Outbreak detection algorithms based on generalized linear model: a review with new practical examples
Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID...
Saved in:
| Published in | BMC medical research methodology Vol. 23; no. 1; pp. 1 - 16 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
14.10.2023
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2288 1471-2288 |
| DOI | 10.1186/s12874-023-02050-z |
Cover
| Abstract | Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise. |
|---|---|
| AbstractList | Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise. Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise.Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise. Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise. Keywords: Early aberration, GLMs with negative binomial, GLMs with Poisson, Outbreak algorithm, Statistical surveillance Abstract Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases. Recently, outbreak detection algorithms have gained significant importance across various surveillance systems, particularly in light of the COVID-19 pandemic. These algorithms are approached from both theoretical and practical perspectives. The theoretical aspect entails the development and introduction of novel statistical methods that capture the interest of statisticians. In contrast, the practical aspect involves designing outbreak detection systems and employing diverse methodologies for monitoring syndromes, thus drawing the attention of epidemiologists and health managers. Over the past three decades, considerable efforts have been made in the field of surveillance, resulting in valuable publications that introduce new statistical methods and compare their performance. The generalized linear model (GLM) family has undergone various advancements in comparison to other statistical methods and models. This study aims to present and describe GLM-based methods, providing a coherent comparison between them. Initially, a historical overview of outbreak detection algorithms based on the GLM family is provided, highlighting commonly used methods. Furthermore, real data from Measles and COVID-19 are utilized to demonstrate examples of these methods. This study will be useful for researchers in both theoretical and practical aspects of outbreak detection methods, enabling them to familiarize themselves with the key techniques within the GLM family and facilitate comparisons, particularly for those with limited mathematical expertise. |
| ArticleNumber | 235 |
| Audience | Academic |
| Author | Karami, Manoochehr Poorolajal, Jalal Roshani, Amin Zareie, Bushra |
| Author_xml | – sequence: 1 givenname: Bushra surname: Zareie fullname: Zareie, Bushra organization: Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences – sequence: 2 givenname: Jalal surname: Poorolajal fullname: Poorolajal, Jalal organization: Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences – sequence: 3 givenname: Amin surname: Roshani fullname: Roshani, Amin organization: Department of Statistics, Lorestan University – sequence: 4 givenname: Manoochehr surname: Karami fullname: Karami, Manoochehr email: man.karami@yahoo.com organization: Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences |
| BookMark | eNqNUk1v3CAQtapUzUf7B3qy1EsvTg0YG_dSRVE_IkXKpT0jDGOHLYYt2Nlkf31nP9RmoyqqEAKG997AvDnNjnzwkGVvSXlOiKg_JEJFUxUlZThLXhbrF9kJqRpSUCrE0aP9cXaa0qIsSSNY_So7ZriKhvGTDG7mqYugfuYGJtCTDT5XbgjRTrdjyjuVwOQYG8BDVM6u8eisBxXzMRhwH3OVR7izsMpXSMk9bpZRoZBWLod7NS4dpNfZy165BG_261n248vn75ffiuubr1eXF9eF5oJPRVcRxjlnwAltTFk2hhGuK6hMrUVNamoIqVvaa9ZxDoY3rKFcMyMEN6QnLTvLrna6JqiFXEY7qvggg7JyGwhxkCri0xxI2kMnKkNNV9dV1ZaK6I4J0taVgK6lHLXYTmv2S_WwUs79ESSl3BggdwZINEBuDZBrZH3asZZzN4LR4Ccs28FTDm-8vZVDuENN3tRCVKjwfq8Qw68Z0iRHmzQ4pzyEOUlM2TDREiYQ-u4JdBHm6LHCW1TV1iV_hBoU_tv6PmBivRGVF5iyFaVgFFHn_0DhMDBajY3XW4wfEMSOoGNIKUIvtZ3UpoGQaN3zRaJPqP9V2b0fCcF-gPj3s8-wfgMeHvf8 |
| CitedBy_id | crossref_primary_10_3389_fphys_2024_1441076 crossref_primary_10_1080_0886022X_2024_2337288 crossref_primary_10_1136_bmjopen_2023_074753 crossref_primary_10_1002_iid3_1221 |
| Cites_doi | 10.1197/jamia.M1733 10.1186/1472-6947-7-6 10.1080/00224065.2004.11980274 10.3389/fpsyg.2018.02104 10.1016/j.ijid.2016.04.021 10.1111/j.2517-6161.1995.tb02052.x 10.1002/0470011815.b2a10021 10.1002/sim.9182 10.1002/sim.4780080312 10.1016/j.jbi.2018.08.001 10.2307/2983331 10.2105/AJPH.81.1.97 10.3201/eid1010.030789 10.1371/journal.pone.0184419 10.1002/sim.8535 10.1093/bioinformatics/bty997 10.1371/journal.pone.0181227 10.1111/j.1467-985X.2011.00714.x 10.1002/0470092505 10.1198/jasa.2011.tm09654 10.1093/aje/kwh029 10.1002/sim.3197 10.1186/s12917-016-0914-2 10.2307/4591848 10.2307/622709 10.1016/S0140-6736(20)31199-5 10.1002/sim.5595 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. BioMed Central Ltd., part of Springer Nature. BioMed Central Ltd., part of Springer Nature 2023 |
| Copyright_xml | – notice: The Author(s) 2023 – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. BioMed Central Ltd., part of Springer Nature. – notice: BioMed Central Ltd., part of Springer Nature 2023 |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12874-023-02050-z |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1471-2288 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_2feb84d2db664490a1cb3819648eb925 10.1186/s12874-023-02050-z PMC10576884 A768980832 10_1186_s12874_023_02050_z |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GrantInformation_xml | – fundername: The Vice-Chancellor of Research and Technology, Hamadan University of Medical Sciences grantid: 140009237703; 140009237703 – fundername: ; grantid: 140009237703; 140009237703 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK IAO IHR INH INR ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM 2VQ 4.4 ADTOC AHSBF C1A EJD H13 HYE IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c585t-b4135553e5127d007d315c4e4d6c86162d11692fc3b55ed573725c3d885d1f193 |
| IEDL.DBID | M48 |
| ISSN | 1471-2288 |
| IngestDate | Fri Oct 03 12:53:20 EDT 2025 Sun Oct 26 04:01:25 EDT 2025 Tue Sep 30 17:11:40 EDT 2025 Thu Sep 04 19:51:51 EDT 2025 Tue Oct 07 05:35:36 EDT 2025 Mon Oct 20 23:23:28 EDT 2025 Mon Oct 20 17:15:58 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Wed Oct 01 05:07:03 EDT 2025 Sat Sep 06 07:35:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | GLMs with negative binomial Outbreak algorithm Statistical surveillance Early aberration GLMs with Poisson |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c585t-b4135553e5127d007d315c4e4d6c86162d11692fc3b55ed573725c3d885d1f193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12874-023-02050-z |
| PMID | 37838735 |
| PQID | 2877496058 |
| PQPubID | 42579 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2feb84d2db664490a1cb3819648eb925 unpaywall_primary_10_1186_s12874_023_02050_z pubmedcentral_primary_oai_pubmedcentral_nih_gov_10576884 proquest_miscellaneous_2877389138 proquest_journals_2877496058 gale_infotracmisc_A768980832 gale_infotracacademiconefile_A768980832 crossref_citationtrail_10_1186_s12874_023_02050_z crossref_primary_10_1186_s12874_023_02050_z springer_journals_10_1186_s12874_023_02050_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-14 |
| PublicationDateYYYYMMDD | 2023-10-14 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | BMC medical research methodology |
| PublicationTitleAbbrev | BMC Med Res Methodol |
| PublicationYear | 2023 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | K Kleinman (2050_CR32) 2004; 159 TL Lai (2050_CR31) 1995; 57 D Yoneoka (2050_CR17) 2021; 40 D Costagliola (2050_CR14) 1991; 81 A Noufaily (2050_CR18) 2013; 32 RW Mathes (2050_CR23) 2017; 12 2050_CR20 2050_CR4 2050_CR3 C Farrington (2050_CR9) 1996; 159 2050_CR27 C Abat (2050_CR22) 2016; 48 DF Stroup (2050_CR7) 1989; 8 G Hripcsak (2050_CR34) 2005; 12 J Buchler (2050_CR1) 2004; 53 S Unkel (2050_CR2) 2012; 175 2050_CR29 J Pek (2050_CR28) 2018; 9 F Vial (2050_CR24) 2016; 12 A Flahault (2050_CR15) 1995; 346 RD Fricker Jr (2050_CR21) 2008; 27 B Miller (2050_CR33) 2004; 10 P Chen (2050_CR12) 2020; 39 L Shu (2050_CR30) 2004; 36 G Bédubourg (2050_CR6) 2017; 12 T Burki (2050_CR16) 2020; 395 A Noufaily (2050_CR25) 2019; 35 2050_CR13 2050_CR10 A Alimadad (2050_CR11) 2011; 106 C Faverjon (2050_CR5) 2018; 85 ML Jackson (2050_CR26) 2007; 7 RE Serfling (2050_CR8) 1963; 78 2050_CR19 |
| References_xml | – volume: 12 start-page: 296 issue: 3 year: 2005 ident: 2050_CR34 publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M1733 – volume: 7 start-page: 1 issue: 1 year: 2007 ident: 2050_CR26 publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-7-6 – volume: 36 start-page: 280 issue: 3 year: 2004 ident: 2050_CR30 publication-title: J Qual Technol doi: 10.1080/00224065.2004.11980274 – volume: 9 start-page: 2104 year: 2018 ident: 2050_CR28 publication-title: Front Psychol doi: 10.3389/fpsyg.2018.02104 – volume: 48 start-page: 22 year: 2016 ident: 2050_CR22 publication-title: Int J Infect Dis doi: 10.1016/j.ijid.2016.04.021 – volume: 57 start-page: 613 issue: 4 year: 1995 ident: 2050_CR31 publication-title: J Roy Stat Soc: Ser B (Methodol) doi: 10.1111/j.2517-6161.1995.tb02052.x – volume: 53 start-page: 1 issue: 5 year: 2004 ident: 2050_CR1 publication-title: MMWR Recomm REP – ident: 2050_CR27 doi: 10.1002/0470011815.b2a10021 – volume: 40 start-page: 6277 issue: 28 year: 2021 ident: 2050_CR17 publication-title: Stat Med doi: 10.1002/sim.9182 – volume: 8 start-page: 323 issue: 3 year: 1989 ident: 2050_CR7 publication-title: Stat Med doi: 10.1002/sim.4780080312 – volume: 85 start-page: 126 year: 2018 ident: 2050_CR5 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.08.001 – volume: 159 start-page: 547 issue: 3 year: 1996 ident: 2050_CR9 publication-title: J R Stat Soc A Stat Soc doi: 10.2307/2983331 – volume: 81 start-page: 97 issue: 1 year: 1991 ident: 2050_CR14 publication-title: Am J Public Health doi: 10.2105/AJPH.81.1.97 – volume: 10 start-page: 1806 issue: 10 year: 2004 ident: 2050_CR33 publication-title: Emerg Infect Dis doi: 10.3201/eid1010.030789 – volume: 12 issue: 9 year: 2017 ident: 2050_CR23 publication-title: PLoS ONE doi: 10.1371/journal.pone.0184419 – volume: 39 start-page: 2101 issue: 15 year: 2020 ident: 2050_CR12 publication-title: Stat Med doi: 10.1002/sim.8535 – volume: 35 start-page: 3110 issue: 17 year: 2019 ident: 2050_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty997 – volume: 12 issue: 7 year: 2017 ident: 2050_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0181227 – ident: 2050_CR29 – volume: 346 start-page: 162 issue: 8968 year: 1995 ident: 2050_CR15 publication-title: Lancet (British edition) – volume: 175 start-page: 49 issue: 1 year: 2012 ident: 2050_CR2 publication-title: J R Stat Soc A Stat Soc doi: 10.1111/j.1467-985X.2011.00714.x – ident: 2050_CR3 doi: 10.1002/0470092505 – volume: 106 start-page: 719 issue: 494 year: 2011 ident: 2050_CR11 publication-title: J Am Stat Assoc doi: 10.1198/jasa.2011.tm09654 – volume: 159 start-page: 217 issue: 3 year: 2004 ident: 2050_CR32 publication-title: Am J Epidemiol doi: 10.1093/aje/kwh029 – volume: 27 start-page: 3407 issue: 17 year: 2008 ident: 2050_CR21 publication-title: Stat Med doi: 10.1002/sim.3197 – volume: 12 start-page: 1 issue: 1 year: 2016 ident: 2050_CR24 publication-title: BMC Vet Res doi: 10.1186/s12917-016-0914-2 – volume: 78 start-page: 494 issue: 6 year: 1963 ident: 2050_CR8 publication-title: Public Health Rep doi: 10.2307/4591848 – ident: 2050_CR4 – ident: 2050_CR10 doi: 10.2307/622709 – ident: 2050_CR13 – ident: 2050_CR19 – ident: 2050_CR20 – volume: 395 start-page: 1602 issue: 10237 year: 2020 ident: 2050_CR16 publication-title: The Lancet doi: 10.1016/S0140-6736(20)31199-5 – volume: 32 start-page: 1206 issue: 7 year: 2013 ident: 2050_CR18 publication-title: Stat Med doi: 10.1002/sim.5595 |
| SSID | ssj0017836 |
| Score | 2.4387436 |
| SecondaryResourceType | review_article |
| Snippet | Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious diseases.... Abstract Public health surveillance serves a crucial function within health systems, enabling the monitoring, early detection, and warning of infectious... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Automation Communicable diseases Control Control charts Disease Early aberration Epidemics Epidemiology Expected values Generalized linear models GLMs with negative binomial GLMs with Poisson Health aspects Health Sciences Health surveillance Iran Medicine Medicine & Public Health Mortality Normal distribution Outbreak algorithm Prevention Process controls Public health Random variables Review Risk factors Statistical methods Statistical surveillance Statistical Theory and Methods Statistics for Life Sciences Theory of Medicine/Bioethics Time series Trends |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiKcIFGQkJA40auLYXodbQVQVUuFCpd4sv9KuumSr3ayA_fXM2EloVKlw4JBD4okSz4wzM5nxN4S8UTNwGhqGEgg258oUec1tlUsDzjirzSxlTI-_yKMT_vlUnF5p9YU1YQkeODFunzXBKu6ZtxJMd12Y0lmMMiRXwdYsopcWqh6CqT5_gHsThi0ySu6vS4R1z8E-wVGIIt9OzFBE67_-Tb5eJzkmS--RO5v20vz6YRaLK_bo8AG53zuS9CBN4CG5FdpH5PZxnyp_TMLXTQfhrrmgPnSx3qqlZnG2XM278-9ritbLU7h2lnCn51s4RZfTrGjsjvOeGpr2tVD8V0vB_ab9lip4bPhpEFZ4_YScHH769vEo73sq5A4Cgy63YLSEEFUAQz_z4CD4qhSOB-6lU7KUzJelrFnjKitE8AK72AhXeaWELxvw9p6SnXbZhmeEIvRgU3gJ4pbcmkIFCb6A9IK54AOTGSkHFmvXA45j34uFjoGHkjqJRYNYdBSL3mbk3XjPZYLbuJH6A0pupESo7HgBFEj3CqT_pkAZeYty17ig4fWc6fclwCQRGksfQEBWK_BUWUZ2J5SwEN10eNAc3X8I1hpeecZrzD1n5PU4jHdicVsblptEE9PFQKMmGjeZ2XSknZ9HMHDs0yyV4hnZG5Tzz9NvYt3eqMD_wOnn_4PTL8hdhksQ64H4LtnpVpvwEly6zr6Kq_c3erVECA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFfxARGvF1SoRBB_s0t3cJpcVRFppKUJPEQt9C9kkey2ee-fdHur99c7sV10Khw_7sJtZdpOZJL9kMr8BeK1GCBpyThrwWZgoE4Vpkg1DaRCM89SMao_p2VieniefLsTFFozbWBg6VtmOidVA7WaW9sgPENmPkpSceB_mP0PKGkXe1TaFhmlSK7j3FcXYLdjmxIw1gO2j4_GXr51fgWIW2tAZJQ-WMdG9hzhv4RWJKFz3pqeKxf_mWH3z_GTnRL0Hd1bF3Pz5ZabTf-apk4fwoAGY7LC2iEew5YsduH3WuNB34H69Ucfq-KPH4D-vSlwWm-_M-bI6l1UwM51g1cvLH0tGs5xj-GxS81NfrfGWoKlZsCqLzjtmWB3_wmhPlyFMZ03oFf6G_22Ifni5C-cnx98-noZN7oXQ4gKiDDOc3IQQQ4-AYOQQSLhhLGziEyetkrHkLo5lynM7zITwTlC2G2GHTinh4hxR4RMYFLPCPwVGFIV55CSahUwyEykvETNIJ7j1znMZQNw2ubYNMTnlx5jqaoGipK7VpFFNulKTXgfwtntnXtNybJQ-Ik12kkSpXT2YLSa66aGa5z5TieMuk4gR08jENqPlrEyUz1IuAnhDdqCp4-PvWdPEL2AliUJLH-LCLVWIaHkAez1J7LC2X9xakm4GjKW-Nu8AXnXF9CYdgiv8bFXLVG5llFE9C-zVrF9SXF1WpOGUz1kqlQSw3xrr9dc3Nd1-Z9D_0dLPNtftOdzl1NnoRFCyB4NysfIvENSV2cump_4FBU9HVA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgSHw8ID5FYaAgIfHAKto0yaW8jYlpQhq8MGlvUb5um3b0pl1PG_fXY6e9smpogod7aONc29iu7Tr-GeCdnqDTMOXEgehyoW2R18JVubLojPPaTrqM6f43tXcgvh7Kwx4mh2phrubvS60-LkoCZM_RsuCvkEW-ug130EiplJhVO0PGgKoR1kUxf503MjwJn__6W_j6zsghPfoA7i2bM_vrws5mVyzQ7iN42LuObLvj9WO4FZsncHe_T44_hfh92WKAa09ZiG3aYdUwOzuaY_h__HPByF4FhueOOqTpkxUekpNpz1nqh_OJWdZVsjD6OsvQ4WZ9ERVeNl5aAhJePIOD3S8_dvbyvotC7jEUaHOHZkpKWUVctUlAlyBUpfQiiqC8VqXioSxVzae-clLGIKlvjfRV0FqGcor-3XPYaOZNfAGMwAanRVDIYCWcLXRUaP1VkNzHELnKoFwvsfE9xDh1upiZFGpoZTq2GGSLSWwxqww-DHPOOoCNG6k_E-cGSgLHTidQZkyva4ZPo9Mi8OAUent1YUvvKDBVQkdXc5nBe-K7IRXG2_O2r0TAhyQwLLONIVit0TflGWyOKFH1_Hh4LTmmV_2FwVueiJqyzRm8HYZpJm1na-J82dGkBDHS6JHEjZ5sPNKcHCf4b-rMrLQWGWythfPP1W9auq1BgP9hpV_-37-_gvuclI32-ohN2GjPl_E1umute5P09DeGrjUR priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwF74BsRGMhISDywdIlruw5vBTFNSBsIUWk8Wf5KVy1LqzbVoH895zgpC0MTSDzkIfFZsS_nu9_FvjuEXokhgIac-C_gdEyFSuKM6kHMFYBxkqlh2DE9OuaHY_rxhJ1soS9tLIw-N2AFwNMMBZRnRf9yGHoRohx8FQW32J_bPCx6wfeXqU_cHoMFgithSby-gbY5A3zeQ9vj48-jb3WY0TCNCRGijZ75Y8eOhaoT-V9V11ePUG72UXfQrVU5Vz8uVFFcMlUHd9GynWQ4oXLWX1W6b9a_5X_8v1y4h-40yBaPgijeR1uufIBuHjV79w-R-wQDAYh6hq2r6gNgJVbFZLaYVqfnS-zNqcXwbBISYU_XcOsxsFrgulzPW6xwCLTB_ucxBn8ANzFe8Fr3Xfk8x8tHaHzw4ev7w7gp8hAb8FSqWIMVZYwNHCCPoQXEYgcpM9RRy43gKSc2TXlGcjPQjDnLfFkdZgZWCGbTHODnY9QrZ6V7grDPhZgnloP8capVIhwHcMItI8ZZR3iE0vbDStNkQPeFOApZe0KCy8A_CfyTNf_kOkJvNn3mIf_HtdTvvLxsKH3u7vrBbDGRjSqQJHdaUEus5gBGs0SlRnu_mVPhdEZYhF57aZNew8DwjGoCJWCSPleXHIGHmAmAziRCux1K0Aym29zKq2w001LCkIc085vhEXq5afY9_Wm70s1WgabevwYa0ZHzzsy6LeX0tM5O7gtHcyFohPbaJfHr7dexbm-zbP6C00__jfwZuk38qvBHkegu6lWLlXsOaLLSLxr18BNOoG3a priority: 102 providerName: Unpaywall |
| Title | Outbreak detection algorithms based on generalized linear model: a review with new practical examples |
| URI | https://link.springer.com/article/10.1186/s12874-023-02050-z https://www.proquest.com/docview/2877496058 https://www.proquest.com/docview/2877389138 https://pubmed.ncbi.nlm.nih.gov/PMC10576884 https://bmcmedresmethodol.biomedcentral.com/counter/pdf/10.1186/s12874-023-02050-z https://doaj.org/article/2feb84d2db664490a1cb3819648eb925 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1471-2288 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: M48 dateStart: 20011101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2288 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017836 issn: 1471-2288 databaseCode: C6C dateStart: 20010112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9swEBd9wB4fxp7MWxc0GOzD6tVWJFkejJGEljJIVsoC2b4Y2VLSsMzpEoe1-et3J9vpTEvpBxtsybF9j9zvfLo7Qt6pCEDDmCEHbOpzpQM_5mnblxrAOIt1VEZM-wN5PORfR2K0Rep2RxUBlze6dthPariYfbz4c_kFFP6zU3glD5YhFm33wfrAFojAX2-TXbBUMbZy6POrqAJmLLhsoyj0GVOqTqK58TcahsrV87_-r319JeUmnPqQ3F_l5_ryr57N_rNYR4_Jowpq0k4pG0_Ils2fknv9Kpj-jNhvqwIcYv2LGlu4FVk51bPJfDEtzn4vKdo3Q-HcpKxMPV3DIYJSvaCuf84nqmmZ-ULxay4FgE6rpCu4rb3QWHh4-ZwMjw6_9479quuCn4HrUPgpmDUhRNsCFIgMQAjTDkXGLTcyUzKUzIShjNk4a6dCWCOwz43I2kYpYcIx4MEXZCef5_YloViccBwYCQIheaoDZSWgBWkEy6yxTHokrEmcZFVJcuyMMUuca6JkUrIlAbYkji3J2iMfNteclwU5bp3dRc5tZmIxbXdivpgklW4mbGxTxQ0zqQR0GAc6zFJ0ZCVXNo2Z8Mh75HuCQgiPl-kqcwFeEotnJR1w2WIFWJZ5ZK8xE1Q1aw7XkpPUkp7AI0c8xui0R95uhvFKXP6W2_mqnOMCyjBHNSSu8WbNkXx65sqFYydnqRT3yH4tnFd3v410-xsBvgOlX92ZSK_JA4Z6hsuC-B7ZKRYr-waQXZG2yHY0ilpkt3s4ODmFo57stdxXkpZTZNifdn_C-HBw0vnxD3qvTD8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTWIghGCACAwwEogHFi1xbNdBmtAGmza2FoQ2aW_Gid1uoqSlTTXWP46_jbt8jWhSxcse8pDYUWLf-T58vt8R8lp1wGjoM6SAS3yuTODHPIl8acAYZ7HplBHTbk_un_DPp-J0ifypc2HwWGUtEwtBbUcp7pFvgmXf4TEG8T6Mf_lYNQqjq3UJDVOVVrBbBcRYldhx6C4vwIWbbh18Anq_YWxv9_jjvl9VGfBTMJVzPwExLoSIHKi-jgWVaaNQpNxxK1MlQ8lsGMqY9dMoEcJZgXVdRBpZpYQN-yGCMYEKWOERj8H5W9nZ7X391sQxMEeiTtVRcnMaIry8D3oSrkAE_rylDouqAdd1w_Xzmk3Q9g5ZnWVjc3lhhsN_9OLefXKvMmjpdsmBD8iSy9bIrW4Vsl8jd8uNQVrmOz0k7sssBzfc_KDW5cU5sIya4QCmOj_7OaWoVS2FZ4MSD_t8DrdoCpsJLar2vKeGlvk2FPeQKbgFtEr1gt9wvw3CHU8fkZMbocJjspyNMveEUIRE7AdWAhtKnphAOQk2irSCpc46Jj0S1lOu0woIHetxDHXhECmpSzJpIJMuyKTnHnnXvDMuYUAW9t5BSjY9EcK7eDCaDHQlETTru0Rxy2wiwSaNAxOmCbrPkiuXxEx45C3ygUZBA7-XmipfAgaJkF16GxzFWIEFzTyy3uoJAiJtN9ecpCsBNdVXy8kjr5pmfBMP3WVuNCv7FGFs6KNaHNgaWbslOz8rQMqxfrRUintko2bWq68vmrqNhqH_Y6afLh7bS7K6f9w90kcHvcNn5DbDhYenkfg6Wc4nM_ccDMo8eVGtWkq-37Sg-As7foHe |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAMeEJ8iY4CRkHhg0RLXdh3eRqEaHxs8MGlvlmM7XUWXVm0qoH89d84Hi4YmeMhDYzsfPl_udz3f7wh5qYYAGgqGEvB5zJVJ4ozng1gaAOMsM8M6Ynp0LA9P-MdTcXohiz_sdm9DknVOA7I0ldX-whW1iiu5v0qRpj0GewNHIpJ4c53c4GDdsIbBSI66OALmKLSpMn8d1zNHgbX_8rf58n7JLmh6m9xclwvz64eZzS7YpfFdcqcBlPSgXgH3yDVf3ifbR03I_AHxX9YVuL3mO3W-CvuuSmpmk_lyWp2dryhaMUfh3KTmn55u4CdCT7OkoUrOG2pond9C8T9bCjCcNqlVcFv_0yC98OohORm__zY6jJvaCrEFB6GKczBeQoiBB4M_dAAU3CAVlnvupFUylcylqcxYYQe5EN4JrGYj7MApJVxaAOp7RLbKeekfE4oUhEXiJIhd8twkykvABNIJZr3zTEYkbadY24Z4HOtfzHRwQJTUtVg0iEUHsehNRF53YxY17caVvd-i5LqeSJkdTsyXE91ooGaFzxV3zOUSMGCWmNTm6K5KrnyeMRGRVyh3jYoNj2dNk58AL4kUWfoAHLNMAWJlEdnt9QSFtP3mduXo5oOw0vDIQ55hDDoiL7pmHImb3Eo_X9d9QtgY-qjeiuu9Wb-lnJ4FUnCs1yyV4hHZaxfnn7tfNXV73QL-h5ne-b-rPyfbX9-N9ecPx5-ekFsM9Q43A_FdslUt1_4p4LkqfxZU9jc1ykBH |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdGJwF74BsRGMhISDywdIlruw5vBTFNSBsIUWk8Wf5KVy1LqzbVoH895zgpC0MTSDzkIfFZsS_nu9_FvjuEXokhgIac-C_gdEyFSuKM6kHMFYBxkqlh2DE9OuaHY_rxhJ1soS9tLIw-N2AFwNMMBZRnRf9yGHoRohx8FQW32J_bPCx6wfeXqU_cHoMFgithSby-gbY5A3zeQ9vj48-jb3WY0TCNCRGijZ75Y8eOhaoT-V9V11ePUG72UXfQrVU5Vz8uVFFcMlUHd9GynWQ4oXLWX1W6b9a_5X_8v1y4h-40yBaPgijeR1uufIBuHjV79w-R-wQDAYh6hq2r6gNgJVbFZLaYVqfnS-zNqcXwbBISYU_XcOsxsFrgulzPW6xwCLTB_ucxBn8ANzFe8Fr3Xfk8x8tHaHzw4ev7w7gp8hAb8FSqWIMVZYwNHCCPoQXEYgcpM9RRy43gKSc2TXlGcjPQjDnLfFkdZgZWCGbTHODnY9QrZ6V7grDPhZgnloP8capVIhwHcMItI8ZZR3iE0vbDStNkQPeFOApZe0KCy8A_CfyTNf_kOkJvNn3mIf_HtdTvvLxsKH3u7vrBbDGRjSqQJHdaUEus5gBGs0SlRnu_mVPhdEZYhF57aZNew8DwjGoCJWCSPleXHIGHmAmAziRCux1K0Aym29zKq2w001LCkIc085vhEXq5afY9_Wm70s1WgabevwYa0ZHzzsy6LeX0tM5O7gtHcyFohPbaJfHr7dexbm-zbP6C00__jfwZuk38qvBHkegu6lWLlXsOaLLSLxr18BNOoG3a |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Outbreak+detection+algorithms+based+on+generalized+linear+model%3A+a+review+with+new+practical+examples&rft.jtitle=BMC+medical+research+methodology&rft.au=Zareie%2C+Bushra&rft.au=Poorolajal%2C+Jalal&rft.au=Roshani%2C+Amin&rft.au=Karami%2C+Manoochehr&rft.date=2023-10-14&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-023-02050-z&rft.externalDocID=A768980832 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon |