基于误差补偿的复杂场景下背景建模方法

在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型.然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补偿过程的准确性和稳定性会受到一定的影响.针对这些问题,本文提出了一种基于误差补偿的增量子空间背景建模方法.该方法可以实现复杂场景下的背景建模.首先,本文在误差补偿的过程中考虑了前景的空间连续性约束,在补偿前景信息的同时减少了动态背景的干扰,提高了背景建模的准确性.其次,本文将误差估计过程归结为一个凸优化问题,并根据不同的应用场合设计了相应的精确求解算法和快速求解方法.再次,本文设计了一种基于Alpha通道的误差补偿策略,提高了算法对...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 42; no. 9; pp. 1356 - 1366
Main Author 秦明 陆耀 邸慧军 吕峰
Format Journal Article
LanguageChinese
Published 北京理工大学计算机学院 北京 100081 2016
智能信息技术北京市重点实验室 北京 100081
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2016.c150857

Cover

Abstract 在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型.然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补偿过程的准确性和稳定性会受到一定的影响.针对这些问题,本文提出了一种基于误差补偿的增量子空间背景建模方法.该方法可以实现复杂场景下的背景建模.首先,本文在误差补偿的过程中考虑了前景的空间连续性约束,在补偿前景信息的同时减少了动态背景的干扰,提高了背景建模的准确性.其次,本文将误差估计过程归结为一个凸优化问题,并根据不同的应用场合设计了相应的精确求解算法和快速求解方法.再次,本文设计了一种基于Alpha通道的误差补偿策略,提高了算法对复杂前景的抗干扰能力.最后,本文构建了不依赖于子空间模型的背景模板,减少了由前景信息反馈引起的背景更新失效,提高了算法的鲁棒性.多项对比实验表明,本文算法在干扰因素存在的情况下仍然可以实现对背景的准确建模,表现出较强的抗扰性和鲁棒性.
AbstractList 在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型.然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补偿过程的准确性和稳定性会受到一定的影响.针对这些问题,本文提出了一种基于误差补偿的增量子空间背景建模方法.该方法可以实现复杂场景下的背景建模.首先,本文在误差补偿的过程中考虑了前景的空间连续性约束,在补偿前景信息的同时减少了动态背景的干扰,提高了背景建模的准确性.其次,本文将误差估计过程归结为一个凸优化问题,并根据不同的应用场合设计了相应的精确求解算法和快速求解方法.再次,本文设计了一种基于Alpha通道的误差补偿策略,提高了算法对复杂前景的抗干扰能力.最后,本文构建了不依赖于子空间模型的背景模板,减少了由前景信息反馈引起的背景更新失效,提高了算法的鲁棒性.多项对比实验表明,本文算法在干扰因素存在的情况下仍然可以实现对背景的准确建模,表现出较强的抗扰性和鲁棒性.
在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型。然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补偿过程的准确性和稳定性会受到一定的影响。针对这些问题,本文提出了一种基于误差补偿的增量子空间背景建模方法。该方法可以实现复杂场景下的背景建模。首先,本文在误差补偿的过程中考虑了前景的空间连续性约束,在补偿前景信息的同时减少了动态背景的干扰,提高了背景建模的准确性。其次,本文将误差估计过程归结为一个凸优化问题,并根据不同的应用场合设计了相应的精确求解算法和快速求解方法。再次,本文设计了一种基于Alpha 通道的误差补偿策略,提高了算法对复杂前景的抗干扰能力。最后,本文构建了不依赖于子空间模型的背景模板,减少了由前景信息反馈引起的背景更新失效,提高了算法的鲁棒性。多项对比实验表明,本文算法在干扰因素存在的情况下仍然可以实现对背景的准确建模,表现出较强的抗扰性和鲁棒性。
Abstract_FL Compensating foreground error with background information usually helps to build an accurate background model for the subspace learning based background modeling method. However, dynamic background (swaying tree or waving water surface) and complex foreground signal may have bad influences on the compensation process. To solve the problem, we propose an error compensation based incremental subspace method for background modeling, which aims to build an accurate background model in complex scenarios. First, we bring a spatial continuity constraint to the foreground error estimation process, which helps to preserve more dynamic background information and increase the accuracy of the background model. Second, we formulate the foreground estimation task into a convex optimization problem, and design an accurate optimization algorithm and a fast optimization algorithm, respectively for different applications. Third, an alpha-mating based error compensation strategy is designed, which increases the anti-interference performance of our algorithm. At last, a median background template which does not rely on background model is constructed, which increases the robustness of our algorithm. Multiple experiments show that the proposed method is able to model background accurately even in complex scenarios, demonstrating the anti-interference performance and the robustness of our method.
Author 秦明 陆耀 邸慧军 吕峰
AuthorAffiliation 北京理工大学计算机学院,北京100081 智能信息技术北京市重点实验室,北京100081
AuthorAffiliation_xml – name: 北京理工大学计算机学院 北京 100081; 智能信息技术北京市重点实验室 北京 100081
Author_FL LV Feng
QIN Ming
LU Yao
DI Hui-Jun
Author_FL_xml – sequence: 1
  fullname: QIN Ming
– sequence: 2
  fullname: LU Yao
– sequence: 3
  fullname: DI Hui-Jun
– sequence: 4
  fullname: LV Feng
Author_xml – sequence: 1
  fullname: 秦明 陆耀 邸慧军 吕峰
BookMark eNotjzlLA0EcxQeJYIz5BHYWdrvO9Z-jlOAFAZv0YWaSyYFuNIt4dB6dR6egKBJQsDKFhboWfpnsmo_hSqzeK378Hm8WFaJe1ERonuCQCKbYUjc0Jg4pJiJ0BLACOYWKREkeEEx1ARUxBR5wAmIGleO4YzGRXGrKcBGJ9DEZJVfj4TB9fx0PntPj75-7s_TpMns4Se-T7HY4-jgfn17kJf1KspdBdvOZvV3PoWlvtuJm-T9LqLa6UqusB9XNtY3KcjVwoGQAVgssKKdGcSWlkt6DcQDKECMblgLlThjw1lnKFbcgNVjiBePSK-YsK6HFiXbfRN5ErXq3t9eP8sH6UaN9YP8uY42xzMGFCejavai128nRnX5n2_QP60JojYkCwX4BGz1p_Q
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2016.c150857
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate An Error Compensation Based Background Modeling Method for Complex Scenarios
DocumentTitle_FL An Error Compensation Based Background Modeling Method for Complex Scenarios
EISSN 1874-1029
EndPage 1366
ExternalDocumentID zdhxb201609007
669901856
GrantInformation_xml – fundername: 国家自然科学基金; 高等学校博士学科点专项科研基金; 北京市教委共建项目资助Supported by National Natural Science Foundation of China; Research Fund for the Doctoral Program of Higher Education of China; Specialized Fund for Joint Building Project of Beijing Municipal Education Commission
  funderid: (61273273,61175096,61271374); (2012110110034); (61273273,61175096,61271374); (2012110110034); Specialized Fund for Joint Building Project of Beijing Municipal Education Commission
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c587-5b9606242a8487787ff5ac558a1a7db2524c6a5fbcb2484b5795b1f6347f83cb3
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:15:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords alpha-mating
抗干扰的误差补偿
背景建模
spatial continuity
median tem-plate
Alpha通道
anti-interference error compensation
空间连续性
中值模板
Background modeling
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c587-5b9606242a8487787ff5ac558a1a7db2524c6a5fbcb2484b5795b1f6347f83cb3
Notes Background modeling, anti-interference error compensation, spatial continuity, alpha-mating, median template
QIN Ming, LU Yao,DI Hui-Jun, LV Feng (1. School of Computer Science, Beijing Institute of Technology, Beijing 100081; 2. Beijing Laboratory of Intelligent Information Technology, Beijing 100081)
11-2109/TP
Compensating foreground error with background information usually helps to build an accurate background model for the subspace learning based background modeling method. However, dynamic background (swaying tree or waving water surface) and complex foreground signal may have bad influences on the compensation process. To solve the problem, we propose an error compensation based incremental subspace method for background modeling, which aims to build an accurate background model in complex scenarios. First, we bring a spatial continuity constraint to the foreground error estimation process, which helps to preserve more dynamic background information and increase the accuracy of the background model. Seco
PageCount 11
ParticipantIDs wanfang_journals_zdhxb201609007
chongqing_primary_669901856
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2016
Publisher 北京理工大学计算机学院 北京 100081
智能信息技术北京市重点实验室 北京 100081
Publisher_xml – name: 北京理工大学计算机学院 北京 100081
– name: 智能信息技术北京市重点实验室 北京 100081
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.152717
Snippet 在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型.然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,补...
在基于子空间学习的背景建模方法中,利用背景信息对前景误差进行补偿有助于建立准确的背景模型。然而,当动态背景(摇曳的树枝、波动的水面等)和复杂前景等干扰因素存在时,...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1356
SubjectTerms Alpha通道
中值模板
抗干扰的误差补偿
空间连续性
背景建模
Title 基于误差补偿的复杂场景下背景建模方法
URI http://lib.cqvip.com/qk/90250X/201609/669901856.html
https://d.wanfangdata.com.cn/periodical/zdhxb201609007
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-1029
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059721
  issn: 0254-4156
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LjtMw0CrdCxwQT7Esjz3g06pLXn7kmLQpKwScCtpbFeexPXV5dCXUG48bjxtIIBBaCSRO9MABKEL8zKb0M5hx3DZiEQKkyLLHmcnYY41n7HhMyAVmC-UosNysTOLSjUgbKhVWg7EcbylPJEvxoPDVa3zjund5k23Wat8qfy3tDNR6MvztuZL_kSrAQK54SvYfJDsnCgDIg3whBQlD-lcyphGjfpuGAY08TGVEI0mDNj5QFQoalBCbBgwh0qYhVAnqw8seQgKwJVs04tRvUelogk1NECC-pgOUJZUh0pEulc1KFXwiNC8H-itYxWnoYyZ0aXmx5cz21RSApUBzEiAKZpqIgpy0aMAREavYbCAgs4EwNT4QiNZo5CMDkmuCFjwaBNwDo4jPEANJA0a4pttkAS-aX5eGVnWlozyCaVQhuLENdDXLWatU1VJ4MImY9RKjyz2nMmb9imK23RmyKZZ3veybQEAduXoGiWMM5m7z9QQj5pdBtH-JzM05bipKxg-QJUeAoVMnS5fCKzeChT2K_FUUKPNBR1bsLc4wHuCiLHBXu7INDWXXXfh34D1iuMd5GYP_84o_z2wXvE_0p0tThGFoJr3IaLrPhN3CRl7c30QML9Lb7m_dAqNJn2Hr53F_q2JudY6Qw8ZPWg3KQX-U1Ia9Y-RQJXrmccKLN-O98dPpaFR8-jDdfVfc-_7j5cPi7ZPJ6_vFq_HkxWjv86Ppg8eQKb6OJ-93J8-_TD4-O0E67ajT3GiYa0AaCYMZkCl0ssGSjCU41zC_5DmLE8ZkbMciVQ5zvITHLFeJcjzpKSZ8puycu57IpZso9ySp97f72SmyKpRQLMscO4Fey12lZJZaKub6jgHbS5bJyrwDujfLaC_duZSXyXnTJV2jA-50h2nvrsI-tHyQ1uk_4q-Qg_hmuX53htQHt3eys2DRDtQ5M25-AjI0e1I
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%AF%AF%E5%B7%AE%E8%A1%A5%E5%81%BF%E7%9A%84%E5%A4%8D%E6%9D%82%E5%9C%BA%E6%99%AF%E4%B8%8B%E8%83%8C%E6%99%AF%E5%BB%BA%E6%A8%A1%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E7%A7%A6%E6%98%8E+%E9%99%86%E8%80%80+%E9%82%B8%E6%85%A7%E5%86%9B+%E5%90%95%E5%B3%B0&rft.date=2016&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=42&rft.issue=9&rft.spage=1356&rft.epage=1366&rft_id=info:doi/10.16383%2Fj.aas.2016.c150857&rft.externalDocID=669901856
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg