A novel and innovative cancer classification framework through a consecutive utilization of hybrid feature selection

Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to elimina...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 24; no. 1; pp. 479 - 26
Main Authors Mahto, Rajul, Ahmed, Saboor Uddin, Rahman, Rizwan ur, Aziz, Rabia Musheer, Roy, Priyanka, Mallik, Saurav, Li, Aimin, Shah, Mohd Asif
Format Journal Article
LanguageEnglish
Published London BioMed Central 15.12.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-023-05605-5

Cover

Abstract Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.
AbstractList Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer. Keywords: Deep learning (DL), Cuckoo search algorithm (CSA), Spider monkey optimization (SM), Minimum redundancy maximum relevance (mRMR), Cancer classification
Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.
Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.
Abstract Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.
ArticleNumber 479
Audience Academic
Author Mahto, Rajul
Shah, Mohd Asif
Ahmed, Saboor Uddin
Rahman, Rizwan ur
Mallik, Saurav
Li, Aimin
Aziz, Rabia Musheer
Roy, Priyanka
Author_xml – sequence: 1
  givenname: Rajul
  surname: Mahto
  fullname: Mahto, Rajul
  organization: School of Computing Science and Engineering, VIT Bhopal University
– sequence: 2
  givenname: Saboor Uddin
  surname: Ahmed
  fullname: Ahmed, Saboor Uddin
  organization: School of Computing Science and Engineering, VIT Bhopal University
– sequence: 3
  givenname: Rizwan ur
  surname: Rahman
  fullname: Rahman, Rizwan ur
  organization: School of Computing Science and Engineering, VIT Bhopal University
– sequence: 4
  givenname: Rabia Musheer
  surname: Aziz
  fullname: Aziz, Rabia Musheer
  organization: School of Advanced Sciences and Language, VIT Bhopal University
– sequence: 5
  givenname: Priyanka
  surname: Roy
  fullname: Roy, Priyanka
  email: priyanka.roy@vitbhopal.ac.in
  organization: School of Advanced Sciences and Language, VIT Bhopal University
– sequence: 6
  givenname: Saurav
  surname: Mallik
  fullname: Mallik, Saurav
  email: sauravmtech2@gmail.com, smallik@hsph.harvard.edu, smallik@arizona.edu
  organization: Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Department of Pharmacology and Toxicology, University of Arizona
– sequence: 7
  givenname: Aimin
  surname: Li
  fullname: Li, Aimin
  organization: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, School of Computer Science and Engineering, Xi’an University of Technology
– sequence: 8
  givenname: Mohd Asif
  surname: Shah
  fullname: Shah, Mohd Asif
  email: drmohdasifshah@kdu.edu.et
  organization: Department of Economics, Kebri Dehar University, Division of Research and Development, Lovely Professional University, Centre for Research Impact & Outcome, Chitkara University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38102551$$D View this record in MEDLINE/PubMed
BookMark eNqNkltv1DAQhSNURC_wB3hAlniBhxTbiRPnsaoKrFQJicuzNbEnu16y9mInLcuvx7tZWrZCFYqUjCbfOZnM8Wl25LzDLHvJ6DljsnoXGZeiySkvcioqKnLxJDthZc1yzqg4-qs-zk5jXFLKaknFs-y4kIxyIdhJNlwQ52-wJ-AMsS7VMNgbJBqcxkB0DzHazurU9Y50AVZ468N3MiyCH-cLAkR7F1GPO1W69_bXxPqOLDZtsIZ0CMMYkETsUW_fPc-edtBHfLF_nmXf3l99vfyYX3_6MLu8uM61kNWQI220YULr9AsFrxirQZbIOBghSpMKxkC3QgIUYIwpugKg5cLIVrCSSVacZbPJ13hYqnWwKwgb5cGqXcOHuYIwWN2jopUuu_QB0wIvKwayajTn0DbS6LbjPHkVk9fo1rC5hb6_M2RUbfNQUx4q5aF2eSiRVG8m1Tr4HyPGQa1s1Nj34NCPUfGG8qakotkO-_oBuvRjcGk_O4rWZSX4PTWHNLV1nR8C6K2puqjrqqy4LOtEnf-DSpfBlU2BYWdT_0Dw9kCQmAF_DnMYY1SzL58P2Vf7Qcd2heZuDX8OVQLkBOjgYwzYKW2H3aFIU9j-8X3xB9L_WvI-mphgN8dwv7lHVL8B18v-zA
CitedBy_id crossref_primary_10_1371_journal_pone_0306987
crossref_primary_10_1371_journal_pone_0310748
crossref_primary_10_1109_ACCESS_2024_3368070
crossref_primary_10_1007_s11042_024_18327_4
crossref_primary_10_3390_bioengineering12030291
crossref_primary_10_1007_s10115_024_02225_0
crossref_primary_10_1111_exsy_13736
crossref_primary_10_1109_ACCESS_2024_3371887
crossref_primary_10_1109_ACCESS_2024_3402652
crossref_primary_10_1002_ima_23179
crossref_primary_10_1016_j_neucom_2024_127729
crossref_primary_10_1109_ACCESS_2024_3367440
crossref_primary_10_1155_2024_9382390
crossref_primary_10_1007_s13042_024_02509_5
crossref_primary_10_1007_s10462_024_11029_1
crossref_primary_10_1080_00949655_2024_2416228
crossref_primary_10_1109_ACCESS_2024_3403506
crossref_primary_10_1109_ACCESS_2024_3392633
crossref_primary_10_3390_a17080342
crossref_primary_10_1038_s41598_024_73559_6
crossref_primary_10_1109_ACCESS_2024_3468001
crossref_primary_10_1155_2024_8800497
Cites_doi 10.1186/s13073-021-00968-x
10.1016/j.asoc.2016.12.010
10.7717/peerj-cs.270
10.1007/s10916-019-1372-8
10.1371/journal.pone.0078644
10.1016/j.eswa.2023.119612
10.1016/j.bspc.2022.104017
10.1007/s10916-019-1353-y
10.1109/CSIEC.2016.7482124
10.1126/science.286.5439.531
10.1016/j.chemolab.2023.104989
10.1016/j.compeleceng.2017.12.009
10.1016/j.knosys.2022.110249
10.1016/j.apm.2019.01.044
10.1007/s00500-019-03879-7
10.3390/electronics9040692
10.1038/ng765
10.1103/PhysRevResearch.5.023159
10.1111/exsy.13088
10.1016/j.asoc.2023.110034
10.18632/oncotarget.22762
10.2298/GENSR1403013V
10.1038/nature24277
10.3322/caac.21763
10.1016/j.knosys.2021.107034
10.34133/2022/9838341
10.1007/s13198-017-0685-6
10.1016/j.eswa.2019.113169
10.1007/s13238-020-00810-x
10.1109/ACCESS.2020.3029890
10.1016/S1535-6108(02)00030-2
10.1201/9781003393238-2
10.1089/cmb.2021.0410
10.1016/j.swevo.2015.05.003
10.1007/s13258-019-00859-x
10.1016/S0140-6736(02)07746-2
10.1080/03772063.2021.1911691
10.3233/JIFS-210133
10.1073/pnas.96.12.6745
10.3390/app13095322
10.1016/j.asoc.2016.11.026
10.1007/s12293-013-0128-0
10.1016/j.artmed.2019.01.006
10.1002/cbdv.202201123
10.1109/ICOASE.2018.8548836
10.1016/j.chemolab.2018.11.010
10.1038/415530a
10.1016/j.tig.2003.09.015
10.2174/1574893611666151228190309
10.1016/j.imu.2021.100572
10.1016/j.compbiomed.2023.106643
10.1007/s00500-022-07032-9
10.1007/s11517-022-02555-7
10.1016/j.procs.2018.10.358
10.1007/s12652-019-01330-1
10.1007/s40745-018-0155-2
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-023-05605-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Publicly Available Content Database
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 26
ExternalDocumentID oai_doaj_org_article_06c4f17adba2461a869c22ab98dcbf22
10.1186/s12859-023-05605-5
A776462847
38102551
10_1186_s12859_023_05605_5
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c586t-e09cd15cc210326117a84e12ad554de1211acb58aa3addd3f3aab25d8b5141813
IEDL.DBID M48
ISSN 1471-2105
IngestDate Tue Oct 14 18:57:00 EDT 2025
Sun Oct 26 05:04:50 EDT 2025
Fri Sep 05 10:03:12 EDT 2025
Tue Oct 07 06:07:54 EDT 2025
Mon Oct 20 23:22:17 EDT 2025
Mon Oct 20 17:07:54 EDT 2025
Thu Oct 16 16:11:05 EDT 2025
Thu Apr 03 07:06:39 EDT 2025
Thu Apr 24 23:13:25 EDT 2025
Wed Oct 01 04:15:44 EDT 2025
Sat Sep 06 07:27:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Spider monkey optimization (SM)
Minimum redundancy maximum relevance (mRMR)
Deep learning (DL)
Cancer classification
Cuckoo search algorithm (CSA)
Language English
License 2023. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c586t-e09cd15cc210326117a84e12ad554de1211acb58aa3addd3f3aab25d8b5141813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-023-05605-5
PMID 38102551
PQID 2902074652
PQPubID 44065
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_06c4f17adba2461a869c22ab98dcbf22
unpaywall_primary_10_1186_s12859_023_05605_5
proquest_miscellaneous_2902940591
proquest_journals_2902074652
gale_infotracmisc_A776462847
gale_infotracacademiconefile_A776462847
gale_incontextgauss_ISR_A776462847
pubmed_primary_38102551
crossref_citationtrail_10_1186_s12859_023_05605_5
crossref_primary_10_1186_s12859_023_05605_5
springer_journals_10_1186_s12859_023_05605_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References C Yan (5605_CR47) 2019; 184
U Alon (5605_CR48) 1999; 96
X Li (5605_CR66) 2021; 12
RA Musheer (5605_CR8) 2019; 23
5605_CR24
SA Medjahed (5605_CR17) 2017; 1
KA Tran (5605_CR14) 2021; 13
M Alzaqebah (5605_CR25) 2021; 24
K Jawad (5605_CR35) 2023; 13
RR Rani (5605_CR44) 2018; 143
A Dabba (5605_CR58) 2023; 21
GJ Gordon (5605_CR52) 2002; 62
X Li (5605_CR65) 2022; 19
LJ Vant Veer (5605_CR54) 2002; 415
RM Aziz (5605_CR9) 2022; 60
A Yaqoob (5605_CR10) 2023; 2
Q Wei (5605_CR43) 2021; 40
LT Scaria (5605_CR29) 2019; 43
5605_CR12
M Vimaladevi (5605_CR32) 2014; 46
OA Alomari (5605_CR57) 2021; 223
R Rajalaxmi (5605_CR37) 2016; 11
5605_CR19
S Zhao (5605_CR5) 2014; 9
R Tabares-Soto (5605_CR22) 2020; 13
K Balasubramanian (5605_CR45) 2023; 40
EF Petricoin (5605_CR55) 2002; 359
TR Golub (5605_CR49) 1999; 286
AC Pandey (5605_CR38) 2020; 11
Y Wang (5605_CR16) 2019; 1
SK Pati (5605_CR62) 2023; 135
F Xu (5605_CR64) 2023; 5
J Liu (5605_CR23) 2017; 8
R Aziz (5605_CR21) 2018; 5
YF Leung (5605_CR4) 2003; 19
V Agrawal (5605_CR40) 2018; 9
SA Armstrong (5605_CR53) 2002; 30
RM Aziz (5605_CR63) 2022; 26
XS Yang (5605_CR34) 2010; 1
M Akhavan (5605_CR59) 2023; 135
M Zhao (5605_CR27) 2021; 11
D Singh (5605_CR50) 2002; 1
H Salem (5605_CR15) 2017; 1
M Jansi Rani (5605_CR18) 2019; 43
MS Othman (5605_CR28) 2020; 9
L Venkataramana (5605_CR20) 2019; 41
M Gokhale (5605_CR60) 2023; 155
RM Aziz (5605_CR30) 2023; 20
G Nirmalapriya (5605_CR46) 2023; 1
RL Siegel (5605_CR2) 2023; 73
RM Aziz (5605_CR33) 2023; 7
5605_CR1
SH Shah (5605_CR13) 2020; 6
P Mohapatra (5605_CR39) 2015; 24
JC Bansal (5605_CR41) 2014; 6
CL Nutt (5605_CR51) 2003; 63
AM Vommi (5605_CR61) 2023; 218
GTEx Consortium (5605_CR3) 2017; 550
M Molla (5605_CR11) 2004; 25
P Swathypriyadharsini (5605_CR26) 2023; 69
S Afreen (5605_CR56) 2023; 15
M Daoud (5605_CR7) 2019; 1
N Khare (5605_CR42) 2020; 9
RM Aziz (5605_CR36) 2022; 29
B Jan (5605_CR31) 2019; 1
HF Ong (5605_CR6) 2020; 15
References_xml – volume: 13
  start-page: 1
  issue: 1
  year: 2021
  ident: 5605_CR14
  publication-title: Genome Med
  doi: 10.1186/s13073-021-00968-x
– volume: 1
  start-page: 39
  issue: 51
  year: 2017
  ident: 5605_CR17
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.12.010
– volume: 13
  issue: 6
  year: 2020
  ident: 5605_CR22
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.270
– volume: 43
  start-page: 1
  year: 2019
  ident: 5605_CR18
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1372-8
– volume: 9
  issue: 1
  year: 2014
  ident: 5605_CR5
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0078644
– volume: 218
  year: 2023
  ident: 5605_CR61
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119612
– volume: 1
  issue: 79
  year: 2023
  ident: 5605_CR46
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104017
– volume: 43
  start-page: 1
  year: 2019
  ident: 5605_CR29
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1353-y
– ident: 5605_CR19
  doi: 10.1109/CSIEC.2016.7482124
– volume: 286
  start-page: 531
  issue: 5439
  year: 1999
  ident: 5605_CR49
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 15
  issue: 242
  year: 2023
  ident: 5605_CR56
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2023.104989
– volume: 1
  start-page: 275
  issue: 75
  year: 2019
  ident: 5605_CR31
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2017.12.009
– volume: 135
  start-page: 110249
  year: 2023
  ident: 5605_CR59
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.110249
– volume: 1
  start-page: 286
  issue: 71
  year: 2019
  ident: 5605_CR16
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2019.01.044
– volume: 23
  start-page: 13409
  year: 2019
  ident: 5605_CR8
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-03879-7
– volume: 9
  start-page: 692
  issue: 4
  year: 2020
  ident: 5605_CR42
  publication-title: Electronics
  doi: 10.3390/electronics9040692
– volume: 30
  start-page: 41
  issue: 1
  year: 2002
  ident: 5605_CR53
  publication-title: Nat Genet
  doi: 10.1038/ng765
– volume: 5
  issue: 2
  year: 2023
  ident: 5605_CR64
  publication-title: Phys Rev Res
  doi: 10.1103/PhysRevResearch.5.023159
– volume: 40
  issue: 1
  year: 2023
  ident: 5605_CR45
  publication-title: Expert Syst
  doi: 10.1111/exsy.13088
– volume: 135
  start-page: 110034
  year: 2023
  ident: 5605_CR62
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110034
– volume: 8
  issue: 65
  year: 2017
  ident: 5605_CR23
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22762
– volume: 46
  start-page: 1013
  issue: 3
  year: 2014
  ident: 5605_CR32
  publication-title: Genetika
  doi: 10.2298/GENSR1403013V
– volume: 550
  start-page: 204
  year: 2017
  ident: 5605_CR3
  publication-title: Nature
  doi: 10.1038/nature24277
– volume: 1
  start-page: 330
  issue: 4
  year: 2010
  ident: 5605_CR34
  publication-title: Int J Math Model Numer Optim
– volume: 73
  start-page: 17
  issue: 1
  year: 2023
  ident: 5605_CR2
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21763
– volume: 223
  year: 2021
  ident: 5605_CR57
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.107034
– ident: 5605_CR1
– volume: 19
  start-page: 9838341
  issue: 2022
  year: 2022
  ident: 5605_CR65
  publication-title: Research (Wash D C)
  doi: 10.34133/2022/9838341
– volume: 9
  start-page: 929
  year: 2018
  ident: 5605_CR40
  publication-title: Int J Syst Assur Eng Manag
  doi: 10.1007/s13198-017-0685-6
– volume: 15
  issue: 146
  year: 2020
  ident: 5605_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113169
– volume: 12
  start-page: 858
  issue: 11
  year: 2021
  ident: 5605_CR66
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00810-x
– volume: 63
  start-page: 1602
  issue: 7
  year: 2003
  ident: 5605_CR51
  publication-title: Can Res
– volume: 9
  start-page: 186348
  issue: 8
  year: 2020
  ident: 5605_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029890
– volume: 1
  start-page: 203
  issue: 2
  year: 2002
  ident: 5605_CR50
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00030-2
– ident: 5605_CR12
  doi: 10.1201/9781003393238-2
– volume: 29
  start-page: 565
  issue: 6
  year: 2022
  ident: 5605_CR36
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2021.0410
– volume: 24
  start-page: 25
  year: 2015
  ident: 5605_CR39
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2015.05.003
– volume: 41
  start-page: 1301
  year: 2019
  ident: 5605_CR20
  publication-title: Genes Genom
  doi: 10.1007/s13258-019-00859-x
– volume: 359
  start-page: 572
  issue: 9306
  year: 2002
  ident: 5605_CR55
  publication-title: J Lancet
  doi: 10.1016/S0140-6736(02)07746-2
– volume: 69
  start-page: 2328
  issue: 5
  year: 2023
  ident: 5605_CR26
  publication-title: IETE J Res
  doi: 10.1080/03772063.2021.1911691
– volume: 40
  start-page: 12023
  issue: 6
  year: 2021
  ident: 5605_CR43
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-210133
– volume: 96
  start-page: 6745
  issue: 12
  year: 1999
  ident: 5605_CR48
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.96.12.6745
– volume: 13
  start-page: 5322
  issue: 9
  year: 2023
  ident: 5605_CR35
  publication-title: Appl Sci
  doi: 10.3390/app13095322
– volume: 6
  start-page: 1
  year: 2020
  ident: 5605_CR13
  publication-title: Neural Comput Appl
– volume: 2
  start-page: 1
  year: 2023
  ident: 5605_CR10
  publication-title: Hum Cent Intell Syst
– volume: 1
  start-page: 124
  issue: 50
  year: 2017
  ident: 5605_CR15
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2016.11.026
– volume: 11
  start-page: 1
  issue: 2021
  year: 2021
  ident: 5605_CR27
  publication-title: Comput Math Methods Med
– volume: 6
  start-page: 31
  year: 2014
  ident: 5605_CR41
  publication-title: Memetic Comput
  doi: 10.1007/s12293-013-0128-0
– volume: 1
  start-page: 204
  issue: 97
  year: 2019
  ident: 5605_CR7
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.01.006
– volume: 25
  start-page: 23
  issue: 1
  year: 2004
  ident: 5605_CR11
  publication-title: AI Mag
– volume: 20
  issue: 8
  year: 2023
  ident: 5605_CR30
  publication-title: Chem Biodivers
  doi: 10.1002/cbdv.202201123
– volume: 21
  start-page: 1
  year: 2023
  ident: 5605_CR58
  publication-title: J Supercomput
– ident: 5605_CR24
  doi: 10.1109/ICOASE.2018.8548836
– volume: 184
  start-page: 102
  year: 2019
  ident: 5605_CR47
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2018.11.010
– volume: 62
  start-page: 4963
  issue: 17
  year: 2002
  ident: 5605_CR52
  publication-title: Can Res
– volume: 415
  start-page: 530
  issue: 6871
  year: 2002
  ident: 5605_CR54
  publication-title: J Nat
  doi: 10.1038/415530a
– volume: 19
  start-page: 649
  issue: 11
  year: 2003
  ident: 5605_CR4
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2003.09.015
– volume: 11
  start-page: 490
  issue: 4
  year: 2016
  ident: 5605_CR37
  publication-title: Curr Bioinform
  doi: 10.2174/1574893611666151228190309
– volume: 24
  start-page: 100572
  year: 2021
  ident: 5605_CR25
  publication-title: Inf Med Unlocked
  doi: 10.1016/j.imu.2021.100572
– volume: 7
  start-page: 1
  year: 2023
  ident: 5605_CR33
  publication-title: Multimed Tools Appl
– volume: 155
  year: 2023
  ident: 5605_CR60
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106643
– volume: 26
  start-page: 12179
  issue: 22
  year: 2022
  ident: 5605_CR63
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-07032-9
– volume: 60
  start-page: 1627
  issue: 6
  year: 2022
  ident: 5605_CR9
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-022-02555-7
– volume: 143
  start-page: 108
  year: 2018
  ident: 5605_CR44
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2018.10.358
– volume: 11
  start-page: 719
  issue: 2
  year: 2020
  ident: 5605_CR38
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-019-01330-1
– volume: 5
  start-page: 615
  year: 2018
  ident: 5605_CR21
  publication-title: Ann Data Sci
  doi: 10.1007/s40745-018-0155-2
SSID ssj0017805
Score 2.5714905
Snippet Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments...
Abstract Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 479
SubjectTerms Accuracy
Algorithms
Analysis
Bioinformatics
Biomarkers
Biomedical and Life Sciences
Cancer
Cancer classification
Cancer therapies
Classification
Cleaning process
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Cuckoo search algorithm (CSA)
Data analysis
Datasets
Deep learning
Deep learning (DL)
Diagnosis
Disease
DNA microarrays
Feature selection
Gene expression
Genes
Genetic algorithms
Genetic Techniques
Heuristic methods
Humans
Hypothesis testing
Life Sciences
Linear algebra
Machine Learning
Medical prognosis
Medical treatment
Methods
Microarray Analysis
Microarrays
Minimum redundancy maximum relevance (mRMR)
Neoplasms - genetics
Neural networks
Optimization algorithms
Optimization techniques
Redundancy
Search algorithms
Spider monkey optimization (SM)
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIOpB_G11lSiCBzds0yZpenyKyyroQV3YW0jTZBVKu2xfV95_70yb1vcQVg9eemgmpZ2ZZL7QmW8IeQXry5bBeeYtFwzwbcpsaTVLFYDxQteiSrE4-dNndXwiPp7K061WX5gTNtEDT4o7TJUTgRe2rixSn1mtSpdltip17aqQjbtvqsv5MBX_HyBT_1wio9Vhz5GnjUF8YhDwU8nkThga2fr_3JO3gtLyl_QWuTG053bz0zbNViA6ukNuRwRJV9Ob3yXXfHuPXJ96Sm7uk_WKtt2lb6hta_oj9jy99NSheS-oQ7SM6UGjRWiYc7NobNhDLXWYYO2GcRZcm1ipSbtAv2-wwIsGP9KB0n5sogNjD8jJ0ftv745ZbK3AnNRqzXxauppL5zIk1FMcFKyF55mtAV7UHnnfrKuktjaHDbDOQ25tlclaVwCwABTkD8le27X-MaG5ykXFuQ9gcVHB6c0XuUMavdSHMhciIXzWtHGRdxzbXzRmPH9oZSbrGLCOGa1jZELeLHPOJ9aNK6XfogEXSWTMHm-AH5noR-ZvfpSQl2h-g5wYLSbdnNmh782Hr1_MqigUlvCKIiGvo1Do4BucjTUMoAmk0dqR3N-RhEXrdodnLzNx0-hNVgJ2L4SS8DIvlmGciYlwre-GSaYEkF3yhDyavHP5biRrgxMijBzM7vr74Vep72Bx6X_Q9pP_oe2n5GaGq5FnjMt9sre-GPwzQHfr6vm4kH8B5-JH-w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_nHqI-iF-n1VOiCD544Zo0TdsHkT254xRc5PTg3kKapKewtOt-nOx_70yb9m4RFl_2oZmUTWYm-aWZ-Q0hb8G_TFFZz7zhkgG-jZkpTM5iBWA8y50sY0xO_jpRp-fyy0V6sUMmfS4MhlX2a2K7ULvG4jfyQ1EAsMmkSsXH2W-GVaPwdrUvoWFCaQX3oaUYu0V2BTJjjcju0fHk29lwr4AM_n3qTK4OFxz52xjsWwyAQJyydGN7aln8_12rb2xWw-3pPXJnVc_M-o-ZTm9sUCcPyP2ALOm4M4WHZMfXj8jtrtbk-jFZjmndXPkpNbWjv0It1CtPLap9Ti2iaAwbajVFqz5mi4ZCPtRQi4HXdtX2gt9pyOCkTUV_rjHxi1a-pQmli7a4DrQ9Iecnxz8-nbJQcoHZNFdL5uPCOp5aK5BoT3GemVx6LowD2OE88sEZW6a5MQksjC6pEmNKkbq8BOAFYCHZI6O6qf0zQhOVyJJzX4ElyBJOdT5LLNLrxb4qEikjwvuZ1jbwkWNZjKluzyW50p12NGhHt9rRaUTeD31mHRvHVukjVOAgiUza7YNmfqmDY-pYWVnBMF1pkFrP5KqwQpiyyJ0tKyEi8gbVr5Ero8ZgnEuzWiz05-9nepxlClN7ZRaRd0GoamAM1oTcBpgJpNfakNzfkARntpvNvZXpsJgs9LXpR-T10Iw9MUCu9s2qkykAfBc8Ik876xzGjSRucHKEloPeXK9fvm36DgaT_o_Zfr79r78gdwX6GReMp_tktJyv_EvAc8vyVXDSvzVCRTI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9UwEA66IupB_L1PV4kieHCDTZuk7fG5uKyCHtSFvYU0TVahtMv2dZf33zuTpvU9lEUvPTST0mQmmS9k5htCXsP6MqW3jjnDBQN8mzBTmoIlCsB4XtSiSjA5-fMXdXQsPp3Ik0iTg7kwm_f3vFDveo4Maww8CwNXnUgmr5Mb4KRUuJhVB_ONAXLzT0kxf-235XgCP_-fu_CGG5rvRe-QW0N7ZtaXpmk2XM_hPXI3Yka6HJV8n1xz7QNyc6wiuX5IVkvadheuoaat6c9Y5fTCUYsKPacW8TEGBAUdUD9FY9FYoocaajGk2g6hFzybmJtJO09_rDGli3oXCEBpH8rmQNsjcnz44fvBEYvFFJiVhVoxl5S25tLaFCn0FOe5KYTjqakBUNQOmd6MrWRhTAZbXp35zJgqlXVRAaQCGJA9Jjtt17pdQjOViYpz50HHooLzmsszi8R5ifNlJsSC8GmmtY1M41jwotHhxFEoPWpHg3Z00I6WC_J27nM28mxcKf0eFThLIkd2eAGmo-OS04mywsMw68ogaZ4pVGnT1FRlUdvKp-mCvEL1a2TBaDHM5tQMfa8_fvuql3muMGlX5AvyJgr5DsZgTcxagJlA4qwtyb0tSVimdrt5sjIdt4lepyWg9VwoCT_zcm7Gnhj61rpuGGVKgNUlX5Ano3XO40Z6NjgTQsv-ZK6_P37V9O3PJv0Ps_30_77-jNxOcd3xlHG5R3ZW54N7DshtVb0IS_YXlfM3mA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DmgMJBBSDwwd3ES5-OxIKaBxIQGlcaTZTvOmAhJ1TRD5a_nLnFCC2gCiZc-xOeod71P9e53hDwD-1JpbiyziocM8luPqVQlzIsgGY-TLNQeDie_O4oOZ-HbE3GyRY77WRj91eizyoGGIlDxZH0MveimHHCLgl3sz7O8M_ok2q85IrExiEAMQronmLhEtiMB-fmIbM-O3k8_tWNGMWdQ44h-euaPFzciVAvk_7u7XotXwx-o18iVppyr1TdVFGsx6uAGqXvuutaUL5NmqSfm-y_Aj_-X_Zvkuktp6bTTwVtky5a3yeVuyeXqDllOaVmd24KqMqNnbgnruaUG9W1BDabv2K_UqgjN-2Yx6jYIUUUNdnybpr0Fn4UbHaVVTj-vcOKM5rbFJ6V1u9UHznbI7OD1x1eHzO16YEYk0ZJZLzUZF8b4iPAXcR6rJLTcVxnkO5lFIDpltEiUCsAjZ0EeKKV9kSUaMj7IUoK7ZFRWpb1PaBAFoebc5qCCoYZy0saBQVw_z-ZpEIZjwvvfVxoHhI77OArZFkRJJDtpSpCmbKUpxZi8GO7MOxiQC6lfotoMlAjh3T6oFqfSeQTpRSbMgc1MK8T0U0mUGt9XOk0yo3PfH5OnqHQSQTpK7AI6VU1dyzcfjuU0jiOcKQ7jMXnuiPIKeDDKDVWAJBDXa4Nyd4MSvIjZPO51WzovVks_hWIiDiMBX-bJcIw3sTOvtFXT0aSQ9ad8TO51NjHwjehxULLCyV5vJD9ffpH49gZD-gtpP_g38ofkqo92wn3GxS4ZLReNfQSJ5VI_dp7iB9QAcBo
  priority: 102
  providerName: Unpaywall
Title A novel and innovative cancer classification framework through a consecutive utilization of hybrid feature selection
URI https://link.springer.com/article/10.1186/s12859-023-05605-5
https://www.ncbi.nlm.nih.gov/pubmed/38102551
https://www.proquest.com/docview/2902074652
https://www.proquest.com/docview/2902940591
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05605-5
https://doaj.org/article/06c4f17adba2461a869c22ab98dcbf22
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCO)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (WRLC)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZ6CAEPiJuFsjIIiQcayOE4zgNC6apLWamrqmWl7ZPlOE5BipKyR2H_PTPO0a6oVrwkUjyO4jky42TmG0LegX2pONfGMcpjDsS3rqNiJRyXQzAeiYylLhYnH4_50YSNpuF0i7TtjhoGzm_d2mE_qcms-Pjn1-oLGPxna_CCf5p7iMLmgPdxwJ27oRNuk13wVDG2cjhm138VEL_fVhtFngNbnbAtorn1HmuOyuL5__vWvuG2uv-o98ndZXmpVr9VUdxwVcOH5EETY9KkVopHZMuUj8mduuvk6glZJLSsrkxBVZnRn01X1CtDNSrAjGqMpzGByMqM5m32Fm1a-lBFNaZg66WdBceiqeWkVU5_rLAEjObGAobSuW2zA2NPyWR4-H1w5DTNFxwdCr5wjBvrzAu19hFyj3tepAQznq8yCEAyg8hwSqehUCqAV2QW5IFSqR9mIoUQDMKG4BnZKavSvCA04AFLPc_koBMshf2diQKNQHuuyeOAsR7xWk5L3SCTY4OMQtodiuCylo4E6UgrHRn2yIduzmWNy7GR-gAF2FEipra9UM0uZGOi0uWa5bDMLFUIsqcEj7XvqzQWmU5z3--Rtyh-iagZJablXKjlfC6_nZ3KJIo4FvmyqEfeN0R5BWvQqqlyAE4g0NYa5d4aJZi1Xh9utUy2ViH9GKL7iPEQHuZNN4wzMVWuNNWypokhDI-9Hnlea2e3boRzgz0kjOy36np9803s2-9U-j-4_XLzyl6Re761MwZGuEd2FrOleQ2R3SLtk-1oGsFRDL_2yW6SjM5GcD44HJ-cwtUBH_TtN5O-NWsYmYxPkvO_4uVL7A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlQ4IN4YCiwIxIGu6l2v1_YBofCoEvo4QCvltqzX64IU2SFOWuVP8RuZ8auNkCIuveSQnbWyO-945htCXoN-mSS3jjnDJYP41mcmMTHzFQTjUZzJ1Mfm5MMjNTyRX8fheIP86XphsKyys4m1oc5Ki_-R74oEAptIqlB8mP5mODUK3652IzQasdh3y3NI2ar3o8_A3zdC7H05_jRk7VQBZsNYzZnzE5vx0FqBWHKK88jE0nFhMvCsmUPIM2PTMDYmAN3PgjwwJhVhFqcQW4A_DOC518h1GYAtAf2Jxn2Cx3E-QNeYE6vdiiM6HAOvyCDM8EMWrji_ekbAv57gkivs383eIluLYmqW52YyueT-9u6Q223cSgeNoN0lG664R240kyyX98l8QIvyzE2oKTL6q520euaoRaGaUYsxOhYl1XJA864ijLZjgqihFsu67aLeBZ-Ttj-Uljn9ucS2Mpq7GoSUVvXoHlh7QE6u5Oofks2iLNxjQgMVyJRzl4OcyRRyRhcFFsH7fJcngZQe4d1Na9uinePQjYmus55Y6YY7Grija-7o0CPv-j3TButjLfVHZGBPiTjd9Rfl7FS3aq99ZWUOx8xSg8B9JlaJFcKkSZzZNBfCI6-Q_RqROAos9Tk1i6rSo-_f9CCKFDYOy8gjb1uivIQzWNN2TsBNIHjXCuX2CiWYCru63EmZbk1VpS8UyyMv-2XcieV3hSsXDU0CoX3CPfKokc7-3AgRB3kprOx04nrx8HXXt9OL9H_c9pP1P_0F2RoeHx7og9HR_lNyU6DOccF4uE0257OFewaR4zx9XqsrJT-u2j78BfwSe6M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagiNcB8SZQwCAkDq3VOHGc5LgsrFoeFQIq9WY5jl2QomS1SYr23zOTF7sCVXDJIR5Hscfj-SzPfEPIK7AvnTpjmdVcMMC3PtOpTpgvAYzHSS4yH5OTPx3LwxPx_jQ63cji76LdxyvJPqcBWZrK5mCZu97EE3lQc-RdY-BvGDhwP2LRZXJFgHfDGgZzOZ_uEZCxf0yV-Wu_LXfUsfb_uTdvOKfptvQmud6WS73-qYtiwyEtbpNbA5Kks171d8glW94lV_vakut7pJnRsjq3BdVlTn8MtU_PLTWo5hU1iJoxTKjTDHVjjBYdCvdQTQ0GWpu26wXPYsjYpJWj39eY6EWd7WhBad0V04G2--Rk8e7b_JANJRaYiRLZMOunJueRMQES60nOY50IywOdA8zILfK_aZNFidYhbIR56EKtsyDKkwyAFoCD8AHZKavSPiI0lKHIOLcONC8yOMXZODRIp-dbl4ZCeISPM63MwD-OZTAK1Z1DEql67SjQjuq0oyKP7E19lj37xoXSb1CBkyQyZ3cvqtWZGgxR-dIIB8PMM41UejqRqQkCnaVJbjIXBB55iepXyI1RYvDNmW7rWh19_aJmcSwxlVfEHnk9CLkKxmD0kMsAM4F0WluSu1uSYLxmu3lcZWrYPGoVpIDhYyEj-JkXUzP2xIC40lZtL5MC2E65Rx72q3MaN5K2wUkRWvbH5fr74xdN3_60pP9hth__39efk2uf3y7Ux6PjD0_IjQBNkAeMR7tkp1m19ilAuyZ71lnvL9AbQs4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DmgMJBBSDwwd3ES5-OxIKaBxIQGlcaTZTvOmAhJ1TRD5a_nLnFCC2gCiZc-xOeod71P9e53hDwD-1JpbiyziocM8luPqVQlzIsgGY-TLNQeDie_O4oOZ-HbE3GyRY77WRj91eizyoGGIlDxZH0MveimHHCLgl3sz7O8M_ok2q85IrExiEAMQronmLhEtiMB-fmIbM-O3k8_tWNGMWdQ44h-euaPFzciVAvk_7u7XotXwx-o18iVppyr1TdVFGsx6uAGqXvuutaUL5NmqSfm-y_Aj_-X_Zvkuktp6bTTwVtky5a3yeVuyeXqDllOaVmd24KqMqNnbgnruaUG9W1BDabv2K_UqgjN-2Yx6jYIUUUNdnybpr0Fn4UbHaVVTj-vcOKM5rbFJ6V1u9UHznbI7OD1x1eHzO16YEYk0ZJZLzUZF8b4iPAXcR6rJLTcVxnkO5lFIDpltEiUCsAjZ0EeKKV9kSUaMj7IUoK7ZFRWpb1PaBAFoebc5qCCoYZy0saBQVw_z-ZpEIZjwvvfVxoHhI77OArZFkRJJDtpSpCmbKUpxZi8GO7MOxiQC6lfotoMlAjh3T6oFqfSeQTpRSbMgc1MK8T0U0mUGt9XOk0yo3PfH5OnqHQSQTpK7AI6VU1dyzcfjuU0jiOcKQ7jMXnuiPIKeDDKDVWAJBDXa4Nyd4MSvIjZPO51WzovVks_hWIiDiMBX-bJcIw3sTOvtFXT0aSQ9ad8TO51NjHwjehxULLCyV5vJD9ffpH49gZD-gtpP_g38ofkqo92wn3GxS4ZLReNfQSJ5VI_dp7iB9QAcBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+and+innovative+cancer+classification+framework+through+a+consecutive+utilization+of+hybrid+feature+selection&rft.jtitle=BMC+bioinformatics&rft.au=Mahto%2C+Rajul&rft.au=Ahmed%2C+Saboor+Uddin&rft.au=Rahman%2C+Rizwan+ur&rft.au=Aziz%2C+Rabia+Musheer&rft.date=2023-12-15&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-023-05605-5&rft.externalDocID=A776462847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon