Functional roles of transiently and intrinsically disordered regions within proteins
Proteins are structurally heterogeneous and comprise folded regions with variable conformational stabilities and intrinsically disordered protein regions that do not have well‐folded structures. Even small, well‐folded single‐domain proteins are structurally heterogeneous and contain multiple foldon...
Saved in:
Published in | The FEBS journal Vol. 282; no. 7; pp. 1182 - 1189 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies
01.04.2015
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1742-464X 1742-4658 1742-4658 |
DOI | 10.1111/febs.13202 |
Cover
Abstract | Proteins are structurally heterogeneous and comprise folded regions with variable conformational stabilities and intrinsically disordered protein regions that do not have well‐folded structures. Even small, well‐folded single‐domain proteins are structurally heterogeneous and contain multiple foldon units with different conformational stability. Although the ability of many intrinsically disordered protein regions to undergo at least partial folding at interaction with specific binding partners is a well‐established fact, recent studies have revealed that functions of some ordered proteins rely on the decrease in the amount of their ordered structure and require local or even global functional unfolding. This functional unfolding is induced by transient alterations in protein environment or by modification of protein structure and can be reversed as soon as the environment is restored or the modification is removed. Therefore, the important features of these conditionally disordered protein regions (or unfoldons) are the induced nature and the transient character of their disorder. In other words, structurally any protein can be described as a modular assembly of foldons, inducible foldons, semi‐foldons, nonfoldons and unfoldons. Obviously, differently ordered/disordered proteins and protein regions can possess very different functional repertoires. This review represents some of the key functions of transiently and intrinsically disordered protein regions. |
---|---|
AbstractList | Proteins are structurally heterogeneous and comprise folded regions with variable conformational stabilities and intrinsically disordered protein regions that do not have well-folded structures. Even small, well-folded single-domain proteins are structurally heterogeneous and contain multiple foldon units with different conformational stability. Although the ability of many intrinsically disordered protein regions to undergo at least partial folding at interaction with specific binding partners is a well-established fact, recent studies have revealed that functions of some ordered proteins rely on the decrease in the amount of their ordered structure and require local or even global functional unfolding. This functional unfolding is induced by transient alterations in protein environment or by modification of protein structure and can be reversed as soon as the environment is restored or the modification is removed. Therefore, the important features of these conditionally disordered protein regions (or unfoldons) are the induced nature and the transient character of their disorder. In other words, structurally any protein can be described as a modular assembly of foldons, inducible foldons, semi-foldons, nonfoldons and unfoldons. Obviously, differently ordered/disordered proteins and protein regions can possess very different functional repertoires. This review represents some of the key functions of transiently and intrinsically disordered protein regions.Proteins are structurally heterogeneous and comprise folded regions with variable conformational stabilities and intrinsically disordered protein regions that do not have well-folded structures. Even small, well-folded single-domain proteins are structurally heterogeneous and contain multiple foldon units with different conformational stability. Although the ability of many intrinsically disordered protein regions to undergo at least partial folding at interaction with specific binding partners is a well-established fact, recent studies have revealed that functions of some ordered proteins rely on the decrease in the amount of their ordered structure and require local or even global functional unfolding. This functional unfolding is induced by transient alterations in protein environment or by modification of protein structure and can be reversed as soon as the environment is restored or the modification is removed. Therefore, the important features of these conditionally disordered protein regions (or unfoldons) are the induced nature and the transient character of their disorder. In other words, structurally any protein can be described as a modular assembly of foldons, inducible foldons, semi-foldons, nonfoldons and unfoldons. Obviously, differently ordered/disordered proteins and protein regions can possess very different functional repertoires. This review represents some of the key functions of transiently and intrinsically disordered protein regions. Proteins are structurally heterogeneous and comprise folded regions with variable conformational stabilities and intrinsically disordered protein regions that do not have well‐folded structures. Even small, well‐folded single‐domain proteins are structurally heterogeneous and contain multiple foldon units with different conformational stability. Although the ability of many intrinsically disordered protein regions to undergo at least partial folding at interaction with specific binding partners is a well‐established fact, recent studies have revealed that functions of some ordered proteins rely on the decrease in the amount of their ordered structure and require local or even global functional unfolding. This functional unfolding is induced by transient alterations in protein environment or by modification of protein structure and can be reversed as soon as the environment is restored or the modification is removed. Therefore, the important features of these conditionally disordered protein regions (or unfoldons) are the induced nature and the transient character of their disorder. In other words, structurally any protein can be described as a modular assembly of foldons, inducible foldons, semi‐foldons, nonfoldons and unfoldons. Obviously, differently ordered/disordered proteins and protein regions can possess very different functional repertoires. This review represents some of the key functions of transiently and intrinsically disordered protein regions. Structure of any protein can be described as a modular assembly of foldons, inducible foldons, semi‐foldons, nonfoldons, and unfoldons possessing very different functional repertoires. Therefore, not only ordered or completely disordered proteins, but also proteins and protein regions with different shades of order and different flavors of disorder are functional, generating a unique protein structure‐function continuum. Proteins are structurally heterogeneous and comprise folded regions with variable conformational stabilities and intrinsically disordered protein regions that do not have well-folded structures. Even small, well-folded single-domain proteins are structurally heterogeneous and contain multiple foldon units with different conformational stability. Although the ability of many intrinsically disordered protein regions to undergo at least partial folding at interaction with specific binding partners is a well-established fact, recent studies have revealed that functions of some ordered proteins rely on the decrease in the amount of their ordered structure and require local or even global functional unfolding. This functional unfolding is induced by transient alterations in protein environment or by modification of protein structure and can be reversed as soon as the environment is restored or the modification is removed. Therefore, the important features of these conditionally disordered protein regions (or unfoldons) are the induced nature and the transient character of their disorder. In other words, structurally any protein can be described as a modular assembly of foldons, inducible foldons, semi-foldons, nonfoldons and unfoldons. Obviously, differently ordered/disordered proteins and protein regions can possess very different functional repertoires. This review represents some of the key functions of transiently and intrinsically disordered protein regions. |
Author | Uversky, Vladimir N |
Author_xml | – sequence: 1 fullname: Uversky, Vladimir N |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25631540$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhoNU7Idu_AE64EaUW_M9maUtvVoouGgL7kJu5qSm5CbXZIbL_ffNOG0XRdqzSTg87-E97zlEezFFQOg9wcek1jcHq3JMGMX0FTogLacLLoXae_zz3_vosJRbjJngXfcG7VMhGREcH6Cr5Rjt4FM0ockpQGmSa4ZsYvEQh7BrTOwbH4fsa8eaUDu9Lyn3kKFvMtxUaWm2fvjjY7PJaYAKvkWvnQkF3t2_R-h6eXZ1-nNx8evH-en3i4UVStKFNIIqJnq3Ilz1UjnMQfWMW2tFKx3rsHNUOr6ClrQUA3OSK0cZazFXBFp2hL7Oc8e4Mbttdac32a9N3mmC9ZSNnrLR_7Kp9OeZrjb_jlAGvfbFQggmQhqLprgW6xRRL6JEtoQSiklX0U9P0Ns05hrnRMlWKUHZNPDDPTWu1tA_2nw4RAXwDNicSsngtPWDmQ5Tj-HD__f58kTy7PJkhrc-wO4ZUi_PTi4fNB9njTNJm5vsi76-rEvLmlMNi1B2B54ewKI |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2022_07_203 crossref_primary_10_1080_21690707_2016_1253526 crossref_primary_10_3389_fphy_2019_00010 crossref_primary_10_1080_07391102_2020_1749133 crossref_primary_10_3390_toxins9090289 crossref_primary_10_1002_pro_3041 crossref_primary_10_1016_j_ijbiomac_2023_126526 crossref_primary_10_1038_srep25205 crossref_primary_10_3390_biom10111554 crossref_primary_10_3390_biom12020209 crossref_primary_10_1111_febs_13548 crossref_primary_10_1007_s11011_021_00791_8 crossref_primary_10_1002_pro_3718 crossref_primary_10_1007_s12551_022_00968_0 crossref_primary_10_3390_ijms21072293 crossref_primary_10_3390_ijms21165879 crossref_primary_10_1007_s00018_023_04781_0 crossref_primary_10_1016_j_molcel_2019_03_033 crossref_primary_10_1021_acs_jproteome_0c00212 crossref_primary_10_1371_journal_pone_0261215 crossref_primary_10_3390_polym11060990 crossref_primary_10_1007_s13238_017_0501_8 crossref_primary_10_1016_j_ymeth_2022_07_013 crossref_primary_10_1038_s41598_025_94148_1 crossref_primary_10_1186_s12859_019_3111_z crossref_primary_10_3390_life12030345 crossref_primary_10_1080_07391102_2016_1164077 crossref_primary_10_1002_1873_3468_12725 crossref_primary_10_1016_j_bbamem_2022_184030 crossref_primary_10_3390_ijms21103709 crossref_primary_10_3390_ijms241311007 crossref_primary_10_1038_s41598_020_71716_1 crossref_primary_10_1590_1678_4685_gmb_2015_0323 crossref_primary_10_1039_C7MT00087A crossref_primary_10_1016_j_biopha_2022_112647 crossref_primary_10_1021_acs_jpcb_0c07676 crossref_primary_10_4103_njbcs_njbcs_2_20 crossref_primary_10_1063_5_0080512 crossref_primary_10_1186_s12915_020_00824_1 crossref_primary_10_1080_15548627_2019_1646540 crossref_primary_10_31083_j_fbl2808157 crossref_primary_10_3389_fgene_2021_706260 crossref_primary_10_2139_ssrn_4116299 crossref_primary_10_1007_s00018_022_04468_y crossref_primary_10_1042_BCJ20210146 crossref_primary_10_1016_j_mam_2025_101337 crossref_primary_10_3389_fneur_2024_1376643 crossref_primary_10_1038_s41598_020_61466_5 crossref_primary_10_12688_f1000research_20867_1 crossref_primary_10_3390_biom12101436 crossref_primary_10_1016_j_ijbiomac_2022_10_120 crossref_primary_10_3892_ijmm_2015_2285 crossref_primary_10_1021_acs_biochem_7b00942 crossref_primary_10_3390_biom10111531 crossref_primary_10_1016_j_ijbiomac_2022_10_126 crossref_primary_10_1016_j_bpj_2016_07_042 crossref_primary_10_3390_molecules23020328 crossref_primary_10_1016_j_cocis_2021_101457 crossref_primary_10_1002_jcb_30123 crossref_primary_10_3390_receptors3010006 crossref_primary_10_1074_jbc_M115_650952 crossref_primary_10_3390_cancers13225870 crossref_primary_10_3390_biom11111632 crossref_primary_10_1016_j_biocel_2016_10_020 crossref_primary_10_1002_pmic_201900085 crossref_primary_10_3390_a14040107 crossref_primary_10_1007_s00018_019_03276_1 crossref_primary_10_1177_1176935117699408 crossref_primary_10_1186_s13059_018_1563_5 crossref_primary_10_3390_biom12101441 crossref_primary_10_1371_journal_pcbi_1007815 crossref_primary_10_1128_IAI_00060_20 crossref_primary_10_1016_j_jbc_2023_104947 crossref_primary_10_1021_jacs_8b08141 crossref_primary_10_1093_gbe_evw279 crossref_primary_10_3389_fmolb_2022_962643 crossref_primary_10_1002_jmr_2868 crossref_primary_10_1016_j_ijbiomac_2019_02_148 crossref_primary_10_1016_j_bone_2016_10_028 crossref_primary_10_1074_jbc_M116_760975 crossref_primary_10_1146_annurev_biophys_062920_063704 crossref_primary_10_1080_21690707_2016_1255295 crossref_primary_10_3390_life14101307 crossref_primary_10_1021_acs_jctc_1c00027 crossref_primary_10_3389_fgene_2018_00158 crossref_primary_10_1038_nchembio_2549 crossref_primary_10_1080_21690707_2017_1327757 crossref_primary_10_1016_j_bpj_2023_12_021 crossref_primary_10_3390_biom9040147 crossref_primary_10_1093_nargab_lqab038 crossref_primary_10_3390_a12020046 crossref_primary_10_1016_j_celrep_2024_114526 crossref_primary_10_1007_s00232_019_00069_2 crossref_primary_10_1016_j_bpj_2015_12_008 crossref_primary_10_3390_ijms21145030 crossref_primary_10_1007_s12013_017_0785_6 crossref_primary_10_3390_molecules24183265 crossref_primary_10_1016_j_ijbiomac_2019_06_143 crossref_primary_10_1080_07391102_2017_1330224 crossref_primary_10_1007_s00018_016_2416_6 crossref_primary_10_1038_s41419_023_05572_y crossref_primary_10_1038_srep14223 crossref_primary_10_1038_srep22527 crossref_primary_10_1002_pro_4968 crossref_primary_10_3389_fgene_2021_654256 crossref_primary_10_1590_1678_4685_gmb_2023_0045 crossref_primary_10_1038_s41698_019_0083_4 crossref_primary_10_3390_life14030280 crossref_primary_10_1016_j_bpj_2018_01_031 crossref_primary_10_7717_peerj_6810 crossref_primary_10_1007_s00018_020_03654_0 crossref_primary_10_1021_acs_biochem_8b00446 crossref_primary_10_1007_s00018_023_04897_3 crossref_primary_10_1016_j_str_2018_02_010 crossref_primary_10_1007_s10695_023_01264_8 crossref_primary_10_36016_VM_2023_109_5 crossref_primary_10_3389_fcell_2016_00121 crossref_primary_10_1042_EBC20220052 crossref_primary_10_1016_j_jprot_2020_103919 crossref_primary_10_1038_s41598_017_18977_5 crossref_primary_10_1124_pharmrev_124_001113 crossref_primary_10_1126_science_aai7825 crossref_primary_10_1093_bfgp_ely023 crossref_primary_10_1002_1873_3468_13211 crossref_primary_10_3390_ijms18091898 crossref_primary_10_1007_s00018_022_04276_4 crossref_primary_10_12998_wjcc_v10_i33_12319 crossref_primary_10_1080_07391102_2019_1592027 crossref_primary_10_1080_07391102_2020_1756409 crossref_primary_10_1002_pro_3624 crossref_primary_10_3390_e21070635 crossref_primary_10_1371_journal_pone_0217889 crossref_primary_10_1007_s12551_021_00853_2 crossref_primary_10_3390_gels5010010 crossref_primary_10_1186_s12964_021_00774_3 crossref_primary_10_3390_ijms23116352 crossref_primary_10_1002_pmic_201800060 crossref_primary_10_1002_prot_26441 crossref_primary_10_3390_v14102189 crossref_primary_10_3390_biom10091294 crossref_primary_10_3390_biology11071091 crossref_primary_10_1038_s41598_017_10525_5 crossref_primary_10_1073_pnas_1700082114 crossref_primary_10_1002_pro_4303 crossref_primary_10_1371_journal_pbio_2005956 crossref_primary_10_1016_j_matbio_2016_01_007 crossref_primary_10_1021_acs_chemrev_1c00848 crossref_primary_10_3390_ijms20215260 crossref_primary_10_1016_j_bbrep_2020_100868 crossref_primary_10_1002_cbic_202000237 crossref_primary_10_1101_gr_212696_116 crossref_primary_10_3390_ijms25158399 crossref_primary_10_1002_prot_25000 crossref_primary_10_1007_s12013_018_0839_4 crossref_primary_10_1016_j_bbamem_2020_183440 crossref_primary_10_1016_j_ijbiomac_2023_125396 |
Cites_doi | 10.1039/C0CS00057D 10.1110/ps.062655907 10.1073/pnas.160259697 10.1016/j.jmb.2004.02.002 10.1073/pnas.1411798111 10.1093/nar/gkt897 10.1016/S0022-2836(02)00969-5 10.1002/prot.21974 10.1371/journal.pone.0068175 10.1021/ar5002318 10.1371/journal.pcbi.1000958 10.2174/138945008783954943 10.1016/j.bbapap.2012.12.008 10.1002/jmr.961 10.1002/cber.18940270364 10.1096/fasebj.9.9.7601335 10.1021/bi7014822 10.1080/07391102.2012.675145 10.1038/srep03643 10.1021/ja3008402 10.1139/o94-049 10.1016/j.tibs.2004.11.005 10.1016/j.jmb.2005.04.019 10.1111/j.1742-4658.2009.07090.x 10.1021/cr400514h 10.1093/protein/gzu043 10.1038/nsmb746 10.1021/cr400525m 10.1007/s00775-014-1191-9 10.1021/bi400808j 10.1002/pro.2261 10.1002/prot.20757 10.1021/cr400459c 10.1093/bioinformatics/btl137 10.1016/j.str.2014.08.014 10.3390/ijms140713282 10.1002/bip.22534 10.1016/S0968-0004(02)02169-2 10.1093/nar/gku993 10.1146/annurev-biochem-072711-164947 10.1016/j.semcdb.2014.09.017 10.1111/j.1742-4658.2010.07864.x 10.1016/S0959-440X(02)00289-0 10.1073/pnas.93.21.11504 10.1007/s00018-014-1661-9 10.1016/j.febslet.2013.04.042 10.1139/o98-027 10.1017/S0033583508004654 10.1002/pro.2206 10.1074/jbc.M807312200 10.1006/jmbi.1999.3110 10.1016/j.sbi.2007.01.008 10.1073/pnas.44.2.98 10.1016/S1093-3263(00)00138-8 10.2174/138920307780363424 10.1074/jbc.M109.001305 10.1016/j.addr.2012.09.039 10.1016/j.jmb.2004.08.005 10.1021/bm3002446 10.1021/bi802148r 10.1002/pro.2494 10.1021/bi050736e 10.1016/j.pbiomolbio.2008.05.007 10.1016/j.bbagrm.2011.05.012 10.1021/pr0701411 10.1021/bi7012273 10.1073/pnas.1315104110 10.1146/annurev.biochem.69.1.961 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 10.1016/j.tibs.2012.08.004 10.1042/BST20130257 10.1016/j.bbapap.2010.01.017 10.1073/pnas.0702580104 10.1021/bi047993o 10.1016/S0065-2318(08)60149-3 10.1073/pnas.0501043102 10.1016/j.jmb.2007.12.020 10.1073/pnas.0801864105 10.1016/j.mce.2012.02.019 10.1016/j.str.2011.06.002 10.1039/c0mb00305k |
ContentType | Journal Article |
Copyright | 2015 FEBS 2015 FEBS. Copyright © 2015 Federation of European Biochemical Societies |
Copyright_xml | – notice: 2015 FEBS – notice: 2015 FEBS. – notice: Copyright © 2015 Federation of European Biochemical Societies |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 ADTOC UNPAY |
DOI | 10.1111/febs.13202 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 1189 |
ExternalDocumentID | 10.1111/febs.13202 3641219511 25631540 10_1111_febs_13202 FEBS13202 US201600020012 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Russian Science Foundation RSCF funderid: 14‐24‐00131 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHBH AAHQN AAIPD AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABPVW ABQWH ABXGK ACAHQ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESTFP ESX EX3 F00 F01 F04 F5P FBQ FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE OK1 WRC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 ADTOC UNPAY |
ID | FETCH-LOGICAL-c5862-6a52835dfb148d68f04e8d34ccc576f390ff26f4be71720e3f648f23370481e73 |
IEDL.DBID | UNPAY |
ISSN | 1742-464X 1742-4658 |
IngestDate | Tue Aug 19 23:47:48 EDT 2025 Fri Sep 05 17:24:46 EDT 2025 Mon Sep 08 07:09:42 EDT 2025 Fri Jul 25 19:42:55 EDT 2025 Mon Jul 21 06:04:59 EDT 2025 Thu Apr 24 22:51:37 EDT 2025 Wed Oct 01 03:46:27 EDT 2025 Wed Jan 22 17:10:31 EST 2025 Sun Sep 07 01:39:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | intrinsically disordered protein semi-foldon intrinsically disordered region molecular recognition nonfoldon protein-protein interaction induced foldon post-translational modification foldon unfoldon |
Language | English |
License | 2015 FEBS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5862-6a52835dfb148d68f04e8d34ccc576f390ff26f4be71720e3f648f23370481e73 |
Notes | http://dx.doi.org/10.1111/febs.13202 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.13202 |
PMID | 25631540 |
PQID | 1667885238 |
PQPubID | 28478 |
PageCount | 8 |
ParticipantIDs | unpaywall_primary_10_1111_febs_13202 proquest_miscellaneous_2000039818 proquest_miscellaneous_1671212019 proquest_journals_1667885238 pubmed_primary_25631540 crossref_citationtrail_10_1111_febs_13202 crossref_primary_10_1111_febs_13202 wiley_primary_10_1111_febs_13202_FEBS13202 fao_agris_US201600020012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2015 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2015 |
Publisher | Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies Blackwell Publishing Ltd |
Publisher_xml | – name: Published by Blackwell Pub. on behalf of the Federation of European Biochemical Societies – name: Blackwell Publishing Ltd |
References | 2007; 104 2013; 22 2013; 65 2015; 72 2015; 103 2002; 12 1999; 293 2000; 41 2014; 27 2008; 9 2009; 276 2008; 105 2008; 72 2012; 13 2013; 8 2011; 19 2014; 23 2014; 22 2009; 48 2010; 23 2006; 63 2013; 14 2014; 4 2012; 134 2005; 102 2006; 22 2000; 11 1958; 44 2010; 277 2000; 97 2013; 52 2001; 19 2005; 349 2007; 8 2005; 30 2007; 6 2010; 1804 2014; 19 2009; 284 2013; 110 1994; 72 2004; 337 2010; 6 2004; 343 2007; 17 2013; 1834 1995; 9 2000; 69 2011; 1809 2011; 40 1996; 93 2013; 587 2014; 47 2006 2008; 98 2012; 37 2014; 111 2014; 83 2014; 114 2005; 44 2011; 7 2012; 30 2007; 16 2014; 42 2002; 27 2004; 11 2002; 323 2007; 40 2014 2008; 376 1994; 50 2012; 358 1998; 76 2007; 46 1894; 27 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 Dunker AK (e_1_2_8_17_1) 2000; 11 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_84_1 Mohan A (e_1_2_8_41_1) 2006 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 23 start-page: 1077 year: 2014 end-page: 1093 article-title: The structural and functional signatures of proteins that undergo multiple events of post‐translational modification publication-title: Protein Sci – volume: 46 start-page: 13468 year: 2007 end-page: 13477 article-title: Mining alpha‐helix‐forming molecular recognition features with cross species sequence alignments publication-title: Biochemistry – volume: 284 start-page: 1781 year: 2009 end-page: 1789 article-title: RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion publication-title: J Biol Chem – volume: 6 start-page: 2351 year: 2007 end-page: 2366 article-title: Characterization of molecular recognition features, MoRFs, and their binding partners publication-title: J Proteome Res – volume: 22 start-page: 1546 year: 2006 end-page: 1550 article-title: Intrinsically disordered C‐terminal segments of voltage‐activated potassium channels: a possible fishing rod‐like mechanism for channel binding to scaffold proteins publication-title: Bioinformatics – volume: 19 start-page: 1341 year: 2014 end-page: 1354 article-title: The conformational response to Zn(II) and Ni(II) binding of Sporosarcina pasteurii UreG, an intrinsically disordered GTPase publication-title: J Biol Inorg Chem – volume: 42 start-page: 12614 year: 2014 end-page: 12627 article-title: The intrinsically disordered amino‐terminal region of human RecQL4: multiple DNA‐binding domains confer annealing, strand exchange and G4 DNA binding publication-title: Nucleic Acids Res – volume: 103 start-page: 15 year: 2015 end-page: 22 article-title: The C‐terminal calcium‐sensitive disordered motifs regulate isoform‐specific polymerization characteristics of calsequestrin publication-title: Biopolymers – volume: 22 start-page: 693 year: 2013 end-page: 724 article-title: A decade and a half of protein intrinsic disorder: biology still waits for physics publication-title: Protein Sci – volume: 22 start-page: 1467 year: 2014 end-page: 1477 article-title: Multiscale conformational heterogeneity in staphylococcal protein a: possible determinant of functional plasticity publication-title: Structure – volume: 7 start-page: 2164 year: 2011 end-page: 2180 article-title: Intrinsic disorder in S100 proteins publication-title: Mol BioSyst – volume: 17 start-page: 21 year: 2007 end-page: 29 article-title: Malleability of protein folding pathways: a simple reason for complex behaviour publication-title: Curr Opin Struct Biol – volume: 44 start-page: 12454 year: 2005 end-page: 12470 article-title: Coupled folding and binding with alpha‐helix‐forming molecular recognition elements publication-title: Biochemistry – volume: 277 start-page: 4348 year: 2010 end-page: 4355 article-title: Functional classification of scaffold proteins and related molecules publication-title: FEBS J – volume: 37 start-page: 509 year: 2012 end-page: 516 article-title: Intrinsically disordered proteins: a 10‐year recap publication-title: Trends Biochem Sci – volume: 40 start-page: 287 year: 2007 end-page: 326 article-title: Protein folding and misfolding: mechanism and principles publication-title: Q Rev Biophys – volume: 52 start-page: 5696 year: 2013 end-page: 5703 article-title: A pearl protein self‐assembles to form protein complexes that amplify mineralization publication-title: Biochemistry – volume: 22 start-page: 153 year: 2013 end-page: 167 article-title: Linkers in the structural biology of protein‐protein interactions publication-title: Protein Sci – volume: 4 start-page: 3643 year: 2014 article-title: Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi‐protein transcription complex publication-title: Sci Rep – volume: 48 start-page: 1332 year: 2009 end-page: 1339 article-title: AP7, a partially disordered pseudo C‐RING protein, is capable of forming stabilized aragonite in vitro publication-title: Biochemistry – volume: 12 start-page: 54 year: 2002 end-page: 60 article-title: Coupling of folding and binding for unstructured proteins publication-title: Curr Opin Struct Biol – volume: 27 start-page: 325 year: 2014 end-page: 330 article-title: Design and characterization of structured protein linkers with differing flexibilities publication-title: Protein Eng Des Sel – volume: 8 start-page: e68175 year: 2013 article-title: The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5‐kDa myelin basic protein publication-title: PLoS One – volume: 1804 start-page: 1231 year: 2010 end-page: 1264 article-title: Understanding protein non‐folding publication-title: Biochim Biophys Acta – volume: 358 start-page: 1 year: 2012 end-page: 8 article-title: The hinge region in androgen receptor control publication-title: Mol Cell Endocrinol – volume: 323 start-page: 573 year: 2002 end-page: 584 article-title: Intrinsic disorder in cell‐signaling and cancer‐associated proteins publication-title: J Mol Biol – volume: 587 start-page: 1891 year: 2013 end-page: 1901 article-title: The most important thing is the tail: multitudinous functionalities of intrinsically disordered protein termini publication-title: FEBS Lett – volume: 16 start-page: 449 year: 2007 end-page: 464 article-title: A unified mechanism for protein folding: predetermined pathways with optional errors publication-title: Protein Sci – volume: 111 start-page: 15873 year: 2014 end-page: 15880 article-title: The nature of protein folding pathways publication-title: Proc Natl Acad Sci USA – volume: 19 start-page: 26 year: 2001 end-page: 59 article-title: Intrinsically disordered protein publication-title: J Mol Graph Model – volume: 114 start-page: 6589 year: 2014 end-page: 6631 article-title: Classification of intrinsically disordered regions and proteins publication-title: Chem Rev – volume: 104 start-page: 9650 year: 2007 end-page: 9655 article-title: Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 197 year: 2007 end-page: 203 article-title: Posttranslational modifications and subcellular localization signals: indicators of sequence regions without inherent 3D structure? publication-title: Curr Protein Pept Sci – volume: 27 start-page: 2985 year: 1894 end-page: 2993 article-title: Einfluss der configuration auf die wirkung der enzyme publication-title: Ber Dtsch Chem Ges – volume: 30 start-page: 53 year: 2005 end-page: 62 article-title: Substrate‐induced conformational changes in glycosyltransferases publication-title: Trends Biochem Sci – volume: 44 start-page: 1989 year: 2005 end-page: 2000 article-title: Comparing and combining predictors of mostly disordered proteins publication-title: Biochemistry – volume: 343 start-page: 223 year: 2004 end-page: 233 article-title: How cytochrome c folds, and why: submolecular foldon units and their stepwise sequential stabilization publication-title: J Mol Biol – volume: 46 start-page: 13120 year: 2007 end-page: 13130 article-title: Effects of zinc binding on the structure and dynamics of the intrinsically disordered protein prothymosin alpha: evidence for metalation as an entropic switch publication-title: Biochemistry – volume: 27 start-page: 527 year: 2002 end-page: 533 article-title: Intrinsically unstructured proteins publication-title: Trends Biochem Sci – volume: 14 start-page: 13282 year: 2013 end-page: 13306 article-title: NS3 protease from hepatitis C virus: biophysical studies on an intrinsically disordered protein domain publication-title: Int J Mol Sci – volume: 376 start-page: 1142 year: 2008 end-page: 1154 article-title: The foldon substructure of staphylococcal nuclease publication-title: J Mol Biol – volume: 11 start-page: 161 year: 2000 end-page: 171 article-title: Intrinsic protein disorder in complete genomes publication-title: Genome Inform Ser Workshop Genome Inform – volume: 93 start-page: 11504 year: 1996 end-page: 11509 article-title: Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2‐bound state: conformational disorder mediates binding diversity publication-title: Proc Natl Acad Sci USA – volume: 83 start-page: 553 year: 2014 end-page: 584 article-title: Intrinsically disordered proteins and intrinsically disordered protein regions publication-title: Annu Rev Biochem – volume: 349 start-page: 764 year: 2005 end-page: 773 article-title: Molecular basis for the specificity of p27 toward cyclin‐dependent kinases that regulate cell division publication-title: J Mol Biol – volume: 134 start-page: 7094 year: 2012 end-page: 7101 article-title: Disorder‐to‐order transition of an intrinsically disordered region of sortase revealed by multiscale enhanced sampling publication-title: J Am Chem Soc – volume: 23 start-page: 105 year: 2010 end-page: 116 article-title: Protein dynamics and conformational disorder in molecular recognition publication-title: J Mol Recognit – volume: 40 start-page: 1623 year: 2011 end-page: 1634 article-title: Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder‐based complexes publication-title: Chem Soc Rev – volume: 72 start-page: 822 year: 2008 end-page: 836 article-title: Apo‐parvalbumin as an intrinsically disordered protein publication-title: Proteins – volume: 1834 start-page: 932 year: 2013 end-page: 951 article-title: Unusual biophysics of intrinsically disordered proteins publication-title: Biochim Biophys Acta – volume: 19 start-page: 907 year: 2011 end-page: 917 article-title: Dynamic allostery: linkers are not merely flexible publication-title: Structure – volume: 97 start-page: 8868 year: 2000 end-page: 8873 article-title: Speeding molecular recognition by using the folding funnel: the fly‐casting mechanism publication-title: Proc Natl Acad Sci USA – volume: 30 start-page: 137 year: 2012 end-page: 149 article-title: Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life publication-title: J Biomol Struct Dyn – volume: 65 start-page: 1357 year: 2013 end-page: 1369 article-title: Fusion protein linkers: property, design and functionality publication-title: Adv Drug Deliv Rev – volume: 13 start-page: 1758 year: 2012 end-page: 1764 article-title: Engineering of an environmentally responsive beta roll peptide for use as a calcium‐dependent cross‐linking domain for peptide hydrogel formation publication-title: Biomacromolecules – volume: 44 start-page: 98 year: 1958 end-page: 104 article-title: Application of a theory of enzyme specificity to protein synthesis publication-title: Proc Natl Acad Sci USA – volume: 41 start-page: 415 year: 2000 end-page: 427 article-title: Why are “natively unfolded” proteins unstructured under physiologic conditions? publication-title: Proteins – volume: 114 start-page: 6779 year: 2014 end-page: 6805 article-title: Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function publication-title: Chem Rev – volume: 63 start-page: 349 year: 2006 end-page: 355 article-title: Functional role of a protein foldon–an Omega‐loop foldon controls the alkaline transition in ferricytochrome c publication-title: Proteins – volume: 1809 start-page: 488 year: 2011 end-page: 496 article-title: One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes? publication-title: Biochim Biophys Acta – volume: 337 start-page: 635 year: 2004 end-page: 645 article-title: Prediction and functional analysis of native disorder in proteins from the three kingdoms of life publication-title: J Mol Biol – volume: 47 start-page: 3118 year: 2014 end-page: 3126 article-title: Insights into domain‐domain motions in proteins and RNA from solution NMR publication-title: Acc Chem Res – volume: 9 start-page: 708 year: 1995 end-page: 717 article-title: Omega loops: nonregular secondary structures significant in protein function and stability publication-title: FASEB J – volume: 6 start-page: e1000958 year: 2010 article-title: Library of disordered patterns in 3D protein structures publication-title: PLoS Comput Biol – year: 2014 article-title: An intrinsically disordered linker plays a critical role in bacterial cell division publication-title: Semin Cell Dev Biol – volume: 72 start-page: 357 year: 1994 end-page: 376 article-title: The Merck Frosst Award Lecture 1994. Calmodulin: a versatile calcium mediator protein publication-title: Biochem Cell Biol – volume: 110 start-page: E4427 year: 2013 end-page: E4436 article-title: Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho‐dependent intra‐ and intermolecular interactions publication-title: Proc Natl Acad Sci USA – year: 2006 – volume: 76 start-page: 313 year: 1998 end-page: 323 article-title: Molecular mechanisms of calmodulin's functional versatility, publication-title: Biochem Cell Biol – volume: 72 start-page: 137 year: 2015 end-page: 151 article-title: Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life publication-title: Cell Mol Life Sci – volume: 102 start-page: 4741 year: 2005 end-page: 4746 article-title: Protein folding: the stepwise assembly of foldon units publication-title: Proc Natl Acad Sci USA – volume: 42 start-page: 139 year: 2014 end-page: 144 article-title: Allosteric linkers in cAMP signalling publication-title: Biochem Soc Trans – volume: 42 start-page: 1180 year: 2014 end-page: 1195 article-title: Intrinsically disordered regions of nucleophosmin/B23 regulate its RNA binding activity through their inter‐ and intra‐molecular association publication-title: Nucleic Acids Res – volume: 98 start-page: 85 year: 2008 end-page: 106 article-title: Intrinsic disorder in scaffold proteins: getting more from less publication-title: Prog Biophys Mol Biol – volume: 276 start-page: 3744 year: 2009 end-page: 3756 article-title: High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASK‐interactive protein1 publication-title: FEBS J – volume: 105 start-page: 7182 year: 2008 end-page: 7187 article-title: Protein folding: independent unrelated pathways or predetermined pathway with optional errors publication-title: Proc Natl Acad Sci USA – volume: 293 start-page: 321 year: 1999 end-page: 331 article-title: Intrinsically unstructured proteins: re‐assessing the protein structure–function paradigm publication-title: J Mol Biol – volume: 114 start-page: 6561 year: 2014 end-page: 6588 article-title: Introducing protein intrinsic disorder publication-title: Chem Rev – volume: 69 start-page: 961 year: 2000 end-page: 1004 article-title: Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions publication-title: Annu Rev Biochem – volume: 11 start-page: 358 year: 2004 end-page: 364 article-title: p27 binds cyclin‐CDK complexes through a sequential mechanism involving binding‐induced protein folding publication-title: Nat Struct Mol Biol – volume: 284 start-page: 16419 year: 2009 end-page: 16431 article-title: Zinc ion‐induced domain organization in metallo‐beta‐lactamases: a flexible “zinc arm” for rapid metal ion transfer? publication-title: J Biol Chem – volume: 9 start-page: 292 year: 2008 end-page: 309 article-title: Structure and function of beta ‐1,4‐galactosyltransferase publication-title: Curr Drug Targets – volume: 50 start-page: 1 year: 1994 end-page: 20 article-title: How Emil Fischer was led to the lock and key concept for enzyme specificity publication-title: Adv Carbohydr Chem Biochem – ident: e_1_2_8_43_1 doi: 10.1039/C0CS00057D – ident: e_1_2_8_28_1 doi: 10.1110/ps.062655907 – ident: e_1_2_8_4_1 doi: 10.1073/pnas.160259697 – ident: e_1_2_8_18_1 doi: 10.1016/j.jmb.2004.02.002 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.1411798111 – ident: e_1_2_8_82_1 doi: 10.1093/nar/gkt897 – ident: e_1_2_8_22_1 doi: 10.1016/S0022-2836(02)00969-5 – ident: e_1_2_8_63_1 doi: 10.1002/prot.21974 – ident: e_1_2_8_75_1 doi: 10.1371/journal.pone.0068175 – ident: e_1_2_8_47_1 doi: 10.1021/ar5002318 – ident: e_1_2_8_34_1 doi: 10.1371/journal.pcbi.1000958 – ident: e_1_2_8_61_1 doi: 10.2174/138945008783954943 – ident: e_1_2_8_12_1 doi: 10.1016/j.bbapap.2012.12.008 – ident: e_1_2_8_84_1 doi: 10.1002/jmr.961 – ident: e_1_2_8_2_1 doi: 10.1002/cber.18940270364 – ident: e_1_2_8_59_1 doi: 10.1096/fasebj.9.9.7601335 – ident: e_1_2_8_62_1 doi: 10.1021/bi7014822 – ident: e_1_2_8_20_1 doi: 10.1080/07391102.2012.675145 – ident: e_1_2_8_80_1 doi: 10.1038/srep03643 – ident: e_1_2_8_65_1 doi: 10.1021/ja3008402 – ident: e_1_2_8_55_1 doi: 10.1139/o94-049 – ident: e_1_2_8_60_1 doi: 10.1016/j.tibs.2004.11.005 – ident: e_1_2_8_38_1 doi: 10.1016/j.jmb.2005.04.019 – ident: e_1_2_8_78_1 doi: 10.1111/j.1742-4658.2009.07090.x – ident: e_1_2_8_15_1 doi: 10.1021/cr400514h – ident: e_1_2_8_46_1 doi: 10.1093/protein/gzu043 – ident: e_1_2_8_37_1 doi: 10.1038/nsmb746 – ident: e_1_2_8_14_1 doi: 10.1021/cr400525m – ident: e_1_2_8_66_1 doi: 10.1007/s00775-014-1191-9 – ident: e_1_2_8_73_1 doi: 10.1021/bi400808j – ident: e_1_2_8_13_1 doi: 10.1002/pro.2261 – ident: e_1_2_8_31_1 doi: 10.1002/prot.20757 – ident: e_1_2_8_32_1 doi: 10.1021/cr400459c – ident: e_1_2_8_74_1 doi: 10.1093/bioinformatics/btl137 – ident: e_1_2_8_45_1 doi: 10.1016/j.str.2014.08.014 – ident: e_1_2_8_70_1 doi: 10.3390/ijms140713282 – ident: e_1_2_8_71_1 doi: 10.1002/bip.22534 – ident: e_1_2_8_9_1 doi: 10.1016/S0968-0004(02)02169-2 – ident: e_1_2_8_76_1 doi: 10.1093/nar/gku993 – ident: e_1_2_8_16_1 doi: 10.1146/annurev-biochem-072711-164947 – ident: e_1_2_8_44_1 doi: 10.1016/j.semcdb.2014.09.017 – ident: e_1_2_8_79_1 doi: 10.1111/j.1742-4658.2010.07864.x – ident: e_1_2_8_36_1 doi: 10.1016/S0959-440X(02)00289-0 – ident: e_1_2_8_35_1 doi: 10.1073/pnas.93.21.11504 – ident: e_1_2_8_21_1 doi: 10.1007/s00018-014-1661-9 – ident: e_1_2_8_33_1 doi: 10.1016/j.febslet.2013.04.042 – ident: e_1_2_8_56_1 doi: 10.1139/o98-027 – ident: e_1_2_8_26_1 doi: 10.1017/S0033583508004654 – ident: e_1_2_8_48_1 doi: 10.1002/pro.2206 – ident: e_1_2_8_67_1 doi: 10.1074/jbc.M807312200 – ident: e_1_2_8_7_1 doi: 10.1006/jmbi.1999.3110 – ident: e_1_2_8_30_1 doi: 10.1016/j.sbi.2007.01.008 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.44.2.98 – volume: 11 start-page: 161 year: 2000 ident: e_1_2_8_17_1 article-title: Intrinsic protein disorder in complete genomes publication-title: Genome Inform Ser Workshop Genome Inform – ident: e_1_2_8_6_1 doi: 10.1016/S1093-3263(00)00138-8 – ident: e_1_2_8_58_1 doi: 10.2174/138920307780363424 – ident: e_1_2_8_68_1 doi: 10.1074/jbc.M109.001305 – ident: e_1_2_8_51_1 doi: 10.1016/j.addr.2012.09.039 – ident: e_1_2_8_23_1 doi: 10.1016/j.jmb.2004.08.005 – ident: e_1_2_8_69_1 doi: 10.1021/bm3002446 – ident: e_1_2_8_72_1 doi: 10.1021/bi802148r – ident: e_1_2_8_57_1 doi: 10.1002/pro.2494 – ident: e_1_2_8_39_1 doi: 10.1021/bi050736e – ident: e_1_2_8_77_1 doi: 10.1016/j.pbiomolbio.2008.05.007 – ident: e_1_2_8_53_1 doi: 10.1016/j.bbagrm.2011.05.012 – ident: e_1_2_8_42_1 doi: 10.1021/pr0701411 – ident: e_1_2_8_40_1 doi: 10.1021/bi7012273 – ident: e_1_2_8_81_1 doi: 10.1073/pnas.1315104110 – ident: e_1_2_8_54_1 doi: 10.1146/annurev.biochem.69.1.961 – ident: e_1_2_8_8_1 doi: 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 – ident: e_1_2_8_11_1 doi: 10.1016/j.tibs.2012.08.004 – ident: e_1_2_8_49_1 doi: 10.1042/BST20130257 – ident: e_1_2_8_10_1 doi: 10.1016/j.bbapap.2010.01.017 – ident: e_1_2_8_83_1 doi: 10.1073/pnas.0702580104 – ident: e_1_2_8_19_1 doi: 10.1021/bi047993o – volume-title: MoRFs: A dataset of Molecular Recognition Features year: 2006 ident: e_1_2_8_41_1 – ident: e_1_2_8_3_1 doi: 10.1016/S0065-2318(08)60149-3 – ident: e_1_2_8_24_1 doi: 10.1073/pnas.0501043102 – ident: e_1_2_8_25_1 doi: 10.1016/j.jmb.2007.12.020 – ident: e_1_2_8_27_1 doi: 10.1073/pnas.0801864105 – ident: e_1_2_8_52_1 doi: 10.1016/j.mce.2012.02.019 – ident: e_1_2_8_50_1 doi: 10.1016/j.str.2011.06.002 – ident: e_1_2_8_64_1 doi: 10.1039/c0mb00305k |
SSID | ssj0035499 |
Score | 2.5393002 |
SecondaryResourceType | review_article |
Snippet | Proteins are structurally heterogeneous and comprise folded regions with variable conformational stabilities and intrinsically disordered protein regions that... |
SourceID | unpaywall proquest pubmed crossref wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1182 |
SubjectTerms | foldon induced foldon intrinsically disordered protein Intrinsically Disordered Proteins - chemistry Intrinsically Disordered Proteins - physiology intrinsically disordered region Molecular biology molecular recognition nonfoldon post‐translational modification protein binding Protein Folding Protein Structure, Tertiary proteins protein–protein interaction semi‐foldon unfoldon |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qX6oPfrRqo1VWLIJCjiSbbHLgSy09ig8-2B7ci4T9LIfnXunlkPOvd2bzoZVa0LcjN4Hs5jc7v9nM_Bbg0BknhJFV7FKr4lwnOkYou7hyQhkESKZkUPv8JE6n-cdZMduC930vTKsPMWy4kWeE9ZocXKrVb07urFqNqAGYFuCUF-Eb7edBO4pT4tN2Q2ZxLvJZp01KZTy_br0Wje44ubyJaN6DnbW_lJvvcrG4zmFDEJo8gC_947e1J19H60aN9I8_lB3_d3wP4X7HTtlRC6dHsGX9LuwdeczMv23YGxbqRcNG_C7sHPdnxe3B-QTDY7uryKheccWWjjUUBqndcrFh0hs2983V3AdU4BXTyX5aw-hwCAQ_oz3huWdBOgINH8N0cnJ-fBp35zXEusDEKBaSlGIK4xTmWEZULsltZXiutcasxvFx4lwmXK4s5pBZYrkTeeUyzksSrbElfwLbfuntPjBjk7GyvMDsR-ZOOyWKotS4HqVGyFSXEbzt31utOzFzOlNjUfdJDU1fHaYvgteD7WUr4XGj1T6-_lpe4NpaT88yUt4jLo0BPIKDHhN15-F4k8AwX2EaX0Xwavgbp50-uEhvl2uyKVOkBsii_25DrVIJHyNviuBpi7fhKZGOcqS4SQSHAwBvHcK7AKhbTOrJyYez8OvZvxg_h7s4iqKtWDqA7eZqbV8gGWvUy-B0PwGEGS2Y priority: 102 providerName: Wiley-Blackwell |
Title | Functional roles of transiently and intrinsically disordered regions within proteins |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.13202 https://www.ncbi.nlm.nih.gov/pubmed/25631540 https://www.proquest.com/docview/1667885238 https://www.proquest.com/docview/1671212019 https://www.proquest.com/docview/2000039818 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.13202 |
UnpaywallVersion | publishedVersion |
Volume | 282 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1742-4658 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0035499 issn: 1742-464X databaseCode: HH5 dateStart: 19670101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1742-4658 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0035499 issn: 1742-464X databaseCode: ABDBF dateStart: 20050101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1742-4658 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0035499 issn: 1742-464X databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1742-4658 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035499 issn: 1742-464X databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1742-464X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1742-4658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035499 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5Beig98GihNZRqERUSSA5-rp1jqBoqDhWijRRO1r4GRYRN1CZC4dczu35AUKmQuFiWPbZ21_P4Zr3zLcAxauRcizLE2MgwU5EKSZUxLJFLTQqSSOHZPs_52Tj7MMknv1Xx1_wQ3YSbswzvr52BLzTWfr419bdo5HXfFQGTE97i7hdTD7bG5x-Hn-s6yCTMeDb5dZ6XDUPp5sMbMekuivlNcHMHtld2IdbfxWy2iWR9KBo9ANF2ol6B8rW_Wsq--vEHv-P_9PIh3G9wKhvWivUI7hi7C3tDSzn6tzV7xfzKUT8lvwvbJ-2ucXtwOaJAWc8vMrdy8ZrNkS1dQHSFl7M1E1azqV1eTa3XD7qiGwJQo5nbJoLMgLnZ4allnkSCBB_DeHR6eXIWNjs3hCqnFCnkwnHG5BolZVualxhlptRpppSi_AbTQYSYcMykoWwyiUyKPCsxSdPC0deYIn0CPTu35gCYNtFAmjSnPEhkqFDyPC8UeaZYcxGrIoDX7berVENr7nbXmFVteuOGr_LDF8DLTnZRk3ncKHVAKlCJL-Rlq_FF4jj4HKqmUB7AYasXVWPr9BCngF9SQl8G8KK7TcPufr0Ia-YrJ1PEBBIIT_9dxhVNRemAEFQA-7XOda0kYJoS2I0COO6U8NYuvPFKdYtINTp9d-HPnv7bO5_BPWp_Xq9aOoTe8mplnhMgW8ojSkU-JXR8P4mPGvv7CbV4M6Q |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9NADLdgPBQe-NiABQYcYkJiUqo0l1zSxzFWFRh7YK3Ut-g-UUW5TmsrVP567EsaGBqT4K1KHKl3sc8_O_bPAPvOOCGMLGPXsyrOdKJjVGUXl04ogwqSKhnYPk_FcJx9mOSTpjaHemFqfog24UaWEc5rMnBKSP9m5c6qRZc6gPEEvkUf6Mgu331u2aM4hT51P2Qa4_1Jw05KhTy_nr3kj246Ob8Kat6Bzsqfy_V3OZtdRrHBDQ3u1bNWF4G9kKpPvnZXS9XVP_7gdvzvFd6Huw1AZYe1Rj2AG9Zvw86hx-D825q9ZqFkNOTit6FztBkXtwOjAXrIOrHIqGRxweaOLckTUsflbM2kN2zqlxdTHxQDr5iG-dMaRvMhUP8ZpYWnngX2CBR8COPB8ehoGDcjG2KdY2wUC0lkMblxCsMsI0qXZLY0PNNaY2DjeD9xLhUuUxbDyDSx3ImsdCnnBfHW2II_gi0_93YXmLFJX1meYwAkM6edEnleaDySekbIni4ieLN5cZVu-MxprMas2sQ1tH1V2L4IXrWy5zWLx5VSu_j-K_kFj9dqfJYS-R7BafThEextlKJqjBwfEujpS4zkywhetrdx2-mbi_R2viKZoofoAIH032WoWyrhfYROETyuFa79l4hIOaLcJIL9VgOvXcJB0KhrRKrB8duz8OvJvwi_gM5w9OmkOnl_-vEp3MYV5XUB0x5sLS9W9hlis6V6HizwJ0mMMbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UClYfvLRqo1VHLIJClmxmMsmCL7U21AtFbBf2RcJcZXGdXdossv56z0wuWqkFfQubE8hMzpnzfbPnfAOwa7XlXIsitkMjY6YSFaMr27iwXGp0kFSKoPZ5xA_H7N0km6zBq64XptGH6DfcfGSE9doH-ELb34LcGnk28A3AuABfZRzplYdEn3rxKOqZT9MOmcaMs0krTurreH49ey4dXbFifhHSvAEbS7cQq-9iNjsPYkMWKm_B5-79m-KTr4NlLQfqxx_Sjv87wNtws4WnZK_xpzuwZtwmbO05pObfVuQ5CQWjYSd-Ezb2u8PituCkxPzYbCsSX7B4RuaW1D4P-n7L2YoIp8nU1adTF9wCf9Gt7qfRxJ8Ogd5P_Kbw1JGgHYGGd2FcHpzsH8btgQ2xypAZxVx4qZhMW4kkS_PCJswUmjKlFNIaS0eJtSm3TBokkWliqOWssCmluVetMTm9B-tu7sw2EG2SkTQ0Q_ojmFVW8izLFS5IQ83FUOURvOi-W6VaNXN_qMas6liNn74qTF8Ez3rbRaPhcaHVNn7-SnzBxbUaH6dees-DaczgEex0PlG1IY4PcczzBfL4IoKn_W2cdv-Pi3BmvvQ2-RCxAcLov9v4XqmEjhA4RXC_8bf-LRGPUsS4SQS7vQNeOoSXwaEuManKg9fH4erBvxg_gWsf35TVh7dH7x_CdRxQ1lQv7cB6fbo0jxCY1fJxiL-fijQwYw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxNBEB80fag-WG3VnlZZsQgKFy_3sXd5TEtD8aEIbSA-Hfs1JRg3ob0g8a93du-jjdQi-HYkc-F285uZ3-zt_BbgEDVyrkUR4sDIMFWRCgnKGBbIpSaAxFJ4tc8zfjpJv0yz6a0u_lofoltwc57h47Vz8KXGOs63rv4ZjbzuuyZgCsJb3L1i6sHW5Ozr6FvdBxmHKU-nN9dZ0SiUbt68kZMeoljcRTcfw_bKLsX6p5jPN5msT0XjHRDtIOodKN_7q0r21a8_9B3_Z5RP4UnDU9moBtYzeGDsLuyNLNXoP9bsA_M7R_2S_C5sH7enxu3BxZgSZb2-yNzOxWu2QFa5hOgaL-drJqxmM1tdzazHB32iGwFQo5k7JoLcgLnV4ZllXkSCDJ_DZHxycXwaNic3hCqjEinkwmnGZBolVVuaFxilptBJqpSi-gaTYYQYc0yloWoyjkyCPC0wTpLcydeYPHkBPbuwZh-YNtFQmiSjOkikqFDyLMsVRaaB5mKg8gA-tv9dqRpZc3e6xrxsyxs3faWfvgDed7bLWszjTqt9gkApLinKlpPz2GnwOVZNqTyAgxYXZePrdBOnhF9QQV8E8K77mqbdvXoR1ixWziYfEEkgPv13G9c0FSVDYlABvKwx1z0lEdOEyG4UwGEHwnuH8MmD6h6TcnxydO6vXv3bb76GR_T8Wb1r6QB61dXKvCFCVsm3jc_9BlsEMco |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+roles+of+transiently+and+intrinsically+disordered+regions+within+proteins&rft.jtitle=The+FEBS+journal&rft.au=Uversky%2C+Vladimir+N&rft.date=2015-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=282&rft.issue=7&rft.spage=1182&rft_id=info:doi/10.1111%2Ffebs.13202&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3641219511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |