Differential effects of metaboreceptor and chemoreceptor activation on sympathetic and cardiac baroreflex control following exercise in hypoxia in human

Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac b...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 585; no. 1; pp. 165 - 174
Main Authors Gujic, Marko, Laude, Dominique, Houssière, Anne, Beloka, Sofia, Argacha, Jean‐François, Adamopoulos, Dionysios, Xhaët, Olivier, Elghozi, Jean‐Luc, Van De Borne, Philippe
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 15.11.2007
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/jphysiol.2007.141002

Cover

Abstract Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac baroreflex functions were assessed by intravenous nitroprusside and phenylephrine boluses in 15 young male subjects. Recordings were performed in random order, under locally circulatory arrested conditions, during: (1) rest and normoxia (no metaboreflex and no chemoreflex activation); (2) normoxic post-handgrip exercise at 30% of maximum voluntary contraction (metaboreflex activation without chemoreflex activation); (3) hypoxia without handgrip (10% O 2 in N 2 , chemoreflex activation without metaboreflex activation); and (4) post-handgrip exercise in hypoxia (chemoreflex and metaboreflex activation). When compared with normoxic rest (−42 ± 7% muscle sympathetic nerve activity (MSNA) mmHg −1 ), sympathetic baroreflex sensitivity did not change during normoxic post-exercise ischaemia (PEI; −53 ± 9% MSNA mmHg −1 , P = 0.5) and increased during resting hypoxia (−68 ± 5% MSNA mmHg −1 , P < 0.01). Sympathetic baroreflex sensitivity decreased during PEI in hypoxia (−35 ± 6% MSNA mmHg −1 , P < 0.001 versus hypoxia without exercise; P = 0.16 versus normoxic PEI). Conversely, when compared with normoxic rest (11.1 ± 1.7 ms mmHg −1 ), cardiac baroreflex sensitivity did not change during normoxic PEI (8.3 ± 1.3 ms mmHg −1 , P = 0.09), but decreased during resting hypoxia (7.3 ± 0.8 ms mmHg −1 , P < 0.05). Cardiac baroreflex sensitivity was lowest during PEI in hypoxia (4.3 ± 1 ms mmHg −1 , P < 0.01 versus hypoxia without exercise; P < 0.001 versus normoxic exercise). The metaboreceptors and chemoreceptors exert differential effects on sympathetic and cardiac baroreflex function. Metaboreceptor activation is the major determinant of sympathetic baroreflex sensitivity, when these receptors are stimulated in the presence of hypoxia.
AbstractList Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac baroreflex functions were assessed by intravenous nitroprusside and phenylephrine boluses in 15 young male subjects. Recordings were performed in random order, under locally circulatory arrested conditions, during: (1) rest and normoxia (no metaboreflex and no chemoreflex activation); (2) normoxic post‐handgrip exercise at 30% of maximum voluntary contraction (metaboreflex activation without chemoreflex activation); (3) hypoxia without handgrip (10% O2 in N2, chemoreflex activation without metaboreflex activation); and (4) post‐handgrip exercise in hypoxia (chemoreflex and metaboreflex activation). When compared with normoxic rest (−42 ± 7% muscle sympathetic nerve activity (MSNA) mmHg−1), sympathetic baroreflex sensitivity did not change during normoxic post‐exercise ischaemia (PEI; −53 ± 9% MSNA mmHg−1, P= 0.5) and increased during resting hypoxia (−68 ± 5% MSNA mmHg−1, P < 0.01). Sympathetic baroreflex sensitivity decreased during PEI in hypoxia (−35 ± 6% MSNA mmHg−1, P < 0.001 versus hypoxia without exercise; P= 0.16 versus normoxic PEI). Conversely, when compared with normoxic rest (11.1 ± 1.7 ms mmHg−1), cardiac baroreflex sensitivity did not change during normoxic PEI (8.3 ± 1.3 ms mmHg−1, P= 0.09), but decreased during resting hypoxia (7.3 ± 0.8 ms mmHg−1, P < 0.05). Cardiac baroreflex sensitivity was lowest during PEI in hypoxia (4.3 ± 1 ms mmHg−1, P < 0.01 versus hypoxia without exercise; P < 0.001 versus normoxic exercise). The metaboreceptors and chemoreceptors exert differential effects on sympathetic and cardiac baroreflex function. Metaboreceptor activation is the major determinant of sympathetic baroreflex sensitivity, when these receptors are stimulated in the presence of hypoxia.
Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac baroreflex functions were assessed by intravenous nitroprusside and phenylephrine boluses in 15 young male subjects. Recordings were performed in random order, under locally circulatory arrested conditions, during: (1) rest and normoxia (no metaboreflex and no chemoreflex activation); (2) normoxic post-handgrip exercise at 30% of maximum voluntary contraction (metaboreflex activation without chemoreflex activation); (3) hypoxia without handgrip (10% O2 in N2, chemoreflex activation without metaboreflex activation); and (4) post-handgrip exercise in hypoxia (chemoreflex and metaboreflex activation). When compared with normoxic rest (-42 +/- 7% muscle sympathetic nerve activity (MSNA) mmHg(-1)), sympathetic baroreflex sensitivity did not change during normoxic post-exercise ischaemia (PEI; -53 +/- 9% MSNA mmHg(-1), P = 0.5) and increased during resting hypoxia (-68 +/- 5% MSNA mmHg(-1), P < 0.01). Sympathetic baroreflex sensitivity decreased during PEI in hypoxia (-35 +/- 6% MSNA mmHg(-1), P < 0.001 versus hypoxia without exercise; P = 0.16 versus normoxic PEI). Conversely, when compared with normoxic rest (11.1 +/- 1.7 ms mmHg(-1)), cardiac baroreflex sensitivity did not change during normoxic PEI (8.3 +/- 1.3 ms mmHg(-1), P = 0.09), but decreased during resting hypoxia (7.3 +/- 0.8 ms mmHg(-1), P < 0.05). Cardiac baroreflex sensitivity was lowest during PEI in hypoxia (4.3 +/- 1 ms mmHg(-1), P < 0.01 versus hypoxia without exercise; P < 0.001 versus normoxic exercise). The metaboreceptors and chemoreceptors exert differential effects on sympathetic and cardiac baroreflex function. Metaboreceptor activation is the major determinant of sympathetic baroreflex sensitivity, when these receptors are stimulated in the presence of hypoxia.
Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac baroreflex functions were assessed by intravenous nitroprusside and phenylephrine boluses in 15 young male subjects. Recordings were performed in random order, under locally circulatory arrested conditions, during: (1) rest and normoxia (no metaboreflex and no chemoreflex activation); (2) normoxic post-handgrip exercise at 30% of maximum voluntary contraction (metaboreflex activation without chemoreflex activation); (3) hypoxia without handgrip (10% O2 in N2, chemoreflex activation without metaboreflex activation); and (4) post-handgrip exercise in hypoxia (chemoreflex and metaboreflex activation). When compared with normoxic rest (-42 +/- 7% muscle sympathetic nerve activity (MSNA) mmHg(-1)), sympathetic baroreflex sensitivity did not change during normoxic post-exercise ischaemia (PEI; -53 +/- 9% MSNA mmHg(-1), P = 0.5) and increased during resting hypoxia (-68 +/- 5% MSNA mmHg(-1), P < 0.01). Sympathetic baroreflex sensitivity decreased during PEI in hypoxia (-35 +/- 6% MSNA mmHg(-1), P < 0.001 versus hypoxia without exercise; P = 0.16 versus normoxic PEI). Conversely, when compared with normoxic rest (11.1 +/- 1.7 ms mmHg(-1)), cardiac baroreflex sensitivity did not change during normoxic PEI (8.3 +/- 1.3 ms mmHg(-1), P = 0.09), but decreased during resting hypoxia (7.3 +/- 0.8 ms mmHg(-1), P < 0.05). Cardiac baroreflex sensitivity was lowest during PEI in hypoxia (4.3 +/- 1 ms mmHg(-1), P < 0.01 versus hypoxia without exercise; P < 0.001 versus normoxic exercise). The metaboreceptors and chemoreceptors exert differential effects on sympathetic and cardiac baroreflex function. Metaboreceptor activation is the major determinant of sympathetic baroreflex sensitivity, when these receptors are stimulated in the presence of hypoxia.Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac baroreflex functions were assessed by intravenous nitroprusside and phenylephrine boluses in 15 young male subjects. Recordings were performed in random order, under locally circulatory arrested conditions, during: (1) rest and normoxia (no metaboreflex and no chemoreflex activation); (2) normoxic post-handgrip exercise at 30% of maximum voluntary contraction (metaboreflex activation without chemoreflex activation); (3) hypoxia without handgrip (10% O2 in N2, chemoreflex activation without metaboreflex activation); and (4) post-handgrip exercise in hypoxia (chemoreflex and metaboreflex activation). When compared with normoxic rest (-42 +/- 7% muscle sympathetic nerve activity (MSNA) mmHg(-1)), sympathetic baroreflex sensitivity did not change during normoxic post-exercise ischaemia (PEI; -53 +/- 9% MSNA mmHg(-1), P = 0.5) and increased during resting hypoxia (-68 +/- 5% MSNA mmHg(-1), P < 0.01). Sympathetic baroreflex sensitivity decreased during PEI in hypoxia (-35 +/- 6% MSNA mmHg(-1), P < 0.001 versus hypoxia without exercise; P = 0.16 versus normoxic PEI). Conversely, when compared with normoxic rest (11.1 +/- 1.7 ms mmHg(-1)), cardiac baroreflex sensitivity did not change during normoxic PEI (8.3 +/- 1.3 ms mmHg(-1), P = 0.09), but decreased during resting hypoxia (7.3 +/- 0.8 ms mmHg(-1), P < 0.05). Cardiac baroreflex sensitivity was lowest during PEI in hypoxia (4.3 +/- 1 ms mmHg(-1), P < 0.01 versus hypoxia without exercise; P < 0.001 versus normoxic exercise). The metaboreceptors and chemoreceptors exert differential effects on sympathetic and cardiac baroreflex function. Metaboreceptor activation is the major determinant of sympathetic baroreflex sensitivity, when these receptors are stimulated in the presence of hypoxia.
Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac baroreflex functions were assessed by intravenous nitroprusside and phenylephrine boluses in 15 young male subjects. Recordings were performed in random order, under locally circulatory arrested conditions, during: (1) rest and normoxia (no metaboreflex and no chemoreflex activation); (2) normoxic post-handgrip exercise at 30% of maximum voluntary contraction (metaboreflex activation without chemoreflex activation); (3) hypoxia without handgrip (10% O sub(2) in N sub(2), chemoreflex activation without metaboreflex activation); and (4) post-handgrip exercise in hypoxia (chemoreflex and metaboreflex activation). When compared with normoxic rest (-42 plus or minus 7% muscle sympathetic nerve activity (MSNA) mmHg super(-1)), sympathetic baroreflex sensitivity did not change during normoxic post-exercise ischaemia (PEI; -53 plus or minus 9% MSNA mmHg super(-1), P= 0.5) and increased during resting hypoxia (-68 plus or minus 5% MSNA mmHg super(-1), P < 0.01). Sympathetic baroreflex sensitivity decreased during PEI in hypoxia (-35 plus or minus 6% MSNA mmHg super(-1), P < 0.001 versus hypoxia without exercise; P= 0.16 versus normoxic PEI). Conversely, when compared with normoxic rest (11.1 plus or minus 1.7 ms mmHg super(-1)), cardiac baroreflex sensitivity did not change during normoxic PEI (8.3 plus or minus 1.3 ms mmHg super(-1), P= 0.09), but decreased during resting hypoxia (7.3 plus or minus 0.8 ms mmHg super(-1), P < 0.05). Cardiac baroreflex sensitivity was lowest during PEI in hypoxia (4.3 plus or minus 1 ms mmHg super(-1), P < 0.01 versus hypoxia without exercise; P < 0.001 versus normoxic exercise). The metaboreceptors and chemoreceptors exert differential effects on sympathetic and cardiac baroreflex function. Metaboreceptor activation is the major determinant of sympathetic baroreflex sensitivity, when these receptors are stimulated in the presence of hypoxia.
Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac baroreflex functions were assessed by intravenous nitroprusside and phenylephrine boluses in 15 young male subjects. Recordings were performed in random order, under locally circulatory arrested conditions, during: (1) rest and normoxia (no metaboreflex and no chemoreflex activation); (2) normoxic post-handgrip exercise at 30% of maximum voluntary contraction (metaboreflex activation without chemoreflex activation); (3) hypoxia without handgrip (10% O 2 in N 2 , chemoreflex activation without metaboreflex activation); and (4) post-handgrip exercise in hypoxia (chemoreflex and metaboreflex activation). When compared with normoxic rest (−42 ± 7% muscle sympathetic nerve activity (MSNA) mmHg −1 ), sympathetic baroreflex sensitivity did not change during normoxic post-exercise ischaemia (PEI; −53 ± 9% MSNA mmHg −1 , P = 0.5) and increased during resting hypoxia (−68 ± 5% MSNA mmHg −1 , P < 0.01). Sympathetic baroreflex sensitivity decreased during PEI in hypoxia (−35 ± 6% MSNA mmHg −1 , P < 0.001 versus hypoxia without exercise; P = 0.16 versus normoxic PEI). Conversely, when compared with normoxic rest (11.1 ± 1.7 ms mmHg −1 ), cardiac baroreflex sensitivity did not change during normoxic PEI (8.3 ± 1.3 ms mmHg −1 , P = 0.09), but decreased during resting hypoxia (7.3 ± 0.8 ms mmHg −1 , P < 0.05). Cardiac baroreflex sensitivity was lowest during PEI in hypoxia (4.3 ± 1 ms mmHg −1 , P < 0.01 versus hypoxia without exercise; P < 0.001 versus normoxic exercise). The metaboreceptors and chemoreceptors exert differential effects on sympathetic and cardiac baroreflex function. Metaboreceptor activation is the major determinant of sympathetic baroreflex sensitivity, when these receptors are stimulated in the presence of hypoxia.
Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise. Whether these effects are accompanied by specific changes in sympathetic and cardiac baroreflex control is not known. Sympathetic and cardiac baroreflex functions were assessed by intravenous nitroprusside and phenylephrine boluses in 15 young male subjects. Recordings were performed in random order, under locally circulatory arrested conditions, during: (1) rest and normoxia (no metaboreflex and no chemoreflex activation); (2) normoxic post‐handgrip exercise at 30% of maximum voluntary contraction (metaboreflex activation without chemoreflex activation); (3) hypoxia without handgrip (10% O 2 in N 2 , chemoreflex activation without metaboreflex activation); and (4) post‐handgrip exercise in hypoxia (chemoreflex and metaboreflex activation). When compared with normoxic rest (−42 ± 7% muscle sympathetic nerve activity (MSNA) mmHg −1 ), sympathetic baroreflex sensitivity did not change during normoxic post‐exercise ischaemia (PEI; −53 ± 9% MSNA mmHg −1 , P = 0.5) and increased during resting hypoxia (−68 ± 5% MSNA mmHg −1 , P < 0.01). Sympathetic baroreflex sensitivity decreased during PEI in hypoxia (−35 ± 6% MSNA mmHg −1 , P < 0.001 versus hypoxia without exercise; P = 0.16 versus normoxic PEI). Conversely, when compared with normoxic rest (11.1 ± 1.7 ms mmHg −1 ), cardiac baroreflex sensitivity did not change during normoxic PEI (8.3 ± 1.3 ms mmHg −1 , P = 0.09), but decreased during resting hypoxia (7.3 ± 0.8 ms mmHg −1 , P < 0.05). Cardiac baroreflex sensitivity was lowest during PEI in hypoxia (4.3 ± 1 ms mmHg −1 , P < 0.01 versus hypoxia without exercise; P < 0.001 versus normoxic exercise). The metaboreceptors and chemoreceptors exert differential effects on sympathetic and cardiac baroreflex function. Metaboreceptor activation is the major determinant of sympathetic baroreflex sensitivity, when these receptors are stimulated in the presence of hypoxia.
Author Jean-François Argacha
Olivier Xhaët
Sofia Beloka
Dionysios Adamopoulos
Jean-Luc Elghozi
Dominique Laude
Anne Houssière
Marko Gujic
Philippe van de Borne
Author_xml – sequence: 1
  givenname: Marko
  surname: Gujic
  fullname: Gujic, Marko
– sequence: 2
  givenname: Dominique
  surname: Laude
  fullname: Laude, Dominique
– sequence: 3
  givenname: Anne
  surname: Houssière
  fullname: Houssière, Anne
– sequence: 4
  givenname: Sofia
  surname: Beloka
  fullname: Beloka, Sofia
– sequence: 5
  givenname: Jean‐François
  surname: Argacha
  fullname: Argacha, Jean‐François
– sequence: 6
  givenname: Dionysios
  surname: Adamopoulos
  fullname: Adamopoulos, Dionysios
– sequence: 7
  givenname: Olivier
  surname: Xhaët
  fullname: Xhaët, Olivier
– sequence: 8
  givenname: Jean‐Luc
  surname: Elghozi
  fullname: Elghozi, Jean‐Luc
– sequence: 9
  givenname: Philippe
  surname: Van De Borne
  fullname: Van De Borne, Philippe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17884922$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u3CAQxq0qVbNJ-wZVxak97RawwXYPlaK06R9Fag_pGWE8XhNhcIHNrt-kjxuy3ippL4mExADfb2C-4SQ7ss5Clr0meEUIyd9fj_0UtDMrinG5IgXBmD7LFqTg9bIs6_woW6QdusxLRo6zkxCuMSY5rusX2TEpq6qoKV1kfz7prgMPNmppEKRYxYBchwaIsnEeFIzReSRti1QPw4MdFfWNjNpZlEaYhlHGHqJWs1b6VkuFGukT0hnYIeVs9M6gzhnjttquEezAKx0AaYv6aXQ7LffhZpD2Zfa8kybAq8N8mv26-Hx1_nV5-ePLt_Ozy6ViFePLnPKOF1IVHFetbNsGKCmaFDGWVpWCnDCQFa_rssMtIQ1vO1JgBpg3Rc3b_DRjc96NHeW0lcaI0etB-kkQLO6cFn-dFndOi9npxH2cuXHTDNCq5KCX96yTWvx7YnUv1u5G0NSQgvOU4O0hgXe_NxCiGHRQYIy04DZB8IrRitPiUSHFSVgSloRvHj7pvo5Dt5OgmAXKuxBSW55a6of_MKXjvvOpMG0eg-sZ3moD05MuFFfff1K2t-jdzPZ63W-1BzGrg1Ma4iTSDxBEEM7yW6O1-po
CitedBy_id crossref_primary_10_1111_cpf_12339
crossref_primary_10_1113_JP279456
crossref_primary_10_3390_nu15214534
crossref_primary_10_1007_s40279_013_0083_4
crossref_primary_10_14814_phy2_14041
crossref_primary_10_14814_phy2_14361
crossref_primary_10_1152_ajpheart_00303_2023
crossref_primary_10_1152_japplphysiol_00277_2015
crossref_primary_10_25259_IJPP_73_2021
crossref_primary_10_1152_ajpregu_00472_2013
crossref_primary_10_1038_s41598_021_83071_w
crossref_primary_10_1007_s00421_020_04435_0
crossref_primary_10_1007_s00421_019_04103_y
crossref_primary_10_1152_ajpregu_00021_2023
crossref_primary_10_1152_japplphysiol_91199_2008
crossref_primary_10_1177_1074248409350137
crossref_primary_10_1016_j_resp_2009_02_010
crossref_primary_10_1113_EP091094
crossref_primary_10_1097_HJH_0000000000001653
crossref_primary_10_1113_EP091330
crossref_primary_10_1152_ajpregu_00112_2024
crossref_primary_10_1519_JSC_0000000000001302
crossref_primary_10_1007_s00421_021_04678_5
crossref_primary_10_1007_s00421_021_04823_0
crossref_primary_10_1016_j_ancard_2012_04_010
crossref_primary_10_1016_j_resp_2012_08_011
Cites_doi 10.1113/jphysiol.1971.sp009525
10.1007/BF00707938
10.1152/ajpheart.1999.276.5.H1691
10.1152/ajpregu.2001.281.4.R1134
10.1161/01.RES.26.4.491
10.1152/japplphysiol.01103.2001
10.1152/physrev.1994.74.4.829
10.1016/S1566-0702(02)00034-6
10.1113/jphysiol.1990.sp018284
10.1152/jappl.1989.67.5.2101
10.1152/ajpheart.01126.2002
10.1152/ajpheart.1984.247.4.H623
10.1152/jappl.1982.52.3.570
10.1152/ajpheart.01043.2004
10.1152/ajpheart.00618.2003
10.1152/jappl.1989.67.5.2095
10.1152/jappl.1983.55.1.105
10.1152/ajpheart.01168.2005
10.1113/jphysiol.1972.sp009861
10.1161/01.CIR.100.1.27
10.1161/01.RES.33.1.63
10.1113/jphysiol.2002.024794
10.1152/ajpheart.1996.271.6.H2563
10.1113/expphysiol.2005.032367
10.1113/jphysiol.2003.050708
10.1113/jphysiol.2001.013486
10.1113/jphysiol.1971.sp009498
10.1113/jphysiol.2003.044024
10.1249/01.mss.0000187426.93464.81
10.1152/jappl.1988.64.6.2306
10.1152/ajpheart.1994.267.2.H770
10.1152/jappl.2001.91.4.1679
10.1152/ajplegacy.1975.228.1.331
10.1046/j.1365-201X.2003.01083.x
10.1161/01.RES.57.3.461
10.1097/00004872-200018010-00003
10.1113/jphysiol.2005.094151
10.1152/ajpheart.1998.275.6.H2000
10.1152/ajpregu.1997.273.4.R1219
10.1152/jappl.1990.69.2.407
ContentType Journal Article
Copyright 2007 The Authors. Journal compilation © 2007 The Physiological Society
2007 The Authors. Journal compilation © 2007 The Physiological Society 2007
Copyright_xml – notice: 2007 The Authors. Journal compilation © 2007 The Physiological Society
– notice: 2007 The Authors. Journal compilation © 2007 The Physiological Society 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TS
7X8
5PM
ADTOC
UNPAY
DOI 10.1113/jphysiol.2007.141002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Neurosciences Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 174
ExternalDocumentID oai:pubmedcentral.nih.gov:2375466
PMC2375466
17884922
10_1113_jphysiol_2007_141002
TJP2566
585_1_165
Genre article
Comparative Study
Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
05W
0R
0YM
10A
123
1OB
1OC
24P
29L
2WC
31
33P
3N
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
55
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAONW
AAVGM
AAZKR
ABCUV
ABFLS
ABHUG
ABITZ
ABIVO
ABOCM
ABPPZ
ABPTK
ABPVW
ABUFD
ABWRO
ACAHQ
ACFBH
ACGFS
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACXME
ACXQS
ADACO
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADXAS
ADZMN
AEIMD
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AGJLS
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DZ
E3Z
EBS
EJD
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GA
GODZA
GX1
H.X
H13
HZ
HZI
IA
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LI0
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF
O0-
O66
O9-
OHT
OK1
OVD
P2P
P2W
P2X
P2Z
P4A
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TLM
TN5
UB1
UNR
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WT
WXI
WYISQ
X
X7M
XG1
Y3
YZZ
ZA5
ZZTAW
---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
0R~
18M
31~
36B
3EH
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
ABCQN
ABEML
ABJNI
ABQWH
ABXGK
ACCFJ
ACCZN
ACGFO
ACGOF
ACSCC
ACXBN
ADBTR
ADKYN
ADMGS
ADOZA
AEEZP
AEGXH
AEIGN
AEQDE
AEUYR
AFEBI
AFFPM
AFGKR
AFWVQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALVPJ
AMYDB
AOIJS
CHEAL
EMOBN
FA8
HF~
HGLYW
HZ~
H~9
IPNFZ
KBYEO
LH4
MVM
NF~
OIG
SAMSI
TEORI
TR2
UKR
W8F
WHG
WXSBR
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
ZGI
ZXP
~IA
~WT
AAYXX
AEYWJ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TS
7X8
5PM
ADTOC
ADXHL
AGHNM
UNPAY
ID FETCH-LOGICAL-c5856-326f64ac4608daddbe214bdad55add8ce315ea86997f0d11b6df1405e06b496d3
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Sun Oct 26 04:12:46 EDT 2025
Tue Sep 30 16:55:28 EDT 2025
Wed Oct 01 12:37:41 EDT 2025
Fri Jul 11 15:51:01 EDT 2025
Thu Apr 03 07:04:18 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Wed Oct 01 04:26:59 EDT 2025
Wed Jan 22 16:21:43 EST 2025
Fri Jan 15 01:58:36 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5856-326f64ac4608daddbe214bdad55add8ce315ea86997f0d11b6df1405e06b496d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1113/jphysiol.2007.141002
PMID 17884922
PQID 20528715
PQPubID 23462
PageCount 10
ParticipantIDs unpaywall_primary_10_1113_jphysiol_2007_141002
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2375466
proquest_miscellaneous_68528624
proquest_miscellaneous_20528715
pubmed_primary_17884922
crossref_primary_10_1113_jphysiol_2007_141002
crossref_citationtrail_10_1113_jphysiol_2007_141002
wiley_primary_10_1113_jphysiol_2007_141002_TJP2566
highwire_physiosociety_585_1_165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-15
PublicationDateYYYYMMDD 2007-11-15
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2007
Publisher The Physiological Society
Blackwell Publishing Ltd
Publisher_xml – name: The Physiological Society
– name: Blackwell Publishing Ltd
References 2001; 91
2004; 286
1989b; 67
1977; 370
2006; 91
2004; 544
1973; 33
2001; 281
1997; 273
1982; 52
2002; 98
1984; 247
1989a; 67
1999; 100
1998; 275
2003; 552
2003; 551
2003; 177
1983; 55
1994; 267
2006a; 291
2000; 18
1990; 69
2005; 288
2002; 540
1971; 216
2005; 568
2006b; 38
1971; 215
1996; 271
2002; 93
1999; 276
1988; 64
1972; 223
1990; 430
1994; 74
1970; 26
1985; 57
2003; 285
1975; 228
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
Pelletier CL (e_1_2_5_28_1) 1975; 228
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
Malpas SC (e_1_2_5_24_1) 1996; 271
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
Sinoway LI (e_1_2_5_36_1) 1994; 267
e_1_2_5_19_1
Pisarri TE (e_1_2_5_29_1) 1984; 247
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
15604123 - Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1724-9
12897165 - J Physiol. 2003 Oct 1;552(Pt 1):295-302
12183478 - J Appl Physiol (1985). 2002 Sep;93(3):857-64
11986394 - J Physiol. 2002 May 1;540(Pt 3):1095-102
1147025 - Am J Physiol. 1975 Jan;228(1):331-6
7068472 - J Appl Physiol Respir Environ Exerc Physiol. 1982 Mar;52(3):570-7
7938227 - Physiol Rev. 1994 Oct;74(4):829-98
10678538 - J Hypertens. 2000 Jan;18(1):7-19
10330255 - Am J Physiol. 1999 May;276(5 Pt 2):H1691-8
14715501 - Am J Physiol Heart Circ Physiol. 2004 Feb;286(2):H701-7
16772525 - Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H210-5
5039285 - J Physiol. 1972 Jun;223(2):525-48
8997317 - Am J Physiol. 1996 Dec;271(6 Pt 2):H2563-74
12411536 - J Physiol. 2002 Nov 1;544(Pt 3):939-48
12609009 - Acta Physiol Scand. 2003 Mar;177(3):377-84
6437242 - Am J Physiol. 1984 Oct;247(4 Pt 2):H623-30
2513316 - J Appl Physiol (1985). 1989 Nov;67(5):2101-6
6309712 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):105-12
16531899 - Med Sci Sports Exerc. 2006 Feb;38(2):305-12
16282366 - Exp Physiol. 2006 Jan;91(1):89-102
4765701 - Circ Res. 1973 Jul;33(1):63-73
8067433 - Am J Physiol. 1994 Aug;267(2 Pt 2):H770-8
11568150 - J Appl Physiol (1985). 2001 Oct;91(4):1679-86
12144043 - Auton Neurosci. 2002 Jun 28;98(1-2):64-9
2086762 - J Physiol. 1990 Nov;430:105-17
9843798 - Am J Physiol. 1998 Dec;275(6 Pt 2):H2000-8
4028348 - Circ Res. 1985 Sep;57(3):461-9
4907963 - Circ Res. 1970 Apr;26(4):491-506
9362283 - Am J Physiol. 1997 Oct;273(4 Pt 2):R1219-23
10393677 - Circulation. 1999 Jul 6;100(1):27-32
11557620 - Am J Physiol Regul Integr Comp Physiol. 2001 Oct;281(4):R1134-9
5090995 - J Physiol. 1971 Jul;215(3):789-804
2513315 - J Appl Physiol (1985). 1989 Nov;67(5):2095-100
561376 - Pflugers Arch. 1977 Jul 29;370(1):1-7
3136123 - J Appl Physiol (1985). 1988 Jun;64(6):2306-13
16109727 - J Physiol. 2005 Oct 15;568(Pt 2):677-87
12909683 - J Physiol. 2003 Sep 1;551(Pt 2):635-47
4326995 - J Physiol. 1971 Jul;216(2):281-302
12750069 - Am J Physiol Heart Circ Physiol. 2003 Sep;285(3):H1356-61
2228848 - J Appl Physiol (1985). 1990 Aug;69(2):407-18
References_xml – volume: 551
  start-page: 635
  year: 2003
  end-page: 647
  article-title: Human skeletal muscle sympathetic nerve activity, heart rate and limb haemodynamics with reduced blood oxygenation and exercise
  publication-title: J Physiol
– volume: 271
  start-page: H2563
  year: 1996
  end-page: H2574
  article-title: Frequency and amplitude of sympathetic discharges by baroreflexes during hypoxia in conscious rabbits
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 223
  start-page: 525
  year: 1972
  end-page: 548
  article-title: The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro‐ and chemoreceptors
  publication-title: J Physiol
– volume: 64
  start-page: 2306
  year: 1988
  end-page: 2313
  article-title: Effect of metabolic products of muscular contraction on discharge of group III and IV afferents
  publication-title: J Appl Physiol
– volume: 273
  start-page: R1219
  year: 1997
  end-page: R1223
  article-title: Carotid baroreflex control of heart rate during acute exposure to simulated altitudes of 3,800 m and 4,300 m
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 291
  start-page: H210
  year: 2006a
  end-page: H215
  article-title: Hyperoxia enhances metaboreflex sensitivity during static exercise in humans
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 286
  start-page: H701
  year: 2004
  end-page: H707
  article-title: Modulation of arterial baroreflex control of muscle sympathetic nerve activity by muscle metaboreflex in humans
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 275
  start-page: H2000
  year: 1998
  end-page: H2008
  article-title: Rapid resetting of carotid baroreceptor reflex by afferent input from skeletal muscle receptors
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 370
  start-page: 1
  year: 1977
  end-page: 7
  article-title: Baroreflex ‘resetting’ by arterial hypoxia in the renal and cardiac sympathetic nerves of the rabbit
  publication-title: Pflugers Arch
– volume: 38
  start-page: 305
  year: 2006b
  end-page: 312
  article-title: Chemoreflex and metaboreflex responses to static hypoxic exercise in aging humans
  publication-title: Med Sci Sports Exerc
– volume: 267
  start-page: H770
  year: 1994
  end-page: H778
  article-title: Role of diprotonated phosphate in evoking muscle reflex responses in cats and humans
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 67
  start-page: 2101
  year: 1989b
  end-page: 2106
  article-title: Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans
  publication-title: J Appl Physiol
– volume: 100
  start-page: 27
  year: 1999
  end-page: 32
  article-title: Muscle metaboreflex contribution to sinus node regulation during static exercise: insights from spectral analysis of heart rate variability
  publication-title: Circulation
– volume: 228
  start-page: 331
  year: 1975
  end-page: 336
  article-title: Effect of hypoxia on vascular responses to the carotid baroreflex
  publication-title: Am J Physiol
– volume: 276
  start-page: H1691
  year: 1999
  end-page: H1698
  article-title: Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 55
  start-page: 105
  year: 1983
  end-page: 112
  article-title: Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats
  publication-title: J Appl Physiol
– volume: 215
  start-page: 789
  year: 1971
  end-page: 804
  article-title: The reflex nature of the pressor response to muscular exercise
  publication-title: J Physiol
– volume: 69
  start-page: 407
  year: 1990
  end-page: 418
  article-title: Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes
  publication-title: J Appl Physiol
– volume: 57
  start-page: 461
  year: 1985
  end-page: 469
  article-title: Microneurographic studies of the mechanisms of sympathetic nerve responses to static exercise in humans
  publication-title: Circ Res
– volume: 67
  start-page: 2095
  year: 1989a
  end-page: 2100
  article-title: Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans
  publication-title: J Appl Physiol
– volume: 52
  start-page: 570
  year: 1982
  end-page: 577
  article-title: Modulation of human sinus node function by systemic hypoxia
  publication-title: J Appl Physiol
– volume: 544
  start-page: 939
  year: 2004
  end-page: 948
  article-title: Modulation of arterial baroreflex dynamic response during muscle metaboreflex activation in humans
  publication-title: J Physiol
– volume: 177
  start-page: 377
  year: 2003
  end-page: 384
  article-title: Chemoreflexes – physiology and clinical implications
  publication-title: Acta Physiol Scand
– volume: 247
  start-page: H623
  year: 1984
  end-page: H630
  article-title: Reduced effectiveness of the carotid baroreflex during arterial hypoxia in dogs
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 552
  start-page: 295
  year: 2003
  end-page: 302
  article-title: Peripheral chemoreflex and baroreflex interactions in cardiovascular regulation in humans
  publication-title: J Physiol
– volume: 98
  start-page: 64
  year: 2002
  end-page: 69
  article-title: Tracing of projection neurons from the cervical dorsal horn to the medulla with the anterograde tracer biotinylated dextran amine
  publication-title: Auton Neurosci
– volume: 568
  start-page: 677
  year: 2005
  end-page: 687
  article-title: Interaction of chemoreceptor and baroreceptor reflexes by hypoxia and hypercapnia – a mechanism for promoting hypertension in obstructive sleep apnoea
  publication-title: J Physiol
– volume: 74
  start-page: 829
  year: 1994
  end-page: 898
  article-title: Carotid body chemoreceptors: from natural stimuli to sensory discharges
  publication-title: Physiol Rev
– volume: 216
  start-page: 281
  year: 1971
  end-page: 302
  article-title: The effects of hypercapnia, hypoxia and ventilation on the baroreflex regulation of the pulse interval
  publication-title: J Physiol
– volume: 288
  start-page: H1724
  year: 2005
  end-page: H1729
  article-title: Chemoreflex control during static hypoxic exercise
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 91
  start-page: 89
  year: 2006
  end-page: 102
  article-title: The mammalian exercise pressor reflex in health and disease
  publication-title: Exp Physiol
– volume: 93
  start-page: 857
  year: 2002
  end-page: 864
  article-title: Effect of hypoxia on arterial baroreflex control of heart rate and muscle sympathetic nerve activity in humans
  publication-title: J Appl Physiol
– volume: 281
  start-page: R1134
  year: 2001
  end-page: R1139
  article-title: Static handgrip exercise modifies arterial baroreflex control of vascular sympathetic outflow in humans
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 430
  start-page: 105
  year: 1990
  end-page: 117
  article-title: Cardiovascular responses to static exercise in man: central and reflex contributions
  publication-title: J Physiol
– volume: 91
  start-page: 1679
  year: 2001
  end-page: 1686
  article-title: Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans
  publication-title: J Appl Physiol
– volume: 540
  start-page: 1095
  year: 2002
  end-page: 1102
  article-title: Heart rate at the onset of muscle contraction and during passive muscle stretch in humans: a role for mechanoreceptors
  publication-title: J Physiol
– volume: 285
  start-page: H1356
  year: 2003
  end-page: H1361
  article-title: Dobutamine potentiates arterial chemoreflex sensitivity in healthy normal humans
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 26
  start-page: 491
  year: 1970
  end-page: 506
  article-title: Bulbar and suprabulbar control of the cardiovascular autonomic effects during arterial hypoxia in the rabbit
  publication-title: Circ Res
– volume: 33
  start-page: 63
  year: 1973
  end-page: 73
  article-title: Integrative reflex control of heart rate in the rabbit during hypoxia and hyperventilation
  publication-title: Circ Res
– volume: 18
  start-page: 7
  year: 2000
  end-page: 19
  article-title: How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life
  publication-title: J Hypertens
– ident: e_1_2_5_2_1
  doi: 10.1113/jphysiol.1971.sp009525
– ident: e_1_2_5_19_1
  doi: 10.1007/BF00707938
– ident: e_1_2_5_34_1
  doi: 10.1152/ajpheart.1999.276.5.H1691
– ident: e_1_2_5_20_1
  doi: 10.1152/ajpregu.2001.281.4.R1134
– ident: e_1_2_5_40_1
  doi: 10.1161/01.RES.26.4.491
– ident: e_1_2_5_10_1
  doi: 10.1152/japplphysiol.01103.2001
– ident: e_1_2_5_9_1
  doi: 10.1152/physrev.1994.74.4.829
– ident: e_1_2_5_30_1
  doi: 10.1016/S1566-0702(02)00034-6
– ident: e_1_2_5_7_1
  doi: 10.1113/jphysiol.1990.sp018284
– ident: e_1_2_5_39_1
  doi: 10.1152/jappl.1989.67.5.2101
– ident: e_1_2_5_41_1
  doi: 10.1152/ajpheart.01126.2002
– volume: 247
  start-page: H623
  year: 1984
  ident: e_1_2_5_29_1
  article-title: Reduced effectiveness of the carotid baroreflex during arterial hypoxia in dogs
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1984.247.4.H623
– ident: e_1_2_5_6_1
  doi: 10.1152/jappl.1982.52.3.570
– ident: e_1_2_5_13_1
  doi: 10.1152/ajpheart.01043.2004
– ident: e_1_2_5_17_1
  doi: 10.1152/ajpheart.00618.2003
– ident: e_1_2_5_38_1
  doi: 10.1152/jappl.1989.67.5.2095
– ident: e_1_2_5_22_1
  doi: 10.1152/jappl.1983.55.1.105
– ident: e_1_2_5_14_1
  doi: 10.1152/ajpheart.01168.2005
– ident: e_1_2_5_26_1
  doi: 10.1113/jphysiol.1972.sp009861
– ident: e_1_2_5_18_1
  doi: 10.1161/01.CIR.100.1.27
– ident: e_1_2_5_23_1
  doi: 10.1161/01.RES.33.1.63
– ident: e_1_2_5_16_1
  doi: 10.1113/jphysiol.2002.024794
– volume: 271
  start-page: H2563
  year: 1996
  ident: e_1_2_5_24_1
  article-title: Frequency and amplitude of sympathetic discharges by baroreflexes during hypoxia in conscious rabbits
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1996.271.6.H2563
– ident: e_1_2_5_37_1
  doi: 10.1113/expphysiol.2005.032367
– ident: e_1_2_5_11_1
  doi: 10.1113/jphysiol.2003.050708
– ident: e_1_2_5_8_1
  doi: 10.1113/jphysiol.2001.013486
– ident: e_1_2_5_4_1
  doi: 10.1113/jphysiol.1971.sp009498
– ident: e_1_2_5_12_1
  doi: 10.1113/jphysiol.2003.044024
– ident: e_1_2_5_15_1
  doi: 10.1249/01.mss.0000187426.93464.81
– ident: e_1_2_5_32_1
  doi: 10.1152/jappl.1988.64.6.2306
– volume: 267
  start-page: H770
  year: 1994
  ident: e_1_2_5_36_1
  article-title: Role of diprotonated phosphate in evoking muscle reflex responses in cats and humans
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1994.267.2.H770
– ident: e_1_2_5_5_1
  doi: 10.1152/jappl.2001.91.4.1679
– volume: 228
  start-page: 331
  year: 1975
  ident: e_1_2_5_28_1
  article-title: Effect of hypoxia on vascular responses to the carotid baroreflex
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1975.228.1.331
– ident: e_1_2_5_21_1
  doi: 10.1046/j.1365-201X.2003.01083.x
– ident: e_1_2_5_25_1
  doi: 10.1161/01.RES.57.3.461
– ident: e_1_2_5_27_1
  doi: 10.1097/00004872-200018010-00003
– ident: e_1_2_5_3_1
  doi: 10.1113/jphysiol.2005.094151
– ident: e_1_2_5_31_1
  doi: 10.1152/ajpheart.1998.275.6.H2000
– ident: e_1_2_5_35_1
  doi: 10.1152/ajpregu.1997.273.4.R1219
– ident: e_1_2_5_33_1
  doi: 10.1152/jappl.1990.69.2.407
– reference: 12183478 - J Appl Physiol (1985). 2002 Sep;93(3):857-64
– reference: 7068472 - J Appl Physiol Respir Environ Exerc Physiol. 1982 Mar;52(3):570-7
– reference: 16109727 - J Physiol. 2005 Oct 15;568(Pt 2):677-87
– reference: 4326995 - J Physiol. 1971 Jul;216(2):281-302
– reference: 10330255 - Am J Physiol. 1999 May;276(5 Pt 2):H1691-8
– reference: 2513315 - J Appl Physiol (1985). 1989 Nov;67(5):2095-100
– reference: 9362283 - Am J Physiol. 1997 Oct;273(4 Pt 2):R1219-23
– reference: 4765701 - Circ Res. 1973 Jul;33(1):63-73
– reference: 5039285 - J Physiol. 1972 Jun;223(2):525-48
– reference: 3136123 - J Appl Physiol (1985). 1988 Jun;64(6):2306-13
– reference: 15604123 - Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1724-9
– reference: 2086762 - J Physiol. 1990 Nov;430:105-17
– reference: 5090995 - J Physiol. 1971 Jul;215(3):789-804
– reference: 9843798 - Am J Physiol. 1998 Dec;275(6 Pt 2):H2000-8
– reference: 16531899 - Med Sci Sports Exerc. 2006 Feb;38(2):305-12
– reference: 10678538 - J Hypertens. 2000 Jan;18(1):7-19
– reference: 8067433 - Am J Physiol. 1994 Aug;267(2 Pt 2):H770-8
– reference: 16282366 - Exp Physiol. 2006 Jan;91(1):89-102
– reference: 561376 - Pflugers Arch. 1977 Jul 29;370(1):1-7
– reference: 8997317 - Am J Physiol. 1996 Dec;271(6 Pt 2):H2563-74
– reference: 12897165 - J Physiol. 2003 Oct 1;552(Pt 1):295-302
– reference: 11557620 - Am J Physiol Regul Integr Comp Physiol. 2001 Oct;281(4):R1134-9
– reference: 7938227 - Physiol Rev. 1994 Oct;74(4):829-98
– reference: 6309712 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):105-12
– reference: 10393677 - Circulation. 1999 Jul 6;100(1):27-32
– reference: 12750069 - Am J Physiol Heart Circ Physiol. 2003 Sep;285(3):H1356-61
– reference: 14715501 - Am J Physiol Heart Circ Physiol. 2004 Feb;286(2):H701-7
– reference: 6437242 - Am J Physiol. 1984 Oct;247(4 Pt 2):H623-30
– reference: 16772525 - Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H210-5
– reference: 4028348 - Circ Res. 1985 Sep;57(3):461-9
– reference: 11568150 - J Appl Physiol (1985). 2001 Oct;91(4):1679-86
– reference: 12411536 - J Physiol. 2002 Nov 1;544(Pt 3):939-48
– reference: 12144043 - Auton Neurosci. 2002 Jun 28;98(1-2):64-9
– reference: 2228848 - J Appl Physiol (1985). 1990 Aug;69(2):407-18
– reference: 11986394 - J Physiol. 2002 May 1;540(Pt 3):1095-102
– reference: 12609009 - Acta Physiol Scand. 2003 Mar;177(3):377-84
– reference: 4907963 - Circ Res. 1970 Apr;26(4):491-506
– reference: 2513316 - J Appl Physiol (1985). 1989 Nov;67(5):2101-6
– reference: 1147025 - Am J Physiol. 1975 Jan;228(1):331-6
– reference: 12909683 - J Physiol. 2003 Sep 1;551(Pt 2):635-47
SSID ssj0013099
Score 2.035639
Snippet Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise....
Muscle metaboreceptors and peripheral chemoreceptors exert differential effects on the cardiorespiratory and autonomic responses following hypoxic exercise....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 165
SubjectTerms Adult
Baroreflex - drug effects
Baroreflex - physiology
Blood Pressure - drug effects
Blood Pressure - physiology
Cardiovascular
Chemoreceptor Cells - drug effects
Chemoreceptor Cells - physiology
Exercise - physiology
Heart - innervation
Humans
Hypoxia - physiopathology
Male
Mechanoreceptors - drug effects
Mechanoreceptors - physiology
Nitroprusside - pharmacology
Phenylephrine - pharmacology
Rest - physiology
Sympathetic Nervous System - physiology
Vasoconstrictor Agents - pharmacology
Vasodilator Agents - pharmacology
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECUK59BeuqWLuvJQ9CbXlMgRdTTaBkGABj7EQHoSSIpqnMqS4QWJ8yX53A5FyYmRLi6gg5YRJYJP5Iw4fI-QD1JDapJEh4WUIuSGs1ArocIUVC4MK3ScuIXC347hcMyPTsXpDc_27el7xuJP5018X5eea9DlJDriyD0Q6Hj3yN74eDT8vuEDTxqxRfz0U_QZ07hdKPenYrYHoo4c-HeO5t18yfuraqbWF6ost33aZlA6eORXey8aLkOXi_Kzv1rqvrm6y_S4S30fk4etc0qHHk1PyD1bPSX7wwoD8-mafqQjf1v9Y71Prr-00irYRZS0TQuhdUGndumAZV2-TD2nqsopAmN664zpJNUobov11Kkiu7WU3raBrKFazZ0GSmkvaZtOTwvEbH2BYy3thKLopKJn61l9OVHNrpuReEbGB19PPh-GrcxDaDBWgRAdyAK4MhwGMsfuVtuIcY17QuCRNDZmwioJaZoUg5wxDXmBYaGwA9A8hTx-TnpVXdmXhOZCMl5ArCAxXJqBVDkMFETMcDfBngck7to8My0HupPiKDMfC8VZ1wBOnjPJfAMEJNzcNfMcIP-wpx2cMn954TNwM6xvxjIGIiDvO5hl-D27SRpV2Xq1wHKEC2L_YgESLSDiAXnhYXnzUomUPI3wBZItwG4MHJf49pVqctZwikdOChkgIP0NtHesa9Tgfyfj7ORohC42vPrfp7wmD5p_6i79UrwhveV8Zd-iM7jU79pO4BeQvV7_
  priority: 102
  providerName: Unpaywall
Title Differential effects of metaboreceptor and chemoreceptor activation on sympathetic and cardiac baroreflex control following exercise in hypoxia in human
URI http://jp.physoc.org/content/585/1/165.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2007.141002
https://www.ncbi.nlm.nih.gov/pubmed/17884922
https://www.proquest.com/docview/20528715
https://www.proquest.com/docview/68528624
https://pubmed.ncbi.nlm.nih.gov/PMC2375466
http://doi.org/10.1113/jphysiol.2007.141002
UnpaywallVersion submittedVersion
Volume 585
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: DIK
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: GX1
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20141130
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: FIJ
  dateStart: 19860501
  isFulltext: true
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  providerName: Ingenta
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: RPM
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1469-7793
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1469-7793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013099
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLam8QAv3MYlGxQ_IN5S4sQ-cR4roBpDTBVapfEU2Y6zFdKk6kVb-SX8XHxJOgoTTCD1IW2Orbj5cnxOfPx9CL3kEjKVpjIsOWchVZSEUjARZiAKpkgpk9RuFP54DIdjenTKTnfQsNsL4_khNi_c7JPh_LV9wIVsVUiIJRv44lL_pvI0hLZc0XFKkgRcZvUpvlpMiLJsQxqeMtLuoDPdvL6uk-0ZqmMNvi4C_b2Q8vaqnon1haiq7WDXzVbDe-isG6cvUvnaXy1lX337hQLy__-I--huG9DigUfgA7Sj64dob1CbZH66xq_wyDdrztZ76PvbVo7FuJUKt6UkuCnxVC8tGLWtsWnmWNQFNmCa_vSL6mTYsPks1lOrpGz3X3pbB3OFpZhb3ZRKX-K2BB-XBufNhZmfcScuhSc1Pl_PmsuJcId2FeMRGg_fnbw5DFtpiFCZ_AZCE3SWQIWiEPHCuGipY0KlOWLMfONKJ4RpwSHL0jIqCJFQlCaVZDoCSTMoksdot25q_RThgnFCS0gEpIpyFXFRQCQgJoraRfkiQEkHh1y1vOlWvqPKff6U5N0NsJKeae5vQIDCTauZ5w35iz3ukJb70wtftZub8eYkJ8AC9KJDYG58gF3YEbVuVgvTD7OJ7x8sgBsLiGmAnnjEXl1UyjnNYnMB6RaWNwaWf3z7TD05dzzksZVPBghQf4P6G441dni-kXF-cjQyYTns_0ujA3THvYu3ZZvsGdpdzlf6uQkil7JnXMT7Dz3nKHro1vh4NPj8A9e2ddo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcigXXuWRFqgPiFuWOLEd51gBZSltVaGt1JtlO053IZus9qF2-SX8XDxxsmWhggoh5ZDH2IqTz-MZe_wNQq-E5plJUx0WQrCQGkpCrZgKM65yZkihkxQ2Ch-f8P4ZPTxn5xvoQ7cXxvNDrCbcoGc0-ho6OExIt70c2Aa-NL5_XXoeQohXBFLJO5Q7lwWso8_x9XJClGUr2vCUkXYPnavnzU21rI9RHW_wTTbo76GUW4tqopaXqizXzd1mvDq4j4ZdS32YytfeYq575tsvJJD_4VM8QPdamxbvexA-RBu2eoS29yvnz4-X-DU-9cXqi-U2-v6uzcjiNEuJ22gSXBd4bOeARwthNvUUqyrHDk_jn-6YLhMbdsdsOYZkyrAF08s2SDdYqymkTintFW6j8HHhoF5fuiEad_ml8KjCw-Wkvhqp5hQWMh6js4P3g7f9sM0OERrn4vDQ2Z0Fp8pQHoncaWltY0K1O2PMXQljE8KsEjzL0iLKCdE8L5w3yWzENc14njxBm1Vd2WcI50wQWvBE8dRQYSKhch4pHhNDYV0-D1DS4UGaljodMniU0rtQiex-AGT1TKX_AQEKV6UmnjrkL_K4g5r0j2c-cFe69koiCWcB2usgKJ0agLUdVdl6MXP1MPB9_yDBhZPgMQ3QUw_Z65dKhaBZ7F4gXQPzSgAoyNefVKNhQ0UeQwZlzgPUW8H-lm2NG0DfSlgODk-dZc53_qXQHtrqD46P5NHHk0-76G4zNQ9RnOw52pxPF_aFsynn-mWjL34AbRN3Ug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqIgGX8ijQ8KoPiFuWOLEd51ixLKVAtUKt1JtlOw67kE1W-1C7_BJ-Lp442bJQQYWQcshjbMXJ5_GMPf4GoRdC88ykqQ4LIVhIDSWhVkyFGVc5M6TQSQobhT8e88NTenTGzrbQ224vjOeHWE-4Qc9o9DV0cDvNi7aXA9vAl8b3r0vPQwjxikAqeYOyTEBsX_9TfLmcEGXZmjY8ZaTdQ-fqeXVVLZtjVMcbfJUN-nso5a1lNVWrc1WWm-ZuM14N7qBR11IfpvK1t1zonvn2Cwnkf_gUd9FOa9PiAw_Ce2jLVvfR7kHl_PnJCr_EQ1-s_rzaRd_7bUYWp1lK3EaT4LrAE7sAPFoIs6lnWFU5dnia_HTHdJnYsDvmqwkkU4YtmF62QbrBWs0gdUppL3AbhY8LB_X63A3RuMsvhccVHq2m9cVYNaewkPEAnQ7enLw-DNvsEKFxLg4Pnd1ZcKoM5ZHInZbWNiZUuzPG3JUwNiHMKsGzLC2inBDN88J5k8xGXNOM58lDtF3Vld1DOGeC0IIniqeGChMJlfNI8ZgYCuvyeYCSDg_StNTpkMGjlN6FSmT3AyCrZyr9DwhQuC419dQhf5HHHdSkfzz3gbvStVcSSTgL0H4HQenUAKztqMrWy7mrh4Hv-wcJLpwEj2mAHnnIXr5UKgTNYvcC6QaY1wJAQb75pBqPGiryGDIocx6g3hr212xr3AD6WsLy5GjoLHP--F8K7aObw_5Afnh3_P4Jut3MzEMQJ3uKthezpX3mTMqFft6oix94DXbW
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECUK59BeuqWLuvJQ9CbXlMgRdTTaBkGABj7EQHoSSIpqnMqS4QWJ8yX53A5FyYmRLi6gg5YRJYJP5Iw4fI-QD1JDapJEh4WUIuSGs1ArocIUVC4MK3ScuIXC347hcMyPTsXpDc_27el7xuJP5018X5eea9DlJDriyD0Q6Hj3yN74eDT8vuEDTxqxRfz0U_QZ07hdKPenYrYHoo4c-HeO5t18yfuraqbWF6ost33aZlA6eORXey8aLkOXi_Kzv1rqvrm6y_S4S30fk4etc0qHHk1PyD1bPSX7wwoD8-mafqQjf1v9Y71Prr-00irYRZS0TQuhdUGndumAZV2-TD2nqsopAmN664zpJNUobov11Kkiu7WU3raBrKFazZ0GSmkvaZtOTwvEbH2BYy3thKLopKJn61l9OVHNrpuReEbGB19PPh-GrcxDaDBWgRAdyAK4MhwGMsfuVtuIcY17QuCRNDZmwioJaZoUg5wxDXmBYaGwA9A8hTx-TnpVXdmXhOZCMl5ArCAxXJqBVDkMFETMcDfBngck7to8My0HupPiKDMfC8VZ1wBOnjPJfAMEJNzcNfMcIP-wpx2cMn954TNwM6xvxjIGIiDvO5hl-D27SRpV2Xq1wHKEC2L_YgESLSDiAXnhYXnzUomUPI3wBZItwG4MHJf49pVqctZwikdOChkgIP0NtHesa9Tgfyfj7ORohC42vPrfp7wmD5p_6i79UrwhveV8Zd-iM7jU79pO4BeQvV7_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+effects+of+metaboreceptor+and+chemoreceptor+activation+on+sympathetic+and+cardiac+baroreflex+control+following+exercise+in+hypoxia+in+human&rft.jtitle=The+Journal+of+physiology&rft.au=Gujic%2C+Marko&rft.au=Laude%2C+Dominique&rft.au=Houssiere%2C+Anne&rft.au=Beloka%2C+Sofia&rft.date=2007-11-15&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=585&rft.issue=1&rft.spage=165&rft.epage=174&rft_id=info:doi/10.1113%2Fjphysiol.2007.141002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon