A novel and innovative cancer classification framework through a consecutive utilization of hybrid feature selection
Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to elimina...
Saved in:
| Published in | BMC bioinformatics Vol. 24; no. 1; pp. 479 - 26 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
15.12.2023
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-023-05605-5 |
Cover
| Abstract | Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer. |
|---|---|
| AbstractList | Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer. Keywords: Deep learning (DL), Cuckoo search algorithm (CSA), Spider monkey optimization (SM), Minimum redundancy maximum relevance (mRMR), Cancer classification Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer. Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer. Abstract Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer. |
| ArticleNumber | 479 |
| Audience | Academic |
| Author | Mahto, Rajul Shah, Mohd Asif Ahmed, Saboor Uddin Rahman, Rizwan ur Mallik, Saurav Li, Aimin Aziz, Rabia Musheer Roy, Priyanka |
| Author_xml | – sequence: 1 givenname: Rajul surname: Mahto fullname: Mahto, Rajul organization: School of Computing Science and Engineering, VIT Bhopal University – sequence: 2 givenname: Saboor Uddin surname: Ahmed fullname: Ahmed, Saboor Uddin organization: School of Computing Science and Engineering, VIT Bhopal University – sequence: 3 givenname: Rizwan ur surname: Rahman fullname: Rahman, Rizwan ur organization: School of Computing Science and Engineering, VIT Bhopal University – sequence: 4 givenname: Rabia Musheer surname: Aziz fullname: Aziz, Rabia Musheer organization: School of Advanced Sciences and Language, VIT Bhopal University – sequence: 5 givenname: Priyanka surname: Roy fullname: Roy, Priyanka email: priyanka.roy@vitbhopal.ac.in organization: School of Advanced Sciences and Language, VIT Bhopal University – sequence: 6 givenname: Saurav surname: Mallik fullname: Mallik, Saurav email: sauravmtech2@gmail.com, smallik@hsph.harvard.edu, smallik@arizona.edu organization: Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Department of Pharmacology and Toxicology, University of Arizona – sequence: 7 givenname: Aimin surname: Li fullname: Li, Aimin organization: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, School of Computer Science and Engineering, Xi’an University of Technology – sequence: 8 givenname: Mohd Asif surname: Shah fullname: Shah, Mohd Asif email: drmohdasifshah@kdu.edu.et organization: Department of Economics, Kebri Dehar University, Division of Research and Development, Lovely Professional University, Centre for Research Impact & Outcome, Chitkara University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38102551$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkltv1DAQhSNURC_wB3hAlniBhxTbiRPnsaoKrFQJicuzNbEnu16y9mInLcuvx7tZWrZCFYqUjCbfOZnM8Wl25LzDLHvJ6DljsnoXGZeiySkvcioqKnLxJDthZc1yzqg4-qs-zk5jXFLKaknFs-y4kIxyIdhJNlwQ52-wJ-AMsS7VMNgbJBqcxkB0DzHazurU9Y50AVZ468N3MiyCH-cLAkR7F1GPO1W69_bXxPqOLDZtsIZ0CMMYkETsUW_fPc-edtBHfLF_nmXf3l99vfyYX3_6MLu8uM61kNWQI220YULr9AsFrxirQZbIOBghSpMKxkC3QgIUYIwpugKg5cLIVrCSSVacZbPJ13hYqnWwKwgb5cGqXcOHuYIwWN2jopUuu_QB0wIvKwayajTn0DbS6LbjPHkVk9fo1rC5hb6_M2RUbfNQUx4q5aF2eSiRVG8m1Tr4HyPGQa1s1Nj34NCPUfGG8qakotkO-_oBuvRjcGk_O4rWZSX4PTWHNLV1nR8C6K2puqjrqqy4LOtEnf-DSpfBlU2BYWdT_0Dw9kCQmAF_DnMYY1SzL58P2Vf7Qcd2heZuDX8OVQLkBOjgYwzYKW2H3aFIU9j-8X3xB9L_WvI-mphgN8dwv7lHVL8B18v-zA |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0306987 crossref_primary_10_1371_journal_pone_0310748 crossref_primary_10_1109_ACCESS_2024_3368070 crossref_primary_10_1007_s11042_024_18327_4 crossref_primary_10_3390_bioengineering12030291 crossref_primary_10_1007_s10115_024_02225_0 crossref_primary_10_1111_exsy_13736 crossref_primary_10_1109_ACCESS_2024_3371887 crossref_primary_10_1109_ACCESS_2024_3402652 crossref_primary_10_1002_ima_23179 crossref_primary_10_1016_j_neucom_2024_127729 crossref_primary_10_1109_ACCESS_2024_3367440 crossref_primary_10_1155_2024_9382390 crossref_primary_10_1007_s13042_024_02509_5 crossref_primary_10_1007_s10462_024_11029_1 crossref_primary_10_1080_00949655_2024_2416228 crossref_primary_10_1109_ACCESS_2024_3403506 crossref_primary_10_1109_ACCESS_2024_3392633 crossref_primary_10_3390_a17080342 crossref_primary_10_1038_s41598_024_73559_6 crossref_primary_10_1109_ACCESS_2024_3468001 crossref_primary_10_1155_2024_8800497 |
| Cites_doi | 10.1186/s13073-021-00968-x 10.1016/j.asoc.2016.12.010 10.7717/peerj-cs.270 10.1007/s10916-019-1372-8 10.1371/journal.pone.0078644 10.1016/j.eswa.2023.119612 10.1016/j.bspc.2022.104017 10.1007/s10916-019-1353-y 10.1109/CSIEC.2016.7482124 10.1126/science.286.5439.531 10.1016/j.chemolab.2023.104989 10.1016/j.compeleceng.2017.12.009 10.1016/j.knosys.2022.110249 10.1016/j.apm.2019.01.044 10.1007/s00500-019-03879-7 10.3390/electronics9040692 10.1038/ng765 10.1103/PhysRevResearch.5.023159 10.1111/exsy.13088 10.1016/j.asoc.2023.110034 10.18632/oncotarget.22762 10.2298/GENSR1403013V 10.1038/nature24277 10.3322/caac.21763 10.1016/j.knosys.2021.107034 10.34133/2022/9838341 10.1007/s13198-017-0685-6 10.1016/j.eswa.2019.113169 10.1007/s13238-020-00810-x 10.1109/ACCESS.2020.3029890 10.1016/S1535-6108(02)00030-2 10.1201/9781003393238-2 10.1089/cmb.2021.0410 10.1016/j.swevo.2015.05.003 10.1007/s13258-019-00859-x 10.1016/S0140-6736(02)07746-2 10.1080/03772063.2021.1911691 10.3233/JIFS-210133 10.1073/pnas.96.12.6745 10.3390/app13095322 10.1016/j.asoc.2016.11.026 10.1007/s12293-013-0128-0 10.1016/j.artmed.2019.01.006 10.1002/cbdv.202201123 10.1109/ICOASE.2018.8548836 10.1016/j.chemolab.2018.11.010 10.1038/415530a 10.1016/j.tig.2003.09.015 10.2174/1574893611666151228190309 10.1016/j.imu.2021.100572 10.1016/j.compbiomed.2023.106643 10.1007/s00500-022-07032-9 10.1007/s11517-022-02555-7 10.1016/j.procs.2018.10.358 10.1007/s12652-019-01330-1 10.1007/s40745-018-0155-2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-023-05605-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 26 |
| ExternalDocumentID | oai_doaj_org_article_06c4f17adba2461a869c22ab98dcbf22 10.1186/s12859-023-05605-5 A776462847 38102551 10_1186_s12859_023_05605_5 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7X8 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c586t-e09cd15cc210326117a84e12ad554de1211acb58aa3addd3f3aab25d8b5141813 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Tue Oct 14 18:57:00 EDT 2025 Sun Oct 26 05:04:50 EDT 2025 Fri Sep 05 10:03:12 EDT 2025 Tue Oct 07 06:07:54 EDT 2025 Mon Oct 20 23:22:17 EDT 2025 Mon Oct 20 17:07:54 EDT 2025 Thu Oct 16 16:11:05 EDT 2025 Thu Apr 03 07:06:39 EDT 2025 Thu Apr 24 23:13:25 EDT 2025 Wed Oct 01 04:15:44 EDT 2025 Sat Sep 06 07:27:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Spider monkey optimization (SM) Minimum redundancy maximum relevance (mRMR) Deep learning (DL) Cancer classification Cuckoo search algorithm (CSA) |
| Language | English |
| License | 2023. The Author(s). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c586t-e09cd15cc210326117a84e12ad554de1211acb58aa3addd3f3aab25d8b5141813 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-023-05605-5 |
| PMID | 38102551 |
| PQID | 2902074652 |
| PQPubID | 44065 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_06c4f17adba2461a869c22ab98dcbf22 unpaywall_primary_10_1186_s12859_023_05605_5 proquest_miscellaneous_2902940591 proquest_journals_2902074652 gale_infotracmisc_A776462847 gale_infotracacademiconefile_A776462847 gale_incontextgauss_ISR_A776462847 pubmed_primary_38102551 crossref_citationtrail_10_1186_s12859_023_05605_5 crossref_primary_10_1186_s12859_023_05605_5 springer_journals_10_1186_s12859_023_05605_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-15 |
| PublicationDateYYYYMMDD | 2023-12-15 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2023 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | C Yan (5605_CR47) 2019; 184 U Alon (5605_CR48) 1999; 96 X Li (5605_CR66) 2021; 12 RA Musheer (5605_CR8) 2019; 23 5605_CR24 SA Medjahed (5605_CR17) 2017; 1 KA Tran (5605_CR14) 2021; 13 M Alzaqebah (5605_CR25) 2021; 24 K Jawad (5605_CR35) 2023; 13 RR Rani (5605_CR44) 2018; 143 A Dabba (5605_CR58) 2023; 21 GJ Gordon (5605_CR52) 2002; 62 X Li (5605_CR65) 2022; 19 LJ Vant Veer (5605_CR54) 2002; 415 RM Aziz (5605_CR9) 2022; 60 A Yaqoob (5605_CR10) 2023; 2 Q Wei (5605_CR43) 2021; 40 LT Scaria (5605_CR29) 2019; 43 5605_CR12 M Vimaladevi (5605_CR32) 2014; 46 OA Alomari (5605_CR57) 2021; 223 R Rajalaxmi (5605_CR37) 2016; 11 5605_CR19 S Zhao (5605_CR5) 2014; 9 R Tabares-Soto (5605_CR22) 2020; 13 K Balasubramanian (5605_CR45) 2023; 40 EF Petricoin (5605_CR55) 2002; 359 TR Golub (5605_CR49) 1999; 286 AC Pandey (5605_CR38) 2020; 11 Y Wang (5605_CR16) 2019; 1 SK Pati (5605_CR62) 2023; 135 F Xu (5605_CR64) 2023; 5 J Liu (5605_CR23) 2017; 8 R Aziz (5605_CR21) 2018; 5 YF Leung (5605_CR4) 2003; 19 V Agrawal (5605_CR40) 2018; 9 SA Armstrong (5605_CR53) 2002; 30 RM Aziz (5605_CR63) 2022; 26 XS Yang (5605_CR34) 2010; 1 M Akhavan (5605_CR59) 2023; 135 M Zhao (5605_CR27) 2021; 11 D Singh (5605_CR50) 2002; 1 H Salem (5605_CR15) 2017; 1 M Jansi Rani (5605_CR18) 2019; 43 MS Othman (5605_CR28) 2020; 9 L Venkataramana (5605_CR20) 2019; 41 M Gokhale (5605_CR60) 2023; 155 RM Aziz (5605_CR30) 2023; 20 G Nirmalapriya (5605_CR46) 2023; 1 RL Siegel (5605_CR2) 2023; 73 RM Aziz (5605_CR33) 2023; 7 5605_CR1 SH Shah (5605_CR13) 2020; 6 P Mohapatra (5605_CR39) 2015; 24 JC Bansal (5605_CR41) 2014; 6 CL Nutt (5605_CR51) 2003; 63 AM Vommi (5605_CR61) 2023; 218 GTEx Consortium (5605_CR3) 2017; 550 M Molla (5605_CR11) 2004; 25 P Swathypriyadharsini (5605_CR26) 2023; 69 S Afreen (5605_CR56) 2023; 15 M Daoud (5605_CR7) 2019; 1 N Khare (5605_CR42) 2020; 9 RM Aziz (5605_CR36) 2022; 29 B Jan (5605_CR31) 2019; 1 HF Ong (5605_CR6) 2020; 15 |
| References_xml | – volume: 13 start-page: 1 issue: 1 year: 2021 ident: 5605_CR14 publication-title: Genome Med doi: 10.1186/s13073-021-00968-x – volume: 1 start-page: 39 issue: 51 year: 2017 ident: 5605_CR17 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.12.010 – volume: 13 issue: 6 year: 2020 ident: 5605_CR22 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.270 – volume: 43 start-page: 1 year: 2019 ident: 5605_CR18 publication-title: J Med Syst doi: 10.1007/s10916-019-1372-8 – volume: 9 issue: 1 year: 2014 ident: 5605_CR5 publication-title: PLoS ONE doi: 10.1371/journal.pone.0078644 – volume: 218 year: 2023 ident: 5605_CR61 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119612 – volume: 1 issue: 79 year: 2023 ident: 5605_CR46 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104017 – volume: 43 start-page: 1 year: 2019 ident: 5605_CR29 publication-title: J Med Syst doi: 10.1007/s10916-019-1353-y – ident: 5605_CR19 doi: 10.1109/CSIEC.2016.7482124 – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 5605_CR49 publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 15 issue: 242 year: 2023 ident: 5605_CR56 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2023.104989 – volume: 1 start-page: 275 issue: 75 year: 2019 ident: 5605_CR31 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2017.12.009 – volume: 135 start-page: 110249 year: 2023 ident: 5605_CR59 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.110249 – volume: 1 start-page: 286 issue: 71 year: 2019 ident: 5605_CR16 publication-title: Appl Math Model doi: 10.1016/j.apm.2019.01.044 – volume: 23 start-page: 13409 year: 2019 ident: 5605_CR8 publication-title: Soft Comput doi: 10.1007/s00500-019-03879-7 – volume: 9 start-page: 692 issue: 4 year: 2020 ident: 5605_CR42 publication-title: Electronics doi: 10.3390/electronics9040692 – volume: 30 start-page: 41 issue: 1 year: 2002 ident: 5605_CR53 publication-title: Nat Genet doi: 10.1038/ng765 – volume: 5 issue: 2 year: 2023 ident: 5605_CR64 publication-title: Phys Rev Res doi: 10.1103/PhysRevResearch.5.023159 – volume: 40 issue: 1 year: 2023 ident: 5605_CR45 publication-title: Expert Syst doi: 10.1111/exsy.13088 – volume: 135 start-page: 110034 year: 2023 ident: 5605_CR62 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.110034 – volume: 8 issue: 65 year: 2017 ident: 5605_CR23 publication-title: Oncotarget doi: 10.18632/oncotarget.22762 – volume: 46 start-page: 1013 issue: 3 year: 2014 ident: 5605_CR32 publication-title: Genetika doi: 10.2298/GENSR1403013V – volume: 550 start-page: 204 year: 2017 ident: 5605_CR3 publication-title: Nature doi: 10.1038/nature24277 – volume: 1 start-page: 330 issue: 4 year: 2010 ident: 5605_CR34 publication-title: Int J Math Model Numer Optim – volume: 73 start-page: 17 issue: 1 year: 2023 ident: 5605_CR2 publication-title: CA Cancer J Clin doi: 10.3322/caac.21763 – volume: 223 year: 2021 ident: 5605_CR57 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.107034 – ident: 5605_CR1 – volume: 19 start-page: 9838341 issue: 2022 year: 2022 ident: 5605_CR65 publication-title: Research (Wash D C) doi: 10.34133/2022/9838341 – volume: 9 start-page: 929 year: 2018 ident: 5605_CR40 publication-title: Int J Syst Assur Eng Manag doi: 10.1007/s13198-017-0685-6 – volume: 15 issue: 146 year: 2020 ident: 5605_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113169 – volume: 12 start-page: 858 issue: 11 year: 2021 ident: 5605_CR66 publication-title: Protein Cell doi: 10.1007/s13238-020-00810-x – volume: 63 start-page: 1602 issue: 7 year: 2003 ident: 5605_CR51 publication-title: Can Res – volume: 9 start-page: 186348 issue: 8 year: 2020 ident: 5605_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029890 – volume: 1 start-page: 203 issue: 2 year: 2002 ident: 5605_CR50 publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00030-2 – ident: 5605_CR12 doi: 10.1201/9781003393238-2 – volume: 29 start-page: 565 issue: 6 year: 2022 ident: 5605_CR36 publication-title: J Comput Biol doi: 10.1089/cmb.2021.0410 – volume: 24 start-page: 25 year: 2015 ident: 5605_CR39 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2015.05.003 – volume: 41 start-page: 1301 year: 2019 ident: 5605_CR20 publication-title: Genes Genom doi: 10.1007/s13258-019-00859-x – volume: 359 start-page: 572 issue: 9306 year: 2002 ident: 5605_CR55 publication-title: J Lancet doi: 10.1016/S0140-6736(02)07746-2 – volume: 69 start-page: 2328 issue: 5 year: 2023 ident: 5605_CR26 publication-title: IETE J Res doi: 10.1080/03772063.2021.1911691 – volume: 40 start-page: 12023 issue: 6 year: 2021 ident: 5605_CR43 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-210133 – volume: 96 start-page: 6745 issue: 12 year: 1999 ident: 5605_CR48 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.96.12.6745 – volume: 13 start-page: 5322 issue: 9 year: 2023 ident: 5605_CR35 publication-title: Appl Sci doi: 10.3390/app13095322 – volume: 6 start-page: 1 year: 2020 ident: 5605_CR13 publication-title: Neural Comput Appl – volume: 2 start-page: 1 year: 2023 ident: 5605_CR10 publication-title: Hum Cent Intell Syst – volume: 1 start-page: 124 issue: 50 year: 2017 ident: 5605_CR15 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.11.026 – volume: 11 start-page: 1 issue: 2021 year: 2021 ident: 5605_CR27 publication-title: Comput Math Methods Med – volume: 6 start-page: 31 year: 2014 ident: 5605_CR41 publication-title: Memetic Comput doi: 10.1007/s12293-013-0128-0 – volume: 1 start-page: 204 issue: 97 year: 2019 ident: 5605_CR7 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.01.006 – volume: 25 start-page: 23 issue: 1 year: 2004 ident: 5605_CR11 publication-title: AI Mag – volume: 20 issue: 8 year: 2023 ident: 5605_CR30 publication-title: Chem Biodivers doi: 10.1002/cbdv.202201123 – volume: 21 start-page: 1 year: 2023 ident: 5605_CR58 publication-title: J Supercomput – ident: 5605_CR24 doi: 10.1109/ICOASE.2018.8548836 – volume: 184 start-page: 102 year: 2019 ident: 5605_CR47 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2018.11.010 – volume: 62 start-page: 4963 issue: 17 year: 2002 ident: 5605_CR52 publication-title: Can Res – volume: 415 start-page: 530 issue: 6871 year: 2002 ident: 5605_CR54 publication-title: J Nat doi: 10.1038/415530a – volume: 19 start-page: 649 issue: 11 year: 2003 ident: 5605_CR4 publication-title: Trends Genet doi: 10.1016/j.tig.2003.09.015 – volume: 11 start-page: 490 issue: 4 year: 2016 ident: 5605_CR37 publication-title: Curr Bioinform doi: 10.2174/1574893611666151228190309 – volume: 24 start-page: 100572 year: 2021 ident: 5605_CR25 publication-title: Inf Med Unlocked doi: 10.1016/j.imu.2021.100572 – volume: 7 start-page: 1 year: 2023 ident: 5605_CR33 publication-title: Multimed Tools Appl – volume: 155 year: 2023 ident: 5605_CR60 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2023.106643 – volume: 26 start-page: 12179 issue: 22 year: 2022 ident: 5605_CR63 publication-title: Soft Comput doi: 10.1007/s00500-022-07032-9 – volume: 60 start-page: 1627 issue: 6 year: 2022 ident: 5605_CR9 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-022-02555-7 – volume: 143 start-page: 108 year: 2018 ident: 5605_CR44 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2018.10.358 – volume: 11 start-page: 719 issue: 2 year: 2020 ident: 5605_CR38 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-019-01330-1 – volume: 5 start-page: 615 year: 2018 ident: 5605_CR21 publication-title: Ann Data Sci doi: 10.1007/s40745-018-0155-2 |
| SSID | ssj0017805 |
| Score | 2.5714905 |
| Snippet | Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments... Abstract Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical... |
| SourceID | doaj unpaywall proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 479 |
| SubjectTerms | Accuracy Algorithms Analysis Bioinformatics Biomarkers Biomedical and Life Sciences Cancer Cancer classification Cancer therapies Classification Cleaning process Computational Biology/Bioinformatics Computer Appl. in Life Sciences Cuckoo search algorithm (CSA) Data analysis Datasets Deep learning Deep learning (DL) Diagnosis Disease DNA microarrays Feature selection Gene expression Genes Genetic algorithms Genetic Techniques Heuristic methods Humans Hypothesis testing Life Sciences Linear algebra Machine Learning Medical prognosis Medical treatment Methods Microarray Analysis Microarrays Minimum redundancy maximum relevance (mRMR) Neoplasms - genetics Neural networks Optimization algorithms Optimization techniques Redundancy Search algorithms Spider monkey optimization (SM) Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIOpB_G11lSiCBzds0yZpenyKyyroQV3YW0jTZBVKu2xfV95_70yb1vcQVg9eemgmpZ2ZZL7QmW8IeQXry5bBeeYtFwzwbcpsaTVLFYDxQteiSrE4-dNndXwiPp7K061WX5gTNtEDT4o7TJUTgRe2rixSn1mtSpdltip17aqQjbtvqsv5MBX_HyBT_1wio9Vhz5GnjUF8YhDwU8nkThga2fr_3JO3gtLyl_QWuTG053bz0zbNViA6ukNuRwRJV9Ob3yXXfHuPXJ96Sm7uk_WKtt2lb6hta_oj9jy99NSheS-oQ7SM6UGjRWiYc7NobNhDLXWYYO2GcRZcm1ipSbtAv2-wwIsGP9KB0n5sogNjD8jJ0ftv745ZbK3AnNRqzXxauppL5zIk1FMcFKyF55mtAV7UHnnfrKuktjaHDbDOQ25tlclaVwCwABTkD8le27X-MaG5ykXFuQ9gcVHB6c0XuUMavdSHMhciIXzWtHGRdxzbXzRmPH9oZSbrGLCOGa1jZELeLHPOJ9aNK6XfogEXSWTMHm-AH5noR-ZvfpSQl2h-g5wYLSbdnNmh782Hr1_MqigUlvCKIiGvo1Do4BucjTUMoAmk0dqR3N-RhEXrdodnLzNx0-hNVgJ2L4SS8DIvlmGciYlwre-GSaYEkF3yhDyavHP5biRrgxMijBzM7vr74Vep72Bx6X_Q9pP_oe2n5GaGq5FnjMt9sre-GPwzQHfr6vm4kH8B5-JH-w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_nHqI-iF-n1VOiCD544Zo0TdsHkT254xRc5PTg3kKapKewtOt-nOx_70yb9m4RFl_2oZmUTWYm-aWZ-Q0hb8G_TFFZz7zhkgG-jZkpTM5iBWA8y50sY0xO_jpRp-fyy0V6sUMmfS4MhlX2a2K7ULvG4jfyQ1EAsMmkSsXH2W-GVaPwdrUvoWFCaQX3oaUYu0V2BTJjjcju0fHk29lwr4AM_n3qTK4OFxz52xjsWwyAQJyydGN7aln8_12rb2xWw-3pPXJnVc_M-o-ZTm9sUCcPyP2ALOm4M4WHZMfXj8jtrtbk-jFZjmndXPkpNbWjv0It1CtPLap9Ti2iaAwbajVFqz5mi4ZCPtRQi4HXdtX2gt9pyOCkTUV_rjHxi1a-pQmli7a4DrQ9Iecnxz8-nbJQcoHZNFdL5uPCOp5aK5BoT3GemVx6LowD2OE88sEZW6a5MQksjC6pEmNKkbq8BOAFYCHZI6O6qf0zQhOVyJJzX4ElyBJOdT5LLNLrxb4qEikjwvuZ1jbwkWNZjKluzyW50p12NGhHt9rRaUTeD31mHRvHVukjVOAgiUza7YNmfqmDY-pYWVnBMF1pkFrP5KqwQpiyyJ0tKyEi8gbVr5Ero8ZgnEuzWiz05-9nepxlClN7ZRaRd0GoamAM1oTcBpgJpNfakNzfkARntpvNvZXpsJgs9LXpR-T10Iw9MUCu9s2qkykAfBc8Ik876xzGjSRucHKEloPeXK9fvm36DgaT_o_Zfr79r78gdwX6GReMp_tktJyv_EvAc8vyVXDSvzVCRTI priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pi9UwEA66IupB_L1PV4kieHCDTZuk7fG5uKyCHtSFvYU0TVahtMv2dZf33zuTpvU9lEUvPTST0mQmmS9k5htCXsP6MqW3jjnDBQN8mzBTmoIlCsB4XtSiSjA5-fMXdXQsPp3Ik0iTg7kwm_f3vFDveo4Maww8CwNXnUgmr5Mb4KRUuJhVB_ONAXLzT0kxf-235XgCP_-fu_CGG5rvRe-QW0N7ZtaXpmk2XM_hPXI3Yka6HJV8n1xz7QNyc6wiuX5IVkvadheuoaat6c9Y5fTCUYsKPacW8TEGBAUdUD9FY9FYoocaajGk2g6hFzybmJtJO09_rDGli3oXCEBpH8rmQNsjcnz44fvBEYvFFJiVhVoxl5S25tLaFCn0FOe5KYTjqakBUNQOmd6MrWRhTAZbXp35zJgqlXVRAaQCGJA9Jjtt17pdQjOViYpz50HHooLzmsszi8R5ifNlJsSC8GmmtY1M41jwotHhxFEoPWpHg3Z00I6WC_J27nM28mxcKf0eFThLIkd2eAGmo-OS04mywsMw68ogaZ4pVGnT1FRlUdvKp-mCvEL1a2TBaDHM5tQMfa8_fvuql3muMGlX5AvyJgr5DsZgTcxagJlA4qwtyb0tSVimdrt5sjIdt4lepyWg9VwoCT_zcm7Gnhj61rpuGGVKgNUlX5Ano3XO40Z6NjgTQsv-ZK6_P37V9O3PJv0Ps_30_77-jNxOcd3xlHG5R3ZW54N7DshtVb0IS_YXlfM3mA priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DmgMJBBSDwwd3ES5-OxIKaBxIQGlcaTZTvOmAhJ1TRD5a_nLnFCC2gCiZc-xOeod71P9e53hDwD-1JpbiyziocM8luPqVQlzIsgGY-TLNQeDie_O4oOZ-HbE3GyRY77WRj91eizyoGGIlDxZH0MveimHHCLgl3sz7O8M_ok2q85IrExiEAMQronmLhEtiMB-fmIbM-O3k8_tWNGMWdQ44h-euaPFzciVAvk_7u7XotXwx-o18iVppyr1TdVFGsx6uAGqXvuutaUL5NmqSfm-y_Aj_-X_Zvkuktp6bTTwVtky5a3yeVuyeXqDllOaVmd24KqMqNnbgnruaUG9W1BDabv2K_UqgjN-2Yx6jYIUUUNdnybpr0Fn4UbHaVVTj-vcOKM5rbFJ6V1u9UHznbI7OD1x1eHzO16YEYk0ZJZLzUZF8b4iPAXcR6rJLTcVxnkO5lFIDpltEiUCsAjZ0EeKKV9kSUaMj7IUoK7ZFRWpb1PaBAFoebc5qCCoYZy0saBQVw_z-ZpEIZjwvvfVxoHhI77OArZFkRJJDtpSpCmbKUpxZi8GO7MOxiQC6lfotoMlAjh3T6oFqfSeQTpRSbMgc1MK8T0U0mUGt9XOk0yo3PfH5OnqHQSQTpK7AI6VU1dyzcfjuU0jiOcKQ7jMXnuiPIKeDDKDVWAJBDXa4Nyd4MSvIjZPO51WzovVks_hWIiDiMBX-bJcIw3sTOvtFXT0aSQ9ad8TO51NjHwjehxULLCyV5vJD9ffpH49gZD-gtpP_g38ofkqo92wn3GxS4ZLReNfQSJ5VI_dp7iB9QAcBo priority: 102 providerName: Unpaywall |
| Title | A novel and innovative cancer classification framework through a consecutive utilization of hybrid feature selection |
| URI | https://link.springer.com/article/10.1186/s12859-023-05605-5 https://www.ncbi.nlm.nih.gov/pubmed/38102551 https://www.proquest.com/docview/2902074652 https://www.proquest.com/docview/2902940591 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05605-5 https://doaj.org/article/06c4f17adba2461a869c22ab98dcbf22 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCO) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (WRLC) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZ6CAEPiJuFsjIIiQcayOE4zgNC6apLWamrqmWl7ZPlOE5BipKyR2H_PTPO0a6oVrwkUjyO4jky42TmG0LegX2pONfGMcpjDsS3rqNiJRyXQzAeiYylLhYnH4_50YSNpuF0i7TtjhoGzm_d2mE_qcms-Pjn1-oLGPxna_CCf5p7iMLmgPdxwJ27oRNuk13wVDG2cjhm138VEL_fVhtFngNbnbAtorn1HmuOyuL5__vWvuG2uv-o98ndZXmpVr9VUdxwVcOH5EETY9KkVopHZMuUj8mduuvk6glZJLSsrkxBVZnRn01X1CtDNSrAjGqMpzGByMqM5m32Fm1a-lBFNaZg66WdBceiqeWkVU5_rLAEjObGAobSuW2zA2NPyWR4-H1w5DTNFxwdCr5wjBvrzAu19hFyj3tepAQznq8yCEAyg8hwSqehUCqAV2QW5IFSqR9mIoUQDMKG4BnZKavSvCA04AFLPc_koBMshf2diQKNQHuuyeOAsR7xWk5L3SCTY4OMQtodiuCylo4E6UgrHRn2yIduzmWNy7GR-gAF2FEipra9UM0uZGOi0uWa5bDMLFUIsqcEj7XvqzQWmU5z3--Rtyh-iagZJablXKjlfC6_nZ3KJIo4FvmyqEfeN0R5BWvQqqlyAE4g0NYa5d4aJZi1Xh9utUy2ViH9GKL7iPEQHuZNN4wzMVWuNNWypokhDI-9Hnlea2e3boRzgz0kjOy36np9803s2-9U-j-4_XLzyl6Re761MwZGuEd2FrOleQ2R3SLtk-1oGsFRDL_2yW6SjM5GcD44HJ-cwtUBH_TtN5O-NWsYmYxPkvO_4uVL7A |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlQ4IN4YCiwIxIGu6l2v1_YBofCoEvo4QCvltqzX64IU2SFOWuVP8RuZ8auNkCIuveSQnbWyO-945htCXoN-mSS3jjnDJYP41mcmMTHzFQTjUZzJ1Mfm5MMjNTyRX8fheIP86XphsKyys4m1oc5Ki_-R74oEAptIqlB8mP5mODUK3652IzQasdh3y3NI2ar3o8_A3zdC7H05_jRk7VQBZsNYzZnzE5vx0FqBWHKK88jE0nFhMvCsmUPIM2PTMDYmAN3PgjwwJhVhFqcQW4A_DOC518h1GYAtAf2Jxn2Cx3E-QNeYE6vdiiM6HAOvyCDM8EMWrji_ekbAv57gkivs383eIluLYmqW52YyueT-9u6Q223cSgeNoN0lG664R240kyyX98l8QIvyzE2oKTL6q520euaoRaGaUYsxOhYl1XJA864ijLZjgqihFsu67aLeBZ-Ttj-Uljn9ucS2Mpq7GoSUVvXoHlh7QE6u5Oofks2iLNxjQgMVyJRzl4OcyRRyRhcFFsH7fJcngZQe4d1Na9uinePQjYmus55Y6YY7Grija-7o0CPv-j3TButjLfVHZGBPiTjd9Rfl7FS3aq99ZWUOx8xSg8B9JlaJFcKkSZzZNBfCI6-Q_RqROAos9Tk1i6rSo-_f9CCKFDYOy8gjb1uivIQzWNN2TsBNIHjXCuX2CiWYCru63EmZbk1VpS8UyyMv-2XcieV3hSsXDU0CoX3CPfKokc7-3AgRB3kprOx04nrx8HXXt9OL9H_c9pP1P_0F2RoeHx7og9HR_lNyU6DOccF4uE0257OFewaR4zx9XqsrJT-u2j78BfwSe6M |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagiNcB8SZQwCAkDq3VOHGc5LgsrFoeFQIq9WY5jl2QomS1SYr23zOTF7sCVXDJIR5Hscfj-SzPfEPIK7AvnTpjmdVcMMC3PtOpTpgvAYzHSS4yH5OTPx3LwxPx_jQ63cji76LdxyvJPqcBWZrK5mCZu97EE3lQc-RdY-BvGDhwP2LRZXJFgHfDGgZzOZ_uEZCxf0yV-Wu_LXfUsfb_uTdvOKfptvQmud6WS73-qYtiwyEtbpNbA5Kks171d8glW94lV_vakut7pJnRsjq3BdVlTn8MtU_PLTWo5hU1iJoxTKjTDHVjjBYdCvdQTQ0GWpu26wXPYsjYpJWj39eY6EWd7WhBad0V04G2--Rk8e7b_JANJRaYiRLZMOunJueRMQES60nOY50IywOdA8zILfK_aZNFidYhbIR56EKtsyDKkwyAFoCD8AHZKavSPiI0lKHIOLcONC8yOMXZODRIp-dbl4ZCeISPM63MwD-OZTAK1Z1DEql67SjQjuq0oyKP7E19lj37xoXSb1CBkyQyZ3cvqtWZGgxR-dIIB8PMM41UejqRqQkCnaVJbjIXBB55iepXyI1RYvDNmW7rWh19_aJmcSwxlVfEHnk9CLkKxmD0kMsAM4F0WluSu1uSYLxmu3lcZWrYPGoVpIDhYyEj-JkXUzP2xIC40lZtL5MC2E65Rx72q3MaN5K2wUkRWvbH5fr74xdN3_60pP9hth__39efk2uf3y7Ux6PjD0_IjQBNkAeMR7tkp1m19ilAuyZ71lnvL9AbQs4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwQ88DmgMJBBSDwwd3ES5-OxIKaBxIQGlcaTZTvOmAhJ1TRD5a_nLnFCC2gCiZc-xOeod71P9e53hDwD-1JpbiyziocM8luPqVQlzIsgGY-TLNQeDie_O4oOZ-HbE3GyRY77WRj91eizyoGGIlDxZH0MveimHHCLgl3sz7O8M_ok2q85IrExiEAMQronmLhEtiMB-fmIbM-O3k8_tWNGMWdQ44h-euaPFzciVAvk_7u7XotXwx-o18iVppyr1TdVFGsx6uAGqXvuutaUL5NmqSfm-y_Aj_-X_Zvkuktp6bTTwVtky5a3yeVuyeXqDllOaVmd24KqMqNnbgnruaUG9W1BDabv2K_UqgjN-2Yx6jYIUUUNdnybpr0Fn4UbHaVVTj-vcOKM5rbFJ6V1u9UHznbI7OD1x1eHzO16YEYk0ZJZLzUZF8b4iPAXcR6rJLTcVxnkO5lFIDpltEiUCsAjZ0EeKKV9kSUaMj7IUoK7ZFRWpb1PaBAFoebc5qCCoYZy0saBQVw_z-ZpEIZjwvvfVxoHhI77OArZFkRJJDtpSpCmbKUpxZi8GO7MOxiQC6lfotoMlAjh3T6oFqfSeQTpRSbMgc1MK8T0U0mUGt9XOk0yo3PfH5OnqHQSQTpK7AI6VU1dyzcfjuU0jiOcKQ7jMXnuiPIKeDDKDVWAJBDXa4Nyd4MSvIjZPO51WzovVks_hWIiDiMBX-bJcIw3sTOvtFXT0aSQ9ad8TO51NjHwjehxULLCyV5vJD9ffpH49gZD-gtpP_g38ofkqo92wn3GxS4ZLReNfQSJ5VI_dp7iB9QAcBo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+and+innovative+cancer+classification+framework+through+a+consecutive+utilization+of+hybrid+feature+selection&rft.jtitle=BMC+bioinformatics&rft.au=Mahto%2C+Rajul&rft.au=Ahmed%2C+Saboor+Uddin&rft.au=Rahman%2C+Rizwan+ur&rft.au=Aziz%2C+Rabia+Musheer&rft.date=2023-12-15&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-023-05605-5&rft.externalDocID=A776462847 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |