Bagging RCSP脑电特征提取算法
正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想.针对上述问题,本文提出了Bagging RCSP(BRCSP)算法,通过Bagging方法重复选取训练数据来构造一个个包,并提取RCSP特征,再利用线性判别分析(Linear discriminant analysis,LDA)将特征向量映射到低维空间中,最后采用最近邻(Nearest neighborhood classifier,NNC)算法判定分类结果.线下实验证...
Saved in:
Published in | 自动化学报 Vol. 43; no. 11; pp. 2044 - 2050 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
重庆邮电大学先进制造工程学院 重庆 400065%重庆邮电大学 自动化学院 重庆 400065
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.16383/j.aas.2017.c160094 |
Cover
Abstract | 正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想.针对上述问题,本文提出了Bagging RCSP(BRCSP)算法,通过Bagging方法重复选取训练数据来构造一个个包,并提取RCSP特征,再利用线性判别分析(Linear discriminant analysis,LDA)将特征向量映射到低维空间中,最后采用最近邻(Nearest neighborhood classifier,NNC)算法判定分类结果.线下实验证明,相比较聚合正则化共空间模式(RCSP with aggregation,RCSP-A),BRCSP的平均准确率提高了2.92%,且方差更小,鲁棒性更好.最后,在智能轮椅平台上,10位受试者利用BRCSP算法实现左右手运动想象脑电信号控制轮椅完成"8"字形路径的实验,证明了该算法在脑电信号特征提取中的有效性. |
---|---|
AbstractList | 正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想,针对上述问题,本文提出了Bagging RCSP (BRCSP)算法,通过Bagging方法重复选取训练数据来构造一个个包,并提取RCSP特征,再利用线性判别分析(Linear discriminantanalysis,LDA)将特征向量映射到低维空间中,最后采用最近邻(Nearest neighborhood classifier,NNC)算法判定分类结果,线下实验证明,相比较聚合正则化共空间模式(RCSP with aggregation,RCSP-A),BRCSP的平均准确率提高了2.92%,且方差更小,鲁棒性更好.最后,在智能轮椅平台上,10位受试者利用BRCSP算法实现左右手运动想象脑电信号控制轮椅完成"8"字形路径的实验,证明了该算法在脑电信号特征提取中的有效性. 正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想.针对上述问题,本文提出了Bagging RCSP(BRCSP)算法,通过Bagging方法重复选取训练数据来构造一个个包,并提取RCSP特征,再利用线性判别分析(Linear discriminant analysis,LDA)将特征向量映射到低维空间中,最后采用最近邻(Nearest neighborhood classifier,NNC)算法判定分类结果.线下实验证明,相比较聚合正则化共空间模式(RCSP with aggregation,RCSP-A),BRCSP的平均准确率提高了2.92%,且方差更小,鲁棒性更好.最后,在智能轮椅平台上,10位受试者利用BRCSP算法实现左右手运动想象脑电信号控制轮椅完成"8"字形路径的实验,证明了该算法在脑电信号特征提取中的有效性. |
Abstract_FL | The regularized common spatial pattern (RCSP) has solved the problem that the common spatial pattern (CSP)is sensitive to noise. However,its performance on small sample of electro encephalon graph(EEG)data set is not ideal. To deal with this problem, a Bagging RCSP (BRCSP) algorithm is proposed, which divides training samples into packets and extracts RCSP features by Bagging to choose training packets. Furthermore, the feature vector is projected into the lower space with linear discriminant analysis(LDA)and a classification algorithm based on nearest neighborhood classifier(NNC)is adopted. Compared to RCSP with aggregation(RCSP-A),the accuracy of BRCSP increases by 2.92 % in average and the variance is smaller and has better robustness. Results of the experiment,in which 10 subjects control an intelligent wheelchair of a fixed"8"glyph trajectory, demonstrate that the BRCSP is effective in the EEG feature extraction. |
Author | 张毅;尹春林;蔡军;罗久飞 |
AuthorAffiliation | 重庆邮电大学先进制造工程学院,重庆400065;重庆邮电大学自动化学院,重庆400065 |
AuthorAffiliation_xml | – name: 重庆邮电大学先进制造工程学院 重庆 400065%重庆邮电大学 自动化学院 重庆 400065 |
Author_FL | LUO Jiu-Fei ZHANG Yi YIN Chun-Lin CAI Jun |
Author_FL_xml | – sequence: 1 fullname: ZHANG Yi – sequence: 2 fullname: LUO Jiu-Fei – sequence: 3 fullname: CAI Jun – sequence: 4 fullname: YIN Chun-Lin |
Author_xml | – sequence: 1 fullname: 张毅;尹春林;蔡军;罗久飞 |
BookMark | eNotj7tKA0EYhQeJYFzzBDYiYrfr_HOfUoM3CCiafpmZ7GwSdFZ3EaOdYGMVBS9vYSMWNr5NEh_DlVgdDnycyzJqhCJkCK0CTkBQRbeGiTFVQjDIxIHAWLMF1AQlWQyY6AZqYsJZzICLJdSqqoGtSSY1obiJNnZMng9CvnbSPj3-uX-aPX_OHr4m33fT8eNk_Dp7f5t-vKygRW_Oqqz1rxHq7u122wdx52j_sL3diR1XIrYggQGVUiqqubYkA809VkQ6K7XlwIjVvmcybTPjPLa9TPjaGeWkB6JohDbnsdcmeBPydFhclaEuTG97_ZH9OwiA688RWp-Drl-E_LKen16Ug3NT3qRCUsWpkoL-AmqwWII |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.2017.c160094 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Bagging RCSP Algorithm for Extracting EEG Feature |
DocumentTitle_FL | Bagging RCSP Algorithm for Extracting EEG Feature |
EISSN | 1874-1029 |
EndPage | 2050 |
ExternalDocumentID | zdhxb201711016 673853876 |
GrantInformation_xml | – fundername: 重庆市科学技术委员会项目; 重庆市教委科学技术项目(KJ1600428)资助 Supported by Chongqing Science and Technology CommissionProject; Chong-qing Municipal Education Commission funderid: (cstc2015jcyjBX0066, cstc2017jcyjAX0033); (cstc2015jcyjBX0066, cstc2017jcyjAX0033); (KJ1600428) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c586-b17141377783959b2e195f0827cb79b5142b9fdae9beacf0bde6fae9a8c7f1283 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 10:00:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | 特征提取 Bagging RCSP feature extraction RCSP-A 脑电信号 Electro encephalon graph (EEG) |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c586-b17141377783959b2e195f0827cb79b5142b9fdae9beacf0bde6fae9a8c7f1283 |
Notes | The regularized common spatial pattern (RCSP) has solved the problem that the common spatial pattern (CSP) is sensitive to noise. However, its performance on small sample of electro encephalon graph (EEG) data set is not ideal. To deal with this problem, a Bagging RCSP (BRCSP) algorithm is proposed, which divides training samples into packets and extracts RCSP features by Bagging to choose training packets, l~lrthermore, the feature vector is projected into the lower space with linear discriminant analysis (LDA) and a classification algorithm based on nearest neighborhood classifier (NNC) is adopted. Compared to RCSP with aggregation (RCSP-A), the accuracy of BRCSP increases by 2.92 % in average and the variance is smaller and has better robustness. Results of the experiment, in which 10 subjects control an intelligent wheelchair of a fixed "8" glyph trajectory, demonstrate that the BRCSP is effective in the EEG feature extraction. ZHANG Yi1 YIN Chun-Lin2 CAI Jun2 LUO Jiu-Fei1 Electro encephalon graph (EEG), fe |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zdhxb201711016 chongqing_primary_673853876 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 自动化学报 |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2017 |
Publisher | 重庆邮电大学先进制造工程学院 重庆 400065%重庆邮电大学 自动化学院 重庆 400065 |
Publisher_xml | – name: 重庆邮电大学先进制造工程学院 重庆 400065%重庆邮电大学 自动化学院 重庆 400065 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.1941314 |
Snippet | 正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想.针对上述问题,本文提出了Bagging... 正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想,针对上述问题,本文提出了Bagging RCSP... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 2044 |
SubjectTerms | Bagging RCSP RCSP-A 特征提取 脑电信号 |
Title | Bagging RCSP脑电特征提取算法 |
URI | http://lib.cqvip.com/qk/90250X/201711/673853876.html https://d.wanfangdata.com.cn/periodical/zdhxb201711016 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF616QUOiKco5ZFD9xS52I73dVwnDhUChCCg3irb8SanlEcqodyQuHAqSDzO_AEuiAMX_k0bfgYzayfeKkgtvVjjfc3Mjnf32_XuLCGbOWcmhaHH4wU0t6gIU09BH-ixzIQpxEjF8Ozww0d8-1l0f4ftrKx-c3Yt7U-yrXz6z3MlZ7EqhIFd8ZTsf1h2USgEAA32hSdYGJ6nsnGcDu0dQ086Tx_TRFIZURXQRFAV0ZghIRWNFU0YjRPAjDThVPao8jEECY5pdEKVwKi4TcurKOdo1ZYJCbRNr6mWlujYjIzqLtXclglRbG46y61DtY8xukelEyNo3LXMIhRLgoiKauCa1EkkCq8Dy4hTFR8r1rfaQLAEhpZA2d2Vi_KIpv3KsHCQXnZtVo3FYUiICtd1BGoAP-How1AwKVGUGOootiFAl9l9qxkUKKwIAitFxk52RRUoFbaW2bcii8VoyM4mWut09jhRAKfzh4m7h5Nrd6QqHVrNW2Tgjjt-6UWzwjChX3rzXRofobdt2wEyTdFXfSC28oDj7tIaDiw2aU4HozcZpglwhWeVrIWC87BB1u7FD57rGnMDRFXOIMEUjAMOpuQMfR7W7wL_3Du_2uG93a7nsHihAXfWKFjQhhk1rhGU8Iqhuym7cFpVUOVKDDW7u6wXukwZ7Y2HL6E12nN5Y5OOhw6E7F8kF6q5X1OXDfkSWZmOLpPzjkfQK2SzatJNbNJ_3n2cffo5e__r8Pfbo4MPhwdfZt-_Hv34fJX0e0m_s-1VF5l4OZPcy6AKI_TsKWA2wlQWFoFiBrC3yDOhMpiyhJkyg7RQGcAg42eDght4S2UuDODH9jXSGO-Ni-ukyfOQsVzywPgmSlWqWJEbY_JBgGYyYp1sLNTdfVH6q8GtmwDKAfaskztVBexWvdjr3eNWvnFiig1yDulyFfImaUxe7Re3AJdPstvVl_EXFXybzQ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bagging+RCSP%E8%84%91%E7%94%B5%E7%89%B9%E5%BE%81%E6%8F%90%E5%8F%96%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E6%AF%85&rft.au=%E7%BD%97%E4%B9%85%E9%A3%9E&rft.au=%E8%94%A1%E5%86%9B&rft.au=%E5%B0%B9%E6%98%A5%E6%9E%97&rft.date=2017&rft.pub=%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E5%85%88%E8%BF%9B%E5%88%B6%E9%80%A0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E9%87%8D%E5%BA%86+400065%25%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6+%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2+%E9%87%8D%E5%BA%86+400065&rft.issn=0254-4156&rft.volume=43&rft.issue=11&rft.spage=2044&rft.epage=2050&rft_id=info:doi/10.16383%2Fj.aas.2017.c160094&rft.externalDocID=zdhxb201711016 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |