft.spage=1356&rft.epage=1366&rft_id=info:doi/10.16383%2Fj.aas.2016.c150857&rft.externalDocID=669901856 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |