Proteomics beyond trypsin

Peptide‐centered shotgun analysis of proteins has been the core technology in mass spectrometry based proteomics and has enabled numerous biological discoveries, such as the large‐scale charting of protein–protein interaction networks, the quantitative analysis of protein post‐translational modifica...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 282; no. 14; pp. 2612 - 2626
Main Authors Tsiatsiani, Liana, Heck, Albert J. R
Format Journal Article
LanguageEnglish
Published England Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies 01.07.2015
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN1742-464X
1742-4658
1742-4658
DOI10.1111/febs.13287

Cover

Abstract Peptide‐centered shotgun analysis of proteins has been the core technology in mass spectrometry based proteomics and has enabled numerous biological discoveries, such as the large‐scale charting of protein–protein interaction networks, the quantitative analysis of protein post‐translational modifications and even the first drafts of the human proteome. The conversion of proteins into peptides in these so‐called bottom‐up approaches is nearly uniquely done by using trypsin as a proteolytic reagent. Here, we argue that our view of the proteome still remains incomplete and this is partially due to the nearly exclusive use of trypsin. Newly emerging alternative proteases and/or multi‐protease protein digestion aim to increase proteome sequence coverage and improve the identification of post‐translational modifications, through the analysis of complementary and often longer peptides, introducing an approach termed middle‐down proteomics. Of pivotal importance for this purpose is the identification of proteases beneficial for use in proteomics. Here, we describe some of the shortcomings of the nearly exclusive use of trypsin in proteomics and review the properties of other proteomics‐appropriate proteases. We describe favorable protease traits with an emphasis on middle‐down proteomics and suggest potential sources for the discovery of new proteases. We also highlight a few examples wherein the use of other proteases than trypsin enabled the generation of more comprehensive data sets leading to previously unexplored knowledge of the proteome.
AbstractList Peptide-centered shotgun analysis of proteins has been the core technology in mass spectrometry based proteomics and has enabled numerous biological discoveries, such as the large-scale charting of protein-protein interaction networks, the quantitative analysis of protein post-translational modifications and even the first drafts of the human proteome. The conversion of proteins into peptides in these so-called bottom-up approaches is nearly uniquely done by using trypsin as a proteolytic reagent. Here, we argue that our view of the proteome still remains incomplete and this is partially due to the nearly exclusive use of trypsin. Newly emerging alternative proteases and/or multi-protease protein digestion aim to increase proteome sequence coverage and improve the identification of post-translational modifications, through the analysis of complementary and often longer peptides, introducing an approach termed middle-down proteomics. Of pivotal importance for this purpose is the identification of proteases beneficial for use in proteomics. Here, we describe some of the shortcomings of the nearly exclusive use of trypsin in proteomics and review the properties of other proteomics-appropriate proteases. We describe favorable protease traits with an emphasis on middle-down proteomics and suggest potential sources for the discovery of new proteases. We also highlight a few examples wherein the use of other proteases than trypsin enabled the generation of more comprehensive data sets leading to previously unexplored knowledge of the proteome.Peptide-centered shotgun analysis of proteins has been the core technology in mass spectrometry based proteomics and has enabled numerous biological discoveries, such as the large-scale charting of protein-protein interaction networks, the quantitative analysis of protein post-translational modifications and even the first drafts of the human proteome. The conversion of proteins into peptides in these so-called bottom-up approaches is nearly uniquely done by using trypsin as a proteolytic reagent. Here, we argue that our view of the proteome still remains incomplete and this is partially due to the nearly exclusive use of trypsin. Newly emerging alternative proteases and/or multi-protease protein digestion aim to increase proteome sequence coverage and improve the identification of post-translational modifications, through the analysis of complementary and often longer peptides, introducing an approach termed middle-down proteomics. Of pivotal importance for this purpose is the identification of proteases beneficial for use in proteomics. Here, we describe some of the shortcomings of the nearly exclusive use of trypsin in proteomics and review the properties of other proteomics-appropriate proteases. We describe favorable protease traits with an emphasis on middle-down proteomics and suggest potential sources for the discovery of new proteases. We also highlight a few examples wherein the use of other proteases than trypsin enabled the generation of more comprehensive data sets leading to previously unexplored knowledge of the proteome.
Peptide‐centered shotgun analysis of proteins has been the core technology in mass spectrometry based proteomics and has enabled numerous biological discoveries, such as the large‐scale charting of protein–protein interaction networks, the quantitative analysis of protein post‐translational modifications and even the first drafts of the human proteome. The conversion of proteins into peptides in these so‐called bottom‐up approaches is nearly uniquely done by using trypsin as a proteolytic reagent. Here, we argue that our view of the proteome still remains incomplete and this is partially due to the nearly exclusive use of trypsin. Newly emerging alternative proteases and/or multi‐protease protein digestion aim to increase proteome sequence coverage and improve the identification of post‐translational modifications, through the analysis of complementary and often longer peptides, introducing an approach termed middle‐down proteomics. Of pivotal importance for this purpose is the identification of proteases beneficial for use in proteomics. Here, we describe some of the shortcomings of the nearly exclusive use of trypsin in proteomics and review the properties of other proteomics‐appropriate proteases. We describe favorable protease traits with an emphasis on middle‐down proteomics and suggest potential sources for the discovery of new proteases. We also highlight a few examples wherein the use of other proteases than trypsin enabled the generation of more comprehensive data sets leading to previously unexplored knowledge of the proteome.
Peptide‐centered shotgun analysis of proteins has been the core technology in mass spectrometry based proteomics and has enabled numerous biological discoveries, such as the large‐scale charting of protein–protein interaction networks, the quantitative analysis of protein post‐translational modifications and even the first drafts of the human proteome. The conversion of proteins into peptides in these so‐called bottom‐up approaches is nearly uniquely done by using trypsin as a proteolytic reagent. Here, we argue that our view of the proteome still remains incomplete and this is partially due to the nearly exclusive use of trypsin. Newly emerging alternative proteases and/or multi‐protease protein digestion aim to increase proteome sequence coverage and improve the identification of post‐translational modifications, through the analysis of complementary and often longer peptides, introducing an approach termed middle‐down proteomics. Of pivotal importance for this purpose is the identification of proteases beneficial for use in proteomics. Here, we describe some of the shortcomings of the nearly exclusive use of trypsin in proteomics and review the properties of other proteomics‐appropriate proteases. We describe favorable protease traits with an emphasis on middle‐down proteomics and suggest potential sources for the discovery of new proteases. We also highlight a few examples wherein the use of other proteases than trypsin enabled the generation of more comprehensive data sets leading to previously unexplored knowledge of the proteome. Peptide‐centered shotgun analysis of proteins has been the core technology in mass spectrometry‐based proteomics. However, our view of the proteome remains incomplete and this is partially due to the nearly exclusive usage of trypsin. With an emphasis on middle‐down proteomics, we discuss trypsin's shortcomings and the properties of other proteomics‐appropriate proteases. We present sources for the discovery of new proteases. This article is accompanied by a podcast, listen now. Or listen in iTunes.
Author Tsiatsiani, Liana
Heck, Albert J. R
Author_xml – sequence: 1
  fullname: Tsiatsiani, Liana
– sequence: 2
  fullname: Heck, Albert J. R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25823410$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLAzEQh4Movi_evGjBiyjVvB9HLa0KgkIteAvZNCuR7aYmu8j-9-666kGkziVz-H7DfJMdsF6G0gFwgOAFausyd1m6QARLsQa2kaB4SDmT6z89fd4COym9QkgYVWoTbGEmMaEIboPDxxgqFxbepkHmmlDOB1VslsmXe2AjN0Vy-1_vLphNxk-j2-H9w83d6Op-aJnkYkhdxpziUAkGM4WsxYarOcqlRbnCHBNEZEatwhApwiEScy6dZC6XjOaMErILzvu5dbk0zbspCr2MfmFioxHUnaDuBPWnYEuf9vQyhrfapUovfLKuKEzpQp00hm1hxKT8F0VcCYyEIKxFT36hr6GOZavdURwSLni36dEXVWcLN_9Z8_uaLQB7wMaQUnS5tr4ylQ9lFY0v_vY5-xVZKY96-N0XrllB6sn4evqdOe4zuQnavESf9Gzafgbv7kQ5p-QDtKmpeg
CitedBy_id crossref_primary_10_1021_acs_jproteome_9b00384
crossref_primary_10_1021_acs_jproteome_8b00052
crossref_primary_10_3390_ijms18122677
crossref_primary_10_1016_j_synbio_2018_02_004
crossref_primary_10_1002_1873_3468_13083
crossref_primary_10_1016_j_talanta_2019_02_039
crossref_primary_10_3390_molecules25153472
crossref_primary_10_1021_jacsau_3c00011
crossref_primary_10_3390_bioengineering7040144
crossref_primary_10_1002_pmic_201800444
crossref_primary_10_1002_pmic_201500379
crossref_primary_10_3390_ijms21062016
crossref_primary_10_1021_acs_jproteome_0c00954
crossref_primary_10_1021_acs_analchem_0c01683
crossref_primary_10_3390_proteomes3040440
crossref_primary_10_1186_s12866_023_02754_8
crossref_primary_10_1021_acs_analchem_9b03604
crossref_primary_10_1016_j_dib_2015_10_003
crossref_primary_10_1021_acs_jproteome_7b00622
crossref_primary_10_3390_proteomes4030025
crossref_primary_10_1016_j_mcpro_2023_100515
crossref_primary_10_1021_acs_analchem_0c00906
crossref_primary_10_1021_acs_jproteome_0c00286
crossref_primary_10_3390_toxins15060357
crossref_primary_10_1111_andr_12466
crossref_primary_10_1016_j_aca_2023_340978
crossref_primary_10_1186_s12014_021_09325_x
crossref_primary_10_1002_prca_201700048
crossref_primary_10_1039_D1SC06216F
crossref_primary_10_1021_acs_analchem_9b02766
crossref_primary_10_1021_acs_jproteome_5b00236
crossref_primary_10_3389_fimmu_2020_00190
crossref_primary_10_1002_rcm_8440
crossref_primary_10_1016_j_jpha_2022_11_003
crossref_primary_10_1039_D1SC02760C
crossref_primary_10_1016_j_jprot_2018_03_033
crossref_primary_10_1016_j_aca_2021_338857
crossref_primary_10_1002_anie_202001036
crossref_primary_10_1016_j_foodchem_2017_05_008
crossref_primary_10_1021_acs_analchem_1c03059
crossref_primary_10_1021_acs_jproteome_4c00062
crossref_primary_10_1016_j_talanta_2023_124878
crossref_primary_10_1073_pnas_2010635117
crossref_primary_10_1002_jssc_201801090
crossref_primary_10_1016_S1872_2040_17_60998_8
crossref_primary_10_1038_s41598_024_82465_w
crossref_primary_10_1080_19420862_2024_2379903
crossref_primary_10_1016_j_trac_2017_07_018
crossref_primary_10_1080_14789450_2017_1298448
crossref_primary_10_1021_jasms_9b00049
crossref_primary_10_1002_jms_4291
crossref_primary_10_3390_ijms232213903
crossref_primary_10_1016_j_lwt_2019_01_005
crossref_primary_10_1111_febs_15813
crossref_primary_10_1021_jasms_0c00171
crossref_primary_10_1039_D1NR01790J
crossref_primary_10_15252_embj_201694818
crossref_primary_10_1080_10408398_2022_2101091
crossref_primary_10_1016_j_ijbiomac_2024_134503
crossref_primary_10_1021_acs_jproteome_0c00928
crossref_primary_10_1021_acs_analchem_9b02666
crossref_primary_10_1002_pmic_202200132
crossref_primary_10_1080_19420862_2019_1625676
crossref_primary_10_1021_acs_jproteome_5b00654
crossref_primary_10_1038_srep33265
crossref_primary_10_1021_acs_analchem_8b02448
crossref_primary_10_1016_j_jprot_2022_104622
crossref_primary_10_5851_kosfa_2019_e73
crossref_primary_10_1002_jssc_201500973
crossref_primary_10_3390_molecules26164924
crossref_primary_10_1021_acs_analchem_7b04410
crossref_primary_10_55959_MSU0579_9384_2_2023_64_4_353_376
crossref_primary_10_1080_19440049_2023_2177083
crossref_primary_10_1016_j_jbc_2021_101328
crossref_primary_10_1371_journal_pone_0216171
crossref_primary_10_3390_molecules26071975
crossref_primary_10_1007_s00216_016_9657_y
crossref_primary_10_1007_s10719_020_09952_w
crossref_primary_10_1002_ange_202001036
crossref_primary_10_1007_s00232_019_00084_3
crossref_primary_10_1016_j_tifs_2021_02_010
crossref_primary_10_1021_acs_jproteome_5b01067
crossref_primary_10_1021_acs_analchem_2c05334
crossref_primary_10_3390_ijms23020713
crossref_primary_10_3390_ijms20225630
crossref_primary_10_1016_j_jprot_2024_105143
crossref_primary_10_1021_acschembio_9b00506
crossref_primary_10_1021_jasms_4c00343
crossref_primary_10_1146_annurev_anchem_071015_041535
crossref_primary_10_1021_acs_jproteome_9b00044
crossref_primary_10_1021_jacs_4c01324
crossref_primary_10_1016_j_chroma_2018_11_036
crossref_primary_10_18632_oncotarget_25946
crossref_primary_10_3748_wjg_v22_i37_8283
crossref_primary_10_1016_j_jprot_2016_07_011
crossref_primary_10_1111_febs_15190
crossref_primary_10_3389_fmicb_2020_594743
crossref_primary_10_1016_j_jcoa_2021_100025
crossref_primary_10_3103_S002713142304003X
crossref_primary_10_1016_j_talanta_2017_02_016
crossref_primary_10_1093_femsyr_foz088
crossref_primary_10_1021_acs_jproteome_3c00536
crossref_primary_10_1021_acs_jproteome_3c00416
crossref_primary_10_1016_j_enzmictec_2019_02_004
crossref_primary_10_1016_j_jprot_2016_07_017
crossref_primary_10_1021_jasms_3c00448
crossref_primary_10_1038_s41467_021_21754_8
crossref_primary_10_1016_j_talanta_2019_120218
crossref_primary_10_1042_EBC20190055
crossref_primary_10_1111_febs_14527
crossref_primary_10_3390_vaccines10071078
crossref_primary_10_1016_j_biochi_2024_03_006
crossref_primary_10_1021_acs_jproteome_5b00544
crossref_primary_10_1021_jasms_0c00379
crossref_primary_10_1016_j_bmc_2019_05_050
crossref_primary_10_1080_14789450_2018_1523724
crossref_primary_10_1016_j_jprot_2015_12_028
crossref_primary_10_1002_mas_21598
crossref_primary_10_1002_pmic_202100008
crossref_primary_10_1039_D2AN01246D
crossref_primary_10_1074_mcp_M116_066803
crossref_primary_10_1002_elps_201800029
crossref_primary_10_1021_acs_jproteome_5b00734
crossref_primary_10_1039_D0NP00046A
crossref_primary_10_6023_A21010025
crossref_primary_10_1371_journal_pntd_0004988
crossref_primary_10_1016_j_poly_2019_06_010
crossref_primary_10_1007_s12257_023_0011_x
crossref_primary_10_1007_s00253_023_12986_3
crossref_primary_10_1021_acs_jproteome_6b00825
crossref_primary_10_1681_ASN_2022020197
crossref_primary_10_1128_JVI_01326_16
crossref_primary_10_1021_acsanm_0c01688
crossref_primary_10_3390_proteomes7030029
crossref_primary_10_1080_07388551_2023_2283376
crossref_primary_10_3390_proteomes8030014
crossref_primary_10_1016_j_jprot_2024_105109
crossref_primary_10_1039_D0RA10013G
crossref_primary_10_1074_mcp_M116_064733
crossref_primary_10_1016_j_chroma_2024_464995
crossref_primary_10_1016_j_aca_2021_338340
crossref_primary_10_1016_j_jbc_2025_108259
crossref_primary_10_1016_j_jpba_2018_07_051
crossref_primary_10_1098_rstb_2022_0237
crossref_primary_10_1021_acsanm_4c07008
crossref_primary_10_1021_acs_jproteome_9b00085
crossref_primary_10_1038_nprot_2016_057
crossref_primary_10_1074_mcp_TIR120_002129
crossref_primary_10_1007_s13361_016_1378_0
crossref_primary_10_1021_acs_analchem_9b02488
crossref_primary_10_1016_j_ab_2020_113999
crossref_primary_10_1002_prca_201600041
crossref_primary_10_1186_s12929_022_00802_5
crossref_primary_10_1021_acs_chemrestox_1c00055
crossref_primary_10_1093_plphys_kiad655
crossref_primary_10_3390_ijms21155184
crossref_primary_10_1002_mas_21544
crossref_primary_10_1002_ange_202304554
crossref_primary_10_1007_s00580_016_2342_x
crossref_primary_10_1039_C9AN00751B
crossref_primary_10_1021_acschemneuro_3c00164
crossref_primary_10_1016_j_jprot_2016_08_006
crossref_primary_10_1021_acs_analchem_3c04497
crossref_primary_10_1016_j_idairyj_2022_105340
crossref_primary_10_1021_acs_analchem_3c01532
crossref_primary_10_1038_s41573_022_00409_3
crossref_primary_10_1021_acsmeasuresciau_3c00068
crossref_primary_10_1111_jnc_14635
crossref_primary_10_1021_acs_analchem_9b00484
crossref_primary_10_1002_anie_202304554
crossref_primary_10_3390_molecules27092651
crossref_primary_10_1021_acs_analchem_4c04150
crossref_primary_10_1093_ibd_izaa352
crossref_primary_10_1016_j_jprot_2020_103889
crossref_primary_10_1021_acs_analchem_6b03756
crossref_primary_10_1021_acs_analchem_4c04277
crossref_primary_10_1002_adhm_202401547
crossref_primary_10_1021_acs_jafc_3c01221
crossref_primary_10_1021_acs_analchem_7b04810
crossref_primary_10_1039_D4AN00484A
crossref_primary_10_1016_j_tibtech_2021_08_006
crossref_primary_10_1021_acs_jproteome_2c00033
crossref_primary_10_1111_febs_13623
crossref_primary_10_3390_proteomes12010004
crossref_primary_10_3389_fchem_2018_00372
crossref_primary_10_1021_acs_jproteome_7b00834
crossref_primary_10_1007_s00216_023_04934_x
crossref_primary_10_1021_acs_jproteome_9b00350
crossref_primary_10_1021_acs_analchem_0c01126
crossref_primary_10_1016_j_jprot_2020_103637
crossref_primary_10_1002_anie_202423801
crossref_primary_10_1586_14789450_2015_1051969
crossref_primary_10_1111_1541_4337_12326
crossref_primary_10_1093_plcell_koab050
crossref_primary_10_1021_acs_jproteome_3c00135
crossref_primary_10_1021_acs_analchem_8b01403
crossref_primary_10_1021_acs_analchem_7b03396
crossref_primary_10_3390_bios14080400
crossref_primary_10_1021_acs_analchem_7b00564
crossref_primary_10_1038_srep40403
crossref_primary_10_1016_j_jprot_2022_104572
crossref_primary_10_1016_j_jprot_2023_104992
crossref_primary_10_1021_acs_jproteome_8b00373
crossref_primary_10_1016_j_celrep_2015_05_029
crossref_primary_10_3390_cells12212560
crossref_primary_10_2337_db18_0295
crossref_primary_10_3390_separations9020042
crossref_primary_10_1002_ange_202423801
crossref_primary_10_1021_acs_jproteome_9b00562
crossref_primary_10_1038_s41596_024_01100_0
crossref_primary_10_1021_acs_jproteome_9b00445
crossref_primary_10_1080_14789450_2019_1575206
crossref_primary_10_1016_j_jprot_2021_104360
crossref_primary_10_1080_14789450_2019_1650025
crossref_primary_10_1039_D3CS00195D
crossref_primary_10_1021_jasms_4c00396
crossref_primary_10_3390_diagnostics13142328
crossref_primary_10_1016_j_knosys_2024_111378
crossref_primary_10_1021_acs_jproteome_1c00960
crossref_primary_10_1126_sciadv_aav2623
crossref_primary_10_3390_proteomes8020013
crossref_primary_10_1021_acs_jproteome_9b00330
crossref_primary_10_1038_s41598_019_40873_3
crossref_primary_10_1042_BST20200879
crossref_primary_10_1021_acscombsci_0c00116
crossref_primary_10_3390_ijms24032415
crossref_primary_10_1021_acs_analchem_7b02091
crossref_primary_10_1021_acs_analchem_3c02543
crossref_primary_10_1007_s10989_022_10375_4
crossref_primary_10_1021_acs_jproteome_7b00365
crossref_primary_10_1021_acs_analchem_2c01355
crossref_primary_10_1016_j_mcpro_2024_100759
crossref_primary_10_1021_acs_analchem_8b05222
crossref_primary_10_1038_s44320_024_00071_4
crossref_primary_10_1021_acsanm_2c04080
crossref_primary_10_4155_bio_2022_0236
Cites_doi 10.1016/j.bbrc.2014.02.041
10.1126/science.270.5235.369
10.1021/ac800016w
10.1021/ac801708p
10.1111/febs.13248
10.1021/pr900863u
10.1016/1044-0305(94)80016-2
10.1093/nar/gks400
10.1016/j.cell.2012.05.040
10.1146/annurev-biochem-072909-100424
10.1021/pr400181q
10.1038/nmeth.3177
10.1074/jbc.M113.537498
10.1038/nmeth.2074
10.1002/1096-9888(200009)35:9<1069::AID-JMS54>3.0.CO;2-C
10.1016/j.jprot.2014.07.035
10.1093/nar/gkt953
10.1021/ac5036082
10.1021/pr4000398
10.1007/s13361-014-0968-y
10.1074/mcp.O114.039057
10.1039/c2an35445d
10.1002/pmic.201300256
10.1038/nrc1821
10.1021/ja011335z
10.1074/mcp.M112.023234
10.1021/ac303103b
10.1038/nprot.2010.178
10.1074/mcp.M800223-MCP200
10.1074/mcp.M113.034769
10.1038/nature13302
10.1021/pr300273g
10.1038/351290a0
10.1074/mcp.M111.014126
10.1074/mcp.R800012-MCP200
10.1002/mas.10025
10.1016/j.celrep.2013.10.041
10.1021/pr1011729
10.1021/ac9004309
10.1038/nmeth.2031
10.1074/jbc.M600907200
10.1074/mcp.M113.034710
10.1016/S0021-9258(19)44749-2
10.1021/bi5006305
10.1016/j.ijms.2006.09.030
10.1021/pr101065j
10.1038/nrg3356
10.1016/j.jprot.2012.04.033
10.1038/nature13319
10.1073/pnas.0611217104
10.1021/cr3003533
10.1074/mcp.M110.003731
10.1038/nbt0303-262
10.1016/0006-291X(89)90848-6
10.1021/pr400522h
10.1021/bi0014195
10.1021/ac7024283
10.1093/bioinformatics/bth092
10.1039/c0cc02523b
10.1074/mcp.M113.035170
10.1016/S0952-7915(02)00010-9
10.1021/pr400802z
10.1016/j.chroma.2013.11.045
10.1002/pmic.201300418
10.1021/pr100341e
10.1002/pmic.201400084
10.1038/nprot.2006.468
10.1074/mcp.M110.003699
10.1021/pr050315j
10.1016/j.bbrc.2012.08.015
10.1128/EC.00210-10
10.1038/nmeth.1204
10.1074/jbc.R800035200
10.1021/pr500202e
10.1126/science.1128868
10.1128/JB.186.17.5919-5925.2004
10.1038/nrm2900
10.1038/msb.2011.84
10.1038/nmeth.1260
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1021/ac101806e
10.1021/pr1000994
10.1271/bbb.66.127
ContentType Journal Article
Copyright 2015 FEBS
2015 FEBS.
Copyright © 2015 Federation of European Biochemical Societies
Copyright_xml – notice: 2015 FEBS
– notice: 2015 FEBS.
– notice: Copyright © 2015 Federation of European Biochemical Societies
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ADTOC
UNPAY
DOI 10.1111/febs.13287
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Virology and AIDS Abstracts
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 2626
ExternalDocumentID 10.1111/febs.13287
3742522101
25823410
10_1111_febs_13287
FEBS13287
US201600024664
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: EMBO
  funderid: LTF 776‐2013
– fundername: Netherlands Organization for Scientific Research
– fundername: European Union 7th Framework Program
  funderid: 262067
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABHUG
ABPTK
ABPVW
ABQWH
ABWRO
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
EX3
F00
F01
F04
F5P
FBQ
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAHBH
AAHQN
AAIPD
AAMNL
AAYCA
ACUHS
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c5867-4eb5e9609750b91cc2a69d1f8c1f92623138b4c9201936017d68e85ef854f5433
IEDL.DBID UNPAY
ISSN 1742-464X
1742-4658
IngestDate Wed Oct 01 15:19:44 EDT 2025
Fri Sep 05 17:26:15 EDT 2025
Fri Sep 05 14:12:48 EDT 2025
Fri Jul 25 19:39:22 EDT 2025
Thu Apr 03 07:04:52 EDT 2025
Wed Oct 01 03:46:28 EDT 2025
Thu Apr 24 22:50:36 EDT 2025
Wed Jan 22 17:10:29 EST 2025
Wed Dec 27 19:08:54 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords middle-down proteomics
cleavage specificity
proteases
digestion
bias in quantitative proteomics
mass spectrometry
protein post-translational modifications
shotgun proteomics
Language English
License 2015 FEBS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5867-4eb5e9609750b91cc2a69d1f8c1f92623138b4c9201936017d68e85ef854f5433
Notes http://dx.doi.org/10.1111/febs.13287
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.13287
PMID 25823410
PQID 1696036763
PQPubID 28478
PageCount 15
ParticipantIDs unpaywall_primary_10_1111_febs_13287
proquest_miscellaneous_2000021588
proquest_miscellaneous_1697217735
proquest_journals_1696036763
pubmed_primary_25823410
crossref_citationtrail_10_1111_febs_13287
crossref_primary_10_1111_febs_13287
wiley_primary_10_1111_febs_13287_FEBS13287
fao_agris_US201600024664
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2015
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2015
Publisher Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies
Blackwell Publishing Ltd
Publisher_xml – name: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies
– name: Blackwell Publishing Ltd
References 2010; 11
2007; 104
1991; 351
2004; 20
2009; 81
2008; 7
2014; 25
2003; 15
2011; 10
1989; 162
2008; 5
2013; 5
2012; 11
2001; 40
2012; Chapter 13
2013; 14
2007; 259
2013; 12
2014; 14
2013; 113
2014; 13
2006; 281
2012; 137
2014; 12
2010; 6
2014; 445
2010; 9
2014; 289
2014; 53
2012; 81
2004; 186
2013; 85
2006; 5
2006; 6
1999; 20
2006; 1
2014; 1324
2006; 314
2014; 110
2011; 6
2012; 425
1995; 270
2012; 75
2011; 7
2008; 283
2014; 42
2014; 86
2010; 82
2012; 150
2010; 46
2014; 509
2000; 35
2002; 124
2002; 21
2002; 66
2009; 8
2015
2013
1994; 5
2008; 80
2003; 21
1972; 247
2012; 9
2012; 40
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_68_1
Bern M (e_1_2_11_22_1) 2012; 13
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
Barrett AJ (e_1_2_11_47_1) 2013
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
Aye TT (e_1_2_11_41_1) 2010; 6
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 14
  start-page: 489
  year: 2014
  end-page: 497
  article-title: The top‐down, middle‐down, and bottom‐up mass spectrometry approaches for characterization of histone variants and their post‐translational modifications
  publication-title: Proteomics
– volume: 6
  start-page: 1917
  year: 2010
  end-page: 1927
  article-title: Proteome‐wide protein concentrations in the human heart
  publication-title: Mol Bio Syst
– volume: 81
  start-page: 4493
  year: 2009
  end-page: 4501
  article-title: Lys‐N and trypsin cover complementary parts of the phosphoproteome in a refined SCX‐based approach
  publication-title: Anal Chem
– volume: 5
  start-page: 959
  year: 2008
  end-page: 964
  article-title: Decision tree‐driven tandem mass spectrometry for shotgun proteomics
  publication-title: Nat Methods
– volume: 1324
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Microscale immobilized enzyme reactors in proteomics: latest developments
  publication-title: J Chromatogr A
– volume: 20
  start-page: 3551
  year: 1999
  end-page: 3567
  article-title: Probability‐based protein identification by searching sequence databases using mass spectrometry data
  publication-title: Electrophoresis
– volume: 85
  start-page: 3501
  year: 2013
  end-page: 3507
  article-title: Data‐dependent middle‐down nano‐liquid chromatography‐electron capture dissociation‐tandem mass spectrometry: an application for the analysis of unfractionated histones
  publication-title: Anal Chem
– volume: 186
  start-page: 5919
  year: 2004
  end-page: 5925
  article-title: Substrate specificity of the outer membrane protease OmpT
  publication-title: J Bacteriol
– volume: 13
  start-page: 702
  year: 2014
  end-page: 709
  article-title: Cleaved and missed sites for trypsin, lys‐C, and lys‐N can be predicted with high confidence on the basis of sequence context
  publication-title: J Proteome Res
– volume: 80
  start-page: 9526
  year: 2008
  end-page: 9533
  article-title: Evaluation of the low‐specificity protease elastase for large‐scale phosphoproteome analysis
  publication-title: Anal Chem
– volume: 10
  start-page: 1794
  year: 2011
  end-page: 1805
  article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment
  publication-title: J Proteome Res
– volume: 259
  start-page: 197
  year: 2007
  end-page: 203
  article-title: Analysis of intact proteins on a chromatographic time scale by electron transfer dissociation tandem mass spectrometry
  publication-title: Int J Mass Spectrom
– volume: 150
  start-page: 426
  year: 2012
  end-page: 440
  article-title: Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome
  publication-title: Cell
– volume: 113
  start-page: 2343
  year: 2013
  end-page: 2394
  article-title: Protein analysis by shotgun/bottom‐up proteomics
  publication-title: Chem Rev
– volume: 281
  start-page: 17920
  year: 2006
  end-page: 17928
  article-title: Molecular analysis of ulilysin, the structural prototype of a new family of metzincin metalloproteases
  publication-title: J Biol Chem
– volume: 9
  start-page: 4282
  year: 2010
  end-page: 4288
  article-title: Evaluation of metalloendopeptidase Lys‐N protease performance under different sample handling conditions
  publication-title: J Proteome Res
– volume: 6
  start-page: 111
  year: 2011
  end-page: 120
  article-title: Characterization of the prime and non‐prime active site specificities of proteases by proteome‐derived peptide libraries and tandem mass spectrometry
  publication-title: Nat Protoc
– volume: 42
  start-page: D503
  year: 2014
  end-page: D509
  article-title: MEROPS: the database of proteolytic enzymes, their substrates and inhibitors
  publication-title: Nucleic Acids Res
– volume: 9
  start-page: 2840
  year: 2010
  end-page: 2852
  article-title: The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search
  publication-title: Mol Cell Proteomics
– volume: 13
  start-page: 823
  year: 2014
  end-page: 835
  article-title: Expanding proteome coverage with orthogonal‐specificity α‐lytic proteases
  publication-title: Mol Cell Proteomics
– volume: 13
  start-page: 1573
  year: 2014
  end-page: 1584
  article-title: Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics
  publication-title: Mol Cell Proteomics
– volume: 35
  start-page: 1069
  year: 2000
  end-page: 1090
  article-title: Tandem mass spectrometry: dissociation of ions by collisional activation
  publication-title: J Mass Spectrom
– volume: 81
  start-page: 379
  year: 2012
  end-page: 405
  article-title: Mass spectrometry‐based proteomics and network biology
  publication-title: Annu Rev Biochem
– volume: 10
  start-page: 2377
  year: 2011
  end-page: 2388
  article-title: Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ‐Orbitrap Velos
  publication-title: J Proteome Res
– volume: 86
  start-page: 10970
  year: 2014
  end-page: 10977
  article-title: Hybridizing ultraviolet photodissociation with electron transfer dissociation for intact protein characterization
  publication-title: Anal Chem
– volume: 80
  start-page: 3438
  year: 2008
  end-page: 3444
  article-title: Characterization of polyubiquitin chain structure by middle‐down mass spectrometry
  publication-title: Anal Chem
– volume: 5
  start-page: 695
  year: 2006
  end-page: 700
  article-title: Effects of modified digestion schemes on the identification of proteins from complex mixtures
  publication-title: J Proteome Res
– volume: 66
  start-page: 127
  year: 2002
  end-page: 134
  article-title: Substrate specificity at the P1′ site of OmpT under denaturing conditions
  publication-title: Biosci Biotechnol Biochem
– volume: 5
  start-page: 405
  year: 2008
  end-page: 407
  article-title: Straightforward ladder sequencing of peptides using a Lys‐N metalloendopeptidase
  publication-title: Nat Methods
– volume: 14
  start-page: 1999
  year: 2014
  end-page: 2007
  article-title: Development and performance evaluation of an ultralow flow nanoliquid chromatography‐tandem mass spectrometry set‐up
  publication-title: Proteomics
– volume: 9
  start-page: 524
  year: 2012
  end-page: 525
  article-title: Protease bias in absolute protein quantitation
  publication-title: Nat Methods
– volume: 104
  start-page: 2199
  year: 2007
  end-page: 2204
  article-title: Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry
  publication-title: Proc Natl Acad Sci USA
– volume: 9
  start-page: 3886
  year: 2010
  end-page: 3890
  article-title: High‐throughput middle‐down analysis using an orbitrap
  publication-title: J Proteome Res
– volume: Chapter 13
  start-page: Unit13.20
  year: 2012
  article-title: Byonic: advanced peptide and protein identification software
  publication-title: Curr Protoc Bioinformatics
– volume: 12
  start-page: 2096
  year: 2013
  end-page: 2110
  article-title: Proteome‐derived peptide libraries to study the substrate specificity profiles of carboxypeptidases
  publication-title: Mol Cell Proteomics
– volume: 53
  start-page: 4979
  year: 2014
  end-page: 4989
  article-title: Middle‐down mass spectrometry enables characterization of branched ubiquitin chains
  publication-title: Biochemistry
– volume: 124
  start-page: 672
  year: 2002
  end-page: 678
  article-title: Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry
  publication-title: J Am Chem Soc
– volume: 1
  start-page: 2856
  year: 2006
  end-page: 2860
  article-title: In‐gel digestion for mass spectrometric characterization of proteins and proteomes
  publication-title: Nat Protoc
– volume: 12
  start-page: 5558
  year: 2013
  end-page: 5569
  article-title: Proteome digestion specificity analysis for rational design of extended bottom‐up and middle‐down proteomics experiments
  publication-title: J Proteome Res
– volume: 110
  start-page: 20
  year: 2014
  end-page: 31
  article-title: Extended bottom‐up proteomics with secreted aspartic protease Sap9
  publication-title: J Proteomics
– volume: 21
  start-page: 183
  year: 2002
  end-page: 216
  article-title: Protein disulfide bond determination by mass spectrometry
  publication-title: Mass Spectrom Rev
– volume: 75
  start-page: 3791
  year: 2012
  end-page: 3813
  article-title: Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis
  publication-title: J Proteomics
– volume: 15
  start-page: 75
  year: 2003
  end-page: 81
  article-title: Assembly and export of MHC class I peptide ligands
  publication-title: Curr Opin Immunol
– volume: 283
  start-page: 30433
  year: 2008
  end-page: 30437
  article-title: Proteases: multifunctional enzymes in life and disease
  publication-title: J Biol Chem
– volume: 10
  start-page: M110.003699
  year: 2011
  article-title: Deep and highly sensitive proteome coverage by LC‐MS/MS without prefractionation
  publication-title: Mol Cell Proteomics
– volume: 137
  start-page: 3541
  year: 2012
  end-page: 3548
  article-title: In‐house construction of a UHPLC system enabling the identification of over 4000 protein groups in a single analysis
  publication-title: Analyst
– volume: 162
  start-page: 1528
  year: 1989
  end-page: 1534
  article-title: Specificity of endoproteinase Asp‐N ( ): cleavage at glutamyl residues in two proteins
  publication-title: Biochem Biophys Res Commun
– volume: 12
  start-page: 2858
  year: 2013
  end-page: 2868
  article-title: High performance computational analysis of large‐scale proteome data sets to assess incremental contribution to coverage of the human genome
  publication-title: J Proteome Res
– volume: 10
  start-page: 98
  year: 2011
  end-page: 109
  article-title: Proteolytic cleavage of covalently linked cell wall proteins by Sap9 and Sap10
  publication-title: Eukaryot Cell
– volume: 25
  start-page: 1927
  year: 2014
  end-page: 1938
  article-title: Peptide scrambling during collision‐induced dissociation is influenced by N‐terminal residue basicity
  publication-title: J Am Soc Mass Spectrom
– volume: 13
  start-page: 3679
  year: 2014
  end-page: 3684
  article-title: MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra
  publication-title: J Proteome Res
– volume: 11
  start-page: 5145
  year: 2012
  end-page: 5156
  article-title: Large‐scale quantitative assessment of different in‐solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys‐C/trypsin proteolysis over trypsin digestion
  publication-title: J Proteome Res
– volume: 6
  start-page: 227
  year: 2006
  end-page: 239
  article-title: Tumour microenvironment ‐ opinion: validating matrix metalloproteinases as drug targets and anti‐targets for cancer therapy
  publication-title: Nat Rev Cancer
– volume: 14
  start-page: 35
  year: 2013
  end-page: 48
  article-title: Next‐generation proteomics: towards an integrative view of proteome dynamics
  publication-title: Nat Rev Genet
– volume: 14
  start-page: 2200
  year: 2014
  end-page: 2211
  article-title: Middle‐down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post‐translational modifications in histones
  publication-title: Proteomics
– volume: 40
  start-page: 1694
  year: 2001
  end-page: 1701
  article-title: Substrate specificity of the integral membrane protease OmpT determined by spatially addressed peptide libraries
  publication-title: Biochemistry
– volume: 270
  start-page: 369
  year: 1995
  end-page: 370
  article-title: From genome to proteome: looking at a cell's proteins
  publication-title: Science
– volume: 7
  start-page: 1925
  year: 2008
  end-page: 1951
  article-title: Metadegradomics: toward in vivo quantitative degradomics of proteolytic post‐translational modifications of the cancer proteome
  publication-title: Mol Cell Proteomics
– volume: 8
  start-page: 1029
  year: 2009
  end-page: 1043
  article-title: Elastase digests: new ammunition for shotgun membrane proteomics
  publication-title: Mol Cell Proteomics
– volume: 20
  start-page: 1466
  year: 2004
  end-page: 1467
  article-title: TANDEM: matching proteins with tandem mass spectra
  publication-title: Bioinformatics
– volume: 80
  start-page: 3584
  year: 2008
  end-page: 3592
  article-title: Multiplexed proteomics mapping of yeast RNA polymerase II and III allows near‐complete sequence coverage and reveals several novel phosphorylation sites
  publication-title: Anal Chem
– volume: 351
  start-page: 290
  year: 1991
  end-page: 296
  article-title: Allele‐specific motifs revealed by sequencing of self‐peptides eluted from MHC molecules
  publication-title: Nature
– volume: 13
  start-page: 339
  year: 2014
  end-page: 347
  article-title: The one hour yeast proteome
  publication-title: Mol Cell Proteomics
– volume: 40
  start-page: W597
  year: 2012
  end-page: W603
  article-title: ExPASy: SIB bioinformatics resource portal
  publication-title: Nucleic Acids Res
– volume: 12
  start-page: 55
  year: 2014
  end-page: 58
  article-title: LysargiNase mirrors trypsin for protein C‐terminal and methylation‐site identification
  publication-title: Nat Methods
– volume: 46
  start-page: 8827
  year: 2010
  end-page: 8829
  article-title: Cleavage specificities of the brother and sister proteases Lys‐C and Lys‐N
  publication-title: Chem Commun (Camb)
– volume: 509
  start-page: 582
  year: 2014
  end-page: 587
  article-title: Mass‐spectrometry‐based draft of the human proteome
  publication-title: Nature
– volume: 314
  start-page: 109
  year: 2006
  end-page: 112
  article-title: Extending top‐down mass spectrometry to proteins with masses greater than 200 kilodaltons
  publication-title: Science
– volume: 7
  start-page: 550
  year: 2011
  article-title: The quantitative proteomes of human‐induced pluripotent stem cells and embryonic stem cells
  publication-title: Mol Syst Biol
– volume: 13
  start-page: 2776
  year: 2014
  end-page: 2786
  article-title: Facilitating protein disulfide mapping by a combination of pepsin digestion, electron transfer higher energy dissociation (EThcD), and a dedicated search algorithm SlinkS
  publication-title: Mol Cell Proteomics
– volume: 82
  start-page: 7485
  year: 2010
  end-page: 7491
  article-title: Analysis of isoaspartic Acid by selective proteolysis with Asp‐N and electron transfer dissociation mass spectrometry
  publication-title: Anal Chem
– volume: 11
  start-page: 427
  year: 2010
  end-page: 439
  article-title: Decoding signalling networks by mass spectrometry‐based proteomics
  publication-title: Nat Rev Mol Cell Biol
– volume: 289
  start-page: 11421
  year: 2014
  end-page: 11430
  article-title: Adenovirus composition, proteolysis, and disassembly studied by in‐depth qualitative and quantitative proteomics
  publication-title: J Biol Chem
– volume: 5
  start-page: 1469
  year: 2013
  end-page: 1478
  article-title: Quantitative and qualitative proteome characteristics extracted from in‐depth integrated genomics and proteomics analysis
  publication-title: Cell Rep
– volume: 247
  start-page: 6720
  year: 1972
  end-page: 6726
  article-title: Purification and properties of an extracellular protease of Staphylococcus aureus
  publication-title: J Biol Chem
– volume: 445
  start-page: 683
  year: 2014
  end-page: 693
  article-title: Top Down proteomics: facts and perspectives
  publication-title: Biochem Biophys Res Commun
– volume: 9
  start-page: 822
  year: 2012
  end-page: 824
  article-title: A protease for ‘middle‐down’ proteomics
  publication-title: Nat Methods
– volume: 509
  start-page: 575
  year: 2014
  end-page: 581
  article-title: A draft map of the human proteome
  publication-title: Nature
– volume: 11
  start-page: M111.014126
  year: 2012
  article-title: Expanding the chemical cross‐linking toolbox by the use of multiple proteases and enrichment by size exclusion chromatography
  publication-title: Mol Cell Proteomics
– volume: 425
  start-page: 497
  year: 2012
  end-page: 502
  article-title: On the size of the active site in proteases. I. Papain. 1967
  publication-title: Biochem Biophys Res Commun
– year: 2015
  article-title: Genetic screens and functional genomics with CRISPR/Cas9 technology
  publication-title: FEBS J
– volume: 5
  start-page: 976
  year: 1994
  end-page: 989
  article-title: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database
  publication-title: J Am Soc Mass Spectrom
– volume: 21
  start-page: 262
  year: 2003
  end-page: 267
  article-title: The application of mass spectrometry to membrane proteomics
  publication-title: Nat Biotechnol
– volume: 13
  start-page: 336
  year: 2014
  end-page: 347
  article-title: Quantitative analysis of glycated proteins
  publication-title: J Proteome Res
– volume: 9
  start-page: 1323
  year: 2010
  end-page: 1329
  article-title: Value of using multiple proteases for large‐scale mass spectrometry‐based proteomics
  publication-title: J Proteome Res
– year: 2013
– ident: e_1_2_11_70_1
  doi: 10.1016/j.bbrc.2014.02.041
– ident: e_1_2_11_5_1
  doi: 10.1126/science.270.5235.369
– ident: e_1_2_11_75_1
  doi: 10.1021/ac800016w
– ident: e_1_2_11_73_1
  doi: 10.1021/ac801708p
– ident: e_1_2_11_85_1
  doi: 10.1111/febs.13248
– ident: e_1_2_11_27_1
  doi: 10.1021/pr900863u
– ident: e_1_2_11_17_1
  doi: 10.1016/1044-0305(94)80016-2
– ident: e_1_2_11_77_1
  doi: 10.1093/nar/gks400
– ident: e_1_2_11_51_1
  doi: 10.1016/j.cell.2012.05.040
– ident: e_1_2_11_3_1
  doi: 10.1146/annurev-biochem-072909-100424
– ident: e_1_2_11_24_1
  doi: 10.1021/pr400181q
– ident: e_1_2_11_33_1
  doi: 10.1038/nmeth.3177
– ident: e_1_2_11_46_1
  doi: 10.1074/jbc.M113.537498
– ident: e_1_2_11_72_1
  doi: 10.1038/nmeth.2074
– ident: e_1_2_11_13_1
  doi: 10.1002/1096-9888(200009)35:9<1069::AID-JMS54>3.0.CO;2-C
– volume: 13
  start-page: Unit13.20
  year: 2012
  ident: e_1_2_11_22_1
  article-title: Byonic: advanced peptide and protein identification software
  publication-title: Curr Protoc Bioinformatics
– ident: e_1_2_11_83_1
  doi: 10.1016/j.jprot.2014.07.035
– ident: e_1_2_11_52_1
  doi: 10.1093/nar/gkt953
– ident: e_1_2_11_68_1
  doi: 10.1021/ac5036082
– ident: e_1_2_11_60_1
  doi: 10.1021/pr4000398
– ident: e_1_2_11_64_1
  doi: 10.1007/s13361-014-0968-y
– ident: e_1_2_11_66_1
  doi: 10.1074/mcp.O114.039057
– ident: e_1_2_11_10_1
  doi: 10.1039/c2an35445d
– ident: e_1_2_11_74_1
  doi: 10.1002/pmic.201300256
– ident: e_1_2_11_49_1
  doi: 10.1038/nrc1821
– ident: e_1_2_11_15_1
  doi: 10.1021/ja011335z
– ident: e_1_2_11_53_1
  doi: 10.1074/mcp.M112.023234
– ident: e_1_2_11_61_1
  doi: 10.1021/ac303103b
– ident: e_1_2_11_54_1
  doi: 10.1038/nprot.2010.178
– ident: e_1_2_11_56_1
  doi: 10.1074/mcp.M800223-MCP200
– ident: e_1_2_11_12_1
  doi: 10.1074/mcp.M113.034769
– ident: e_1_2_11_26_1
  doi: 10.1038/nature13302
– ident: e_1_2_11_32_1
  doi: 10.1021/pr300273g
– ident: e_1_2_11_86_1
  doi: 10.1038/351290a0
– ident: e_1_2_11_43_1
  doi: 10.1074/mcp.M111.014126
– ident: e_1_2_11_50_1
  doi: 10.1074/mcp.R800012-MCP200
– ident: e_1_2_11_65_1
  doi: 10.1002/mas.10025
– ident: e_1_2_11_45_1
  doi: 10.1016/j.celrep.2013.10.041
– ident: e_1_2_11_31_1
  doi: 10.1021/pr1011729
– ident: e_1_2_11_40_1
  doi: 10.1021/ac9004309
– ident: e_1_2_11_44_1
  doi: 10.1038/nmeth.2031
– ident: e_1_2_11_37_1
  doi: 10.1074/jbc.M600907200
– ident: e_1_2_11_57_1
  doi: 10.1074/mcp.M113.034710
– ident: e_1_2_11_59_1
  doi: 10.1016/S0021-9258(19)44749-2
– ident: e_1_2_11_76_1
  doi: 10.1021/bi5006305
– ident: e_1_2_11_14_1
  doi: 10.1016/j.ijms.2006.09.030
– ident: e_1_2_11_19_1
  doi: 10.1021/pr101065j
– ident: e_1_2_11_2_1
  doi: 10.1038/nrg3356
– ident: e_1_2_11_8_1
  doi: 10.1016/j.jprot.2012.04.033
– ident: e_1_2_11_25_1
  doi: 10.1038/nature13319
– volume-title: Handbook of Proteolytic Enzymes
  year: 2013
  ident: e_1_2_11_47_1
– ident: e_1_2_11_29_1
  doi: 10.1073/pnas.0611217104
– ident: e_1_2_11_7_1
  doi: 10.1021/cr3003533
– ident: e_1_2_11_20_1
  doi: 10.1074/mcp.M110.003731
– ident: e_1_2_11_55_1
  doi: 10.1038/nbt0303-262
– ident: e_1_2_11_63_1
  doi: 10.1016/0006-291X(89)90848-6
– volume: 6
  start-page: 1917
  year: 2010
  ident: e_1_2_11_41_1
  article-title: Proteome‐wide protein concentrations in the human heart
  publication-title: Mol Bio Syst
– ident: e_1_2_11_81_1
  doi: 10.1021/pr400522h
– ident: e_1_2_11_80_1
  doi: 10.1021/bi0014195
– ident: e_1_2_11_39_1
  doi: 10.1021/ac7024283
– ident: e_1_2_11_18_1
  doi: 10.1093/bioinformatics/bth092
– ident: e_1_2_11_36_1
  doi: 10.1039/c0cc02523b
– ident: e_1_2_11_42_1
  doi: 10.1074/mcp.M113.035170
– ident: e_1_2_11_87_1
  doi: 10.1016/S0952-7915(02)00010-9
– ident: e_1_2_11_28_1
  doi: 10.1021/pr400802z
– ident: e_1_2_11_67_1
  doi: 10.1016/j.chroma.2013.11.045
– ident: e_1_2_11_11_1
  doi: 10.1002/pmic.201300418
– ident: e_1_2_11_38_1
  doi: 10.1021/pr100341e
– ident: e_1_2_11_62_1
  doi: 10.1002/pmic.201400084
– ident: e_1_2_11_6_1
  doi: 10.1038/nprot.2006.468
– ident: e_1_2_11_9_1
  doi: 10.1074/mcp.M110.003699
– ident: e_1_2_11_34_1
  doi: 10.1021/pr050315j
– ident: e_1_2_11_58_1
  doi: 10.1016/j.bbrc.2012.08.015
– ident: e_1_2_11_82_1
  doi: 10.1128/EC.00210-10
– ident: e_1_2_11_35_1
  doi: 10.1038/nmeth.1204
– ident: e_1_2_11_48_1
  doi: 10.1074/jbc.R800035200
– ident: e_1_2_11_21_1
  doi: 10.1021/pr500202e
– ident: e_1_2_11_69_1
  doi: 10.1126/science.1128868
– ident: e_1_2_11_79_1
  doi: 10.1128/JB.186.17.5919-5925.2004
– ident: e_1_2_11_4_1
  doi: 10.1038/nrm2900
– ident: e_1_2_11_23_1
  doi: 10.1038/msb.2011.84
– ident: e_1_2_11_30_1
  doi: 10.1038/nmeth.1260
– ident: e_1_2_11_16_1
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– ident: e_1_2_11_84_1
  doi: 10.1021/ac101806e
– ident: e_1_2_11_71_1
  doi: 10.1021/pr1000994
– ident: e_1_2_11_78_1
  doi: 10.1271/bbb.66.127
SSID ssj0035499
Score 2.597375
SecondaryResourceType review_article
Snippet Peptide‐centered shotgun analysis of proteins has been the core technology in mass spectrometry based proteomics and has enabled numerous biological...
Peptide-centered shotgun analysis of proteins has been the core technology in mass spectrometry based proteomics and has enabled numerous biological...
SourceID unpaywall
proquest
pubmed
crossref
wiley
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2612
SubjectTerms bias in quantitative proteomics
cleavage specificity
data collection
digestion
Humans
mass spectrometry
Mass Spectrometry - methods
middle‐down proteomics
Peptide Hydrolases - chemistry
Peptide Hydrolases - metabolism
peptides
post-translational modification
proteases
protein post‐translational modifications
Protein Processing, Post-Translational
protein-protein interactions
Proteins
Proteolysis
proteome
Proteome - chemistry
Proteome - metabolism
Proteomics
Proteomics - methods
quantitative analysis
shotgun proteomics
trypsin
Trypsin - chemistry
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qX6oP1bbWRmuJWAoWcnSzH9mAL7X0KIIi1oN7KWF3sxHxmju8O6T-9c5sPrTSFupbSGZDdnZm9zebmd8C7KfWM5dZlmhufCIyVyV5mbNEMoL31hz5sKH_4aM6G4n3YzlegbddLUzDD9FvuJFnhPmaHNzY-V9OXnk7H2AspamUnHEV4qnPPXcUp8CnqYZME6HEuOUmpTSeP02vrUYPKjO9CWg-grVlPTNXP81kch3DhkVo-Bguus9vck--D5YLO3C__mF2_N_-PYH1Fp3Gx405bcCKrzdh67jGyPzyKj6IQ75o2IjfhLWT7qy4LYg-Ed0DFTjPYxtqYmK8P5t_q5_CaHj65eQsaQ9dSJzUxIHurfREQ4dQwubMudSovGSVdqwibkHOuLbC5Qgcco7RXFYq7bX0lZaikoLzbVitp7XfgbjUJsMJpSwFd8Q0ZpzGN7tSSYMwQ_sI3nTKL1zLSE4HY0yKLjIhHRRBBxG87mVnDQ_HjVI7OIaF-YoTZDE6T4k-j1CIUiKC3W5gi9ZNsZHCnhJnHY_gVf8YdUd_TUztp8sgg1FylnF5uwzVOxF40jqCZ43R9F-ZSp0iVDiKYL-3oju7cBis4g6RYnj67jxcPb-P8At4iAqRTa7xLqwufiz9S0RUC7sXPOc3VfMVpg
  priority: 102
  providerName: Wiley-Blackwell
Title Proteomics beyond trypsin
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.13287
https://www.ncbi.nlm.nih.gov/pubmed/25823410
https://www.proquest.com/docview/1696036763
https://www.proquest.com/docview/1697217735
https://www.proquest.com/docview/2000021588
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.13287
UnpaywallVersion publishedVersion
Volume 282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1742-4658
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0035499
  issn: 1742-464X
  databaseCode: HH5
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1742-4658
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0035499
  issn: 1742-464X
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1742-4658
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0035499
  issn: 1742-464X
  databaseCode: A8Z
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1742-4658
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0035499
  issn: 1742-464X
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1742-4658
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035499
  issn: 1742-464X
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1742-464X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1742-4658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035499
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_W9KHbwz7adfXWFY-VwQZOa-vD8mNWGspgpawLZE9GkuUxmjqhSRjtX987-WPL6Mpgb8I-CUu6O_1O1v0EsJ8YF9vUxJFi2kU8tWWUFVkciZjgvdGHzm_ofz6VJyP-aSzGv2Xx1_wQ3YYbWYb312Tgs6Ks_Xxr6gelM_M-xlMqXYN1KRCN92B9dHo2-FbnQSYRl3z8qyxUw1C6WnllTVor9fQuuPkINpbVTF__1JPJKpL1S9HwCei2E_UJlIv-cmH69uYPfsf_6eVTeNzg1HBQK9YzeOCqTdgaVBijX16H70J_ctRvyW_CxlF7a9wWBGdE_ECpzvPQ-OyYEJ_P5j-q5zAaHn89Ooma6xciKxSxoTsjHBHSIagwWWxtomVWxKWycUksgyxmynCbIYTIGMZ1aSGVU8KVSvBScMa2oVdNK7cDYaF0iq6lKDizxDmmrcKWbSGFRsChXADv2wnIbcNNTldkTPI2RqExyP0YBPC2k53VjBx3Su3gPOb6O7rKfHSeEJEe4REpeQC77eTmjcFiJYk9JfY6FsCb7jWOHf0_0ZWbLr0MxstpysTfZSjziWCUUgG8qBWn-8pEqARBw2EA-50m3duFD14z7hHJh8cfz33p5b-1-Qoe4lCI-rzxLvQWV0v3GlHVwuxhPPEl2WvM5xZTBhrC
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED_x8VB4AMbHCB9bJhASSKlIHCfOIyCqbgOEgEp9i2zHQRNdWq2tEPz13DlpBoghsbcoOUfx2Wf_7nL3M8BuoIyvY-V7gknjhbHOvSRLfI_7BO-VPDQ2oH9-EbU74Y8u71a5OVQLU_JD1AE3sgy7XpOBU0D6mZXnRg2b6EyJeBpmwwgdFcJEVzV7FCPXp6yHDDx83q3YSSmR52_bF_vRdC77b0HNeWiMi4F8uJe93ksUa7eh1mJ51urQshdS9sldczxSTf34itvxv3u4BAsVQHWPyhn1CaZMsQwrRwU6578f3D3XpozaWPwyNE4mx8WtgHNJjA9U4zx0lS2LcfH-YPirWIVO6_TmpO1V5y54mguiQTeKG2KiQzShEl_rQEZJ5udC-znRCzKfCRXqBLFDwtChi7NIGMFNLniY85CxNZgp-oVZBzcTMsY1JctCpolsTGqBb9ZZxCUiDWEc2J9oP9UVKTmdjdFLJ84J6SC1OnBgp5YdlFQcb0qt4yCm8hbXyLRzHRCDHgGRKAod2JqMbFpZKjaKsKdEW8cc-FY_Rt3RjxNZmP7YyqCjHMeM_1uGSp4IPwnhwOdy1tRfGXARIFo4dGC3nkbvduHATot3RNLW6fG1vdr4iPBXaLRvzs_Ss-8XPzdhDpXDy9TjLZgZ_RmbbQRYI_XFmtETw1oZxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4NJvHjYRuwQTbYgkCTQErVxHbiPDKgYhsgNFapb5HtOAhR0oq2QvDX785Js4EY0vYWJecoPt_Z3zl3nwG2I21Dk-gwkEzZgCemCNI8DQMRErzXqm3dhv7JaXzU5d96olfn5lAtTMUP0Wy4kWe4-Zoc3A7z4g8vL6wetTCYkskMvOQilZTRd_CjYY9iFPpU9ZBRwGPeq9lJKZHnd9sH69FMoQZPQc1FmJ-UQ3V3q_r9hyjWLUOd19VZqyPHXkjZJ1etyVi3zP0jbsf_7uEbeFUDVH-vsqgleGHLZVjZKzE4v77zP_suZdTtxS_D_P70uLgV8M6I8YFqnEe-dmUxPt4fji7Lt9DtHP7cPwrqcxcCIyTRoFstLDHRIZrQaWhMpOI0DwtpwoLoBVnIpOYmReyQMgzokjyWVgpbSMELwRl7B7PloLRr4OdSJTin5DlnhsjGlJH4ZpPHQiHSkNaDnan2M1OTktPZGP1sGpyQDjKnAw-2GtlhRcXxpNQaDmKmLnCOzLrnETHoERCJY-7B-nRks9pTsVGMPSXaOubBZvMYdUc_TlRpBxMng4FykjDxdxkqeSL8JKUHq5XVNF8ZCRkhWmh7sN2Y0bNd2HVm8YxI1jn8cu6u3v-L8CeYOzvoZMdfT79_gAXUjagyj9dhdnwzsRuIr8b6o_OiX0dpGUs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_a60P1wdZW7WqVFYugsGd387HZx2vpUQRLoR6cT0uSzRbx3Du8O6T96zuT_WhPahF8C7uTsElmJr_JZn4BOEiMi21q4kgx7SKe2jLKiiyOREzw3uhD5zf0v5zJ0xH_PBbjO1n8NT9Et-FGluH9NRn4rChrP9-a-qfSmXkf4ymVrsOGFIjGe7AxOjsffKvzIJOISz6-LQvVMJSuVl5Zk9ZLPb0Pbj6GzWU101e_9WSyimT9UjTcAt12oj6B8qO_XJi-vf6D3_F_erkNTxqcGg5qxXoKa67agd1BhTH6z6vwfehPjvot-R3YPG5vjduF4JyIHyjVeR4anx0T4vPZ_Hv1DEbDk6_Hp1Fz_UJkhSI2dGeEI0I6BBUmi61NtMyKuFQ2LollkMVMGW4zhBAZw7guLaRySrhSCV4Kzthz6FXTyu1BWCidomspCs4scY5pq7BlW0ihEXAoF8CHdgJy23CT0xUZk7yNUWgMcj8GAbzrZGc1I8e9Uns4j7m-RFeZjy4SItIjPCIlD2C_ndy8MVisJLGnxF7HAnjbvcaxo_8nunLTpZfBeDlNmfi7DGU-EYxSKoAXteJ0X5kIlSBoOAzgoNOkB7vw0WvGAyL58OTowpde_lubr-ARDoWozxvvQ2_xa-leI6pamDeN4dwAuFcZ2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteomics+beyond+trypsin&rft.jtitle=The+FEBS+journal&rft.au=Tsiatsiani%2C+Liana&rft.au=Heck%2C+Albert+J.+R.&rft.date=2015-07-01&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=282&rft.issue=14&rft.spage=2612&rft.epage=2626&rft_id=info:doi/10.1111%2Ffebs.13287&rft.externalDBID=10.1111%252Ffebs.13287&rft.externalDocID=FEBS13287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon