Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition

As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 40; no. 3; p. 111117
Main Authors Sim, Ju-Ri, Shin, Dong Hoon, Park, Pil-Gu, Park, So-Hyeon, Bae, Joon-Yong, Lee, Youngchae, Kang, Dha-Yei, Kim, Ye Jin, Aum, Sowon, Noh, Shin Hye, Hwang, Su Jin, Cha, Hye-Ran, Kim, Cheong Bi, Ko, Si Hwan, Park, Sunghoon, Jeon, Dongkyu, Cho, Sungwoo, Lee, Gee Eun, Kim, Jeonghun, Moon, Young-hye, Kim, Jae-Ouk, Nam, Jae-Sung, Kim, Chang-Hoon, Moon, Sungmin, Chung, Youn Wook, Park, Man-Seong, Ryu, Ji-Hwan, Namkung, Wan, Lee, Jae Myun, Lee, Min Goo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 19.07.2022
The Author(s)
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2022.111117

Cover

Abstract As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO6-selective inhibitors are effective against SARS-CoV-2 infections. Application of the SARS-CoV-2 Spike pseudotyped virus (SARS2-PsV) evokes a cytosolic Ca2+ elevation and ANO6-dependent phosphatidylserine externalization in ACE2/TMPRSS2-positive mammalian cells. A high-throughput screening of drug-like chemical libraries identifies three different structural classes of chemicals showing ANO6 inhibitory effects. Among them, A6-001 displays the highest potency and ANO6 selectivity and it inhibits the single-round infection of SARS2-PsV in ACE2/TMPRSS2-positive HEK 293T cells. More importantly, A6-001 strongly inhibits authentic SARS-CoV-2-induced phosphatidylserine scrambling and SARS-CoV-2 viral replications in Vero, Calu-3, and primarily cultured human nasal epithelial cells. These results provide mechanistic insights into the viral entry process and offer a potential target for pharmacological intervention to protect against coronavirus disease 2019 (COVID-19). [Display omitted] •A high-throughput screening of chemical libraries identifies several ANO6 inhibitors•SARS-CoV-2 Spike evokes ANO6-mediated phosphatidylserine scrambling in host cells•Phosphatidylserine scrambling promotes fusion of the viral and cell membranes•The identified ANO6 inhibitors inhibit SARS-CoV-2 viral replications Sim et al. show that ANO6/TMEM16F-mediated phosphatidylserine scrambling participates in the SARS-CoV-2 entry into host cells and ANO6 inhibitors are effective against SARS-CoV-2 infection. These findings provide mechanistic insights into the viral entry process as well as a potential target for the development of drugs to treat COVID-19.
AbstractList As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO6-selective inhibitors are effective against SARS-CoV-2 infections. Application of the SARS-CoV-2 Spike pseudotyped virus (SARS2-PsV) evokes a cytosolic Ca2+ elevation and ANO6-dependent phosphatidylserine externalization in ACE2/TMPRSS2-positive mammalian cells. A high-throughput screening of drug-like chemical libraries identifies three different structural classes of chemicals showing ANO6 inhibitory effects. Among them, A6-001 displays the highest potency and ANO6 selectivity and it inhibits the single-round infection of SARS2-PsV in ACE2/TMPRSS2-positive HEK 293T cells. More importantly, A6-001 strongly inhibits authentic SARS-CoV-2-induced phosphatidylserine scrambling and SARS-CoV-2 viral replications in Vero, Calu-3, and primarily cultured human nasal epithelial cells. These results provide mechanistic insights into the viral entry process and offer a potential target for pharmacological intervention to protect against coronavirus disease 2019 (COVID-19).As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO6-selective inhibitors are effective against SARS-CoV-2 infections. Application of the SARS-CoV-2 Spike pseudotyped virus (SARS2-PsV) evokes a cytosolic Ca2+ elevation and ANO6-dependent phosphatidylserine externalization in ACE2/TMPRSS2-positive mammalian cells. A high-throughput screening of drug-like chemical libraries identifies three different structural classes of chemicals showing ANO6 inhibitory effects. Among them, A6-001 displays the highest potency and ANO6 selectivity and it inhibits the single-round infection of SARS2-PsV in ACE2/TMPRSS2-positive HEK 293T cells. More importantly, A6-001 strongly inhibits authentic SARS-CoV-2-induced phosphatidylserine scrambling and SARS-CoV-2 viral replications in Vero, Calu-3, and primarily cultured human nasal epithelial cells. These results provide mechanistic insights into the viral entry process and offer a potential target for pharmacological intervention to protect against coronavirus disease 2019 (COVID-19).
As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO6-selective inhibitors are effective against SARS-CoV-2 infections. Application of the SARS-CoV-2 Spike pseudotyped virus (SARS2-PsV) evokes a cytosolic Ca2+ elevation and ANO6-dependent phosphatidylserine externalization in ACE2/TMPRSS2-positive mammalian cells. A high-throughput screening of drug-like chemical libraries identifies three different structural classes of chemicals showing ANO6 inhibitory effects. Among them, A6-001 displays the highest potency and ANO6 selectivity and it inhibits the single-round infection of SARS2-PsV in ACE2/TMPRSS2-positive HEK 293T cells. More importantly, A6-001 strongly inhibits authentic SARS-CoV-2-induced phosphatidylserine scrambling and SARS-CoV-2 viral replications in Vero, Calu-3, and primarily cultured human nasal epithelial cells. These results provide mechanistic insights into the viral entry process and offer a potential target for pharmacological intervention to protect against coronavirus disease 2019 (COVID-19). [Display omitted] •A high-throughput screening of chemical libraries identifies several ANO6 inhibitors•SARS-CoV-2 Spike evokes ANO6-mediated phosphatidylserine scrambling in host cells•Phosphatidylserine scrambling promotes fusion of the viral and cell membranes•The identified ANO6 inhibitors inhibit SARS-CoV-2 viral replications Sim et al. show that ANO6/TMEM16F-mediated phosphatidylserine scrambling participates in the SARS-CoV-2 entry into host cells and ANO6 inhibitors are effective against SARS-CoV-2 infection. These findings provide mechanistic insights into the viral entry process as well as a potential target for the development of drugs to treat COVID-19.
As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO6-selective inhibitors are effective against SARS-CoV-2 infections. Application of the SARS-CoV-2 Spike pseudotyped virus (SARS2-PsV) evokes a cytosolic Ca 2+ elevation and ANO6-dependent phosphatidylserine externalization in ACE2/TMPRSS2-positive mammalian cells. A high-throughput screening of drug-like chemical libraries identifies three different structural classes of chemicals showing ANO6 inhibitory effects. Among them, A6-001 displays the highest potency and ANO6 selectivity and it inhibits the single-round infection of SARS2-PsV in ACE2/TMPRSS2-positive HEK 293T cells. More importantly, A6-001 strongly inhibits authentic SARS-CoV-2-induced phosphatidylserine scrambling and SARS-CoV-2 viral replications in Vero, Calu-3, and primarily cultured human nasal epithelial cells. These results provide mechanistic insights into the viral entry process and offer a potential target for pharmacological intervention to protect against coronavirus disease 2019 (COVID-19). Sim et al. show that ANO6/TMEM16F-mediated phosphatidylserine scrambling participates in the SARS-CoV-2 entry into host cells and ANO6 inhibitors are effective against SARS-CoV-2 infection. These findings provide mechanistic insights into the viral entry process as well as a potential target for the development of drugs to treat COVID-19.
As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO6-selective inhibitors are effective against SARS-CoV-2 infections. Application of the SARS-CoV-2 Spike pseudotyped virus (SARS2-PsV) evokes a cytosolic Ca elevation and ANO6-dependent phosphatidylserine externalization in ACE2/TMPRSS2-positive mammalian cells. A high-throughput screening of drug-like chemical libraries identifies three different structural classes of chemicals showing ANO6 inhibitory effects. Among them, A6-001 displays the highest potency and ANO6 selectivity and it inhibits the single-round infection of SARS2-PsV in ACE2/TMPRSS2-positive HEK 293T cells. More importantly, A6-001 strongly inhibits authentic SARS-CoV-2-induced phosphatidylserine scrambling and SARS-CoV-2 viral replications in Vero, Calu-3, and primarily cultured human nasal epithelial cells. These results provide mechanistic insights into the viral entry process and offer a potential target for pharmacological intervention to protect against coronavirus disease 2019 (COVID-19).
ArticleNumber 111117
Author Bae, Joon-Yong
Park, So-Hyeon
Shin, Dong Hoon
Cho, Sungwoo
Kim, Chang-Hoon
Moon, Young-hye
Lee, Jae Myun
Aum, Sowon
Jeon, Dongkyu
Kang, Dha-Yei
Park, Pil-Gu
Cha, Hye-Ran
Sim, Ju-Ri
Moon, Sungmin
Hwang, Su Jin
Chung, Youn Wook
Kim, Ye Jin
Kim, Cheong Bi
Ryu, Ji-Hwan
Lee, Gee Eun
Namkung, Wan
Lee, Youngchae
Noh, Shin Hye
Park, Man-Seong
Ko, Si Hwan
Kim, Jeonghun
Kim, Jae-Ouk
Lee, Min Goo
Park, Sunghoon
Nam, Jae-Sung
Author_xml – sequence: 1
  givenname: Ju-Ri
  surname: Sim
  fullname: Sim, Ju-Ri
  organization: Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 2
  givenname: Dong Hoon
  orcidid: 0000-0002-5574-7975
  surname: Shin
  fullname: Shin, Dong Hoon
  organization: Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 3
  givenname: Pil-Gu
  orcidid: 0000-0002-3024-3439
  surname: Park
  fullname: Park, Pil-Gu
  organization: Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 4
  givenname: So-Hyeon
  surname: Park
  fullname: Park, So-Hyeon
  organization: College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
– sequence: 5
  givenname: Joon-Yong
  surname: Bae
  fullname: Bae, Joon-Yong
  organization: Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
– sequence: 6
  givenname: Youngchae
  surname: Lee
  fullname: Lee, Youngchae
  organization: Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 7
  givenname: Dha-Yei
  surname: Kang
  fullname: Kang, Dha-Yei
  organization: Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 8
  givenname: Ye Jin
  surname: Kim
  fullname: Kim, Ye Jin
  organization: Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 9
  givenname: Sowon
  orcidid: 0000-0002-4235-9121
  surname: Aum
  fullname: Aum, Sowon
  organization: Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 10
  givenname: Shin Hye
  surname: Noh
  fullname: Noh, Shin Hye
  organization: Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 11
  givenname: Su Jin
  surname: Hwang
  fullname: Hwang, Su Jin
  organization: Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 12
  givenname: Hye-Ran
  surname: Cha
  fullname: Cha, Hye-Ran
  organization: Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 13
  givenname: Cheong Bi
  surname: Kim
  fullname: Kim, Cheong Bi
  organization: Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 14
  givenname: Si Hwan
  surname: Ko
  fullname: Ko, Si Hwan
  organization: Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 15
  givenname: Sunghoon
  surname: Park
  fullname: Park, Sunghoon
  organization: Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 16
  givenname: Dongkyu
  orcidid: 0000-0002-1339-6388
  surname: Jeon
  fullname: Jeon, Dongkyu
  organization: College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
– sequence: 17
  givenname: Sungwoo
  orcidid: 0000-0002-3768-5766
  surname: Cho
  fullname: Cho, Sungwoo
  organization: College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
– sequence: 18
  givenname: Gee Eun
  orcidid: 0000-0002-3523-6326
  surname: Lee
  fullname: Lee, Gee Eun
  organization: Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
– sequence: 19
  givenname: Jeonghun
  orcidid: 0000-0002-7103-2662
  surname: Kim
  fullname: Kim, Jeonghun
  organization: Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
– sequence: 20
  givenname: Young-hye
  surname: Moon
  fullname: Moon, Young-hye
  organization: Science Unit, International Vaccine Institute, Seoul 08826, Korea
– sequence: 21
  givenname: Jae-Ouk
  surname: Kim
  fullname: Kim, Jae-Ouk
  organization: Science Unit, International Vaccine Institute, Seoul 08826, Korea
– sequence: 22
  givenname: Jae-Sung
  surname: Nam
  fullname: Nam, Jae-Sung
  organization: Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 23
  givenname: Chang-Hoon
  surname: Kim
  fullname: Kim, Chang-Hoon
  organization: Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 24
  givenname: Sungmin
  surname: Moon
  fullname: Moon, Sungmin
  organization: Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 25
  givenname: Youn Wook
  surname: Chung
  fullname: Chung, Youn Wook
  organization: Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 26
  givenname: Man-Seong
  surname: Park
  fullname: Park, Man-Seong
  organization: Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
– sequence: 27
  givenname: Ji-Hwan
  surname: Ryu
  fullname: Ryu, Ji-Hwan
  email: yjh@yuhs.ac
  organization: Severance Biomedical Science Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 28
  givenname: Wan
  surname: Namkung
  fullname: Namkung, Wan
  email: wnamkung@yonsei.ac.kr
  organization: College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
– sequence: 29
  givenname: Jae Myun
  orcidid: 0000-0002-5273-3113
  surname: Lee
  fullname: Lee, Jae Myun
  email: jaemyun@yuhs.ac
  organization: Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
– sequence: 30
  givenname: Min Goo
  orcidid: 0000-0001-7436-012X
  surname: Lee
  fullname: Lee, Min Goo
  email: mlee@yuhs.ac
  organization: Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35839776$$D View this record in MEDLINE/PubMed
BookMark eNqFUdtq3DAQFSWhuXT_oBQ_9sUbXXxTHwrLkiaBkIWkyauQ5XF3FttyJW9g_77yXkKSh2ZAaBidc0acc0aOOtsBIV8ZnTLKsovV1EDjoJ9yyvmUjZV_IqecMxYznuRHr_oTMvF-RUNllDGZfCYnIi2EzPPslCxmLTRonR7QdpGto4fZ_UM8t08xj7CrwWzn5Saa3S2yqF9aH06DPVaRN063ZaM9BOQSSxyhX8hxrRsPk_19Th5_Xf6eX8e3i6ub-ew2NmmRDrGoacVqkeRFJRgUXNAcDBUZk5omqRCJTESdg6zCxKTSlKLUCaealyKlMs_EOfm50-3XZQuVgW5wulG9w1a7jbIa1duXDpfqj31Wkqe0kDQIfN8LOPt3DX5QLfpgaqM7sGuveCYZHb9RBOi317telhxcDIAfO4Bx1nsHtTI4bB0Nq7FRjKoxNbVSu9TUmJrapRbIyTvyQf8D2t4ACC4_IzjlDUJnoEIXUlOVxf8L_AOkvbFv
CitedBy_id crossref_primary_10_1042_BST20221455
crossref_primary_10_3390_ijms25169083
crossref_primary_10_1038_s41467_023_40410_x
crossref_primary_10_1016_j_ceca_2024_102885
crossref_primary_10_1038_s42003_024_06729_x
crossref_primary_10_1016_j_tcb_2024_11_008
crossref_primary_10_1002_advs_202402693
crossref_primary_10_1016_j_bbrc_2023_08_063
crossref_primary_10_1007_s10528_025_11074_7
crossref_primary_10_1016_j_devcel_2025_01_011
crossref_primary_10_3389_fmolb_2023_1319251
crossref_primary_10_1038_s41594_024_01444_x
crossref_primary_10_1152_ajpheart_00638_2023
crossref_primary_10_3390_ijms25105093
crossref_primary_10_1007_s00424_023_02878_w
crossref_primary_10_1016_j_ceca_2022_102637
crossref_primary_10_1016_j_ceca_2024_102905
crossref_primary_10_1038_s41392_023_01510_8
crossref_primary_10_1016_j_jcmgh_2024_101383
crossref_primary_10_1016_j_ceb_2023_102192
Cites_doi 10.1371/journal.pcbi.1008375
10.1016/j.cell.2020.02.052
10.1016/j.eclinm.2020.100720
10.1038/s41598-019-43162-1
10.1016/j.cell.2012.07.036
10.1016/j.chom.2017.06.012
10.1038/s41589-020-00688-0
10.1016/j.jmb.2017.10.017
10.1016/j.antiviral.2020.104787
10.7554/eLife.44365
10.1038/nrmicro3469
10.1016/j.tim.2015.06.003
10.1016/j.celrep.2019.06.023
10.1073/pnas.0809524106
10.1038/nature09583
10.1182/blood.2020006000
10.1093/clinchem/hvaa029
10.1007/s00424-013-1305-1
10.1016/S0021-9258(19)83641-4
10.1152/physrev.00020.2015
10.1128/JVI.79.17.11496-11500.2005
10.1371/journal.ppat.1009212
10.1038/nature07313
10.1016/j.bpj.2012.09.030
10.1038/s41579-020-00468-6
10.1073/pnas.2003138117
10.1016/0005-2736(74)90175-8
10.1113/jphysiol.2008.163709
10.1371/journal.ppat.1003232
10.1007/s00018-020-03745-y
10.1007/s00424-015-1692-6
10.1038/s41586-021-03491-6
10.1128/JVI.77.16.8801-8811.2003
10.1016/j.jbc.2021.100411
10.1080/00016489950180261
10.1073/pnas.1211594110
10.1152/physrev.00039.2011
10.1016/j.antiviral.2020.104742
10.1016/j.ebiom.2021.103255
10.1096/fj.11-191627
10.1126/science.1152066
10.1007/BF01718208
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.celrep.2022.111117
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 111117
ExternalDocumentID PMC9250890
35839776
10_1016_j_celrep_2022_111117
S2211124722009238
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
O-L
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c585t-3f0d1f3478d31e82307ec03619a045334943f7e9d619c59cb3ba420a2b3509763
IEDL.DBID M48
ISSN 2211-1247
IngestDate Thu Aug 21 18:31:08 EDT 2025
Thu Jul 10 20:02:44 EDT 2025
Mon Jul 21 06:04:45 EDT 2025
Tue Jul 01 02:59:28 EDT 2025
Thu Apr 24 22:52:42 EDT 2025
Sun Apr 06 06:54:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords phosphatidylserine
SARS-CoV-2
CP: Microbiology
ANO6/TMEM16F
virus-cell fusion
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c585t-3f0d1f3478d31e82307ec03619a045334943f7e9d619c59cb3ba420a2b3509763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
ORCID 0000-0002-5273-3113
0000-0002-5574-7975
0000-0002-3024-3439
0000-0002-3523-6326
0000-0002-7103-2662
0000-0002-3768-5766
0000-0001-7436-012X
0000-0002-4235-9121
0000-0002-1339-6388
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2022.111117
PMID 35839776
PQID 2691049438
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9250890
proquest_miscellaneous_2691049438
pubmed_primary_35839776
crossref_citationtrail_10_1016_j_celrep_2022_111117
crossref_primary_10_1016_j_celrep_2022_111117
elsevier_sciencedirect_doi_10_1016_j_celrep_2022_111117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-19
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2022
Publisher Elsevier Inc
The Author(s)
Publisher_xml – name: Elsevier Inc
– name: The Author(s)
References Yang, Kim, David, Palmer, Jin, Tien, Huang, Cheng, Coughlin, Jan (bib36) 2012; 151
Tarafdar, Chakraborty, Dennison, Lentz (bib33) 2012; 103
Whitlock, Chernomordik (bib35) 2021; 296
Shang, Wan, Luo, Ye, Geng, Auerbach, Li (bib31) 2020; 117
Jung, Nam, Park, Oh, Yoon, Lee (bib20) 2013; 110
Eymieux, Rouillé, Terrier, Seron, Blanchard, Rosa-Calatrava, Dubuisson, Belouzard, Roingeard (bib13) 2021; 78
Yoon, Kim, Kim, Linton, Lee (bib39) 1999; 119
Coutard, Valle, de Lamballerie, Canard, Seidah, Decroly (bib11) 2020; 176
Lu, Wang, Gao (bib26) 2015; 23
Coil, Miller (bib9) 2005; 79
Lee, Kim, Park, Kim (bib24) 1996; 141
Namkung, Yao, Finkbeiner, Verkman (bib27) 2011; 25
Yeung, Gilbert, Shi, Silvius, Kapus, Grinstein (bib38) 2008; 319
Younan, Iampietro, Santos, Ramanathan, Popov, Bukreyev (bib40) 2018; 218
Kunzelmann, Nilius, Owsianik, Schreiber, Ousingsawat, Sirianant, Wanitchakool, Bevers, Heemskerk (bib22) 2014; 466
V'Kovski, Kratzel, Steiner, Stalder, Thiel (bib34) 2021; 19
Doktorova, Symons, Levental (bib12) 2020; 16
Grynkiewicz, Poenie, Tsien (bib15) 1985; 260
Papahadjopoulos, Poste, Schaeffer, Vail (bib29) 1974; 352
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche (bib18) 2020; 181
Ou, Mou, Zhang, Ojha, Choe, Farzan (bib28) 2021; 17
Suzuki, Umeda, Sims, Nagata (bib32) 2010; 468
Bosch, van der Zee, de Haan, Rottier (bib5) 2003; 77
Chu, Pan, Cheng, Hui, Krishnan, Liu, Ng, Wan, Yang, Wang (bib42) 2020; 66
Pedemonte, Galietta (bib30) 2014; 94
Hartzell, Yu, Xiao, Chien, Qu (bib16) 2009; 587
Kim, Jun, Yoon, Jung, Kim, Kim, Kim, Song, Kim, Nam (bib21) 2015; 467
Braga, Ali, Secco, Chiavacci, Neves, Goldhill, Penn, Jimenez-Guardeño, Ortega-Prieto, Bussani (bib6) 2021; 594
Liao, Carruthers, Smither, Weller, Williamson, Laws, Hiscox, Hiscox, Holder (bib25) 2020; 16
Jemielity, Wang, Chan, Ahmed, Li, Monahan, Bu, Farzan, Freeman, Umetsu (bib19) 2013; 9
Bevers, Williamson (bib4) 2016; 96
Feng, Dang, Han, Ye, Jin, Cheng, Li, Jan, Jan, Cheng (bib14) 2019; 28
Caly, Druce, Catton, Jans, Wagstaff (bib7) 2020; 178
Chaccour, Casellas, Blanco-Di Matteo, Pineda, Fernandez-Montero, Ruiz-Castillo, Richardson, Rodríguez-Mateos, Jordán-Iborra, Brew (bib8) 2021; 32
Alvadia, Lim, Clerico Mosina, Oostergetel, Dutzler, Paulino (bib1) 2019; 8
Connors, Levy (bib10) 2020; 135
Hoffmann, Hofmann-Winkler, Smith, Kruger, Arora, Sorensen, Sogaard, Hasselstrom, Winkler, Hempel (bib17) 2021
Zaitseva, Zaitsev, Melikov, Arakelyan, Marin, Villasmil, Margolis, Melikyan, Chernomordik (bib41) 2017; 22
Belouzard, Chu, Whittaker (bib3) 2009; 106
Yang, Cho, Koo, Tak, Cho, Shim, Park, Lee, Lee, Kim (bib37) 2008; 455
Lin, Jun, Woo, Lee, Kim, Nam (bib43) 2019; 9
Amara, Mercer (bib2) 2015; 13
Lai, Millet, Daniel, Freed, Whittaker (bib23) 2017; 429
Eymieux (10.1016/j.celrep.2022.111117_bib13) 2021; 78
Ou (10.1016/j.celrep.2022.111117_bib28) 2021; 17
Zaitseva (10.1016/j.celrep.2022.111117_bib41) 2017; 22
V'Kovski (10.1016/j.celrep.2022.111117_bib34) 2021; 19
Chaccour (10.1016/j.celrep.2022.111117_bib8) 2021; 32
Hartzell (10.1016/j.celrep.2022.111117_bib16) 2009; 587
Younan (10.1016/j.celrep.2022.111117_bib40) 2018; 218
Connors (10.1016/j.celrep.2022.111117_bib10) 2020; 135
Lee (10.1016/j.celrep.2022.111117_bib24) 1996; 141
Caly (10.1016/j.celrep.2022.111117_bib7) 2020; 178
Lu (10.1016/j.celrep.2022.111117_bib26) 2015; 23
Feng (10.1016/j.celrep.2022.111117_bib14) 2019; 28
Yang (10.1016/j.celrep.2022.111117_bib37) 2008; 455
Grynkiewicz (10.1016/j.celrep.2022.111117_bib15) 1985; 260
Hoffmann (10.1016/j.celrep.2022.111117_bib17) 2021
Suzuki (10.1016/j.celrep.2022.111117_bib32) 2010; 468
Braga (10.1016/j.celrep.2022.111117_bib6) 2021; 594
Jemielity (10.1016/j.celrep.2022.111117_bib19) 2013; 9
Yang (10.1016/j.celrep.2022.111117_bib36) 2012; 151
Namkung (10.1016/j.celrep.2022.111117_bib27) 2011; 25
Tarafdar (10.1016/j.celrep.2022.111117_bib33) 2012; 103
Coutard (10.1016/j.celrep.2022.111117_bib11) 2020; 176
Papahadjopoulos (10.1016/j.celrep.2022.111117_bib29) 1974; 352
Lai (10.1016/j.celrep.2022.111117_bib23) 2017; 429
Lin (10.1016/j.celrep.2022.111117_bib43) 2019; 9
Shang (10.1016/j.celrep.2022.111117_bib31) 2020; 117
Bevers (10.1016/j.celrep.2022.111117_bib4) 2016; 96
Belouzard (10.1016/j.celrep.2022.111117_bib3) 2009; 106
Jung (10.1016/j.celrep.2022.111117_bib20) 2013; 110
Yoon (10.1016/j.celrep.2022.111117_bib39) 1999; 119
Alvadia (10.1016/j.celrep.2022.111117_bib1) 2019; 8
Doktorova (10.1016/j.celrep.2022.111117_bib12) 2020; 16
Pedemonte (10.1016/j.celrep.2022.111117_bib30) 2014; 94
Whitlock (10.1016/j.celrep.2022.111117_bib35) 2021; 296
Kim (10.1016/j.celrep.2022.111117_bib21) 2015; 467
Amara (10.1016/j.celrep.2022.111117_bib2) 2015; 13
Kunzelmann (10.1016/j.celrep.2022.111117_bib22) 2014; 466
Yeung (10.1016/j.celrep.2022.111117_bib38) 2008; 319
Liao (10.1016/j.celrep.2022.111117_bib25) 2020; 16
Chu (10.1016/j.celrep.2022.111117_bib42) 2020; 66
Bosch (10.1016/j.celrep.2022.111117_bib5) 2003; 77
Coil (10.1016/j.celrep.2022.111117_bib9) 2005; 79
Hoffmann (10.1016/j.celrep.2022.111117_bib18) 2020; 181
References_xml – volume: 135
  start-page: 2033
  year: 2020
  end-page: 2040
  ident: bib10
  article-title: COVID-19 and its implications for thrombosis and anticoagulation
  publication-title: Blood
– volume: 9
  start-page: e1003232
  year: 2013
  ident: bib19
  article-title: TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine
  publication-title: PLoS Pathog.
– volume: 77
  start-page: 8801
  year: 2003
  end-page: 8811
  ident: bib5
  article-title: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex
  publication-title: J. Virol.
– volume: 22
  start-page: 99
  year: 2017
  end-page: 110.e7
  ident: bib41
  article-title: Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine
  publication-title: Cell Host Microbe
– volume: 141
  start-page: 1979
  year: 1996
  end-page: 1989
  ident: bib24
  article-title: Evaluation of anti-influenza effects of camostat in mice infected with non-adapted human influenza viruses
  publication-title: Arch. Virol.
– volume: 19
  start-page: 155
  year: 2021
  end-page: 170
  ident: bib34
  article-title: Coronavirus biology and replication: implications for SARS-CoV-2
  publication-title: Nat. Rev. Microbiol.
– volume: 178
  start-page: 104787
  year: 2020
  ident: bib7
  article-title: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro
  publication-title: Antiviral Res.
– volume: 594
  start-page: 88
  year: 2021
  end-page: 93
  ident: bib6
  article-title: Drugs that inhibit TMEM16 proteins block SARS-CoV-2 Spike-induced syncytia
  publication-title: Nature
– volume: 119
  start-page: 905
  year: 1999
  end-page: 910
  ident: bib39
  article-title: Effects of TNF-alpha and IL-1 beta on mucin, lysozyme, IL-6 and IL-8 in passage-2 normal human nasal epithelial cells
  publication-title: Acta Otolaryngol.
– volume: 66
  start-page: 549
  year: 2020
  end-page: 555
  ident: bib42
  article-title: Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia
  publication-title: Clin. Chem.
– volume: 587
  start-page: 2127
  year: 2009
  end-page: 2139
  ident: bib16
  article-title: Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels
  publication-title: J. Physiol.
– volume: 103
  start-page: 1880
  year: 2012
  end-page: 1889
  ident: bib33
  article-title: Phosphatidylserine inhibits and calcium promotes model membrane fusion
  publication-title: Biophys. J.
– volume: 467
  start-page: 2243
  year: 2015
  end-page: 2256
  ident: bib21
  article-title: Selective serotonin reuptake inhibitors facilitate ANO6 (TMEM16F) current activation and phosphatidylserine exposure
  publication-title: Pflugers Arch.
– volume: 16
  start-page: e1008375
  year: 2020
  ident: bib25
  article-title: Quantification of Ebola virus replication kinetics in vitro
  publication-title: PLoS Comput. Biol.
– volume: 296
  start-page: 100411
  year: 2021
  ident: bib35
  article-title: Flagging fusion: phosphatidylserine signaling in cell-cell fusion
  publication-title: J. Biol. Chem.
– volume: 79
  start-page: 11496
  year: 2005
  end-page: 11500
  ident: bib9
  article-title: Enhancement of enveloped virus entry by phosphatidylserine
  publication-title: J. Virol.
– volume: 23
  start-page: 468
  year: 2015
  end-page: 478
  ident: bib26
  article-title: Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond
  publication-title: Trends Microbiol.
– volume: 32
  start-page: 100720
  year: 2021
  ident: bib8
  article-title: The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: a pilot, double-blind, placebo-controlled, randomized clinical trial
  publication-title: EClinicalMedicine
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280.e8
  ident: bib18
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
– volume: 9
  start-page: 6706
  year: 2019
  ident: bib43
  article-title: Temperature-dependent increase in the calcium sensitivity and acceleration of activation of ANO6 chloride channel variants
  publication-title: Sci. Rep.
– volume: 319
  start-page: 210
  year: 2008
  end-page: 213
  ident: bib38
  article-title: Membrane phosphatidylserine regulates surface charge and protein localization
  publication-title: Science
– volume: 13
  start-page: 461
  year: 2015
  end-page: 469
  ident: bib2
  article-title: Viral apoptotic mimicry
  publication-title: Nat. Rev. Microbiol.
– volume: 16
  start-page: 1321
  year: 2020
  end-page: 1330
  ident: bib12
  article-title: Structural and functional consequences of reversible lipid asymmetry in living membranes
  publication-title: Nat. Chem. Biol.
– start-page: 103255
  year: 2021
  ident: bib17
  article-title: Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity
  publication-title: EBioMedicine
– volume: 110
  start-page: 360
  year: 2013
  end-page: 365
  ident: bib20
  article-title: Dynamic modulation of ANO1/TMEM16A HCO
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 78
  start-page: 3565
  year: 2021
  end-page: 3576
  ident: bib13
  article-title: Ultrastructural modifications induced by SARS-CoV-2 in Vero cells: a kinetic analysis of viral factory formation, viral particle morphogenesis and virion release
  publication-title: Cell. Mol. Life Sci.
– volume: 25
  start-page: 4048
  year: 2011
  end-page: 4062
  ident: bib27
  article-title: Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction
  publication-title: FASEB J.
– volume: 106
  start-page: 5871
  year: 2009
  end-page: 5876
  ident: bib3
  article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 567
  year: 2019
  end-page: 579.e4
  ident: bib14
  article-title: Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling
  publication-title: Cell Rep.
– volume: 429
  start-page: 3875
  year: 2017
  end-page: 3892
  ident: bib23
  article-title: The SARS-CoV fusion peptide forms an extended bipartite fusion platform that perturbs membrane order in a calcium-dependent manner
  publication-title: J. Mol. Biol.
– volume: 455
  start-page: 1210
  year: 2008
  end-page: 1215
  ident: bib37
  article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance
  publication-title: Nature
– volume: 176
  start-page: 104742
  year: 2020
  ident: bib11
  article-title: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade
  publication-title: Antiviral Res.
– volume: 94
  start-page: 419
  year: 2014
  end-page: 459
  ident: bib30
  article-title: Structure and function of TMEM16 proteins (anoctamins)
  publication-title: Physiol. Rev.
– volume: 352
  start-page: 10
  year: 1974
  end-page: 28
  ident: bib29
  article-title: Membrane fusion and molecular segregation in phospholipid vesicles
  publication-title: Biochim. Biophys. Acta
– volume: 8
  start-page: e44365
  year: 2019
  ident: bib1
  article-title: Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F
  publication-title: Elife
– volume: 260
  start-page: 3440
  year: 1985
  end-page: 3450
  ident: bib15
  article-title: A new generation of Ca2+ indicators with greatly improved fluorescence properties
  publication-title: J. Biol. Chem.
– volume: 117
  start-page: 11727
  year: 2020
  end-page: 11734
  ident: bib31
  article-title: Cell entry mechanisms of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 466
  start-page: 407
  year: 2014
  end-page: 414
  ident: bib22
  article-title: Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase?
  publication-title: Pflugers Arch.
– volume: 17
  start-page: e1009212
  year: 2021
  ident: bib28
  article-title: Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2
  publication-title: PLoS Pathog.
– volume: 468
  start-page: 834
  year: 2010
  end-page: 838
  ident: bib32
  article-title: Calcium-dependent phospholipid scrambling by TMEM16F
  publication-title: Nature
– volume: 218
  start-page: S335
  year: 2018
  end-page: S345
  ident: bib40
  article-title: Role of transmembrane protein 16F in the incorporation of phosphatidylserine into budding Ebola virus virions
  publication-title: J. Infect. Dis.
– volume: 96
  start-page: 605
  year: 2016
  end-page: 645
  ident: bib4
  article-title: Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane
  publication-title: Physiol. Rev.
– volume: 151
  start-page: 111
  year: 2012
  end-page: 122
  ident: bib36
  article-title: TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation
  publication-title: Cell
– volume: 16
  start-page: e1008375
  year: 2020
  ident: 10.1016/j.celrep.2022.111117_bib25
  article-title: Quantification of Ebola virus replication kinetics in vitro
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008375
– volume: 181
  start-page: 271
  year: 2020
  ident: 10.1016/j.celrep.2022.111117_bib18
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 32
  start-page: 100720
  year: 2021
  ident: 10.1016/j.celrep.2022.111117_bib8
  article-title: The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: a pilot, double-blind, placebo-controlled, randomized clinical trial
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2020.100720
– volume: 9
  start-page: 6706
  year: 2019
  ident: 10.1016/j.celrep.2022.111117_bib43
  article-title: Temperature-dependent increase in the calcium sensitivity and acceleration of activation of ANO6 chloride channel variants
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43162-1
– volume: 151
  start-page: 111
  year: 2012
  ident: 10.1016/j.celrep.2022.111117_bib36
  article-title: TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.036
– volume: 22
  start-page: 99
  year: 2017
  ident: 10.1016/j.celrep.2022.111117_bib41
  article-title: Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.06.012
– volume: 16
  start-page: 1321
  year: 2020
  ident: 10.1016/j.celrep.2022.111117_bib12
  article-title: Structural and functional consequences of reversible lipid asymmetry in living membranes
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-00688-0
– volume: 429
  start-page: 3875
  year: 2017
  ident: 10.1016/j.celrep.2022.111117_bib23
  article-title: The SARS-CoV fusion peptide forms an extended bipartite fusion platform that perturbs membrane order in a calcium-dependent manner
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.10.017
– volume: 178
  start-page: 104787
  year: 2020
  ident: 10.1016/j.celrep.2022.111117_bib7
  article-title: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2020.104787
– volume: 8
  start-page: e44365
  year: 2019
  ident: 10.1016/j.celrep.2022.111117_bib1
  article-title: Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F
  publication-title: Elife
  doi: 10.7554/eLife.44365
– volume: 13
  start-page: 461
  year: 2015
  ident: 10.1016/j.celrep.2022.111117_bib2
  article-title: Viral apoptotic mimicry
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3469
– volume: 23
  start-page: 468
  year: 2015
  ident: 10.1016/j.celrep.2022.111117_bib26
  article-title: Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2015.06.003
– volume: 28
  start-page: 567
  year: 2019
  ident: 10.1016/j.celrep.2022.111117_bib14
  article-title: Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.06.023
– volume: 106
  start-page: 5871
  year: 2009
  ident: 10.1016/j.celrep.2022.111117_bib3
  article-title: Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0809524106
– volume: 468
  start-page: 834
  year: 2010
  ident: 10.1016/j.celrep.2022.111117_bib32
  article-title: Calcium-dependent phospholipid scrambling by TMEM16F
  publication-title: Nature
  doi: 10.1038/nature09583
– volume: 135
  start-page: 2033
  year: 2020
  ident: 10.1016/j.celrep.2022.111117_bib10
  article-title: COVID-19 and its implications for thrombosis and anticoagulation
  publication-title: Blood
  doi: 10.1182/blood.2020006000
– volume: 66
  start-page: 549
  year: 2020
  ident: 10.1016/j.celrep.2022.111117_bib42
  article-title: Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/hvaa029
– volume: 466
  start-page: 407
  year: 2014
  ident: 10.1016/j.celrep.2022.111117_bib22
  article-title: Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase?
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-013-1305-1
– volume: 260
  start-page: 3440
  year: 1985
  ident: 10.1016/j.celrep.2022.111117_bib15
  article-title: A new generation of Ca2+ indicators with greatly improved fluorescence properties
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)83641-4
– volume: 96
  start-page: 605
  year: 2016
  ident: 10.1016/j.celrep.2022.111117_bib4
  article-title: Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00020.2015
– volume: 79
  start-page: 11496
  year: 2005
  ident: 10.1016/j.celrep.2022.111117_bib9
  article-title: Enhancement of enveloped virus entry by phosphatidylserine
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.17.11496-11500.2005
– volume: 17
  start-page: e1009212
  year: 2021
  ident: 10.1016/j.celrep.2022.111117_bib28
  article-title: Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009212
– volume: 455
  start-page: 1210
  year: 2008
  ident: 10.1016/j.celrep.2022.111117_bib37
  article-title: TMEM16A confers receptor-activated calcium-dependent chloride conductance
  publication-title: Nature
  doi: 10.1038/nature07313
– volume: 103
  start-page: 1880
  year: 2012
  ident: 10.1016/j.celrep.2022.111117_bib33
  article-title: Phosphatidylserine inhibits and calcium promotes model membrane fusion
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2012.09.030
– volume: 19
  start-page: 155
  year: 2021
  ident: 10.1016/j.celrep.2022.111117_bib34
  article-title: Coronavirus biology and replication: implications for SARS-CoV-2
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-00468-6
– volume: 117
  start-page: 11727
  year: 2020
  ident: 10.1016/j.celrep.2022.111117_bib31
  article-title: Cell entry mechanisms of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2003138117
– volume: 352
  start-page: 10
  year: 1974
  ident: 10.1016/j.celrep.2022.111117_bib29
  article-title: Membrane fusion and molecular segregation in phospholipid vesicles
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(74)90175-8
– volume: 587
  start-page: 2127
  year: 2009
  ident: 10.1016/j.celrep.2022.111117_bib16
  article-title: Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2008.163709
– volume: 9
  start-page: e1003232
  year: 2013
  ident: 10.1016/j.celrep.2022.111117_bib19
  article-title: TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003232
– volume: 78
  start-page: 3565
  year: 2021
  ident: 10.1016/j.celrep.2022.111117_bib13
  article-title: Ultrastructural modifications induced by SARS-CoV-2 in Vero cells: a kinetic analysis of viral factory formation, viral particle morphogenesis and virion release
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-020-03745-y
– volume: 467
  start-page: 2243
  year: 2015
  ident: 10.1016/j.celrep.2022.111117_bib21
  article-title: Selective serotonin reuptake inhibitors facilitate ANO6 (TMEM16F) current activation and phosphatidylserine exposure
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-015-1692-6
– volume: 218
  start-page: S335
  year: 2018
  ident: 10.1016/j.celrep.2022.111117_bib40
  article-title: Role of transmembrane protein 16F in the incorporation of phosphatidylserine into budding Ebola virus virions
  publication-title: J. Infect. Dis.
– volume: 594
  start-page: 88
  year: 2021
  ident: 10.1016/j.celrep.2022.111117_bib6
  article-title: Drugs that inhibit TMEM16 proteins block SARS-CoV-2 Spike-induced syncytia
  publication-title: Nature
  doi: 10.1038/s41586-021-03491-6
– volume: 77
  start-page: 8801
  year: 2003
  ident: 10.1016/j.celrep.2022.111117_bib5
  article-title: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.16.8801-8811.2003
– volume: 296
  start-page: 100411
  year: 2021
  ident: 10.1016/j.celrep.2022.111117_bib35
  article-title: Flagging fusion: phosphatidylserine signaling in cell-cell fusion
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.100411
– volume: 119
  start-page: 905
  year: 1999
  ident: 10.1016/j.celrep.2022.111117_bib39
  article-title: Effects of TNF-alpha and IL-1 beta on mucin, lysozyme, IL-6 and IL-8 in passage-2 normal human nasal epithelial cells
  publication-title: Acta Otolaryngol.
  doi: 10.1080/00016489950180261
– volume: 110
  start-page: 360
  year: 2013
  ident: 10.1016/j.celrep.2022.111117_bib20
  article-title: Dynamic modulation of ANO1/TMEM16A HCO3- permeability by Ca2+/calmodulin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1211594110
– volume: 94
  start-page: 419
  year: 2014
  ident: 10.1016/j.celrep.2022.111117_bib30
  article-title: Structure and function of TMEM16 proteins (anoctamins)
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00039.2011
– volume: 176
  start-page: 104742
  year: 2020
  ident: 10.1016/j.celrep.2022.111117_bib11
  article-title: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2020.104742
– start-page: 103255
  year: 2021
  ident: 10.1016/j.celrep.2022.111117_bib17
  article-title: Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103255
– volume: 25
  start-page: 4048
  year: 2011
  ident: 10.1016/j.celrep.2022.111117_bib27
  article-title: Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction
  publication-title: FASEB J.
  doi: 10.1096/fj.11-191627
– volume: 319
  start-page: 210
  year: 2008
  ident: 10.1016/j.celrep.2022.111117_bib38
  article-title: Membrane phosphatidylserine regulates surface charge and protein localization
  publication-title: Science
  doi: 10.1126/science.1152066
– volume: 141
  start-page: 1979
  year: 1996
  ident: 10.1016/j.celrep.2022.111117_bib24
  article-title: Evaluation of anti-influenza effects of camostat in mice infected with non-adapted human influenza viruses
  publication-title: Arch. Virol.
  doi: 10.1007/BF01718208
SSID ssj0000601194
Score 2.4676125
Snippet As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111117
SubjectTerms Angiotensin-Converting Enzyme 2
Animals
ANO6/TMEM16F
Anoctamins
COVID-19 Drug Treatment
Humans
Mammals - metabolism
phosphatidylserine
Phosphatidylserines
Phospholipid Transfer Proteins - metabolism
SARS-CoV-2
Virus Internalization
virus-cell fusion
SummonAdditionalLinks – databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yEHwRv51fRPA1bE26fjzOoYjgBk5lb6FJE1bZ2rGPB_9779J2OBUEH_rQ9kLDXXr3a3P3O0JusEucTa3PdKoi5gdCs8TnmgntR17bYlsULE5-6gcPr_7jqDPaIr26FgbTKivfX_p0562rK61Km61ZlrWGHL5dIDqF3BEHCSz4xapSLOIb3a7_syDfiOf6IaI8wwF1BZ1L89JmMjdIXMm5cx-uc9mvEeonAv2eSPklMt3vkd0KUtJuOet9smXyA7JdNpn8OCSD7tRMssrStLB02H0esl7xxjitU7Fyqj5otz8I6GxcLOCYZLMspeBSkqkCfG1Acpwpl951RF7v7156D6xqo8A0fAssmbDt1LPCD6NUeAY31kKjIXB5cQJ4TiA_jbChiVO4ojuxVkKBudoJVwLQBPifY9LIi9ycEmo6IuEB-CWrjO8bpKLXYRSHFsQAd8ZNImrVSV1xjGOri4msk8neZalwiQqXpcKbhK1HzUqOjT_kw9oqcmOtSAgDf4y8ro0o4TXCvZEkN8VqIXkAuAk1ETXJSWnU9VxEJ0KYHMBzN8y9FkCK7s07eTZ2VN0xIMwobp_9e8bnZAfP8G-yF1-QxnK-MpcAg5bqyq3zT4LMAzQ
  priority: 102
  providerName: Elsevier
Title Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition
URI https://dx.doi.org/10.1016/j.celrep.2022.111117
https://www.ncbi.nlm.nih.gov/pubmed/35839776
https://www.proquest.com/docview/2691049438
https://pubmed.ncbi.nlm.nih.gov/PMC9250890
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dT9swED-xTky8TAw26AbISHs1amI3Hw_TVCoQmzSQYEV9s2LHVoNC0rVFWv_73eWjA7aKh-QhOSfWnX3-2T7_DuAzZYlzqZPcpDriMhCGJ9I3XBgZeT1HaVHocPKPy-BiJL-P--MNaHO2Ngqc_3dqR_mkRrP85Pev5Vfs8F_-xmoZm88ssU_6fuUDvPAVvK52jCiYrwH8tW8mjjPZnqFbU3gL3oh-RNAoWDdc_QtHn0dVPhqmzrfhbYMv2aBuEO9gwxY7sFlnnFzuwtXg3uZZY3ZWOnYzuL7hw_KW-6yNyyqYXrLB5VXAppNyjleeTbOUoX9J7jWCbYuSk0xXsV7vYXR-9nN4wZucCtzgxGDBheulnhMyjFLhWdplC63BUcyLEwR3gshqhAttnOIT04-NFhpt10t8LRBaoDP6AJ2iLOw-MNsXiR-gk3LaSmmJl96EURw6FEMQGndBtKpTpiEcp7wXuWojy-5UrXtFule17rvAV6WmNeHGC_JhaxXVgIYaDChsIi-UPG6NqLBP0UZJUtjyYa78AEEUaSLqwl5t1FVd2oaB_31i7pUA8XU_fVNkk4q3O0a4GcW9j2u_-Qm2qH60dOzFB9BZzB7sIWKehT6q1grw_m18elQ16T812P6A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8x0LS9oLEPKNuYkXi1mthpPh67aqgMKNIKU9-s2LHVoJJUUB7473fnJNW6TULaQ17ss2LdOXe_2OffAZxQlThXuIibQqc8iqXheSQMlyZKw8BRWRS6nHw5icc30ffZYLYFo-4uDKVVtr6_8eneW7ct_Vab_WVZ9qcC_10wOiXCEwfJ9AXsIBoIaGmfzb6uN1qIcCT0BRFpAKcR3RU6n-dl7OLeEnOlEN5_-NJl_wxRf0PQPzMpfwtNp29gt8WUbNhMew-2bPUWXjZVJp_ewdXwzi7K1tSsdmw6_DHlo_onF6zLxaqYfmLDyVXMlvP6AZ9FuSwLhj4lv9MIsC1Kzkvt87vew83pt-vRmLd1FLjBn4EVly4oQiejJC1kaOlkLbEGI1eY5QjoJBHUSJfYrMAWM8iMlhrtFeRCS4QT6IA-wHZVV_YAmB3IXMTomJy2UWSJi94kaZY4FEPgmfVAdqpTpiUZp1oXC9Vlk92qRuGKFK4ahfeAr0ctG5KNZ-STzipqY7EojAPPjDzujKjwO6LDkbyy9eODEjECJ9JE2oP9xqjruchBSjg5xvdumHstQBzdmz1VOfdc3RlCzDQLDv97xl_g1fj68kJdnE3OP8Jr6qGt5TD7BNur-0f7GTHRSh_5Nf8Ll0YGVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amelioration+of+SARS-CoV-2+infection+by+ANO6+phospholipid+scramblase+inhibition&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Sim%2C+Ju-Ri&rft.au=Shin%2C+Dong+Hoon&rft.au=Park%2C+Pil-Gu&rft.au=Park%2C+So-Hyeon&rft.date=2022-07-19&rft.eissn=2211-1247&rft.volume=40&rft.issue=3&rft.spage=111117&rft_id=info:doi/10.1016%2Fj.celrep.2022.111117&rft_id=info%3Apmid%2F35839776&rft.externalDocID=35839776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon