Multivariate Gaussian Bayes classifier with limited data for segmentation of clean and contaminated regions in the small bowel capsule endoscopy images
A considerable amount of undesirable factors in the wireless capsule endoscopy (WCE) procedure hinder the proper visualization of the small bowel and take gastroenterologists more time to review. Objective quantitative assessment of different bowel preparation paradigms and saving the physician revi...
Saved in:
| Published in | PloS one Vol. 20; no. 3; p. e0315638 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
07.03.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0315638 |
Cover
| Abstract | A considerable amount of undesirable factors in the wireless capsule endoscopy (WCE) procedure hinder the proper visualization of the small bowel and take gastroenterologists more time to review. Objective quantitative assessment of different bowel preparation paradigms and saving the physician reviewing time motivated us to present an automatic low-cost statistical model for automatically segmenting of clean and contaminated regions in the WCE images. In the model construction phase, only 20 manually pixel-labeled images have been used from the normal and reduced mucosal view classes of the Kvasir capsule endoscopy dataset. In addition to calculating prior probability, two different probabilistic tri-variate Gaussian distribution models (GDMs) with unique mean vectors and covariance matrices have been fitted to the concatenated RGB color pixel intensity values of clean and contaminated regions separately. Applying the Bayes rule, the membership probability of every pixel of the input test image to each of the two classes is evaluated. The robustness has been evaluated using 5 trials; in each round, from the total number of 2000 randomly selected images, 20 and 1980 images have been used for model construction and evaluation modes, respectively. Our experimental results indicate that accuracy, precision, specificity, sensitivity, area under the receiver operating characteristic curve (AUROC), dice similarity coefficient (DSC), and intersection over union (IOU) are 0.89 ± 0.07, 0.91 ± 0.07, 0.73 ± 0.20, 0.90 ± 0.12, 0.92 ± 0.06, 0.92 ± 0.05 and 0.86 ± 0.09, respectively. The presented scheme is easy to deploy for objectively assessing small bowel cleansing score, comparing different bowel preparation paradigms, and decreasing the inspection time. The results from the SEE-AI project dataset and CECleanliness database proved that the proposed scheme has good adaptability. |
|---|---|
| AbstractList | A considerable amount of undesirable factors in the wireless capsule endoscopy (WCE) procedure hinder the proper visualization of the small bowel and take gastroenterologists more time to review. Objective quantitative assessment of different bowel preparation paradigms and saving the physician reviewing time motivated us to present an automatic low-cost statistical model for automatically segmenting of clean and contaminated regions in the WCE images. In the model construction phase, only 20 manually pixel-labeled images have been used from the normal and reduced mucosal view classes of the Kvasir capsule endoscopy dataset. In addition to calculating prior probability, two different probabilistic tri-variate Gaussian distribution models (GDMs) with unique mean vectors and covariance matrices have been fitted to the concatenated RGB color pixel intensity values of clean and contaminated regions separately. Applying the Bayes rule, the membership probability of every pixel of the input test image to each of the two classes is evaluated. The robustness has been evaluated using 5 trials; in each round, from the total number of 2000 randomly selected images, 20 and 1980 images have been used for model construction and evaluation modes, respectively. Our experimental results indicate that accuracy, precision, specificity, sensitivity, area under the receiver operating characteristic curve (AUROC), dice similarity coefficient (DSC), and intersection over union (IOU) are 0.89 ± 0.07, 0.91 ± 0.07, 0.73 ± 0.20, 0.90 ± 0.12, 0.92 ± 0.06, 0.92 ± 0.05 and 0.86 ± 0.09, respectively. The presented scheme is easy to deploy for objectively assessing small bowel cleansing score, comparing different bowel preparation paradigms, and decreasing the inspection time. The results from the SEE-AI project dataset and CECleanliness database proved that the proposed scheme has good adaptability. A considerable amount of undesirable factors in the wireless capsule endoscopy (WCE) procedure hinder the proper visualization of the small bowel and take gastroenterologists more time to review. Objective quantitative assessment of different bowel preparation paradigms and saving the physician reviewing time motivated us to present an automatic low-cost statistical model for automatically segmenting of clean and contaminated regions in the WCE images. In the model construction phase, only 20 manually pixel-labeled images have been used from the normal and reduced mucosal view classes of the Kvasir capsule endoscopy dataset. In addition to calculating prior probability, two different probabilistic tri-variate Gaussian distribution models (GDMs) with unique mean vectors and covariance matrices have been fitted to the concatenated RGB color pixel intensity values of clean and contaminated regions separately. Applying the Bayes rule, the membership probability of every pixel of the input test image to each of the two classes is evaluated. The robustness has been evaluated using 5 trials; in each round, from the total number of 2000 randomly selected images, 20 and 1980 images have been used for model construction and evaluation modes, respectively. Our experimental results indicate that accuracy, precision, specificity, sensitivity, area under the receiver operating characteristic curve (AUROC), dice similarity coefficient (DSC), and intersection over union (IOU) are 0.89 ± 0.07, 0.91 ± 0.07, 0.73 ± 0.20, 0.90 ± 0.12, 0.92 ± 0.06, 0.92 ± 0.05 and 0.86 ± 0.09, respectively. The presented scheme is easy to deploy for objectively assessing small bowel cleansing score, comparing different bowel preparation paradigms, and decreasing the inspection time. The results from the SEE-AI project dataset and CECleanliness database proved that the proposed scheme has good adaptability.A considerable amount of undesirable factors in the wireless capsule endoscopy (WCE) procedure hinder the proper visualization of the small bowel and take gastroenterologists more time to review. Objective quantitative assessment of different bowel preparation paradigms and saving the physician reviewing time motivated us to present an automatic low-cost statistical model for automatically segmenting of clean and contaminated regions in the WCE images. In the model construction phase, only 20 manually pixel-labeled images have been used from the normal and reduced mucosal view classes of the Kvasir capsule endoscopy dataset. In addition to calculating prior probability, two different probabilistic tri-variate Gaussian distribution models (GDMs) with unique mean vectors and covariance matrices have been fitted to the concatenated RGB color pixel intensity values of clean and contaminated regions separately. Applying the Bayes rule, the membership probability of every pixel of the input test image to each of the two classes is evaluated. The robustness has been evaluated using 5 trials; in each round, from the total number of 2000 randomly selected images, 20 and 1980 images have been used for model construction and evaluation modes, respectively. Our experimental results indicate that accuracy, precision, specificity, sensitivity, area under the receiver operating characteristic curve (AUROC), dice similarity coefficient (DSC), and intersection over union (IOU) are 0.89 ± 0.07, 0.91 ± 0.07, 0.73 ± 0.20, 0.90 ± 0.12, 0.92 ± 0.06, 0.92 ± 0.05 and 0.86 ± 0.09, respectively. The presented scheme is easy to deploy for objectively assessing small bowel cleansing score, comparing different bowel preparation paradigms, and decreasing the inspection time. The results from the SEE-AI project dataset and CECleanliness database proved that the proposed scheme has good adaptability. |
| Audience | Academic |
| Author | Behdad, Maryam Sadeghi, Vahid Teyfouri, Niloufar Vard, Alireza Mehridehnavi, Alireza Omrani, Mina Sharifi, Mohsen Sanahmadi, Yasaman |
| Author_xml | – sequence: 1 givenname: Vahid surname: Sadeghi fullname: Sadeghi, Vahid – sequence: 2 givenname: Alireza orcidid: 0000-0002-7964-0478 surname: Mehridehnavi fullname: Mehridehnavi, Alireza – sequence: 3 givenname: Maryam surname: Behdad fullname: Behdad, Maryam – sequence: 4 givenname: Alireza surname: Vard fullname: Vard, Alireza – sequence: 5 givenname: Mina surname: Omrani fullname: Omrani, Mina – sequence: 6 givenname: Mohsen surname: Sharifi fullname: Sharifi, Mohsen – sequence: 7 givenname: Yasaman surname: Sanahmadi fullname: Sanahmadi, Yasaman – sequence: 8 givenname: Niloufar surname: Teyfouri fullname: Teyfouri, Niloufar |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40053533$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAUhiNURC_wBggsISFYzGDHcS7LUkEZqagSt611Jj6ZceXYg-1Q5kl4XRwmrTqoi8oLO0ff_-fcjrMD6yxm2XNG54xX7N2VG7wFM9-k8JxyJkpeP8qOWMPzWZlTfnDnfZgdh3BFqeB1WT7JDovxKTg_yv58HkzUv8BriEjOYQhBgyXvYYuBtAbSZ6fRk2sd18ToXkdUREEE0jlPAq56tBGidpa4LgkwicEq0roU7rWFkfe4SkAg2pK4RhJ6MIYs3TUa0sImDAYJWuVC6zZbontYYXiaPe7ABHw23SfZ948fvp19ml1cni_OTi9mrajLOGN5vWQoykJxuhQdRYGiXRatElwBg041XcmB16yrqcob1dCuAgGMirbFUnF-kr3c-W6MC3LqaZCcVYLmVS6aRCx2hHJwJTc-5ee30oGW_wLOryT4qFPpsl3SgpesoNhUBeV5w0peAi8qTlmj6tFL7LwGu4HtdWrDrSGjchzrTQpyHKucxpp0b6Ysvfs5YIiy16FFY8CiG6Z0qzxP_zvJXv2H3l_URK0g5a1t56KHdjSVpzWnlNWCjdT8Hiodhb1OE8ZOp_ie4O2eYNwC_B1X41rJxdcvD2cvf-yzr--wawQT18GZYdy7sA--mKoflj2q2-7eLHwCih3QeheCx-5hA_gLacYUIg |
| Cites_doi | 10.1016/j.media.2017.07.005 10.1007/s10916-017-0769-5 10.1109/TITB.2012.2221472 10.1038/s41598-021-81686-7 10.1109/TBCAS.2016.2546838 10.1055/a-0573-1044 10.1016/j.gie.2008.04.016 10.4253/wjge.v5.i2.67 10.1117/1.JBO.25.10.106002 10.1080/17474124.2017.1359540 10.1016/j.clinre.2022.102029 10.3390/diagnostics12030613 10.1016/j.gie.2013.06.026 10.1016/j.optlastec.2018.08.051 10.3390/diagnostics11091711 10.1016/j.clinre.2020.101612 10.5946/ce.2018.172 10.1093/gastro/goz054 10.1016/j.imu.2023.101364 10.1016/j.heliyon.2023.e22662 10.1038/s41597-021-00920-z 10.1109/ICAL.2012.6308214 10.1038/s41598-020-74668-8 10.3390/info11020125 10.1016/S0016-5107(04)00003-3 10.1055/s-0030-1256228 10.1055/a-1301-3841 10.1055/a-0581-8758 10.1002/deo2.258 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Sadeghi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Sadeghi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Sadeghi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Sadeghi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Sadeghi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Sadeghi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0315638 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Agricultural Science Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3175027259 oai_doaj_org_article_cb0436140e97403291636a3473019d89 10.1371/journal.pone.0315638 A830018519 40053533 10_1371_journal_pone_0315638 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c586t-128b1e564d30b5f0e5e5cb4cd53da1afd9f63a381f80d29d90f7a5a105cce6d33 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Aug 13 01:17:31 EDT 2025 Fri Oct 03 12:50:38 EDT 2025 Sun Oct 26 04:10:43 EDT 2025 Wed Oct 01 13:51:37 EDT 2025 Tue Oct 07 07:40:59 EDT 2025 Mon Oct 20 22:44:16 EDT 2025 Mon Oct 20 16:58:04 EDT 2025 Thu Oct 16 15:34:46 EDT 2025 Thu Oct 16 15:34:52 EDT 2025 Thu May 22 21:23:42 EDT 2025 Mon Jul 21 05:22:29 EDT 2025 Wed Oct 01 06:49:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Copyright: © 2025 Sadeghi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c586t-128b1e564d30b5f0e5e5cb4cd53da1afd9f63a381f80d29d90f7a5a105cce6d33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7964-0478 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0315638 |
| PMID | 40053533 |
| PQID | 3175027259 |
| PQPubID | 1436336 |
| PageCount | e0315638 |
| ParticipantIDs | plos_journals_3175027259 doaj_primary_oai_doaj_org_article_cb0436140e97403291636a3473019d89 unpaywall_primary_10_1371_journal_pone_0315638 proquest_miscellaneous_3175072216 proquest_journals_3175027259 gale_infotracmisc_A830018519 gale_infotracacademiconefile_A830018519 gale_incontextgauss_ISR_A830018519 gale_incontextgauss_IOV_A830018519 gale_healthsolutions_A830018519 pubmed_primary_40053533 crossref_primary_10_1371_journal_pone_0315638 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-07 |
| PublicationDateYYYYMMDD | 2025-03-07 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | A Buslaev (pone.0315638.ref030) 2020; 11 J Park (pone.0315638.ref032) 2019; 52 PH Smedsrud (pone.0315638.ref028) 2021; 8 A Yokote (pone.0315638.ref029) 2023; 4 M Keuchel (pone.0315638.ref006) 2021; 11 J-W Ju (pone.0315638.ref027) 2022; 58 R Shrestha (pone.0315638.ref033) 2016; 10 DE Yung (pone.0315638.ref003) 2017; 11 E Abou Ali (pone.0315638.ref019) 2018; 6 C Brotz (pone.0315638.ref009) 2009; 69 R Leenhardt (pone.0315638.ref024) 2021; 53 I Martincek (pone.0315638.ref031) 2020; 25 ASGE Technology Committee (pone.0315638.ref001) 2013; 78 Y Bo (pone.0315638.ref013) 2023; 9 pone.0315638.ref022 pone.0315638.ref014 BJF Rosa (pone.0315638.ref005) 2013; 5 J Albert (pone.0315638.ref004) 2004; 59 S Hashimoto (pone.0315638.ref020) 2017; 41 S Seguí (pone.0315638.ref021) 2012; 16 S Chen (pone.0315638.ref008) 2022; 46 Q Wang (pone.0315638.ref015) 2019; 110 G Litjens (pone.0315638.ref034) 2017; 42 V Sadeghi (pone.0315638.ref017) 2023; 42 Y-P Wang (pone.0315638.ref012) 2022; 12 SJB Van Weyenberg (pone.0315638.ref018) 2011; 43 SL Hansel (pone.0315638.ref007) 2019; 8 O Pietri (pone.0315638.ref016) 2018; 6 R Noorda (pone.0315638.ref026) 2020; 10 X Dray (pone.0315638.ref010) 2021; 45 JH Nam (pone.0315638.ref025) 2021; 11 pone.0315638.ref011 H-B Chen (pone.0315638.ref002) 2012; 75 MK Bashar (pone.0315638.ref023) 2008; 11 |
| References_xml | – volume: 42 start-page: 60 year: 2017 ident: pone.0315638.ref034 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – volume: 41 start-page: 119 issue: 8 year: 2017 ident: pone.0315638.ref020 article-title: An Automated Self-Learning Quantification System to Identify Visible Areas in Capsule Endoscopy Images publication-title: J Med Syst doi: 10.1007/s10916-017-0769-5 – volume: 16 start-page: 1341 issue: 6 year: 2012 ident: pone.0315638.ref021 article-title: Categorization and segmentation of intestinal content frames for wireless capsule endoscopy publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2012.2221472 – ident: pone.0315638.ref011 – volume: 11 start-page: 4417 issue: 1 year: 2021 ident: pone.0315638.ref025 article-title: Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy publication-title: Sci Rep doi: 10.1038/s41598-021-81686-7 – volume: 10 start-page: 884 issue: 4 year: 2016 ident: pone.0315638.ref033 article-title: Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/TBCAS.2016.2546838 – volume: 6 start-page: E462 issue: 4 year: 2018 ident: pone.0315638.ref016 article-title: Development and validation of an automated algorithm to evaluate the abundance of bubbles in small bowel capsule endoscopy publication-title: Endosc Int Open doi: 10.1055/a-0573-1044 – volume: 69 start-page: 262 issue: 2 year: 2009 ident: pone.0315638.ref009 article-title: A validation study of 3 grading systems to evaluate small-bowel cleansing for wireless capsule endoscopy: a quantitative index, a qualitative evaluation, and an overall adequacy assessment publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2008.04.016 – volume: 5 start-page: 67 issue: 2 year: 2013 ident: pone.0315638.ref005 article-title: Oral purgative and simethicone before small bowel capsule endoscopy publication-title: World J Gastrointest Endosc doi: 10.4253/wjge.v5.i2.67 – volume: 25 start-page: 106002 issue: 10 year: 2020 ident: pone.0315638.ref031 article-title: USB capsule endoscope for retrograde imaging of the esophagus publication-title: J Biomed Opt doi: 10.1117/1.JBO.25.10.106002 – volume: 11 start-page: 979 issue: 10 year: 2017 ident: pone.0315638.ref003 article-title: Systematic review and meta-analysis: is bowel preparation still necessary in small bowel capsule endoscopy? publication-title: Expert Rev Gastroenterol Hepatol doi: 10.1080/17474124.2017.1359540 – volume: 46 start-page: 102029 issue: 10 year: 2022 ident: pone.0315638.ref008 article-title: Preparation of small bowel capsule endoscopy (SBCE) with simethicone: a meta-analysis publication-title: Clin Res Hepatol Gastroenterol doi: 10.1016/j.clinre.2022.102029 – volume: 12 start-page: 613 issue: 3 year: 2022 ident: pone.0315638.ref012 article-title: Use of U-Net Convolutional Neural Networks for Automated Segmentation of Fecal Material for Objective Evaluation of Bowel Preparation Quality in Colonoscopy publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics12030613 – volume: 78 start-page: 805 issue: 6 year: 2013 ident: pone.0315638.ref001 article-title: Wireless capsule endoscopy publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2013.06.026 – volume: 110 start-page: 152 year: 2019 ident: pone.0315638.ref015 article-title: Reduction of bubble-like frames using a RSS filter in wireless capsule endoscopy video publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2018.08.051 – volume: 11 start-page: 603 issue: Pt 2 year: 2008 ident: pone.0315638.ref023 article-title: Detecting informative frames from wireless capsule endoscopic video using color and texture features publication-title: Med Image Comput Comput Assist Interv – volume: 11 start-page: 1711 issue: 9 year: 2021 ident: pone.0315638.ref006 article-title: Lavage, simethicone, and prokinetics-what to swallow with a video capsule publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics11091711 – volume: 45 start-page: 101612 issue: 6 year: 2021 ident: pone.0315638.ref010 article-title: Prospective evaluation of third-generation small bowel capsule endoscopy videos by independent readers demonstrates poor reproducibility of cleanliness classifications publication-title: Clin Res Hepatol Gastroenterol doi: 10.1016/j.clinre.2020.101612 – volume: 52 start-page: 328 issue: 4 year: 2019 ident: pone.0315638.ref032 article-title: Recent Development of Computer Vision Technology to Improve Capsule Endoscopy publication-title: Clin Endosc doi: 10.5946/ce.2018.172 – volume: 8 start-page: 31 issue: 1 year: 2019 ident: pone.0315638.ref007 article-title: Evaluating a combined bowel preparation for small-bowel capsule endoscopy: a prospective randomized-controlled study publication-title: Gastroenterol Rep (Oxf) doi: 10.1093/gastro/goz054 – volume: 42 start-page: 101364 year: 2023 ident: pone.0315638.ref017 article-title: Segmentation and region quantification of bubbles in small bowel capsule endoscopy images using wavelet transform publication-title: Informatics Med Unlocked doi: 10.1016/j.imu.2023.101364 – volume: 9 start-page: e22662 issue: 11 year: 2023 ident: pone.0315638.ref013 article-title: CCRA: A colon cleanliness rating algorithm based on colonoscopy video analysis publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e22662 – volume: 8 start-page: 142 issue: 1 year: 2021 ident: pone.0315638.ref028 article-title: Kvasir-Capsule, a video capsule endoscopy dataset publication-title: Sci Data doi: 10.1038/s41597-021-00920-z – ident: pone.0315638.ref022 doi: 10.1109/ICAL.2012.6308214 – volume: 10 start-page: 17706 issue: 1 year: 2020 ident: pone.0315638.ref026 article-title: Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture publication-title: Sci Rep doi: 10.1038/s41598-020-74668-8 – volume: 11 start-page: 125 issue: 2 year: 2020 ident: pone.0315638.ref030 article-title: Albumentations: Fast and Flexible Image Augmentations publication-title: Information doi: 10.3390/info11020125 – volume: 59 start-page: 487 issue: 4 year: 2004 ident: pone.0315638.ref004 article-title: Simethicone for small bowel preparation for capsule endoscopy: a systematic, single-blinded, controlled study publication-title: Gastrointest Endosc doi: 10.1016/S0016-5107(04)00003-3 – ident: pone.0315638.ref014 – volume: 43 start-page: 406 issue: 5 year: 2011 ident: pone.0315638.ref018 article-title: Description of a novel grading system to assess the quality of bowel preparation in video capsule endoscopy publication-title: Endoscopy doi: 10.1055/s-0030-1256228 – volume: 53 start-page: 932 issue: 9 year: 2021 ident: pone.0315638.ref024 article-title: A neural network-based algorithm for assessing the cleanliness of small bowel during capsule endoscopy publication-title: Endoscopy doi: 10.1055/a-1301-3841 – volume: 6 start-page: E646 issue: 6 year: 2018 ident: pone.0315638.ref019 article-title: Development and validation of a computed assessment of cleansing score for evaluation of quality of small-bowel visualization in capsule endoscopy publication-title: Endosc Int Open doi: 10.1055/a-0581-8758 – volume: 4 start-page: e258 issue: 1 year: 2023 ident: pone.0315638.ref029 article-title: Small bowel capsule endoscopy examination and open access database with artificial intelligence: the SEE-artificial intelligence project publication-title: DEN Open doi: 10.1002/deo2.258 – volume: 75 start-page: 342 issue: 3 year: 2012 ident: pone.0315638.ref002 article-title: A comparative study of two kinds of small bowel cleaning score system for capsule endoscopy publication-title: Acta Gastroenterol Belg – volume: 58 start-page: 397 issue: 3 year: 2022 ident: pone.0315638.ref027 article-title: Semantic Segmentation Dataset for AI-Based Quantification of Clean Mucosa in Capsule Endoscopy publication-title: Med |
| SSID | ssj0053866 |
| Score | 2.4743655 |
| Snippet | A considerable amount of undesirable factors in the wireless capsule endoscopy (WCE) procedure hinder the proper visualization of the small bowel and take... |
| SourceID | plos doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0315638 |
| SubjectTerms | Adaptability Algorithms Annotations Bayes Theorem Capsule Endoscopy - methods Computer vision Computers Conditional probability Covariance matrix Datasets Endoscopy Evaluation Gastroenterology Gaussian processes Humans Image Processing, Computer-Assisted - methods Image segmentation Innovations Intestine Intestine, Small Intestine, Small - diagnostic imaging Medical examination Methods Normal Distribution Performance evaluation Pixels ROC Curve Small intestine Statistical analysis Statistical models Visualization Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQXwYPiPFrGQMMQgIe0qVx7CSPG2IMJEAChvZmOf4xVUqdamk39S_h3-UucaNWmsQeeK3PUervzv7c3ndHyJvEpLwo9CSujBNxhgmEQEJEzFWC9ZVykxsUJ3_9Jk7Psi_n_Hyj1RfmhPXlgfuFO9QVFkmHaRaYb8JSeBITimXomaUpOuleUpTry1S_B0MUCxGEciyfHAZcxvPG2zH2NRCoR9k4iLp6_cOuPJrXTXsT5bxHdpZ-rlbXqq43jqGTB-R-4I_0qH_vXXLH-odkN0RoS9-FMtLvH5E_nbb2Cu7CQCfpJ7VsUS9Jj9UK7DSS5qmDM5HiL7G07nVOFBNGKfBY2tqLWZAledo4mGBhsvKGYnK7wgQatMe-DuC3dOopMEnazuCVadVc25pqBRfw2lLrTYPalxWdzmDzah-Ts5OPvz6cxqENQ6x5IRYxnGDVxHKRGZZU3CWWW66rTBvOjJooZ0onmIKT3xWAfGnKxOWKKyBuWlthGHtCRh4Wfo9QzrmyKnVMlFkGY0UiigpIBAMaVBklIhKvMZHzvtqG7P5yy-GW0i-wRAxlwDAixwjcYIu1srsPwINk8CD5Lw-KyEuEXfbC0yHi5VHBsGUhUNyIvO4ssF6Gx4ScC8RMfv7--xZGP39sGb0NRq5ZXCqtgggCvhPW4dqyPNiyhKjXW8N76KTrVWkl8sAkzeE2CzPXjnvz8KthGB-KSXbeNstgk6fpBHB42jv8sLJZVwiIsYiMhwi4FUT7_wOiZ-Ruin2XMfcvPyCjxeXSPgcyuKhedHH_F-ohWWY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wA8TIyvBQYYhAQ8pEvj2EkeEFrRxkCioMHQ3iLHdqpKaZI1LVP_Ev5d7hInrNKE9hqfo8T34Z-Tu98R8trTPo8iNXJTnQk3wARCACHC5dJDfqVQhxqLk79OxMlZ8OWcn2-RSVcLg2mVXUxsArUuFX4jP8B9Do5QgNY_VBcudo3Cv6tdCw1pWyvo9w3F2C2y7SMz1oBsj48m30-72AzeLYQtoGPh6MDqa1iVhRlivwOBdSpXNqiGx7-P1oMqL-vroOhdcntVVHJ9KfP8yvZ0fI_sWFxJD1tD2CVbprhPdq3n1vStpZd-94D8aWpuf8MZGWAm_SRXNdZR0rFcg5xCMD3LYK-k-IWW5m39E8VEUgr4ltZmOrflSgUtM5hgYLIsNMWkd4mJNSiP_R7AnumsoIAwaT2HR6ZpeWlyqiQczHNDTaFLrIlZ09kcglr9kJwdH_38eOLa9gyu4pFYurCzpSPDRaCZl_LMM9xwlQZKc6blSGY6zgSTgAiyCCwi1rGXhZJLAHRKGaEZe0QGBSz8HqGcc2mknzERBwGMRZ6IUgAXDOBRqqVwiNvpJKlaFo6k-RUXwumlXeAEdZhYHTpkjIrrZZFDu7lQLqaJdclEpUi_DwZp4EzlMR9slAnJAox5sY5ih7xAtSdtQWofCZLDiGErQ4C-DnnVSCCPRoGJOlPUWfL5268bCP043RB6Y4WycrmQStriCHgn5OfakNzfkIRooDaG99BIu1Wpk39-AzM7w71--GU_jDfF5LvClCsrE_r-CPTwuDX4fmWDhiCIMYcMew-4kYqe_P9pnpI7PnZaxmy_cJ8MlouVeQbwb5k-tz79Fy9bWfM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gF4AMbXCgMMQgIkUtI4dpLHDjEG0gYCNo2nyLGdqSJNqqVlKv8I_y53iRutaEjlNb6rkvvyz_V9ADz3TSDiWA-9zOTSCymBEEGI9ITyqb9SZCJDxckHh3L_KPx4Ik424PWyFubi_T2Phm-cRAfTqrQDmkiA9nIFNqVA5N2DzaPDz6Pv7cVx4MnA56467l-sK7tP06S_C8W9aVHVl-HM63B1Xk7V4lwVxYW9Z-8mHCzfuk05-TGYz7KB_vVXQ8d1P-sW3HAglI1aq9mCDVvehi3n5jV76XpRv7oDv5sC3Z94oEZMyt6reU1Fl2xXLZBOE_Ie57ixMvo7lxVtsRSjrFOGYJjV9nTiaptKVuXIYJFZlYZRhryiLByip-EQaPxsXDKEo6yeoAhYVp3bgmmFp_jCMluaigpoFmw8wQhY34WjvXff3u57bpaDp0UsZx5ug9nQChka7mci962wQmehNoIbNVS5SXLJFcKHPEbzSUzi55ESCtGf1lYazu9Br0RhbQMTQiirgpzLJAxxLfZlnCES4YilMqNkH7yljtNp27Ijbe7tIjzqtAJOSe6pk3sfdskQOlpquN08QIWlzn9TnVGvfrReiwcwnwdo0FwqHlKATEyc9OEJmVHaVq92YSMdxZzmHiJO7sOzhoKabpSU1XNKOks_fDpeg-jrlxWiF44or2ZnSitXSYHfRM28Vih3VigxdOiV5W0y-qVU6pTApB9EeCRGzqUjXL78tFumH6VMvdJWc0cTBcEQ9XC_daBOsmHTTYjzPgw6j1pLRQ_-l-EhXAtoUDMlC0Y70Judze0jRI-z7LELGn8ALWpsbw priority: 102 providerName: Unpaywall |
| Title | Multivariate Gaussian Bayes classifier with limited data for segmentation of clean and contaminated regions in the small bowel capsule endoscopy images |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40053533 https://www.proquest.com/docview/3175027259 https://www.proquest.com/docview/3175072216 https://doi.org/10.1371/journal.pone.0315638 https://doaj.org/article/cb0436140e97403291636a3473019d89 http://dx.doi.org/10.1371/journal.pone.0315638 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Geneva Foundation for Medical Education and Research Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF616QE4IMqrgRIWhAQcHNle79o-IJRUTQtSQ1UISk_W2ruOIjl2iBNKfgl_lxl7YxEplXrxwTsbOTuvb-x5EPLOVi4PgsSxYpUKy8MEQgAhwuLSxv5KvvIVFidfDMX5yPs65uM9spnZag6w3Bna4Typ0SLr_vm1_gwK_6ma2uA7m03deZHrLk4tAJnaJwfgq0Ic5nDhNd8VQLuFMAV0t-3cclBVH__GWrfmWVHugqIPyL1VPpfrG5ll_7mnwSPy0OBK2qsF4ZDs6fwxOTSaW9IPpr30xyfkb1Vz-xtiZICZ9EyuSqyjpH25BroEwfQ0BV9J8Q0tzer6J4qJpBTwLS31ZGbKlXJapLBBw2aZK4pJ7xITa5Ae5z2APNNpTgFh0nIGj0zj4kZnNJEQmGea6lwVWBOzptMZGLXyKRkNTn-cnFtmPIOV8EAsLfBssaO58BSzY57ammuexF6iOFPSkakKU8EkIII0AIkIVWinvuQSAF2SaKEYe0ZaORz8EaGcc6mlmzIReh6sBbYIYgAXDOBRrKRoE2vDk2hed-GIqk9xPkQv9QFHyMPI8LBN-si4hhZ7aFc3isUkMioZJTG23weB1BBT2cwFGWVCMg9tXqiCsE1eI9ujuiC1sQRRL2A4yhCgb5u8rSiwj0aOiToT5Fn05dvPOxB9v9oiem-I0mK5kIk0xRHwn7A_1xbl8RYlWINka_kIhXRzKmWE-NB2fYhyYedGcHcvv2mW8Ucx-S7XxcrQ-K7rAB-e1wLfnKxXNQhirE26jQbciUUvbn_Ql-S-i1OWMdPPPyat5WKlXwH0W8Ydsu-PfbgGJw5eB2cdctA_HV5edaqXKZ1K2-HeaHjZu_4Hg_BeUA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam8jB4QIzbCoMZBAIe0qVx7CQPCG3AaNkFCTbUt-DYTlUpTUrTUvWX8C_4jZyTuGGVJrSXvdbHVeJz-45zLoS8cLXHw1B1nUSnwvExgRBAiHC4dLG_UqADjcXJJ6eid-5_HvDBBvmzqoXBtMqVTawMtS4U3pHvoZ-DEArQ-rvJTwenRuHX1dUIjVosjsxyASFb-bb_Afj70vMOP5697zl2qoCjeChmDhjkpGu48DVzE566hhuuEl9pzrTsylRHqWASHFkawotEOnLTQHIJOEQpIzRegILJv-EzsCWgP8GgCfDAdghhy_NY0N2z0tCZFLnp4DQFgVUwF9xfNSWg8QWtSVaUlwHdW2Rznk_kciGz7ILzO7xDblvUSvdrMdsiGya_S7asXSjpa9u8-s098ruq6P0FETiAWPpJzkus0qQHcgl0CqH6KAVPTPH-l2Z1dRXFNFUK6JmWZji2xVA5LVLYYGCzzDXFlHqJaTtIj9MkQFvoKKeAX2k5hkemSbEwGVUSwv7MUJPrAitulnQ0BpNZ3ifn18KmB6SVw8FvE8o5l0Z6KROR78Na6IowAejCAHwlWoo2cVY8iSd1j4-4-tAXQGxUH3CMPIwtD9vkABnX0GKH7uqHYjqMrcLHKsHm_iDuBiI2l3mgAUxI5qNFjXQYtckusj2uy10bOxPvhwwHJQKwbpPnFQV26cgxDWiIPIv7X75fgejb1zWiV5YoLWZTqaQtvYB3wu5fa5Q7a5Rga9Ta8jYK6epUyvifVsLOleBevvysWcY_xdS-3BRzSxN4Xhf48LAW-OZk_ar9EGNt0mk04EosevT_p9klm72zk-P4uH969Jjc9HCmM-YVBjukNZvOzRMAmrPkaaXdlPy4bnPyF-fzkXQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIXF5QIzbCoMZBAIe0qZx7CQPCG2MsjIYaDDUt-DETlUpTULTUvWX8F_4dZyTOGGVJrSXvdbHVeJz-45zLoQ8s5XDfT_uW5FKhOViAiGAEGFxaWN_JU95CouTPx2Lw1P3w4iPNsifphYG0yobm1gZapXHeEfeQz8HIRSg9V5i0iK-HAzeFD8tnCCFX1qbcRq1iBzp1RLCt_L18AB4_dxxBu--vT20zIQBK-a-mFtgnKO-5sJVzI54YmuueRy5seJMyb5MVJAIJsGpJT68VKACO_Ekl4BJ4lgLhZehYP6veIwFmE7ojdpgD-yIEKZUj3n9npGMbpFnuouTFQRWxJxxhdXEgNYvbBZpXp4Hem-Qa4uskKulTNMzjnBwi9w0CJbu1SK3RTZ0dptsGRtR0pemkfWrO-R3Vd37C6JxALT0vVyUWLFJ9-UK6GKE7ZMEvDLFu2Ca1pVWFFNWKSBpWurx1BRGZTRPYIOGzTJTFNPrJabwID1OlgDNoZOMApal5RQemUb5Uqc0lkW5SDXVmcqx-mZFJ1Mwn-VdcnopbLpHNjM4-G1COedSSydhInBdWPNt4UcAYxgAsUhJ0SFWw5OwqPt9hNVHPw_ipPqAQ-RhaHjYIfvIuJYWu3VXP-SzcWiUP4wjbPQPoq8herOZA9rAhGQuWtdA-UGH7CLbw7r0tbU54Z7PcGgigOwOeVpRYMeODGV_jDwLh5-_X4Do68ka0QtDlOTzmYylKcOAd8JOYGuUO2uUYHfiteVtFNLmVMrwn4bCzkZwz19-0i7jn2KaX6bzhaHxHKcPfLhfC3x7sm7VioixDum2GnAhFj34_9PskqtgSMKPw-Ojh-S6g-OdMcXQ2yGb89lCPwLMOY8eV8pNyY_LtiZ_Aehplbc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gF4AMbXCgMMQgIkUtI4dpLHDjEG0gYCNo2nyLGdqSJNqqVlKv8I_y53iRutaEjlNb6rkvvyz_V9ADz3TSDiWA-9zOTSCymBEEGI9ITyqb9SZCJDxckHh3L_KPx4Ik424PWyFubi_T2Phm-cRAfTqrQDmkiA9nIFNqVA5N2DzaPDz6Pv7cVx4MnA56467l-sK7tP06S_C8W9aVHVl-HM63B1Xk7V4lwVxYW9Z-8mHCzfuk05-TGYz7KB_vVXQ8d1P-sW3HAglI1aq9mCDVvehi3n5jV76XpRv7oDv5sC3Z94oEZMyt6reU1Fl2xXLZBOE_Ie57ixMvo7lxVtsRSjrFOGYJjV9nTiaptKVuXIYJFZlYZRhryiLByip-EQaPxsXDKEo6yeoAhYVp3bgmmFp_jCMluaigpoFmw8wQhY34WjvXff3u57bpaDp0UsZx5ug9nQChka7mci962wQmehNoIbNVS5SXLJFcKHPEbzSUzi55ESCtGf1lYazu9Br0RhbQMTQiirgpzLJAxxLfZlnCES4YilMqNkH7yljtNp27Ijbe7tIjzqtAJOSe6pk3sfdskQOlpquN08QIWlzn9TnVGvfrReiwcwnwdo0FwqHlKATEyc9OEJmVHaVq92YSMdxZzmHiJO7sOzhoKabpSU1XNKOks_fDpeg-jrlxWiF44or2ZnSitXSYHfRM28Vih3VigxdOiV5W0y-qVU6pTApB9EeCRGzqUjXL78tFumH6VMvdJWc0cTBcEQ9XC_daBOsmHTTYjzPgw6j1pLRQ_-l-EhXAtoUDMlC0Y70Judze0jRI-z7LELGn8ALWpsbw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+Gaussian+Bayes+classifier+with+limited+data+for+segmentation+of+clean+and+contaminated+regions+in+the+small+bowel+capsule+endoscopy+images&rft.jtitle=PloS+one&rft.au=Sadeghi%2C+Vahid&rft.au=Mehridehnavi%2C+Alireza&rft.au=Behdad%2C+Maryam&rft.au=Vard%2C+Alireza&rft.date=2025-03-07&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=20&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.pone.0315638&rft.externalDocID=3175027259 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |