Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity
Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor...
Saved in:
Published in | Nature immunology Vol. 22; no. 11; pp. 1403 - 1415 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.11.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1529-2908 1529-2916 1529-2916 |
DOI | 10.1038/s41590-021-01047-4 |
Cover
Abstract | Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity.
Tumor-associated macrophages support an immunosuppressive tumor microenvironment. Di Conza et al. uncover how IRE1–XBP1 and IRE1−STAT3 endoplasmic reticulum stress responses pathways are engaged by tumor-derived lipids to orchestrate pro-tumorigenic features and survival in tumor-associated macrophages. |
---|---|
AbstractList | Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity. Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity.Tumor-associated macrophages support an immunosuppressive tumor microenvironment. Di Conza et al. uncover how IRE1–XBP1 and IRE1−STAT3 endoplasmic reticulum stress responses pathways are engaged by tumor-derived lipids to orchestrate pro-tumorigenic features and survival in tumor-associated macrophages. Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity. Tumor-associated macrophages support an immunosuppressive tumor microenvironment. Di Conza et al. uncover how IRE1–XBP1 and IRE1−STAT3 endoplasmic reticulum stress responses pathways are engaged by tumor-derived lipids to orchestrate pro-tumorigenic features and survival in tumor-associated macrophages. Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity. Tumor-associated macrophages support an immunosuppressive tumor microenvironment. Di Conza et al. uncover how IRE1-XBP1 and IRE1-STAT3 endoplasmic reticulum stress responses pathways are engaged by tumor-derived lipids to orchestrate pro-tumorigenic features and survival in tumor-associated macrophages. Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity.Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity. |
Audience | Academic |
Author | Martinon, Fabio Ho, Ping-Chih Raines, Lydia N. Percipalle, Piergiorgio Tsai, Chin-Hsien Yu, Yi-Ru Huang, Stanley Ching-Cheng Jalil, Antoine Li, Xiaoyun Xiao, Zhengtao Zaffalon, Lea Masson, David Gallart-Ayala, Hector Falquet, Maryline Ivanisevic, Julijana Di Conza, Giusy Locasale, Jason W. Franco, Fabien Xie, Xin |
Author_xml | – sequence: 1 givenname: Giusy surname: Di Conza fullname: Di Conza, Giusy organization: Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, University of Lausanne – sequence: 2 givenname: Chin-Hsien surname: Tsai fullname: Tsai, Chin-Hsien organization: Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, University of Lausanne – sequence: 3 givenname: Hector surname: Gallart-Ayala fullname: Gallart-Ayala, Hector organization: Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne – sequence: 4 givenname: Yi-Ru orcidid: 0000-0002-3562-3502 surname: Yu fullname: Yu, Yi-Ru organization: Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, University of Lausanne – sequence: 5 givenname: Fabien surname: Franco fullname: Franco, Fabien organization: Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, University of Lausanne – sequence: 6 givenname: Lea surname: Zaffalon fullname: Zaffalon, Lea organization: Department of Biochemistry, University of Lausanne – sequence: 7 givenname: Xin orcidid: 0000-0002-6784-4860 surname: Xie fullname: Xie, Xin organization: Program in Biology, Division of Science and Mathematics, New York University – sequence: 8 givenname: Xiaoyun surname: Li fullname: Li, Xiaoyun organization: Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, University of Lausanne – sequence: 9 givenname: Zhengtao orcidid: 0000-0002-5535-5381 surname: Xiao fullname: Xiao, Zhengtao organization: Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Institute of Infections and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center – sequence: 10 givenname: Lydia N. surname: Raines fullname: Raines, Lydia N. organization: Department of Pathology, Case Western Reserve University School of Medicine – sequence: 11 givenname: Maryline surname: Falquet fullname: Falquet, Maryline organization: Department of Oncology, University of Lausanne – sequence: 12 givenname: Antoine surname: Jalil fullname: Jalil, Antoine organization: Lipids Nutrition Cancer–LNC, INSERM–Université de Bourgogne – sequence: 13 givenname: Jason W. orcidid: 0000-0002-7766-3502 surname: Locasale fullname: Locasale, Jason W. organization: Department of Pharmacology and Cancer Biology, Duke University School of Medicine – sequence: 14 givenname: Piergiorgio surname: Percipalle fullname: Percipalle, Piergiorgio organization: Program in Biology, Division of Science and Mathematics, New York University, Department of Molecular Bioscience, Wenner-Gren Institute, Stockholm University – sequence: 15 givenname: David orcidid: 0000-0003-1692-0699 surname: Masson fullname: Masson, David organization: Lipids Nutrition Cancer–LNC, INSERM–Université de Bourgogne – sequence: 16 givenname: Stanley Ching-Cheng orcidid: 0000-0002-6557-3737 surname: Huang fullname: Huang, Stanley Ching-Cheng organization: Department of Pathology, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine – sequence: 17 givenname: Fabio orcidid: 0000-0002-6969-822X surname: Martinon fullname: Martinon, Fabio organization: Department of Biochemistry, University of Lausanne – sequence: 18 givenname: Julijana orcidid: 0000-0001-8267-2705 surname: Ivanisevic fullname: Ivanisevic, Julijana organization: Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne – sequence: 19 givenname: Ping-Chih orcidid: 0000-0003-3078-3774 surname: Ho fullname: Ho, Ping-Chih email: ping-chih.ho@unil.ch organization: Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, University of Lausanne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34686867$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1rFTEQhhep2A_9A17Igjd6sTXJJtk9l6VYLRQErdchJ5nsSdlN1nwc7J_wNzfraS2nSJlAwvC8k5eZOa4OnHdQVW8xOsWo7T9FitkKNYjgBmFEu4a-qI4wI6uGrDA_-PdG_WF1HOMNQph2nL6qDlvK-xLdUfXnOk8-NNbprEDXAeImGzNaN9Te1KOdra6Vn2YfbbLe1eWkDdTgtJ9HGSeriiZZlcc81RNM6yAd1DHHJK2L9SRV8PNGDksubO1WjrV0up6Db9Lysx3AlRpSJbu16fZ19dLIMcKb-_uk-nnx-fr8a3P17cvl-dlVo1jPUwPQdcwog7RRCnPOdEtAMyCUGUply1qlWsUIMxgzUMD5mnGsOVoZRsxatifVh13dYuRXhpjEZKOCcSzufY6CsJ52PUL9qqDvn6A3PgdX3C1UR3vSIvxIDXIEYZ3xKUi1FBVnvEeccIxYoU7_Q5XQUDpZpmtsye8JPu4JCpPgdxpkjlFc_vi-z767N5rXE2gxBzvJcCsehl2AfgeUmcQYwAhlk1zGWlzYUWAklr0Su70SZa_E370StEjJE-lD9WdF7U4UC-wGCI-de0Z1B4y04Ls |
CitedBy_id | crossref_primary_10_1101_cshperspect_a041548 crossref_primary_10_1016_j_intimp_2024_113337 crossref_primary_10_1073_pnas_2406748121 crossref_primary_10_3390_ijms24032943 crossref_primary_10_1016_j_intimp_2025_114024 crossref_primary_10_1016_j_canlet_2025_217613 crossref_primary_10_1038_s41571_022_00620_6 crossref_primary_10_3389_fonc_2023_1187279 crossref_primary_10_1186_s40364_023_00549_7 crossref_primary_10_1186_s40364_025_00735_9 crossref_primary_10_3390_ijms241813854 crossref_primary_10_1016_j_celrep_2024_114613 crossref_primary_10_1016_j_canlet_2024_216638 crossref_primary_10_1038_s41590_022_01145_x crossref_primary_10_1016_j_tips_2024_02_005 crossref_primary_10_1016_j_it_2022_04_008 crossref_primary_10_3390_ijms252212403 crossref_primary_10_3390_ijms24010589 crossref_primary_10_1186_s13058_024_01887_6 crossref_primary_10_1016_j_biopha_2022_113741 crossref_primary_10_1016_j_ijbiomac_2024_134660 crossref_primary_10_1016_j_immuni_2022_12_003 crossref_primary_10_1021_acs_jproteome_3c00725 crossref_primary_10_1002_cam4_70684 crossref_primary_10_1136_jitc_2024_009720 crossref_primary_10_1016_j_apsb_2022_11_018 crossref_primary_10_1038_s41568_024_00743_1 crossref_primary_10_1016_j_jddst_2025_106849 crossref_primary_10_1186_s12964_022_00957_6 crossref_primary_10_1016_j_immuni_2022_12_008 crossref_primary_10_1007_s10555_024_10211_9 crossref_primary_10_4110_in_2025_25_e8 crossref_primary_10_1007_s11684_025_1124_8 crossref_primary_10_3389_fimmu_2023_1125874 crossref_primary_10_1038_s41698_024_00662_2 crossref_primary_10_1136_jitc_2022_004584 crossref_primary_10_3389_fonc_2022_1072576 crossref_primary_10_1016_j_jare_2024_02_009 crossref_primary_10_1158_1078_0432_CCR_24_1690 crossref_primary_10_1002_adfm_202212510 crossref_primary_10_1038_s41590_022_01267_2 crossref_primary_10_1038_s41590_023_01475_4 crossref_primary_10_3390_cancers15041211 crossref_primary_10_1158_2326_6066_CIR_23_0469 crossref_primary_10_1038_s41577_023_00838_0 crossref_primary_10_1038_s44319_023_00038_w crossref_primary_10_1002_adma_202208059 crossref_primary_10_1016_j_jep_2024_119162 crossref_primary_10_1016_j_jare_2024_12_043 crossref_primary_10_1186_s12964_023_01438_0 crossref_primary_10_3389_fimmu_2024_1353787 crossref_primary_10_3389_fimmu_2023_1307228 crossref_primary_10_1016_j_celrep_2022_111647 crossref_primary_10_1038_s41389_022_00438_y crossref_primary_10_1097_MOL_0000000000000820 crossref_primary_10_1186_s12964_024_01493_1 crossref_primary_10_3390_ijms241310625 crossref_primary_10_1089_dna_2023_0071 crossref_primary_10_1038_s41423_024_01199_x crossref_primary_10_3389_fgene_2022_944105 crossref_primary_10_1038_s41568_024_00761_z crossref_primary_10_1093_toxres_tfad099 crossref_primary_10_1021_acs_molpharmaceut_3c00279 crossref_primary_10_3892_ijmm_2023_5337 crossref_primary_10_1016_j_intimp_2024_112681 crossref_primary_10_1016_j_mucimm_2023_06_006 crossref_primary_10_1016_j_trecan_2022_06_006 crossref_primary_10_1038_s41590_023_01430_3 crossref_primary_10_3390_pharmaceutics15061711 crossref_primary_10_3390_ijms251910781 crossref_primary_10_4049_immunohorizons_2200064 crossref_primary_10_1016_j_semcancer_2024_12_002 crossref_primary_10_1002_jcb_30466 crossref_primary_10_3389_fimmu_2024_1451103 crossref_primary_10_3389_fimmu_2023_1209588 crossref_primary_10_1038_s41556_022_01002_x crossref_primary_10_1186_s12943_023_01797_9 crossref_primary_10_1016_j_trecan_2023_02_001 crossref_primary_10_3389_fimmu_2024_1424237 crossref_primary_10_3389_fonc_2022_1031779 crossref_primary_10_1038_s41568_022_00537_3 crossref_primary_10_1111_cas_15760 crossref_primary_10_1016_j_celrep_2024_115064 crossref_primary_10_1016_j_bcp_2022_115369 crossref_primary_10_1016_j_bbagrm_2024_195028 crossref_primary_10_3389_fphar_2022_1011450 crossref_primary_10_3389_fphar_2023_1228962 crossref_primary_10_1016_j_pharmthera_2022_108274 crossref_primary_10_1038_s41467_024_45084_7 crossref_primary_10_1038_s41467_024_51736_5 crossref_primary_10_1186_s13046_023_02832_9 crossref_primary_10_1038_s41392_024_01979_x crossref_primary_10_1097_HEP_0000000000001003 crossref_primary_10_1016_j_biopha_2023_115414 crossref_primary_10_2139_ssrn_4055642 crossref_primary_10_1016_j_ccr_2022_214508 crossref_primary_10_3390_cancers17030342 crossref_primary_10_1002_mco2_124 crossref_primary_10_1016_j_trecan_2024_09_011 crossref_primary_10_37349_etat_2023_00124 crossref_primary_10_3389_fimmu_2023_1194642 crossref_primary_10_1016_j_immuni_2024_04_006 crossref_primary_10_1158_1541_7786_MCR_22_0920 crossref_primary_10_1016_j_bioorg_2025_108403 crossref_primary_10_1002_smll_202307147 |
Cites_doi | 10.1038/nprot.2006.273 10.1038/s41590-020-0793-3 10.1038/s41591-018-0096-5 10.3389/fonc.2015.00121 10.1016/j.ccell.2018.02.005 10.1016/0378-1119(91)90434-D 10.1038/s41588-017-0027-2 10.3389/fimmu.2017.01662 10.1016/j.cell.2015.05.025 10.1016/j.molcel.2017.06.012 10.1016/j.cell.2010.03.014 10.1371/journal.pbio.3000687 10.1016/j.atherosclerosis.2018.05.023 10.1111/pcmr.12498 10.4049/jimmunol.172.7.4630 10.1158/2326-6066.CIR-19-0782 10.1038/nm.2067 10.1073/pnas.0931259100 10.3390/cells9010046 10.1016/j.jhep.2014.10.022 10.1038/nm.2172 10.1111/nyas.14377 10.1161/CIRCRESAHA.112.300683 10.1177/1352458514561908 10.1038/s41586-019-0904-1 10.1038/s41590-019-0589-5 10.1158/0008-5472.CAN-19-2994 10.1242/jcs.013383 10.1093/bioinformatics/btu203 10.1016/j.cmet.2019.04.002 10.1084/jem.20192230 10.1161/CIRCULATIONAHA.116.022668 10.1084/jem.20182124 10.1016/j.ccr.2013.11.007 10.1038/nm.3337 10.1038/s41571-019-0203-7 10.3390/cells9030695 10.1158/0008-5472.CAN-13-1196 10.1016/j.immuni.2018.12.020 10.1016/j.cell.2017.10.022 10.1038/s41568-020-00312-2 10.1016/j.cell.2015.08.012 10.1016/j.celrep.2016.08.035 10.1016/j.cmet.2016.09.008 10.7554/eLife.06328 10.1038/ni.3796 10.1016/j.cmet.2013.10.002 10.1038/s41586-018-0597-x 10.3390/ijms20153787 10.1016/j.cmet.2019.06.001 10.1093/bioinformatics/bti525 10.1016/j.tcb.2014.06.001 10.1016/j.cell.2020.03.048 10.1158/0008-5472.CAN-09-4672 10.1158/0008-5472.CAN-13-3461 10.1016/j.immuni.2020.03.004 10.1038/ncomms11322 10.1016/S0022-2275(20)31577-7 10.1172/JCI145971 10.1038/ni.2956 10.1016/j.cell.2017.12.026 10.1101/2020.03.31.018739 10.1101/2019.12.08.868828 10.1038/s41586-019-1118-2 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7T5 7TK 7TM 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
DOI | 10.1038/s41590-021-01047-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1529-2916 |
EndPage | 1415 |
ExternalDocumentID | A680626105 34686867 10_1038_s41590_021_01047_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Switzerland |
GeographicLocations_xml | – name: Switzerland |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI089474 – fundername: NIDDK NIH HHS grantid: P30 DK097948 – fundername: NCI NIH HHS grantid: P30 CA014051 – fundername: NCI NIH HHS grantid: P30 CA014236 |
GroupedDBID | --- .55 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABOCM ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ISR ITC L-9 LK8 M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WH7 X7M Y6R ZXP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM AEIIB PMFND 7QP 7QR 7T5 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO |
ID | FETCH-LOGICAL-c586t-ee775fcf0dfcc1665d32ed5e245f44a353cc3c525f115ece66b561d609f52fba3 |
IEDL.DBID | 8C1 |
ISSN | 1529-2908 1529-2916 |
IngestDate | Fri Sep 05 08:04:43 EDT 2025 Fri Jul 25 09:08:41 EDT 2025 Tue Jun 17 21:00:24 EDT 2025 Tue Jun 10 20:33:58 EDT 2025 Fri Jun 27 05:02:07 EDT 2025 Thu Apr 03 07:00:34 EDT 2025 Tue Jul 01 01:02:33 EDT 2025 Thu Apr 24 22:54:04 EDT 2025 Fri Feb 21 02:39:03 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature America, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c586t-ee775fcf0dfcc1665d32ed5e245f44a353cc3c525f115ece66b561d609f52fba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8267-2705 0000-0002-5535-5381 0000-0002-6557-3737 0000-0002-3562-3502 0000-0002-7766-3502 0000-0003-1692-0699 0000-0002-6969-822X 0000-0002-6784-4860 0000-0003-3078-3774 |
OpenAccessLink | https://serval.unil.ch/notice/serval:BIB_38FF542D6B24 |
PMID | 34686867 |
PQID | 2587482301 |
PQPubID | 45782 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2584780089 proquest_journals_2587482301 gale_infotracmisc_A680626105 gale_infotracacademiconefile_A680626105 gale_incontextgauss_ISR_A680626105 pubmed_primary_34686867 crossref_citationtrail_10_1038_s41590_021_01047_4 crossref_primary_10_1038_s41590_021_01047_4 springer_journals_10_1038_s41590_021_01047_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature immunology |
PublicationTitleAbbrev | Nat Immunol |
PublicationTitleAlternate | Nat Immunol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Halbleib (CR44) 2017; 67 Li (CR40) 2020; 8 Niwa, Yamamura, Miyazaki (CR57) 1991; 108 Tanaka (CR42) 2020; 217 Clement (CR41) 2016; 134 Lopez-Yrigoyen, Cassetta, Pollard (CR1) 2021; 1499 Liu (CR10) 2018; 33 Cox, Emili (CR61) 2006; 1 Hashidate-Yoshida (CR46) 2015; 4 Kast, Nguyen, Anisfeld, Ericsson, Edwards (CR45) 2001; 42 Herber (CR15) 2010; 16 Etzerodt (CR30) 2019; 216 Yu (CR56) 2020; 21 Zhang (CR25) 2020; 181 Mohamed (CR22) 2020; 52 Tavazoie (CR48) 2018; 172 Huang (CR37) 2014; 15 Vriens (CR12) 2019; 566 Di Conza, Ho (CR17) 2020; 9 Tcyganov (CR51) 2021; 131 Chen, Cubillos-Ruiz (CR18) 2021; 21 Jalil (CR47) 2019; 20 Meeth, Wang, Micevic, Damsky, Bosenberg (CR55) 2016; 29 Tsugawa, Kanazawa, Ogiwara, Arita (CR62) 2014; 30 Casazza (CR7) 2013; 24 Lee (CR39) 2016; 7 Driscoll, Vaisar, Tang, Wilson, Raines (CR58) 2013; 113 Batista (CR23) 2020; 18 Williams (CR43) 2017; 8 Liu (CR34) 2015; 62 Su (CR38) 2020; 80 Topper (CR9) 2017; 171 Ho (CR60) 2015; 162 Durinck (CR64) 2005; 21 Li (CR11) 2019; 16 Wang (CR14) 2020; 21 Pyonteck (CR8) 2013; 19 Qian, Pollard (CR5) 2010; 141 Thomas (CR53) 2018; 275 Yan, Wang, Bowman, Joyce (CR32) 2016; 16 Chen (CR13) 2018; 50 Heinzer, Worz, Kalla, Rohr, Weiss (CR24) 2008; 121 Poli, Camporeale (CR50) 2015; 5 Vitale, Manic, Coussens, Kroemer, Galluzzi (CR49) 2019; 30 Song (CR19) 2018; 562 Ma (CR20) 2019; 30 CR28 Ho (CR59) 2014; 74 CR27 Wenes (CR6) 2016; 24 Lambrechts (CR26) 2018; 24 Movahedi (CR31) 2010; 70 Ackerman, Simon (CR52) 2014; 24 Loke, Allison (CR3) 2003; 100 Laoui (CR4) 2014; 74 Anfray, Ummarino, Andon, Allavena (CR2) 2019; 9 Veglia (CR16) 2019; 569 Erbay (CR35) 2009; 15 Rong (CR36) 2013; 18 Liu (CR29) 2017; 18 Cubillos-Ruiz (CR21) 2015; 161 Martinez-Lopez (CR54) 2019; 50 Herbeuval, Lelievre, Lambert, Dy, Genin (CR33) 2004; 172 Checa (CR63) 2015; 21 SJ Williams (1047_CR43) 2017; 8 SM Pyonteck (1047_CR8) 2013; 19 L Zhang (1047_CR25) 2020; 181 WB Lee (1047_CR39) 2016; 7 D Yan (1047_CR32) 2016; 16 SC Huang (1047_CR37) 2014; 15 YR Yu (1047_CR56) 2020; 21 A Batista (1047_CR23) 2020; 18 H Niwa (1047_CR57) 1991; 108 D Lambrechts (1047_CR26) 2018; 24 T Hashidate-Yoshida (1047_CR46) 2015; 4 PC Ho (1047_CR60) 2015; 162 B Cox (1047_CR61) 2006; 1 C Anfray (1047_CR2) 2019; 9 DL Herber (1047_CR15) 2010; 16 K Vriens (1047_CR12) 2019; 566 P Su (1047_CR38) 2020; 80 EN Tcyganov (1047_CR51) 2021; 131 S Durinck (1047_CR64) 2005; 21 C Li (1047_CR40) 2020; 8 PS Liu (1047_CR29) 2017; 18 M Song (1047_CR19) 2018; 562 Y Liu (1047_CR34) 2015; 62 X Chen (1047_CR18) 2021; 21 I Vitale (1047_CR49) 2019; 30 M Chen (1047_CR13) 2018; 50 C Thomas (1047_CR53) 2018; 275 H Wang (1047_CR14) 2020; 21 G Di Conza (1047_CR17) 2020; 9 HR Kast (1047_CR45) 2001; 42 D Laoui (1047_CR4) 2014; 74 A Jalil (1047_CR47) 2019; 20 BZ Qian (1047_CR5) 2010; 141 H Tsugawa (1047_CR62) 2014; 30 Y Liu (1047_CR10) 2018; 33 V Poli (1047_CR50) 2015; 5 M Lopez-Yrigoyen (1047_CR1) 2021; 1499 X Li (1047_CR11) 2019; 16 MF Tavazoie (1047_CR48) 2018; 172 K Halbleib (1047_CR44) 2017; 67 M Martinez-Lopez (1047_CR54) 2019; 50 M Wenes (1047_CR6) 2016; 24 A Etzerodt (1047_CR30) 2019; 216 A Checa (1047_CR63) 2015; 21 MJ Topper (1047_CR9) 2017; 171 M Clement (1047_CR41) 2016; 134 JP Herbeuval (1047_CR33) 2004; 172 E Erbay (1047_CR35) 2009; 15 K Meeth (1047_CR55) 2016; 29 A Casazza (1047_CR7) 2013; 24 D Ackerman (1047_CR52) 2014; 24 X Rong (1047_CR36) 2013; 18 M Tanaka (1047_CR42) 2020; 217 P Loke (1047_CR3) 2003; 100 E Mohamed (1047_CR22) 2020; 52 JR Cubillos-Ruiz (1047_CR21) 2015; 161 F Veglia (1047_CR16) 2019; 569 K Movahedi (1047_CR31) 2010; 70 X Ma (1047_CR20) 2019; 30 S Heinzer (1047_CR24) 2008; 121 1047_CR28 1047_CR27 WS Driscoll (1047_CR58) 2013; 113 PC Ho (1047_CR59) 2014; 74 |
References_xml | – volume: 1 start-page: 1872 year: 2006 end-page: 1878 ident: CR61 article-title: Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.273 – volume: 21 start-page: 1540 year: 2020 end-page: 1551 ident: CR56 article-title: Disturbed mitochondrial dynamics in CD8(+) TILs reinforce T cell exhaustion publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0793-3 – volume: 24 start-page: 1277 year: 2018 end-page: 1289 ident: CR26 article-title: Phenotype molding of stromal cells in the lung tumor microenvironment publication-title: Nat. Med. doi: 10.1038/s41591-018-0096-5 – volume: 5 start-page: 121 year: 2015 ident: CR50 article-title: STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00121 – volume: 33 start-page: 480 year: 2018 end-page: 494 e487 ident: CR10 article-title: Tumor-repopulating cells induce PD-1 expression in CD8(+) T cells by transferring kynurenine and AhR activation publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.02.005 – volume: 108 start-page: 193 year: 1991 end-page: 199 ident: CR57 article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector publication-title: Gene doi: 10.1016/0378-1119(91)90434-D – volume: 50 start-page: 206 year: 2018 end-page: 218 ident: CR13 article-title: An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer publication-title: Nat. Genet. doi: 10.1038/s41588-017-0027-2 – volume: 8 start-page: 1662 year: 2017 ident: CR43 article-title: Sensing lipids with Mincle: structure and function publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01662 – volume: 161 start-page: 1527 year: 2015 end-page: 1538 ident: CR21 article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis publication-title: Cell doi: 10.1016/j.cell.2015.05.025 – volume: 67 start-page: 673 year: 2017 end-page: 684 e678 ident: CR44 article-title: Activation of the unfolded protein response by lipid bilayer stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.012 – volume: 141 start-page: 39 year: 2010 end-page: 51 ident: CR5 article-title: Macrophage diversity enhances tumor progression and metastasis publication-title: Cell doi: 10.1016/j.cell.2010.03.014 – volume: 18 start-page: e3000687 year: 2020 ident: CR23 article-title: IRE1alpha regulates macrophage polarization, PD-L1 expression, and tumor survival publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000687 – volume: 275 start-page: 409 year: 2018 end-page: 418 ident: CR53 article-title: LPCAT3 deficiency in hematopoietic cells alters cholesterol and phospholipid homeostasis and promotes atherosclerosis publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2018.05.023 – volume: 29 start-page: 590 year: 2016 end-page: 597 ident: CR55 article-title: The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations publication-title: Pigment Cell Melanoma Res. doi: 10.1111/pcmr.12498 – volume: 172 start-page: 4630 year: 2004 end-page: 4636 ident: CR33 article-title: Recruitment of STAT3 for production of IL-10 by colon carcinoma cells induced by macrophage-derived IL-6 publication-title: J. Immunol. doi: 10.4049/jimmunol.172.7.4630 – volume: 8 start-page: 1004 year: 2020 end-page: 1017 ident: CR40 article-title: The Mincle/Syk/NF-kappaB signaling circuit is essential for maintaining the protumoral activities of tumor-associated macrophages publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-19-0782 – volume: 15 start-page: 1383 year: 2009 end-page: 1391 ident: CR35 article-title: Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis publication-title: Nat. Med. doi: 10.1038/nm.2067 – volume: 100 start-page: 5336 year: 2003 end-page: 5341 ident: CR3 article-title: PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0931259100 – volume: 9 start-page: 46 year: 2019 ident: CR2 article-title: Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses publication-title: Cells doi: 10.3390/cells9010046 – volume: 62 start-page: 590 year: 2015 end-page: 598 ident: CR34 article-title: Role for the endoplasmic reticulum stress sensor IRE1alpha in liver regenerative responses publication-title: J. Hepatol. doi: 10.1016/j.jhep.2014.10.022 – volume: 16 start-page: 880 year: 2010 end-page: 886 ident: CR15 article-title: Lipid accumulation and dendritic cell dysfunction in cancer publication-title: Nat. Med. doi: 10.1038/nm.2172 – volume: 1499 start-page: 18 year: 2021 end-page: 41 ident: CR1 article-title: Macrophage targeting in cancer publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.14377 – volume: 113 start-page: 52 year: 2013 end-page: 61 ident: CR58 article-title: Macrophage ADAM17 deficiency augments CD36-dependent apoptotic cell uptake and the linked anti-inflammatory phenotype publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.300683 – volume: 21 start-page: 1271 year: 2015 end-page: 1279 ident: CR63 article-title: Hexosylceramides as intrathecal markers of worsening disability in multiple sclerosis publication-title: Mult. Scler. doi: 10.1177/1352458514561908 – volume: 566 start-page: 403 year: 2019 end-page: 406 ident: CR12 article-title: Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity publication-title: Nature doi: 10.1038/s41586-019-0904-1 – volume: 21 start-page: 298 year: 2020 end-page: 308 ident: CR14 article-title: CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0589-5 – volume: 80 start-page: 1438 year: 2020 end-page: 1450 ident: CR38 article-title: Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-2994 – volume: 121 start-page: 55 year: 2008 end-page: 64 ident: CR24 article-title: A model for the self-organization of exit sites in the endoplasmic reticulum publication-title: J. Cell Sci. doi: 10.1242/jcs.013383 – volume: 30 start-page: 2379 year: 2014 end-page: 2380 ident: CR62 article-title: MRMPROBS suite for metabolomics using large-scale MRM assays publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu203 – volume: 569 start-page: 73 year: 2019 end-page: 78 ident: CR16 article-title: Fatty acid transport protein 2 reprograms neutrophils in cancer publication-title: Nature – volume: 30 start-page: 143 year: 2019 end-page: 156 e145 ident: CR20 article-title: Cholesterol induces CD8(+) T cell exhaustion in the tumor microenvironment publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.04.002 – volume: 217 start-page: e20192230. year: 2020 ident: CR42 article-title: C-type lectin Mincle mediates cell death-triggered inflammation in acute kidney injury publication-title: J. Exp. Med. doi: 10.1084/jem.20192230 – volume: 134 start-page: 1039 year: 2016 end-page: 1051 ident: CR41 article-title: Necrotic cell sensor Clec4e promotes a proatherogenic macrophage phenotype through activation of the unfolded protein response publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.022668 – volume: 216 start-page: 2394 year: 2019 end-page: 2411 ident: CR30 article-title: Specific targeting of CD163(+) TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression publication-title: J. Exp. Med. doi: 10.1084/jem.20182124 – volume: 24 start-page: 695 year: 2013 end-page: 709 ident: CR7 article-title: Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.11.007 – volume: 19 start-page: 1264 year: 2013 end-page: 1272 ident: CR8 article-title: CSF-1R inhibition alters macrophage polarization and blocks glioma progression publication-title: Nat. Med. doi: 10.1038/nm.3337 – volume: 16 start-page: 425 year: 2019 end-page: 441 ident: CR11 article-title: Navigating metabolic pathways to enhance antitumour immunity and immunotherapy publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-019-0203-7 – volume: 9 start-page: 695 year: 2020 ident: CR17 article-title: ER stress responses: an emerging modulator for innate immunity publication-title: Cells doi: 10.3390/cells9030695 – volume: 74 start-page: 24 year: 2014 end-page: 30 ident: CR4 article-title: Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1196 – volume: 50 start-page: 446 year: 2019 end-page: 461 e449 ident: CR54 article-title: Microbiota sensing by Mincle-Syk axis in dendritic cells regulates interleukin-17 and −22 production and promotes intestinal barrier integrity publication-title: Immunity doi: 10.1016/j.immuni.2018.12.020 – volume: 171 start-page: 1284 year: 2017 end-page: 1300 e1221 ident: CR9 article-title: Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer publication-title: Cell doi: 10.1016/j.cell.2017.10.022 – volume: 21 start-page: 71 year: 2021 end-page: 88 ident: CR18 article-title: Endoplasmic reticulum stress signals in the tumour and its microenvironment publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-00312-2 – ident: CR27 – volume: 162 start-page: 1217 year: 2015 end-page: 1228 ident: CR60 article-title: Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses publication-title: Cell doi: 10.1016/j.cell.2015.08.012 – volume: 16 start-page: 2914 year: 2016 end-page: 2927 ident: CR32 article-title: STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1alpha activation publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.08.035 – volume: 24 start-page: 701 year: 2016 end-page: 715 ident: CR6 article-title: Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.09.008 – volume: 4 start-page: e06328 year: 2015 ident: CR46 article-title: Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport publication-title: eLife doi: 10.7554/eLife.06328 – volume: 18 start-page: 985 year: 2017 end-page: 994 ident: CR29 article-title: Alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming publication-title: Nat. Immunol. doi: 10.1038/ni.3796 – volume: 18 start-page: 685 year: 2013 end-page: 697 ident: CR36 article-title: LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.10.002 – volume: 562 start-page: 423 year: 2018 end-page: 428 ident: CR19 article-title: IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity publication-title: Nature doi: 10.1038/s41586-018-0597-x – volume: 20 start-page: 3787 year: 2019 ident: CR47 article-title: Revisiting the role of LXRs in PUFA metabolism and phospholipid homeostasis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20153787 – volume: 30 start-page: 36 year: 2019 end-page: 50 ident: CR49 article-title: Macrophages and metabolism in the tumor microenvironment publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.06.001 – volume: 21 start-page: 3439 year: 2005 end-page: 3440 ident: CR64 article-title: BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti525 – volume: 24 start-page: 472 year: 2014 end-page: 478 ident: CR52 article-title: Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.06.001 – volume: 181 start-page: 442 year: 2020 end-page: 459 e429 ident: CR25 article-title: Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer publication-title: Cell doi: 10.1016/j.cell.2020.03.048 – volume: 70 start-page: 5728 year: 2010 end-page: 5739 ident: CR31 article-title: Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-4672 – volume: 74 start-page: 3205 year: 2014 end-page: 3217 ident: CR59 article-title: Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNgamma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-3461 – volume: 52 start-page: 668 year: 2020 end-page: 682 e667 ident: CR22 article-title: The unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling publication-title: Immunity doi: 10.1016/j.immuni.2020.03.004 – volume: 7 year: 2016 ident: CR39 article-title: Mincle-mediated translational regulation is required for strong nitric oxide production and inflammation resolution publication-title: Nat. Commun. doi: 10.1038/ncomms11322 – volume: 42 start-page: 1266 year: 2001 end-page: 1272 ident: CR45 article-title: CTP:phosphocholine cytidylyltransferase, a new sterol- and SREBP-responsive gene publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)31577-7 – volume: 131 start-page: e145971 year: 2021 ident: CR51 article-title: Distinct mechanisms govern populations of myeloid-derived suppressor cells in chronic viral infection and cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI145971 – ident: CR28 – volume: 15 start-page: 846 year: 2014 end-page: 855 ident: CR37 article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.2956 – volume: 172 start-page: 825 year: 2018 end-page: 840 e818 ident: CR48 article-title: LXR/ApoE activation restricts innate immune suppression in cancer publication-title: Cell doi: 10.1016/j.cell.2017.12.026 – volume: 19 start-page: 1264 year: 2013 ident: 1047_CR8 publication-title: Nat. Med. doi: 10.1038/nm.3337 – volume: 62 start-page: 590 year: 2015 ident: 1047_CR34 publication-title: J. Hepatol. doi: 10.1016/j.jhep.2014.10.022 – volume: 161 start-page: 1527 year: 2015 ident: 1047_CR21 publication-title: Cell doi: 10.1016/j.cell.2015.05.025 – volume: 131 start-page: e145971 year: 2021 ident: 1047_CR51 publication-title: J. Clin. Invest. doi: 10.1172/JCI145971 – volume: 121 start-page: 55 year: 2008 ident: 1047_CR24 publication-title: J. Cell Sci. doi: 10.1242/jcs.013383 – volume: 172 start-page: 825 year: 2018 ident: 1047_CR48 publication-title: Cell doi: 10.1016/j.cell.2017.12.026 – volume: 70 start-page: 5728 year: 2010 ident: 1047_CR31 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-4672 – ident: 1047_CR28 doi: 10.1101/2020.03.31.018739 – volume: 562 start-page: 423 year: 2018 ident: 1047_CR19 publication-title: Nature doi: 10.1038/s41586-018-0597-x – volume: 15 start-page: 1383 year: 2009 ident: 1047_CR35 publication-title: Nat. Med. doi: 10.1038/nm.2067 – volume: 21 start-page: 298 year: 2020 ident: 1047_CR14 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0589-5 – volume: 18 start-page: 985 year: 2017 ident: 1047_CR29 publication-title: Nat. Immunol. doi: 10.1038/ni.3796 – volume: 162 start-page: 1217 year: 2015 ident: 1047_CR60 publication-title: Cell doi: 10.1016/j.cell.2015.08.012 – volume: 30 start-page: 2379 year: 2014 ident: 1047_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu203 – volume: 141 start-page: 39 year: 2010 ident: 1047_CR5 publication-title: Cell doi: 10.1016/j.cell.2010.03.014 – volume: 30 start-page: 143 year: 2019 ident: 1047_CR20 publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.04.002 – volume: 24 start-page: 472 year: 2014 ident: 1047_CR52 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.06.001 – volume: 21 start-page: 1540 year: 2020 ident: 1047_CR56 publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0793-3 – ident: 1047_CR27 doi: 10.1101/2019.12.08.868828 – volume: 569 start-page: 73 year: 2019 ident: 1047_CR16 publication-title: Nature doi: 10.1038/s41586-019-1118-2 – volume: 42 start-page: 1266 year: 2001 ident: 1047_CR45 publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)31577-7 – volume: 134 start-page: 1039 year: 2016 ident: 1047_CR41 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.022668 – volume: 24 start-page: 1277 year: 2018 ident: 1047_CR26 publication-title: Nat. Med. doi: 10.1038/s41591-018-0096-5 – volume: 33 start-page: 480 year: 2018 ident: 1047_CR10 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.02.005 – volume: 275 start-page: 409 year: 2018 ident: 1047_CR53 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2018.05.023 – volume: 21 start-page: 71 year: 2021 ident: 1047_CR18 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-00312-2 – volume: 8 start-page: 1004 year: 2020 ident: 1047_CR40 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-19-0782 – volume: 113 start-page: 52 year: 2013 ident: 1047_CR58 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.300683 – volume: 50 start-page: 446 year: 2019 ident: 1047_CR54 publication-title: Immunity doi: 10.1016/j.immuni.2018.12.020 – volume: 8 start-page: 1662 year: 2017 ident: 1047_CR43 publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.01662 – volume: 50 start-page: 206 year: 2018 ident: 1047_CR13 publication-title: Nat. Genet. doi: 10.1038/s41588-017-0027-2 – volume: 15 start-page: 846 year: 2014 ident: 1047_CR37 publication-title: Nat. Immunol. doi: 10.1038/ni.2956 – volume: 5 start-page: 121 year: 2015 ident: 1047_CR50 publication-title: Front. Oncol. doi: 10.3389/fonc.2015.00121 – volume: 21 start-page: 3439 year: 2005 ident: 1047_CR64 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti525 – volume: 171 start-page: 1284 year: 2017 ident: 1047_CR9 publication-title: Cell doi: 10.1016/j.cell.2017.10.022 – volume: 30 start-page: 36 year: 2019 ident: 1047_CR49 publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.06.001 – volume: 52 start-page: 668 year: 2020 ident: 1047_CR22 publication-title: Immunity doi: 10.1016/j.immuni.2020.03.004 – volume: 1 start-page: 1872 year: 2006 ident: 1047_CR61 publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.273 – volume: 1499 start-page: 18 year: 2021 ident: 1047_CR1 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.14377 – volume: 16 start-page: 425 year: 2019 ident: 1047_CR11 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-019-0203-7 – volume: 18 start-page: 685 year: 2013 ident: 1047_CR36 publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.10.002 – volume: 100 start-page: 5336 year: 2003 ident: 1047_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0931259100 – volume: 9 start-page: 46 year: 2019 ident: 1047_CR2 publication-title: Cells doi: 10.3390/cells9010046 – volume: 21 start-page: 1271 year: 2015 ident: 1047_CR63 publication-title: Mult. Scler. doi: 10.1177/1352458514561908 – volume: 24 start-page: 695 year: 2013 ident: 1047_CR7 publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.11.007 – volume: 9 start-page: 695 year: 2020 ident: 1047_CR17 publication-title: Cells doi: 10.3390/cells9030695 – volume: 181 start-page: 442 year: 2020 ident: 1047_CR25 publication-title: Cell doi: 10.1016/j.cell.2020.03.048 – volume: 4 start-page: e06328 year: 2015 ident: 1047_CR46 publication-title: eLife doi: 10.7554/eLife.06328 – volume: 566 start-page: 403 year: 2019 ident: 1047_CR12 publication-title: Nature doi: 10.1038/s41586-019-0904-1 – volume: 29 start-page: 590 year: 2016 ident: 1047_CR55 publication-title: Pigment Cell Melanoma Res. doi: 10.1111/pcmr.12498 – volume: 16 start-page: 2914 year: 2016 ident: 1047_CR32 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.08.035 – volume: 74 start-page: 3205 year: 2014 ident: 1047_CR59 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-3461 – volume: 67 start-page: 673 year: 2017 ident: 1047_CR44 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.012 – volume: 7 year: 2016 ident: 1047_CR39 publication-title: Nat. Commun. doi: 10.1038/ncomms11322 – volume: 20 start-page: 3787 year: 2019 ident: 1047_CR47 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20153787 – volume: 74 start-page: 24 year: 2014 ident: 1047_CR4 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1196 – volume: 24 start-page: 701 year: 2016 ident: 1047_CR6 publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.09.008 – volume: 18 start-page: e3000687 year: 2020 ident: 1047_CR23 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000687 – volume: 217 start-page: e20192230. year: 2020 ident: 1047_CR42 publication-title: J. Exp. Med. doi: 10.1084/jem.20192230 – volume: 216 start-page: 2394 year: 2019 ident: 1047_CR30 publication-title: J. Exp. Med. doi: 10.1084/jem.20182124 – volume: 172 start-page: 4630 year: 2004 ident: 1047_CR33 publication-title: J. Immunol. doi: 10.4049/jimmunol.172.7.4630 – volume: 16 start-page: 880 year: 2010 ident: 1047_CR15 publication-title: Nat. Med. doi: 10.1038/nm.2172 – volume: 80 start-page: 1438 year: 2020 ident: 1047_CR38 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-2994 – volume: 108 start-page: 193 year: 1991 ident: 1047_CR57 publication-title: Gene doi: 10.1016/0378-1119(91)90434-D |
SSID | ssj0014764 |
Score | 2.663898 |
Snippet | Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1403 |
SubjectTerms | 631/250/2504/342 631/250/580 Animals Biomedical and Life Sciences Biomedicine Cancer Cell interaction Cell Line, Tumor Cell Survival Cellular signal transduction Cellular stress response Development and progression Endoplasmic reticulum Endoplasmic Reticulum - metabolism Endoplasmic Reticulum - ultrastructure Endoplasmic Reticulum Stress Genetic aspects Glucosylceramidase - metabolism Health aspects Immunology Infectious Diseases Intracellular Membranes - metabolism Intracellular Membranes - ultrastructure Lecithin Lipid composition Lipids Macrophage Activation Macrophages Melanoma - genetics Melanoma - metabolism Melanoma - ultrastructure Membrane lipids Membrane Lipids - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Oncology, Experimental Phenotype Phenotypes Phosphatidylcholine Phosphorylation Physiological aspects Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Skin Neoplasms - genetics Skin Neoplasms - metabolism Skin Neoplasms - ultrastructure Stat3 protein STAT3 Transcription Factor - genetics STAT3 Transcription Factor - metabolism Stromal cells Survival Therapeutic targets Tumor cells Tumor Escape Tumor Microenvironment Tumor-Associated Macrophages - metabolism Tumor-Associated Macrophages - ultrastructure Tumors X-Box Binding Protein 1 - genetics X-Box Binding Protein 1 - metabolism |
Title | Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity |
URI | https://link.springer.com/article/10.1038/s41590-021-01047-4 https://www.ncbi.nlm.nih.gov/pubmed/34686867 https://www.proquest.com/docview/2587482301 https://www.proquest.com/docview/2584780089 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1ra9RAcLEtil9E6ytaj1UEP-jSPPaRfJK70qMKPaS2cN-WZB_tQS85m7sP_gl_szPJ3tUrWBII7E4em5mdmd15EfIRJJK0uePMeBszXhWSVSrGhAAge_K4ALGEwcmnE3lywb9PxTRsuLXBrXLNEztGbRuDe-SHqcgVR6tQ8nXxi2HVKLSuhhIaO2QvAR6MEzM_2rh4JFx16aNARBUsLeI8BM3EWX7YguAqYoYOCl2GGsa3BNNd9vyPfLpjMO3k0PgpeRIUSDrsMf6MPHD1PnnYl5T8vU8enQZj-XPy53w1b24YLLoBfZbCuvpq5T2Gn9PG0-vZYmYpepQHty0KJ2iD1NW2WYBOPZ8Z2oU44v4gnbs5rKtrR9s-4qql8xKrf10BP4I2YDhAsrSsLYXBsCW-GfN8wjMwcgILVLwgF-Pj86MTFsovMCNyuWTOKSW88bH1xiRSCpulzgqXcuE5LzORGZMZkQoPWqUzTsoKlDEr48KL1Fdl9pLs1k3tXhNaSOHLlFfKcMdVGpcO8AgtsvCysqqKSLL-99qE3ORYIuNadzbyLNc9vjTgS3f40jwinzf3LPrMHPdCf0CUakx5UaNPzWW5alv97eeZHso8hmUdKJoR-RSAfAOvN2UIUYBBYJasLciDLUiYk2a7e005OvCEVt9ScETeb7rxTvRzq12z6mC4Ah0-LyLyqqe4zeAyLnM4VES-rEnw9uH_H_mb-7_lLXmc4izowisPyO7yZuXegZ61rAZkR03VoJtSA7I3HI9GE7iOjic_zv4CsYIm1Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFSKWC4IymYoMCAQBxjVGc-M7QNCVaFKaNMDpFJvgz0LjdTYoY6F-hN8Ct_Ie15SUoneKvtkP48zebvfRshr0EjKJk4w423IRJ4qlschNgQA3ZOEKaglLE4eH6jhofhyJI_WyJ--FgbTKnuZ2AhqWxr8Rr7FZRILjAoNPs5_MpwahdHVfoRGSxZ77uwXuGzVh9EnwO8bznc_T3aGrJsqwIxM1II5F8fSGx9ab8xAKWkj7qx0XEgvRBbJyJjISC49GEvOOKVysDGsClMvuc-zCNa9Rq6LKFKYQpbsLFNKBiJu2lWBSkwZT8OkK9IJo2SrAkWZhgwTIpqOOEysKMKL6uAffXghQNvovd275E5nsNLtlsLukTVXbJAb7QjLsw1yc9wF5--T35N6Vp4ycPKBXCwFP_649h7L3Wnp6cl0PrUUM9i7NDEKJ1if1BW2nIMNP5sa2pRU4vdIOnMz8OMLR6u2wquiswynjR2D_INrIOCARWhWWAqbYQt8M_YVhTWwUgMHYjwgh1eCmIdkvSgL95jQVEmfcZHHRjgR8zBzQDdwRaVe5TbOAzLo_3ttul7oOJLjRDcx-SjRLb404Es3-NIiIO-Wz8zbTiCXQr9ClGpssVFgDs-PrK4qPfr2VW-rJAQ3EgzbgLztgHwJrzdZVxIBm8CuXCuQmyuQIAPM6u2ecnQngyp9zjEBebm8jU9iXl3hyrqBETH4DEkakEctxS03FwmVwBEH5H1PgueL_3_nTy7_LS_IreFkvK_3Rwd7T8ltjhzRlHZukvXFae2egY23yJ83jEXJ96vm5L_zAWEe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyZeEIxbYIBBIB7AaprYTvIwocFWrYxV09ikvZnEF1ZpTcrSCu1P8MP4VZyTOh2dxN6m5ClxnLrn8h3n3Ah5A4gkTWo5086EjBeZZEUSYkEAwJ40zACWMDl5fyh3j_mXE3GyQv60uTAYVtnqxEZRm0rjN_JuJNKEo1eo13U-LOJgu_9x8pNhByn0tLbtNHLfZsFsNuXGfJLHnr34Bdu5enOwDbR_G0X9naPPu8x3HGBapHLKrE0S4bQLjdO6J6UwcWSNsBEXjvM8FrHWsRaRcGBIWW2lLMD-MDLMnIhckccw7y2ymgBKRh2y-mlneHC48GnwpClmBYCZsSgLU5_CE8ZptwYYzUKG4RJNvRzGl2DyKlj8g5ZX3LcNKvbvkbvenKVbc_67T1ZsuU5uzxtcXqyTtX3vun9Afh_NxtU5G5UGmMlQ2OWfzpzDZHhaOXo2mowMxfh2H0RG4QTblNrSVBOw8McjTZuES_xaScd2DLv80tJ6nv9V03GOvchOQTvCNVB_IEA0Lw2FxbApvhmrjsIcmMeB7TIekuMbIc0j0imr0j4hNJPC5REvEs0tT6Iwt8BVcEVmThYmKQLSa_97pX2ldGzYcaYaj32cqjm9FNBLNfRSPCDvF89M5nVCrh39GkmqsABHiaz8I5_VtRp8O1RbMgXmAaNWBOSdH-QqeL3OfcIELAJrdi2N3FgaCRpCL99uOUd5DVWrS3kKyKvFbXwSo-5KW82aMTyBHUWaBeTxnOMWi4u5TOFIAvKhZcHLyf-_8qfX_5aXZA2kWn0dDPeekTsRCkST97lBOtPzmX0OBuC0eOEli5LvNy3MfwGHGmwV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor-induced+reshuffling+of+lipid+composition+on+the+endoplasmic+reticulum+membrane+sustains+macrophage+survival+and+pro-tumorigenic+activity&rft.jtitle=Nature+immunology&rft.au=Di+Conza%2C+Giusy&rft.au=Tsai%2C+Chin-Hsien&rft.au=Gallart-Ayala%2C+Hector&rft.au=Yu%2C+Yi-Ru&rft.date=2021-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1529-2908&rft.volume=22&rft.issue=11&rft.spage=1403&rft_id=info:doi/10.1038%2Fs41590-021-01047-4&rft.externalDocID=A680626105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon |