Bagging RCSP脑电特征提取算法

正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想.针对上述问题,本文提出了Bagging RCSP(BRCSP)算法,通过Bagging方法重复选取训练数据来构造一个个包,并提取RCSP特征,再利用线性判别分析(Linear discriminant analysis,LDA)将特征向量映射到低维空间中,最后采用最近邻(Nearest neighborhood classifier,NNC)算法判定分类结果.线下实验证...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 43; no. 11; pp. 2044 - 2050
Main Author 张毅;尹春林;蔡军;罗久飞
Format Journal Article
LanguageChinese
Published 重庆邮电大学先进制造工程学院 重庆 400065%重庆邮电大学 自动化学院 重庆 400065 2017
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2017.c160094

Cover

Abstract 正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想.针对上述问题,本文提出了Bagging RCSP(BRCSP)算法,通过Bagging方法重复选取训练数据来构造一个个包,并提取RCSP特征,再利用线性判别分析(Linear discriminant analysis,LDA)将特征向量映射到低维空间中,最后采用最近邻(Nearest neighborhood classifier,NNC)算法判定分类结果.线下实验证明,相比较聚合正则化共空间模式(RCSP with aggregation,RCSP-A),BRCSP的平均准确率提高了2.92%,且方差更小,鲁棒性更好.最后,在智能轮椅平台上,10位受试者利用BRCSP算法实现左右手运动想象脑电信号控制轮椅完成"8"字形路径的实验,证明了该算法在脑电信号特征提取中的有效性.
AbstractList 正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想,针对上述问题,本文提出了Bagging RCSP (BRCSP)算法,通过Bagging方法重复选取训练数据来构造一个个包,并提取RCSP特征,再利用线性判别分析(Linear discriminantanalysis,LDA)将特征向量映射到低维空间中,最后采用最近邻(Nearest neighborhood classifier,NNC)算法判定分类结果,线下实验证明,相比较聚合正则化共空间模式(RCSP with aggregation,RCSP-A),BRCSP的平均准确率提高了2.92%,且方差更小,鲁棒性更好.最后,在智能轮椅平台上,10位受试者利用BRCSP算法实现左右手运动想象脑电信号控制轮椅完成"8"字形路径的实验,证明了该算法在脑电信号特征提取中的有效性.
正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想.针对上述问题,本文提出了Bagging RCSP(BRCSP)算法,通过Bagging方法重复选取训练数据来构造一个个包,并提取RCSP特征,再利用线性判别分析(Linear discriminant analysis,LDA)将特征向量映射到低维空间中,最后采用最近邻(Nearest neighborhood classifier,NNC)算法判定分类结果.线下实验证明,相比较聚合正则化共空间模式(RCSP with aggregation,RCSP-A),BRCSP的平均准确率提高了2.92%,且方差更小,鲁棒性更好.最后,在智能轮椅平台上,10位受试者利用BRCSP算法实现左右手运动想象脑电信号控制轮椅完成"8"字形路径的实验,证明了该算法在脑电信号特征提取中的有效性.
Abstract_FL The regularized common spatial pattern (RCSP) has solved the problem that the common spatial pattern (CSP)is sensitive to noise. However,its performance on small sample of electro encephalon graph(EEG)data set is not ideal. To deal with this problem, a Bagging RCSP (BRCSP) algorithm is proposed, which divides training samples into packets and extracts RCSP features by Bagging to choose training packets. Furthermore, the feature vector is projected into the lower space with linear discriminant analysis(LDA)and a classification algorithm based on nearest neighborhood classifier(NNC)is adopted. Compared to RCSP with aggregation(RCSP-A),the accuracy of BRCSP increases by 2.92 % in average and the variance is smaller and has better robustness. Results of the experiment,in which 10 subjects control an intelligent wheelchair of a fixed"8"glyph trajectory, demonstrate that the BRCSP is effective in the EEG feature extraction.
Author 张毅;尹春林;蔡军;罗久飞
AuthorAffiliation 重庆邮电大学先进制造工程学院,重庆400065;重庆邮电大学自动化学院,重庆400065
AuthorAffiliation_xml – name: 重庆邮电大学先进制造工程学院 重庆 400065%重庆邮电大学 自动化学院 重庆 400065
Author_FL LUO Jiu-Fei
ZHANG Yi
YIN Chun-Lin
CAI Jun
Author_FL_xml – sequence: 1
  fullname: ZHANG Yi
– sequence: 2
  fullname: LUO Jiu-Fei
– sequence: 3
  fullname: CAI Jun
– sequence: 4
  fullname: YIN Chun-Lin
Author_xml – sequence: 1
  fullname: 张毅;尹春林;蔡军;罗久飞
BookMark eNotj7tKA0EYhQeJYFzzBDYiYrfr_HOfUoM3CCiafpmZ7GwSdFZ3EaOdYGMVBS9vYSMWNr5NEh_DlVgdDnycyzJqhCJkCK0CTkBQRbeGiTFVQjDIxIHAWLMF1AQlWQyY6AZqYsJZzICLJdSqqoGtSSY1obiJNnZMng9CvnbSPj3-uX-aPX_OHr4m33fT8eNk_Dp7f5t-vKygRW_Oqqz1rxHq7u122wdx52j_sL3diR1XIrYggQGVUiqqubYkA809VkQ6K7XlwIjVvmcybTPjPLa9TPjaGeWkB6JohDbnsdcmeBPydFhclaEuTG97_ZH9OwiA688RWp-Drl-E_LKen16Ug3NT3qRCUsWpkoL-AmqwWII
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2017.c160094
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Bagging RCSP Algorithm for Extracting EEG Feature
DocumentTitle_FL Bagging RCSP Algorithm for Extracting EEG Feature
EISSN 1874-1029
EndPage 2050
ExternalDocumentID zdhxb201711016
673853876
GrantInformation_xml – fundername: 重庆市科学技术委员会项目; 重庆市教委科学技术项目(KJ1600428)资助 Supported by Chongqing Science and Technology CommissionProject; Chong-qing Municipal Education Commission
  funderid: (cstc2015jcyjBX0066, cstc2017jcyjAX0033); (cstc2015jcyjBX0066, cstc2017jcyjAX0033); (KJ1600428)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c586-b17141377783959b2e195f0827cb79b5142b9fdae9beacf0bde6fae9a8c7f1283
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:00:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords 特征提取
Bagging RCSP
feature extraction
RCSP-A
脑电信号
Electro encephalon graph (EEG)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c586-b17141377783959b2e195f0827cb79b5142b9fdae9beacf0bde6fae9a8c7f1283
Notes The regularized common spatial pattern (RCSP) has solved the problem that the common spatial pattern (CSP) is sensitive to noise. However, its performance on small sample of electro encephalon graph (EEG) data set is not ideal. To deal with this problem, a Bagging RCSP (BRCSP) algorithm is proposed, which divides training samples into packets and extracts RCSP features by Bagging to choose training packets, l~lrthermore, the feature vector is projected into the lower space with linear discriminant analysis (LDA) and a classification algorithm based on nearest neighborhood classifier (NNC) is adopted. Compared to RCSP with aggregation (RCSP-A), the accuracy of BRCSP increases by 2.92 % in average and the variance is smaller and has better robustness. Results of the experiment, in which 10 subjects control an intelligent wheelchair of a fixed "8" glyph trajectory, demonstrate that the BRCSP is effective in the EEG feature extraction.
ZHANG Yi1 YIN Chun-Lin2 CAI Jun2 LUO Jiu-Fei1
Electro encephalon graph (EEG), fe
PageCount 7
ParticipantIDs wanfang_journals_zdhxb201711016
chongqing_primary_673853876
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2017
Publisher 重庆邮电大学先进制造工程学院 重庆 400065%重庆邮电大学 自动化学院 重庆 400065
Publisher_xml – name: 重庆邮电大学先进制造工程学院 重庆 400065%重庆邮电大学 自动化学院 重庆 400065
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.1941314
Snippet 正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想.针对上述问题,本文提出了Bagging...
正则化共空间模式(Regularized common spatial pattern,RCSP)解决了共空间模式(Common spatial pattern,CSP)对噪声敏感的问题,但它在小样本脑电数据集中的表现并不理想,针对上述问题,本文提出了Bagging RCSP...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 2044
SubjectTerms Bagging
RCSP
RCSP-A
特征提取
脑电信号
Title Bagging RCSP脑电特征提取算法
URI http://lib.cqvip.com/qk/90250X/201711/673853876.html
https://d.wanfangdata.com.cn/periodical/zdhxb201711016
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF616QUOiKco5ZFD9xS52I73dVwnDhUChCCg3irb8SanlEcqodyQuHAqSDzO_AEuiAMX_k0bfgYzayfeKkgtvVjjfc3Mjnf32_XuLCGbOWcmhaHH4wU0t6gIU09BH-ixzIQpxEjF8Ozww0d8-1l0f4ftrKx-c3Yt7U-yrXz6z3MlZ7EqhIFd8ZTsf1h2USgEAA32hSdYGJ6nsnGcDu0dQ086Tx_TRFIZURXQRFAV0ZghIRWNFU0YjRPAjDThVPao8jEECY5pdEKVwKi4TcurKOdo1ZYJCbRNr6mWlujYjIzqLtXclglRbG46y61DtY8xukelEyNo3LXMIhRLgoiKauCa1EkkCq8Dy4hTFR8r1rfaQLAEhpZA2d2Vi_KIpv3KsHCQXnZtVo3FYUiICtd1BGoAP-How1AwKVGUGOootiFAl9l9qxkUKKwIAitFxk52RRUoFbaW2bcii8VoyM4mWut09jhRAKfzh4m7h5Nrd6QqHVrNW2Tgjjt-6UWzwjChX3rzXRofobdt2wEyTdFXfSC28oDj7tIaDiw2aU4HozcZpglwhWeVrIWC87BB1u7FD57rGnMDRFXOIMEUjAMOpuQMfR7W7wL_3Du_2uG93a7nsHihAXfWKFjQhhk1rhGU8Iqhuym7cFpVUOVKDDW7u6wXukwZ7Y2HL6E12nN5Y5OOhw6E7F8kF6q5X1OXDfkSWZmOLpPzjkfQK2SzatJNbNJ_3n2cffo5e__r8Pfbo4MPhwdfZt-_Hv34fJX0e0m_s-1VF5l4OZPcy6AKI_TsKWA2wlQWFoFiBrC3yDOhMpiyhJkyg7RQGcAg42eDght4S2UuDODH9jXSGO-Ni-ukyfOQsVzywPgmSlWqWJEbY_JBgGYyYp1sLNTdfVH6q8GtmwDKAfaskztVBexWvdjr3eNWvnFiig1yDulyFfImaUxe7Re3AJdPstvVl_EXFXybzQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bagging+RCSP%E8%84%91%E7%94%B5%E7%89%B9%E5%BE%81%E6%8F%90%E5%8F%96%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E6%AF%85&rft.au=%E7%BD%97%E4%B9%85%E9%A3%9E&rft.au=%E8%94%A1%E5%86%9B&rft.au=%E5%B0%B9%E6%98%A5%E6%9E%97&rft.date=2017&rft.pub=%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E5%85%88%E8%BF%9B%E5%88%B6%E9%80%A0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E9%87%8D%E5%BA%86+400065%25%E9%87%8D%E5%BA%86%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6+%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2+%E9%87%8D%E5%BA%86+400065&rft.issn=0254-4156&rft.volume=43&rft.issue=11&rft.spage=2044&rft.epage=2050&rft_id=info:doi/10.16383%2Fj.aas.2017.c160094&rft.externalDocID=zdhxb201711016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg