Outbreak detection algorithms based on generalized linear model: a review with new practical examples

Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID...

Full description

Saved in:
Bibliographic Details
Published inBMC medical research methodology Vol. 23; no. 1; pp. 1 - 16
Main Authors Zareie, Bushra, Poorolajal, Jalal, Roshani, Amin, Karami, Manoochehr
Format Journal Article
LanguageEnglish
Published London BioMed Central 14.10.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2288
1471-2288
DOI10.1186/s12874-023-02050-z

Cover

Abstract Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise.
AbstractList Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise.
Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise.Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise.
Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise. Keywords: Early aberration, GLMs with negative binomial, GLMs with Poisson, Outbreak algorithm, Statistical surveillance
Abstract Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise.
ArticleNumber 235
Audience Academic
Author Karami, Manoochehr
Poorolajal, Jalal
Roshani, Amin
Zareie, Bushra
Author_xml – sequence: 1
  givenname: Bushra
  surname: Zareie
  fullname: Zareie, Bushra
  organization: Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences
– sequence: 2
  givenname: Jalal
  surname: Poorolajal
  fullname: Poorolajal, Jalal
  organization: Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences
– sequence: 3
  givenname: Amin
  surname: Roshani
  fullname: Roshani, Amin
  organization: Department of Statistics, Lorestan University
– sequence: 4
  givenname: Manoochehr
  surname: Karami
  fullname: Karami, Manoochehr
  email: man.karami@yahoo.com
  organization: Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences
BookMark eNqNUk1v3CAQtapUzUf7B3qy1EsvTg0YG_dSRVE_IkXKpT0jDGOHLYYt2Nlkf31nP9RmoyqqEAKG997AvDnNjnzwkGVvSXlOiKg_JEJFUxUlZThLXhbrF9kJqRpSUCrE0aP9cXaa0qIsSSNY_So7ZriKhvGTDG7mqYugfuYGJtCTDT5XbgjRTrdjyjuVwOQYG8BDVM6u8eisBxXzMRhwH3OVR7izsMpXSMk9bpZRoZBWLod7NS4dpNfZy165BG_261n248vn75ffiuubr1eXF9eF5oJPRVcRxjlnwAltTFk2hhGuK6hMrUVNamoIqVvaa9ZxDoY3rKFcMyMEN6QnLTvLrna6JqiFXEY7qvggg7JyGwhxkCri0xxI2kMnKkNNV9dV1ZaK6I4J0taVgK6lHLXYTmv2S_WwUs79ESSl3BggdwZINEBuDZBrZH3asZZzN4LR4Ccs28FTDm-8vZVDuENN3tRCVKjwfq8Qw68Z0iRHmzQ4pzyEOUlM2TDREiYQ-u4JdBHm6LHCW1TV1iV_hBoU_tv6PmBivRGVF5iyFaVgFFHn_0DhMDBajY3XW4wfEMSOoGNIKUIvtZ3UpoGQaN3zRaJPqP9V2b0fCcF-gPj3s8-wfgMeHvf8
CitedBy_id crossref_primary_10_3389_fphys_2024_1441076
crossref_primary_10_1080_0886022X_2024_2337288
crossref_primary_10_1136_bmjopen_2023_074753
crossref_primary_10_1002_iid3_1221
Cites_doi 10.1197/jamia.M1733
10.1186/1472-6947-7-6
10.1080/00224065.2004.11980274
10.3389/fpsyg.2018.02104
10.1016/j.ijid.2016.04.021
10.1111/j.2517-6161.1995.tb02052.x
10.1002/0470011815.b2a10021
10.1002/sim.9182
10.1002/sim.4780080312
10.1016/j.jbi.2018.08.001
10.2307/2983331
10.2105/AJPH.81.1.97
10.3201/eid1010.030789
10.1371/journal.pone.0184419
10.1002/sim.8535
10.1093/bioinformatics/bty997
10.1371/journal.pone.0181227
10.1111/j.1467-985X.2011.00714.x
10.1002/0470092505
10.1198/jasa.2011.tm09654
10.1093/aje/kwh029
10.1002/sim.3197
10.1186/s12917-016-0914-2
10.2307/4591848
10.2307/622709
10.1016/S0140-6736(20)31199-5
10.1002/sim.5595
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. BioMed Central Ltd., part of Springer Nature.
BioMed Central Ltd., part of Springer Nature 2023
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. BioMed Central Ltd., part of Springer Nature.
– notice: BioMed Central Ltd., part of Springer Nature 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12874-023-02050-z
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1471-2288
EndPage 16
ExternalDocumentID oai_doaj_org_article_2feb84d2db664490a1cb3819648eb925
10.1186/s12874-023-02050-z
PMC10576884
A768980832
10_1186_s12874_023_02050_z
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GrantInformation_xml – fundername: The Vice-Chancellor of Research and Technology, Hamadan University of Medical Sciences
  grantid: 140009237703; 140009237703
– fundername: ;
  grantid: 140009237703; 140009237703
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
HYE
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c585t-b4135553e5127d007d315c4e4d6c86162d11692fc3b55ed573725c3d885d1f193
IEDL.DBID M48
ISSN 1471-2288
IngestDate Fri Oct 03 12:53:20 EDT 2025
Sun Oct 26 04:01:25 EDT 2025
Tue Sep 30 17:11:40 EDT 2025
Thu Sep 04 19:51:51 EDT 2025
Tue Oct 07 05:35:36 EDT 2025
Mon Oct 20 23:23:28 EDT 2025
Mon Oct 20 17:15:58 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Wed Oct 01 05:07:03 EDT 2025
Sat Sep 06 07:35:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords GLMs with negative binomial
Outbreak algorithm
Statistical surveillance
Early aberration
GLMs with Poisson
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-b4135553e5127d007d315c4e4d6c86162d11692fc3b55ed573725c3d885d1f193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12874-023-02050-z
PMID 37838735
PQID 2877496058
PQPubID 42579
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_2feb84d2db664490a1cb3819648eb925
unpaywall_primary_10_1186_s12874_023_02050_z
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10576884
proquest_miscellaneous_2877389138
proquest_journals_2877496058
gale_infotracmisc_A768980832
gale_infotracacademiconefile_A768980832
crossref_citationtrail_10_1186_s12874_023_02050_z
crossref_primary_10_1186_s12874_023_02050_z
springer_journals_10_1186_s12874_023_02050_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-14
PublicationDateYYYYMMDD 2023-10-14
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References K Kleinman (2050_CR32) 2004; 159
TL Lai (2050_CR31) 1995; 57
D Yoneoka (2050_CR17) 2021; 40
D Costagliola (2050_CR14) 1991; 81
A Noufaily (2050_CR18) 2013; 32
RW Mathes (2050_CR23) 2017; 12
2050_CR20
2050_CR4
2050_CR3
C Farrington (2050_CR9) 1996; 159
2050_CR27
C Abat (2050_CR22) 2016; 48
DF Stroup (2050_CR7) 1989; 8
G Hripcsak (2050_CR34) 2005; 12
J Buchler (2050_CR1) 2004; 53
S Unkel (2050_CR2) 2012; 175
2050_CR29
J Pek (2050_CR28) 2018; 9
F Vial (2050_CR24) 2016; 12
A Flahault (2050_CR15) 1995; 346
RD Fricker Jr (2050_CR21) 2008; 27
B Miller (2050_CR33) 2004; 10
P Chen (2050_CR12) 2020; 39
L Shu (2050_CR30) 2004; 36
G Bédubourg (2050_CR6) 2017; 12
T Burki (2050_CR16) 2020; 395
A Noufaily (2050_CR25) 2019; 35
2050_CR13
2050_CR10
A Alimadad (2050_CR11) 2011; 106
C Faverjon (2050_CR5) 2018; 85
ML Jackson (2050_CR26) 2007; 7
RE Serfling (2050_CR8) 1963; 78
2050_CR19
References_xml – volume: 12
  start-page: 296
  issue: 3
  year: 2005
  ident: 2050_CR34
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M1733
– volume: 7
  start-page: 1
  issue: 1
  year: 2007
  ident: 2050_CR26
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-7-6
– volume: 36
  start-page: 280
  issue: 3
  year: 2004
  ident: 2050_CR30
  publication-title: J Qual Technol
  doi: 10.1080/00224065.2004.11980274
– volume: 9
  start-page: 2104
  year: 2018
  ident: 2050_CR28
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2018.02104
– volume: 48
  start-page: 22
  year: 2016
  ident: 2050_CR22
  publication-title: Int J Infect Dis
  doi: 10.1016/j.ijid.2016.04.021
– volume: 57
  start-page: 613
  issue: 4
  year: 1995
  ident: 2050_CR31
  publication-title: J Roy Stat Soc: Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1995.tb02052.x
– volume: 53
  start-page: 1
  issue: 5
  year: 2004
  ident: 2050_CR1
  publication-title: MMWR Recomm REP
– ident: 2050_CR27
  doi: 10.1002/0470011815.b2a10021
– volume: 40
  start-page: 6277
  issue: 28
  year: 2021
  ident: 2050_CR17
  publication-title: Stat Med
  doi: 10.1002/sim.9182
– volume: 8
  start-page: 323
  issue: 3
  year: 1989
  ident: 2050_CR7
  publication-title: Stat Med
  doi: 10.1002/sim.4780080312
– volume: 85
  start-page: 126
  year: 2018
  ident: 2050_CR5
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.08.001
– volume: 159
  start-page: 547
  issue: 3
  year: 1996
  ident: 2050_CR9
  publication-title: J R Stat Soc A Stat Soc
  doi: 10.2307/2983331
– volume: 81
  start-page: 97
  issue: 1
  year: 1991
  ident: 2050_CR14
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.81.1.97
– volume: 10
  start-page: 1806
  issue: 10
  year: 2004
  ident: 2050_CR33
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid1010.030789
– volume: 12
  issue: 9
  year: 2017
  ident: 2050_CR23
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0184419
– volume: 39
  start-page: 2101
  issue: 15
  year: 2020
  ident: 2050_CR12
  publication-title: Stat Med
  doi: 10.1002/sim.8535
– volume: 35
  start-page: 3110
  issue: 17
  year: 2019
  ident: 2050_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty997
– volume: 12
  issue: 7
  year: 2017
  ident: 2050_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0181227
– ident: 2050_CR29
– volume: 346
  start-page: 162
  issue: 8968
  year: 1995
  ident: 2050_CR15
  publication-title: Lancet (British edition)
– volume: 175
  start-page: 49
  issue: 1
  year: 2012
  ident: 2050_CR2
  publication-title: J R Stat Soc A Stat Soc
  doi: 10.1111/j.1467-985X.2011.00714.x
– ident: 2050_CR3
  doi: 10.1002/0470092505
– volume: 106
  start-page: 719
  issue: 494
  year: 2011
  ident: 2050_CR11
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2011.tm09654
– volume: 159
  start-page: 217
  issue: 3
  year: 2004
  ident: 2050_CR32
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwh029
– volume: 27
  start-page: 3407
  issue: 17
  year: 2008
  ident: 2050_CR21
  publication-title: Stat Med
  doi: 10.1002/sim.3197
– volume: 12
  start-page: 1
  issue: 1
  year: 2016
  ident: 2050_CR24
  publication-title: BMC Vet Res
  doi: 10.1186/s12917-016-0914-2
– volume: 78
  start-page: 494
  issue: 6
  year: 1963
  ident: 2050_CR8
  publication-title: Public Health Rep
  doi: 10.2307/4591848
– ident: 2050_CR4
– ident: 2050_CR10
  doi: 10.2307/622709
– ident: 2050_CR13
– ident: 2050_CR19
– ident: 2050_CR20
– volume: 395
  start-page: 1602
  issue: 10237
  year: 2020
  ident: 2050_CR16
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(20)31199-5
– volume: 32
  start-page: 1206
  issue: 7
  year: 2013
  ident: 2050_CR18
  publication-title: Stat Med
  doi: 10.1002/sim.5595
SSID ssj0017836
Score 2.4387436
SecondaryResourceType review_article
Snippet Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases....
Abstract Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Automation
Communicable diseases
Control
Control charts
Disease
Early aberration
Epidemics
Epidemiology
Expected values
Generalized linear models
GLMs with negative binomial
GLMs with Poisson
Health aspects
Health Sciences
Health surveillance
Iran
Medicine
Medicine & Public Health
Mortality
Normal distribution
Outbreak algorithm
Prevention
Process controls
Public health
Random variables
Review
Risk factors
Statistical methods
Statistical surveillance
Statistical Theory and Methods
Statistics for Life Sciences
Theory of Medicine/Bioethics
Time series
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiKcIFGQkJA40auLYXodbQVQVUuFCpd4sv9KuumSr3ayA_fXM2EloVKlw4JBD4okSz4wzM5nxN4S8UTNwGhqGEgg258oUec1tlUsDzjirzSxlTI-_yKMT_vlUnF5p9YU1YQkeODFunzXBKu6ZtxJMd12Y0lmMMiRXwdYsopcWqh6CqT5_gHsThi0ySu6vS4R1z8E-wVGIIt9OzFBE67_-Tb5eJzkmS--RO5v20vz6YRaLK_bo8AG53zuS9CBN4CG5FdpH5PZxnyp_TMLXTQfhrrmgPnSx3qqlZnG2XM278-9ritbLU7h2lnCn51s4RZfTrGjsjvOeGpr2tVD8V0vB_ab9lip4bPhpEFZ4_YScHH769vEo73sq5A4Cgy63YLSEEFUAQz_z4CD4qhSOB-6lU7KUzJelrFnjKitE8AK72AhXeaWELxvw9p6SnXbZhmeEIvRgU3gJ4pbcmkIFCb6A9IK54AOTGSkHFmvXA45j34uFjoGHkjqJRYNYdBSL3mbk3XjPZYLbuJH6A0pupESo7HgBFEj3CqT_pkAZeYty17ig4fWc6fclwCQRGksfQEBWK_BUWUZ2J5SwEN10eNAc3X8I1hpeecZrzD1n5PU4jHdicVsblptEE9PFQKMmGjeZ2XSknZ9HMHDs0yyV4hnZG5Tzz9NvYt3eqMD_wOnn_4PTL8hdhksQ64H4LtnpVpvwEly6zr6Kq_c3erVECA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFfxARGvF1SoRBB_s0t3cJpcVRFppKUJPEQt9C9kkey2ee-fdHur99c7sV10Khw_7sJtZdpOZJL9kMr8BeK1GCBpyThrwWZgoE4Vpkg1DaRCM89SMao_p2VieniefLsTFFozbWBg6VtmOidVA7WaW9sgPENmPkpSceB_mP0PKGkXe1TaFhmlSK7j3FcXYLdjmxIw1gO2j4_GXr51fgWIW2tAZJQ-WMdG9hzhv4RWJKFz3pqeKxf_mWH3z_GTnRL0Hd1bF3Pz5ZabTf-apk4fwoAGY7LC2iEew5YsduH3WuNB34H69Ucfq-KPH4D-vSlwWm-_M-bI6l1UwM51g1cvLH0tGs5xj-GxS81NfrfGWoKlZsCqLzjtmWB3_wmhPlyFMZ03oFf6G_22Ifni5C-cnx98-noZN7oXQ4gKiDDOc3IQQQ4-AYOQQSLhhLGziEyetkrHkLo5lynM7zITwTlC2G2GHTinh4hxR4RMYFLPCPwVGFIV55CSahUwyEykvETNIJ7j1znMZQNw2ubYNMTnlx5jqaoGipK7VpFFNulKTXgfwtntnXtNybJQ-Ik12kkSpXT2YLSa66aGa5z5TieMuk4gR08jENqPlrEyUz1IuAnhDdqCp4-PvWdPEL2AliUJLH-LCLVWIaHkAez1J7LC2X9xakm4GjKW-Nu8AXnXF9CYdgiv8bFXLVG5llFE9C-zVrF9SXF1WpOGUz1kqlQSw3xrr9dc3Nd1-Z9D_0dLPNtftOdzl1NnoRFCyB4NysfIvENSV2cump_4FBU9HVA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgSHw8ID5FYaAgIfHAKto0yaW8jYlpQhq8MGlvUb5um3b0pl1PG_fXY6e9smpogod7aONc29iu7Tr-GeCdnqDTMOXEgehyoW2R18JVubLojPPaTrqM6f43tXcgvh7Kwx4mh2phrubvS60-LkoCZM_RsuCvkEW-ug130EiplJhVO0PGgKoR1kUxf503MjwJn__6W_j6zsghPfoA7i2bM_vrws5mVyzQ7iN42LuObLvj9WO4FZsncHe_T44_hfh92WKAa09ZiG3aYdUwOzuaY_h__HPByF4FhueOOqTpkxUekpNpz1nqh_OJWdZVsjD6OsvQ4WZ9ERVeNl5aAhJePIOD3S8_dvbyvotC7jEUaHOHZkpKWUVctUlAlyBUpfQiiqC8VqXioSxVzae-clLGIKlvjfRV0FqGcor-3XPYaOZNfAGMwAanRVDIYCWcLXRUaP1VkNzHELnKoFwvsfE9xDh1upiZFGpoZTq2GGSLSWwxqww-DHPOOoCNG6k_E-cGSgLHTidQZkyva4ZPo9Mi8OAUent1YUvvKDBVQkdXc5nBe-K7IRXG2_O2r0TAhyQwLLONIVit0TflGWyOKFH1_Hh4LTmmV_2FwVueiJqyzRm8HYZpJm1na-J82dGkBDHS6JHEjZ5sPNKcHCf4b-rMrLQWGWythfPP1W9auq1BgP9hpV_-37-_gvuclI32-ohN2GjPl_E1umute5P09DeGrjUR
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwF74BsRGMhISDywdIlruw5vBTFNSBsIUWk8Wf5KVy1LqzbVoH895zgpC0MTSDzkIfFZsS_nu9_FvjuEXokhgIac-C_gdEyFSuKM6kHMFYBxkqlh2DE9OuaHY_rxhJ1soS9tLIw-N2AFwNMMBZRnRf9yGHoRohx8FQW32J_bPCx6wfeXqU_cHoMFgithSby-gbY5A3zeQ9vj48-jb3WY0TCNCRGijZ75Y8eOhaoT-V9V11ePUG72UXfQrVU5Vz8uVFFcMlUHd9GynWQ4oXLWX1W6b9a_5X_8v1y4h-40yBaPgijeR1uufIBuHjV79w-R-wQDAYh6hq2r6gNgJVbFZLaYVqfnS-zNqcXwbBISYU_XcOsxsFrgulzPW6xwCLTB_ucxBn8ANzFe8Fr3Xfk8x8tHaHzw4ev7w7gp8hAb8FSqWIMVZYwNHCCPoQXEYgcpM9RRy43gKSc2TXlGcjPQjDnLfFkdZgZWCGbTHODnY9QrZ6V7grDPhZgnloP8capVIhwHcMItI8ZZR3iE0vbDStNkQPeFOApZe0KCy8A_CfyTNf_kOkJvNn3mIf_HtdTvvLxsKH3u7vrBbDGRjSqQJHdaUEus5gBGs0SlRnu_mVPhdEZYhF57aZNew8DwjGoCJWCSPleXHIGHmAmAziRCux1K0Aym29zKq2w001LCkIc085vhEXq5afY9_Wm70s1WgabevwYa0ZHzzsy6LeX0tM5O7gtHcyFohPbaJfHr7dexbm-zbP6C00__jfwZuk38qvBHkegu6lWLlXsOaLLSLxr18BNOoG3a
  priority: 102
  providerName: Unpaywall
Title Outbreak detection algorithms based on generalized linear model: a review with new practical examples
URI https://link.springer.com/article/10.1186/s12874-023-02050-z
https://www.proquest.com/docview/2877496058
https://www.proquest.com/docview/2877389138
https://pubmed.ncbi.nlm.nih.gov/PMC10576884
https://bmcmedresmethodol.biomedcentral.com/counter/pdf/10.1186/s12874-023-02050-z
https://doaj.org/article/2feb84d2db664490a1cb3819648eb925
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M48
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9swEBd9wB4fxp7MWxc0GOzD6tVWJFkejJGEljJIVsoC2b4Y2VLSsMzpEoe1-et3J9vpTEvpBxtsybF9j9zvfLo7Qt6pCEDDmCEHbOpzpQM_5mnblxrAOIt1VEZM-wN5PORfR2K0Rep2RxUBlze6dthPariYfbz4c_kFFP6zU3glD5YhFm33wfrAFojAX2-TXbBUMbZy6POrqAJmLLhsoyj0GVOqTqK58TcahsrV87_-r319JeUmnPqQ3F_l5_ryr57N_rNYR4_Jowpq0k4pG0_Ils2fknv9Kpj-jNhvqwIcYv2LGlu4FVk51bPJfDEtzn4vKdo3Q-HcpKxMPV3DIYJSvaCuf84nqmmZ-ULxay4FgE6rpCu4rb3QWHh4-ZwMjw6_9479quuCn4HrUPgpmDUhRNsCFIgMQAjTDkXGLTcyUzKUzIShjNk4a6dCWCOwz43I2kYpYcIx4MEXZCef5_YloViccBwYCQIheaoDZSWgBWkEy6yxTHokrEmcZFVJcuyMMUuca6JkUrIlAbYkji3J2iMfNteclwU5bp3dRc5tZmIxbXdivpgklW4mbGxTxQ0zqQR0GAc6zFJ0ZCVXNo2Z8Mh75HuCQgiPl-kqcwFeEotnJR1w2WIFWJZ5ZK8xE1Q1aw7XkpPUkp7AI0c8xui0R95uhvFKXP6W2_mqnOMCyjBHNSSu8WbNkXx65sqFYydnqRT3yH4tnFd3v410-xsBvgOlX92ZSK_JA4Z6hsuC-B7ZKRYr-waQXZG2yHY0ilpkt3s4ODmFo57stdxXkpZTZNifdn_C-HBw0vnxD3qvTD8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWIghGCACAwwEogHFi1xbNdBmtAGmza2FoQ2aW_Gid1uoqSlTTXWP46_jbt8jWhSxcse8pDYUWLf-T58vt8R8lp1wGjoM6SAS3yuTODHPIl8acAYZ7HplBHTbk_un_DPp-J0ifypc2HwWGUtEwtBbUcp7pFvgmXf4TEG8T6Mf_lYNQqjq3UJDVOVVrBbBcRYldhx6C4vwIWbbh18Anq_YWxv9_jjvl9VGfBTMJVzPwExLoSIHKi-jgWVaaNQpNxxK1MlQ8lsGMqY9dMoEcJZgXVdRBpZpYQN-yGCMYEKWOERj8H5W9nZ7X391sQxMEeiTtVRcnMaIry8D3oSrkAE_rylDouqAdd1w_Xzmk3Q9g5ZnWVjc3lhhsN_9OLefXKvMmjpdsmBD8iSy9bIrW4Vsl8jd8uNQVrmOz0k7sssBzfc_KDW5cU5sIya4QCmOj_7OaWoVS2FZ4MSD_t8DrdoCpsJLar2vKeGlvk2FPeQKbgFtEr1gt9wvw3CHU8fkZMbocJjspyNMveEUIRE7AdWAhtKnphAOQk2irSCpc46Jj0S1lOu0woIHetxDHXhECmpSzJpIJMuyKTnHnnXvDMuYUAW9t5BSjY9EcK7eDCaDHQlETTru0Rxy2wiwSaNAxOmCbrPkiuXxEx45C3ygUZBA7-XmipfAgaJkF16GxzFWIEFzTyy3uoJAiJtN9ecpCsBNdVXy8kjr5pmfBMP3WVuNCv7FGFs6KNaHNgaWbslOz8rQMqxfrRUintko2bWq68vmrqNhqH_Y6afLh7bS7K6f9w90kcHvcNn5DbDhYenkfg6Wc4nM_ccDMo8eVGtWkq-37Sg-As7foHe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAMeEJ8iY4CRkHhg0RLXdh3eRqEaHxs8MGlvlmM7XUWXVm0qoH89d84Hi4YmeMhDYzsfPl_udz3f7wh5qYYAGgqGEvB5zJVJ4ozng1gaAOMsM8M6Ynp0LA9P-MdTcXohiz_sdm9DknVOA7I0ldX-whW1iiu5v0qRpj0GewNHIpJ4c53c4GDdsIbBSI66OALmKLSpMn8d1zNHgbX_8rf58n7JLmh6m9xclwvz64eZzS7YpfFdcqcBlPSgXgH3yDVf3ifbR03I_AHxX9YVuL3mO3W-CvuuSmpmk_lyWp2dryhaMUfh3KTmn55u4CdCT7OkoUrOG2pond9C8T9bCjCcNqlVcFv_0yC98OohORm__zY6jJvaCrEFB6GKczBeQoiBB4M_dAAU3CAVlnvupFUylcylqcxYYQe5EN4JrGYj7MApJVxaAOp7RLbKeekfE4oUhEXiJIhd8twkykvABNIJZr3zTEYkbadY24Z4HOtfzHRwQJTUtVg0iEUHsehNRF53YxY17caVvd-i5LqeSJkdTsyXE91ooGaFzxV3zOUSMGCWmNTm6K5KrnyeMRGRVyh3jYoNj2dNk58AL4kUWfoAHLNMAWJlEdnt9QSFtP3mduXo5oOw0vDIQ55hDDoiL7pmHImb3Eo_X9d9QtgY-qjeiuu9Wb-lnJ4FUnCs1yyV4hHZaxfnn7tfNXV73QL-h5ne-b-rPyfbX9-N9ecPx5-ekFsM9Q43A_FdslUt1_4p4LkqfxZU9jc1ykBH
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwF74BsRGMhISDywdIlruw5vBTFNSBsIUWk8Wf5KVy1LqzbVoH895zgpC0MTSDzkIfFZsS_nu9_FvjuEXokhgIac-C_gdEyFSuKM6kHMFYBxkqlh2DE9OuaHY_rxhJ1soS9tLIw-N2AFwNMMBZRnRf9yGHoRohx8FQW32J_bPCx6wfeXqU_cHoMFgithSby-gbY5A3zeQ9vj48-jb3WY0TCNCRGijZ75Y8eOhaoT-V9V11ePUG72UXfQrVU5Vz8uVFFcMlUHd9GynWQ4oXLWX1W6b9a_5X_8v1y4h-40yBaPgijeR1uufIBuHjV79w-R-wQDAYh6hq2r6gNgJVbFZLaYVqfnS-zNqcXwbBISYU_XcOsxsFrgulzPW6xwCLTB_ucxBn8ANzFe8Fr3Xfk8x8tHaHzw4ev7w7gp8hAb8FSqWIMVZYwNHCCPoQXEYgcpM9RRy43gKSc2TXlGcjPQjDnLfFkdZgZWCGbTHODnY9QrZ6V7grDPhZgnloP8capVIhwHcMItI8ZZR3iE0vbDStNkQPeFOApZe0KCy8A_CfyTNf_kOkJvNn3mIf_HtdTvvLxsKH3u7vrBbDGRjSqQJHdaUEus5gBGs0SlRnu_mVPhdEZYhF57aZNew8DwjGoCJWCSPleXHIGHmAmAziRCux1K0Aym29zKq2w001LCkIc085vhEXq5afY9_Wm70s1WgabevwYa0ZHzzsy6LeX0tM5O7gtHcyFohPbaJfHr7dexbm-zbP6C00__jfwZuk38qvBHkegu6lWLlXsOaLLSLxr18BNOoG3a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outbreak+detection+algorithms+based+on+generalized+linear+model%3A+a+review+with+new+practical+examples&rft.jtitle=BMC+medical+research+methodology&rft.au=Zareie%2C+Bushra&rft.au=Poorolajal%2C+Jalal&rft.au=Roshani%2C+Amin&rft.au=Karami%2C+Manoochehr&rft.date=2023-10-14&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-023-02050-z&rft.externalDocID=A768980832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon