Unfolded protein response IRE1/XBP1 signaling is required for healthy mammalian brain aging
Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) str...
Saved in:
Published in | The EMBO journal Vol. 41; no. 22; pp. e111952 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.11.2022
Springer Nature B.V John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.15252/embj.2022111952 |
Cover
Abstract | Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age‐related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging.
Synopsis
The UPR pathway sustains brain function, delaying the natural appearance of age‐associated phenotypes in mammals. IRE1/XBP1 signaling improves neuronal physiology, possibly by regulation of synaptic protein expression.
Impairment of UPR signaling begins by middle age in the mouse brain.
Ablation of IRE1 expression in the brain accelerates and exacerbates age‐associated cognitive decline.
Overexpression of XBP1s, the active form of XBP1, in the brain improves age‐associated phenotypes in mice.
XBP1s gene delivery to aged mice can revert brain dysfunction at the morphological, electrophysiological, molecular, and behavioral level.
Proteomic profiling of aged animals overexpressing XBP1s highlights the modification of pathways related to synapse physiology and neurodegeneration.
Graphical Abstract
The unfolded protein response signaling components IRE1 and XBP1 are shown to play a role in age‐associated cognitive function and brain health in mice. |
---|---|
AbstractList | Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age‐related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging.
The unfolded protein response signaling components IRE1 and XBP1 are shown to play a role in age‐associated cognitive function and brain health in mice. Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age‐related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging. Synopsis The UPR pathway sustains brain function, delaying the natural appearance of age‐associated phenotypes in mammals. IRE1/XBP1 signaling improves neuronal physiology, possibly by regulation of synaptic protein expression. Impairment of UPR signaling begins by middle age in the mouse brain. Ablation of IRE1 expression in the brain accelerates and exacerbates age‐associated cognitive decline. Overexpression of XBP1s, the active form of XBP1, in the brain improves age‐associated phenotypes in mice. XBP1s gene delivery to aged mice can revert brain dysfunction at the morphological, electrophysiological, molecular, and behavioral level. Proteomic profiling of aged animals overexpressing XBP1s highlights the modification of pathways related to synapse physiology and neurodegeneration. Graphical Abstract The unfolded protein response signaling components IRE1 and XBP1 are shown to play a role in age‐associated cognitive function and brain health in mice. Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age-related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging.Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age-related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging. Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age‐related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging. image The UPR pathway sustains brain function, delaying the natural appearance of age‐associated phenotypes in mammals. IRE1/XBP1 signaling improves neuronal physiology, possibly by regulation of synaptic protein expression. Impairment of UPR signaling begins by middle age in the mouse brain. Ablation of IRE1 expression in the brain accelerates and exacerbates age‐associated cognitive decline. Overexpression of XBP1s, the active form of XBP1, in the brain improves age‐associated phenotypes in mice. XBP1s gene delivery to aged mice can revert brain dysfunction at the morphological, electrophysiological, molecular, and behavioral level. Proteomic profiling of aged animals overexpressing XBP1s highlights the modification of pathways related to synapse physiology and neurodegeneration. Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age-related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging. Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age‐related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging. Synopsis The UPR pathway sustains brain function, delaying the natural appearance of age‐associated phenotypes in mammals. IRE1/XBP1 signaling improves neuronal physiology, possibly by regulation of synaptic protein expression. Impairment of UPR signaling begins by middle age in the mouse brain. Ablation of IRE1 expression in the brain accelerates and exacerbates age‐associated cognitive decline. Overexpression of XBP1s, the active form of XBP1, in the brain improves age‐associated phenotypes in mice. XBP1s gene delivery to aged mice can revert brain dysfunction at the morphological, electrophysiological, molecular, and behavioral level. Proteomic profiling of aged animals overexpressing XBP1s highlights the modification of pathways related to synapse physiology and neurodegeneration. The unfolded protein response signaling components IRE1 and XBP1 are shown to play a role in age‐associated cognitive function and brain health in mice. |
Author | Henriquez, Juan Pablo Huerta, Hernan Ibaceta‐Gonzalez, Cristobal Cabral‐Miranda, Felipe Fuentealba, Matias Sardi, Sergio Pablo Duran‐Aniotz, Claudia Lipton, Stuart A Gerakis, Yannis Adamson, Stuart Hung, Mei‐Li Diaz Miedema, Tim Kennedy, Brian K Martinez, Gabriela Nakamura, Tomohiro Tamburini, Giovanni Sabusap, Carleen M Hetz, Claudio Vitangcol, Kaitlyn Ardiles, Alvaro O Medinas, Danilo B Zhang, Xu Cárdenas, J Cesar Diaz, Javier Mujica, Paula Plate, Lars Vidal, René Bermedo‐Garcia, Francisca Palacios, Adrian G |
AuthorAffiliation | 14 Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore; Centre for Healthy Longevity, National University Health System; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore 4 Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil 6 Centro de Neurología Traslacional, Escuela de Medicina Universidad de Valparaíso Valparaiso Chile 7 Center for Integrative Biology Universidad Mayor Santiago Chile 8 Departments of Chemistry and Biological Sciences Vanderbilt University Nashville TN USA 1 Center for Geroscience Brain Health and Metabolism Santiago Chile 5 Centro Interdisciplinario de Neurociencia de Valparaíso Universidad de Valparaiso Valparaiso Chile 2 Biomedical Neuroscience Institute, Faculty of Medicine University of Chile Santiago Chile 10 Buck Institute for Research on Aging Novato CA USA 11 Department of Molecula |
AuthorAffiliation_xml | – name: 8 Departments of Chemistry and Biological Sciences Vanderbilt University Nashville TN USA – name: 4 Instituto de Ciências Biomédicas Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil – name: 6 Centro de Neurología Traslacional, Escuela de Medicina Universidad de Valparaíso Valparaiso Chile – name: 3 Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine University of Chile Santiago Chile – name: 7 Center for Integrative Biology Universidad Mayor Santiago Chile – name: 9 Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio) Universidad de Concepción Concepción Chile – name: 12 Rare and Neurological Diseases Therapeutic Area Sanofi Framingham MA USA – name: 1 Center for Geroscience Brain Health and Metabolism Santiago Chile – name: 10 Buck Institute for Research on Aging Novato CA USA – name: 11 Department of Molecular Medicine and Neurodegeneration New Medicines Center The Scripps Research Institute La Jolla CA USA – name: 14 Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore; Centre for Healthy Longevity, National University Health System; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore Singapore – name: 2 Biomedical Neuroscience Institute, Faculty of Medicine University of Chile Santiago Chile – name: 5 Centro Interdisciplinario de Neurociencia de Valparaíso Universidad de Valparaiso Valparaiso Chile – name: 13 Department of Neurosciences, School of Medicine University of California, San Diego La Jolla CA USA |
Author_xml | – sequence: 1 givenname: Felipe surname: Cabral‐Miranda fullname: Cabral‐Miranda, Felipe organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro – sequence: 2 givenname: Giovanni surname: Tamburini fullname: Tamburini, Giovanni organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile – sequence: 3 givenname: Gabriela surname: Martinez fullname: Martinez, Gabriela organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile – sequence: 4 givenname: Alvaro O orcidid: 0000-0001-8295-2133 surname: Ardiles fullname: Ardiles, Alvaro O organization: Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaiso, Centro de Neurología Traslacional, Escuela de Medicina, Universidad de Valparaíso – sequence: 5 givenname: Danilo B orcidid: 0000-0002-1822-1974 surname: Medinas fullname: Medinas, Danilo B organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile – sequence: 6 givenname: Yannis surname: Gerakis fullname: Gerakis, Yannis organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile – sequence: 7 givenname: Mei‐Li Diaz surname: Hung fullname: Hung, Mei‐Li Diaz organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile – sequence: 8 givenname: René surname: Vidal fullname: Vidal, René organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Center for Integrative Biology, Universidad Mayor – sequence: 9 givenname: Matias surname: Fuentealba fullname: Fuentealba, Matias organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile – sequence: 10 givenname: Tim orcidid: 0000-0003-1828-6257 surname: Miedema fullname: Miedema, Tim organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile – sequence: 11 givenname: Claudia surname: Duran‐Aniotz fullname: Duran‐Aniotz, Claudia organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile – sequence: 12 givenname: Javier surname: Diaz fullname: Diaz, Javier organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile – sequence: 13 givenname: Cristobal surname: Ibaceta‐Gonzalez fullname: Ibaceta‐Gonzalez, Cristobal organization: Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaiso – sequence: 14 givenname: Carleen M surname: Sabusap fullname: Sabusap, Carleen M organization: Departments of Chemistry and Biological Sciences, Vanderbilt University – sequence: 15 givenname: Francisca surname: Bermedo‐Garcia fullname: Bermedo‐Garcia, Francisca organization: Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción – sequence: 16 givenname: Paula surname: Mujica fullname: Mujica, Paula organization: Centro de Neurología Traslacional, Escuela de Medicina, Universidad de Valparaíso – sequence: 17 givenname: Stuart orcidid: 0000-0002-1402-8907 surname: Adamson fullname: Adamson, Stuart organization: Buck Institute for Research on Aging – sequence: 18 givenname: Kaitlyn surname: Vitangcol fullname: Vitangcol, Kaitlyn organization: Buck Institute for Research on Aging – sequence: 19 givenname: Hernan orcidid: 0000-0002-7392-3311 surname: Huerta fullname: Huerta, Hernan organization: Center for Integrative Biology, Universidad Mayor – sequence: 20 givenname: Xu surname: Zhang fullname: Zhang, Xu organization: Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute – sequence: 21 givenname: Tomohiro surname: Nakamura fullname: Nakamura, Tomohiro organization: Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute – sequence: 22 givenname: Sergio Pablo orcidid: 0000-0001-9805-3677 surname: Sardi fullname: Sardi, Sergio Pablo organization: Rare and Neurological Diseases Therapeutic Area, Sanofi – sequence: 23 givenname: Stuart A orcidid: 0000-0002-3490-1259 surname: Lipton fullname: Lipton, Stuart A organization: Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, Department of Neurosciences, School of Medicine, University of California, San Diego – sequence: 24 givenname: Brian K surname: Kennedy fullname: Kennedy, Brian K organization: Buck Institute for Research on Aging, Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore; Centre for Healthy Longevity, National University Health System; Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore – sequence: 25 givenname: Juan Pablo surname: Henriquez fullname: Henriquez, Juan Pablo organization: Department of Cell Biology, Center for Advanced Microscopy (CMA BioBio), Universidad de Concepción – sequence: 26 givenname: J Cesar surname: Cárdenas fullname: Cárdenas, J Cesar organization: Center for Geroscience, Brain Health and Metabolism, Center for Integrative Biology, Universidad Mayor, Buck Institute for Research on Aging – sequence: 27 givenname: Lars orcidid: 0000-0003-4363-6116 surname: Plate fullname: Plate, Lars organization: Departments of Chemistry and Biological Sciences, Vanderbilt University – sequence: 28 givenname: Adrian G orcidid: 0000-0003-1532-7527 surname: Palacios fullname: Palacios, Adrian G organization: Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaiso – sequence: 29 givenname: Claudio orcidid: 0000-0003-1120-7966 surname: Hetz fullname: Hetz, Claudio email: chetz@uchile.cl, chetz@buckinstitute.org organization: Center for Geroscience, Brain Health and Metabolism, Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Buck Institute for Research on Aging |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36314651$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LHDEUx0Ox1FV776kM9NLLaF4mP2agFFS21mJRSoVCDyEzk8xmmUnWZKZl_3uja7UKtacc3ufzfXnv7aAt551G6A3gfWCEkQM91Mt9ggkBgIqRF2gGlOOcYMG20AwTDjmFstpGOzEuMcasFPAKbRe8SByDGfp56YzvW91mq-BHbV0WdFx5F3V2-m0OBz-OLiCLtnOqt67LbEz1q8mGJBgfsoVW_bhYZ4MahkQol9VBpRDVJXoPvTSqj_r13buLLj_Nvx9_zs_OT06PD8_yhpWM5IpWLSUlpUy3tMBtoxtdMFYCZZS2jQFG21qAaCojyspAbSpVJrYEzI2gVbGLPm5yV1M96OS7MaheroIdVFhLr6x8XHF2ITv_S1ZcYIJ5Cnh_FxD81aTjKAcbG933ymk_RUlEgTkVlLCEvnuCLv0U0nZuKYELYBwn6u3fP7r_yp-9JwBvgCb4GIM29whgeXtaeXNa-XDapPAnSmNHNVp_M5PtnxM_bMTfttfr_zaS869HXx7psNFjMl2nw8PE_2x5DffVyT4 |
CitedBy_id | crossref_primary_10_1136_egastro_2024_100129 crossref_primary_10_1016_j_tcb_2024_10_003 crossref_primary_10_1159_000539415 crossref_primary_10_1016_j_ymthe_2023_04_015 crossref_primary_10_1038_s41380_024_02879_w crossref_primary_10_1016_j_tma_2024_07_001 crossref_primary_10_1016_j_cstres_2025_02_004 crossref_primary_10_1016_j_ymthe_2025_01_004 crossref_primary_10_1177_25424823241309664 crossref_primary_10_1038_s41467_024_52845_x crossref_primary_10_1051_bioconf_202411101010 crossref_primary_10_4103_1673_5374_377608 crossref_primary_10_4103_NRR_NRR_D_24_00658 crossref_primary_10_53469_jcmp_2024_06_06__44 crossref_primary_10_3390_antiox12081648 crossref_primary_10_1111_febs_17201 crossref_primary_10_1016_j_cstres_2024_12_001 crossref_primary_10_1016_j_neuron_2024_10_013 crossref_primary_10_1007_s12079_023_00784_5 crossref_primary_10_4103_1673_5374_393105 crossref_primary_10_3390_ijms252212369 crossref_primary_10_1242_bio_059750 crossref_primary_10_1167_iovs_64_4_30 crossref_primary_10_1016_j_cytogfr_2024_10_004 crossref_primary_10_1016_j_biopha_2024_116812 crossref_primary_10_1038_s43587_023_00467_1 crossref_primary_10_1111_1440_1681_13829 crossref_primary_10_3892_br_2025_1928 crossref_primary_10_1016_j_tins_2024_02_001 crossref_primary_10_1016_j_ymthe_2023_03_028 crossref_primary_10_1007_s12035_023_03905_8 crossref_primary_10_1016_j_jare_2024_10_031 crossref_primary_10_1039_D4FO00402G crossref_primary_10_1038_s41580_024_00794_0 crossref_primary_10_3390_biomedicines10123249 |
Cites_doi | 10.1111/acel.13598 10.1038/nrn3200 10.1016/j.molcel.2007.06.011 10.18632/aging.102273 10.1016/j.celrep.2016.10.003 10.1016/j.tins.2018.05.009 10.1111/j.1474-9726.2011.00699.x 10.1126/science.aaz6896 10.1093/gerona/glu049 10.1038/nprot.2013.155 10.1523/JNEUROSCI.5685-07.2008 10.1084/jem.20111298 10.7554/eLife.15550 10.1111/acel.12605 10.1016/j.cell.2021.02.007 10.1126/science.1209038 10.1016/j.celrep.2019.06.057 10.1016/j.jprot.2013.02.023 10.1073/pnas.1201209109 10.1038/nrneurol.2017.99 10.1073/pnas.1002575107 10.1186/1471-2105-13-S2-S11 10.1523/JNEUROSCI.0628-17.2017 10.1016/j.conb.2016.03.004 10.1111/acel.12599 10.1016/j.bbrc.2008.09.059 10.1371/journal.pcbi.1005182 10.1016/j.tibs.2014.02.008 10.3389/fnagi.2019.00005 10.1093/brain/aww101 10.1074/jbc.M704300200 10.1073/pnas.1801109115 10.1016/j.tibs.2020.02.005 10.1111/jnc.14221 10.1016/j.tins.2016.04.002 10.7554/eLife.62048 10.1126/scisignal.abc5429 10.1172/JCI95145 10.1016/j.cmet.2013.11.002 10.1073/pnas.1321845111 10.1016/j.neurobiolaging.2005.05.010 10.1126/science.aat5314 10.3390/jcm8060906 10.1073/pnas.0806883105 10.1007/s00401-017-1694-x 10.1038/nature10523 10.1073/pnas.1105564108 10.1073/pnas.1900055116 10.1021/cb500062n 10.1073/pnas.0902882106 10.1016/j.pnsc.2008.05.027 10.1038/nn.3486 10.1016/j.cell.2019.10.018 10.1016/j.brainres.2016.04.017 10.1101/2022.06.21.496869 10.1093/nar/gky1131 10.1042/CS20160897 10.1016/j.celrep.2016.01.028 10.1111/cns.12064 10.1038/nature04782 10.1038/nprot.2009.191 10.1111/febs.14422 10.1016/j.cell.2013.05.039 10.1111/acel.13265 10.3892/mmr.2015.3417 10.1126/sciadv.aaz1441 10.1038/s41593-018-0235-9 10.1093/biomet/93.3.491 10.1016/j.neuroscience.2012.09.077 10.1126/science.1158042 10.1126/science.aaa0079 10.1038/s41398-021-01263-4 10.1093/nar/gky1106 10.1093/nar/gkw377 10.1016/j.neurobiolaging.2013.12.005 10.1093/hmg/ddr100 10.1016/j.cell.2013.05.042 10.1371/journal.pgen.1005220 10.1038/s41580-020-0250-z 10.1016/j.cell.2014.10.039 10.1016/j.nlm.2013.04.013 10.1016/0197-4580(87)90072-8 10.1016/j.bbrc.2007.01.156 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022 The Authors. 2022 EMBO |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022 The Authors. – notice: 2022 EMBO |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.2022111952 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Felipe Cabral‐Miranda et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC9670206 36314651 10_15252_embj_2022111952 EMBJ2022111952 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)‐CNPq grantid: 441921/2016‐7 – fundername: European Commission (EC) grantid: MSCA‐RISE 734749 funderid: 10.13039/501100000780 – fundername: Foundation for the National Institutes of Health (FNIH) grantid: R35 AG071734; R01 NS086890; R01 DA048882; DP1 DA041722; RF1 AG057409; R01 AG056259; R01 AG06; R35 GM133552 1845 funderid: 10.13039/100000009 – fundername: ANID ¦ Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) grantid: 3180195; 1220573; 3190596; 15150012; 1170614; 11160760; 11150776; 3080702; 1191003; 1191538 funderid: 10.13039/501100002850 – fundername: Millennium Institute Initiative grantid: P09‐015‐F; P09‐022‐F – fundername: DOD ¦ U.S. Air Force (USAF) grantid: W81XWH2110960; PD200 FA9550‐16‐1‐0384 085 funderid: 10.13039/100006831 – fundername: ANID ¦ Fondo de Fomento al Desarrollo Científico y Tecnológico (FONDEF) grantid: ID16I10223; ID22110120 – fundername: Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) grantid: REDI170583 – fundername: Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)‐CNPq funderid: 441921/2016‐7 – fundername: DOD ¦ U.S. Air Force (USAF) funderid: W81XWH2110960; PD200 FA9550‐16‐1‐0384 085 – fundername: ANID ¦ Fondo de Fomento al Desarrollo Científico y Tecnológico (FONDEF) funderid: ID16I10223; ID22110120 – fundername: Millennium Institute Initiative funderid: P09‐015‐F; P09‐022‐F – fundername: ANID ¦ Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) funderid: 3180195; 1220573; 3190596; 15150012; 1170614; 11160760; 11150776; 3080702; 1191003; 1191538 – fundername: Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) funderid: REDI170583 – fundername: European Commission (EC) funderid: MSCA‐RISE 734749 – fundername: Foundation for the National Institutes of Health (FNIH) funderid: R35 AG071734; R01 NS086890; R01 DA048882; DP1 DA041722; RF1 AG057409; R01 AG056259; R01 AG06; R35 GM133552 1845 – fundername: NIDA NIH HHS grantid: DP1 DA041722 – fundername: NIA NIH HHS grantid: R01 AG056259 – fundername: NIGMS NIH HHS grantid: R35 GM133552 – fundername: NINDS NIH HHS grantid: R01 NS086890 – fundername: NIA NIH HHS grantid: R01 AG061845 – fundername: NIA NIH HHS grantid: R35 AG071734 – fundername: NIA NIH HHS grantid: RF1 AG057409 – fundername: NIDA NIH HHS grantid: R01 DA048882 – fundername: NINDS NIH HHS grantid: R61 NS122098 – fundername: ; grantid: 3180195; 1220573; 3190596; 15150012; 1170614; 11160760; 11150776; 3080702; 1191003; 1191538 – fundername: ; grantid: MSCA‐RISE 734749 – fundername: ; grantid: W81XWH2110960; PD200 FA9550‐16‐1‐0384 085 – fundername: ; grantid: R35 AG071734; R01 NS086890; R01 DA048882; DP1 DA041722; RF1 AG057409; R01 AG056259; R01 AG06; R35 GM133552 1845 |
GroupedDBID | --- -DZ -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AASML AAYXX ABZEH CITATION NAO CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 7X8 ESTFP 5PM |
ID | FETCH-LOGICAL-c5852-a49d428445ed430dcece355814544dcf154db717c9f789f1bf9a85ed8106f7493 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:36:44 EDT 2025 Mon Sep 08 06:32:03 EDT 2025 Fri Jul 25 19:40:25 EDT 2025 Thu Apr 03 07:03:28 EDT 2025 Tue Jul 01 01:47:24 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Wed Jan 22 16:28:52 EST 2025 Fri Feb 21 02:37:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | ER stress aging brain proteostasis UPR XBP1s |
Language | English |
License | 2022 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5852-a49d428445ed430dcece355814544dcf154db717c9f789f1bf9a85ed8106f7493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1532-7527 0000-0003-4363-6116 0000-0001-9805-3677 0000-0002-7392-3311 0000-0002-1822-1974 0000-0002-3490-1259 0000-0001-8295-2133 0000-0002-1402-8907 0000-0003-1120-7966 0000-0003-1828-6257 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9670206 |
PMID | 36314651 |
PQID | 2737031560 |
PQPubID | 35985 |
PageCount | 28 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9670206 proquest_miscellaneous_2730647425 proquest_journals_2737031560 pubmed_primary_36314651 crossref_primary_10_15252_embj_2022111952 crossref_citationtrail_10_15252_embj_2022111952 wiley_primary_10_15252_embj_2022111952_EMBJ2022111952 springer_journals_10_15252_embj_2022111952 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 17 November 2022 |
PublicationDateYYYYMMDD | 2022-11-17 |
PublicationDate_xml | – month: 11 year: 2022 text: 17 November 2022 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
References | Lourenco, Clarke, Frozza, Bomfim, Forny‐Germano, Batista, Sathler, Brito‐Moreira, Amaral, Silva (CR48) 2013; 18 Duran‐Aniotz, Cornejo, Espinoza, Ardiles, Medinas, Salazar, Foley, Gajardo, Thielen, Iwawaki (CR17) 2017; 134 Taylor, Dillin (CR81) 2013; 153 Trinh, Klann (CR83) 2013; 105 Taylor (CR80) 2016; 1648 Lee, Heidtman, Hotamisligil, Glimcher (CR44) 2011; 108 Henis‐Korenblit, Zhang, Hansen, McCormick, Lee, Cary, Kenyon (CR30) 2010; 107 Martínez, Duran‐Aniotz, Cabral‐Miranda, Vivar, Hetz (CR52) 2017; 16 Hayashi, Kasahara, Kametani, Kato (CR28) 2008; 376 Martínez, Khatiwada, Costa‐Mattioli, Hetz (CR53) 2018; 41 Abbadie, Pluquet (CR1) 2020; 45 Kang, Kawasawa, Cheng, Zhu, Xu, Li, Sousa, Pletikos, Meyer, Sedmak (CR39) 2011; 478 Wang, Ryoo, Qi, Jasper (CR88) 2015; 11 Lee, Scapa, Cohen, Glimcher (CR43) 2008; 320 Shoji, Takao, Hattori, Miyakawa (CR73) 2016; 91 Soto, Pritzkow (CR75) 2018; 21 Debacq‐Chainiaux, Erusalimsky, Campisi, Toussaint (CR15) 2009; 412 Chen, Deng, Luo, Wang, Zeng (CR11) 2009; 19 Daniele, Higuchi‐Sanabria, Durieux, Monshietehadi, Ramachandran, Tronnes, Kelet, Sanchez, Metcalf, Garcia (CR14) 2020; 6 Maurel, Chevet, Tavernier, Gerlo (CR55) 2014; 39 McLaughlin, Siddiqi, Wang, Zhang (CR56) 2019; 8 Godin, Creppe, Laguesse, Nguyen (CR23) 2016; 39 Imanikia, Sheng, Castro, Griffin, Taylor (CR38) 2019; 28 Hetz, Saxena (CR32) 2017; 13 Ben‐Zvi, Miller, Morimoto (CR6) 2009; 106 Szklarczyk, Gable, Lyon, Junge, Wyder, Huerta‐Cepas, Simonovic, Doncheva, Morris, Bork (CR78) 2019; 47 Hafycz, Strus, Naidoo (CR24) 2022; 21 Taylor, Hetz (CR82) 2020; 19 Vogel‐Ciernia, Wood (CR86) 2014; 2014 Acosta‐Alvear, Zhou, Blais, Tsikitis, Lents, Arias, Lennon, Kluger, Dynlacht (CR2) 2007; 27 Frakes, Metcalf, Tronnes, Bar‐Ziv, Durieux, Gildea, Kandahari, Monshietehadi, Dillin (CR19) 2020; 367 Ravello, Perrinet, Escobar, Palacios (CR67) 2019; 91 Berchtold, Cribbs, Coleman, Rogers, Head, Kim, Beach, Miller, Troncoso, Trojanowski (CR7) 2008; 105 Ma, Trinh, Wexler, Bourbon, Gatti, Pierre, Cavener, Klann (CR50) 2013; 16 Uehara, Nakamura, Yao, Shi, Gu, Ma, Masliah, Nomura, Lipton (CR84) 2006; 441 Baker, Petersen (CR4) 2018; 128 Gavilán, Vela, Castaño, Ramos, del Río, Vitorica, Ruano (CR20) 2006; 27 Sutphin, Mahoney, Sheppard, Walton, Korstanje (CR77) 2016; 12 Luis, Wang, Ortega, Deng, Katewa, Li, Karpac, Jasper, Kapahi (CR49) 2016; 17 Krukowski, Nolan, Frias, Boone, Ureta, Grue, Paladini, Elizarraras, Delgado, Bernales (CR41) 2020; 9 Liu, Wang, Cai, Yao, Chen, Wang, Zhao, Li (CR46) 2013; 19 Tang, Yang (CR79) 2015; 12 Valdés, Mercado, Vidal, Molina, Parsons, Court, Martinez, Galleguillos, Armentano, Schneider (CR85) 2014; 111 López‐Otín, Blasco, Partridge, Serrano, Kroemer (CR47) 2013; 153 Dickstein, Weaver, Luebke, Hof (CR16) 2013; 251 Hughes, Mallucci (CR35) 2019; 286 Hussain, Ramaiah (CR37) 2007; 355 Kennedy, Berger, Brunet, Campisi, Cuervo, Epel, Franceschi, Lithgow, Morimoto, Pessin (CR40) 2014; 159 Perez‐Riverol, Csordas, Bai, Bernal‐Llinares, Hewapathirana, Kundu, Inuganti, Griss, Mayer, Eisenacher (CR64) 2019; 47 Hetz (CR31) 2021; 184 Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann (CR42) 2016; 44 Ryno, Genereux, Naito, Morimoto, Powers, Shoulders, Wiseman (CR69) 2014; 9 CR18 Hetz, Zhang, Kaufman (CR33) 2020; 21 Hodge, Ten, Hutton, Lamond (CR34) 2013; 88 Hanus, Ehlers (CR25) 2016; 39 Saito, Cai, Matsuhisa, Ohtake, Kaneko, Kanemoto, Asada, Imaizumi (CR70) 2018; 144 Morimoto, Cuervo (CR58) 2014; 69 Nakato, Ohkubo, Konishi, Shibata, Kaneko, Iwawaki, Nakamura, Lipton, Uehara (CR62) 2015; 51 Wingo, Dammer, Breen, Logsdon, Duong, Troncosco, Thambisetty, Beach, Serrano, Reiman (CR89) 2019; 101 He, Loika, Park, Bennett, Kellis, Kulminski (CR29) 2021; 11 Schinzel, Higuchi‐Sanabria, Shalem, Moehle, Webster, Joe, Bar‐Ziv, Frankino, Durieux, Pender (CR71) 2019; 179 Medinas, Rozas, Traub, Woehlbier, Brown, Bosco, Hetz (CR57) 2018; 115 Costa‐Mattioli, Walter (CR12) 2020; 368 Smith, Mallucci (CR74) 2016; 139 Matai, Sarkar, Chamoli, Malik, Kumar, Rautela, Jana, Chakraborty, Mukhopadhyay (CR54) 2019; 116 CR90 Morrison, Baxter (CR59) 2012; 13 Yang, Calay, Fan, Arduini, Kunz, Gygi, Yalcin, Fu, Hotamisligil (CR91) 2015; 349 Brown, Chan, Zimmerman, Pack, Jackson, Naidoo (CR8) 2014; 35 Walter, Ron (CR87) 2011; 334 Hart, Ryan, Pfaffenbach, Dasari, Parvizi, Lalia, Lanza (CR26) 2019; 11 Hur, So, Ruda, Frank‐Kamenetsky, Fitzgerald, Koteliansky, Iwawaki, Glimcher, Lee (CR36) 2012; 209 Sharma, Ounallah‐Saad, Chakraborty, Hleihil, Sood, Barrera, Edry, Chandran, de Leon, Kaphzan (CR72) 2018; 38 Rozycka, Liguz‐Lecznar (CR68) 2017; 16 Leger, Quiedeville, Bouet, Haelewyn, Boulouard, Schumann‐Bard, Freret (CR45) 2013; 8 Go, Jones (CR22) 2017; 131 Benjamini, Krieger, Yekutieli (CR5) 2006; 93 Martínez, Vidal, Mardones, Serrano, Ardiles, Wirth, Valdés, Thielen, Schneider, Kerr (CR51) 2016; 14 Dalman, Deeter, Nimishakavi, Duan (CR13) 2012; 13 Naidoo, Ferber, Master, Zhu, Pack (CR60) 2008; 28 Oliveira, Lourenco, Longo, Kasica, Yang, Ureta, DDP, PHJ, Bernales, Ma (CR63) 2021; 14 Casas‐Tinto, Zhang, Sanchez‐Garcia, Gomez‐Velazquez, Rincon‐Limas, Fernandez‐Funez (CR10) 2011; 20 Prell, Stubendorff, Le, Gaur, Tadić, Rödiger, Witte, Grosskreutz (CR66) 2019; 11 Naidoo, Zhu, Zhu, Fenik, Lian, Galante, Veasey (CR61) 2011; 10 Plate, Cooley, Chen, Paxman, Gallagher, Madoux, Genereux, Dobbs, Garza, Spicer (CR65) 2016; 5 Sunyer, Patil, Höger, Luber (CR76) 2007; 390 Hayashi, Kasahara, Iwamoto, Ishiwata, Kametani, Kakiuchi, Furuichi, Kato (CR27) 2007; 282 Ardiles, Tapia‐Rojas, Mandal, Alexandre, Kirkwood, Inestrosa, Palacios (CR3) 2012; 109 Gibson, Peterson (CR21) 1987; 8 2011; 478 2019; 91 2018; 128 1987; 8 2010; 107 2019; 11 2016; 1648 2020; 368 2014; 69 2011; 10 2008; 105 2018; 41 2020; 367 2022; 21 2015; 349 2012; 13 2016; 39 2013; 8 2020; 19 2019; 286 2012; 209 2013; 19 2013; 18 2020; 6 2013; 16 2006; 27 2020; 9 2008; 28 2011; 20 2019; 28 2019; 116 2020; 45 2013; 153 2014; 9 2009; 19 2018; 38 2006; 441 2007; 27 2016; 44 2019; 8 2006; 93 2015; 12 2018; 144 2011; 334 2007; 282 2013; 88 2015; 51 2013; 105 2015; 11 2021; 184 2014; 2014 2017; 131 2016; 91 2017; 134 2008; 320 2016; 17 2014; 111 2018; 21 2016; 14 2009; 412 2014; 159 2019; 101 2012; 109 2016; 12 2021; 14 2016; 5 2007; 355 2011; 108 2021; 11 2022 2007; 390 2017; 16 2020 2017; 13 2018; 115 2019; 47 2019; 179 2014; 35 2013; 251 2016; 139 2020; 21 2014; 39 2008; 376 2009; 106 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_71_1 Shoji H (e_1_2_9_73_1) 2016; 91 Ravello CR (e_1_2_9_67_1) 2019; 91 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 Nakato R (e_1_2_9_62_1) 2015; 51 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 Vogel‐Ciernia A (e_1_2_9_86_1) 2014; 2014 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_91_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 Wingo AP (e_1_2_9_89_1) 2019; 101 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 Sunyer B (e_1_2_9_76_1) 2007; 390 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 282 start-page: 34525 year: 2007 end-page: 34534 ident: CR27 article-title: The role of brain‐derived neurotrophic factor (BDNF)‐induced XBP1 splicing during brain development publication-title: J Biol Chem – volume: 105 start-page: 15605 year: 2008 end-page: 15610 ident: CR7 article-title: Gene expression changes in the course of normal brain aging are sexually dimorphic publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 640 year: 2011 end-page: 649 ident: CR61 article-title: Endoplasmic reticulum stress in wake‐active neurons progresses with aging publication-title: Aging Cell – volume: 20 start-page: 2144 year: 2011 end-page: 2160 ident: CR10 article-title: The ER stress factor XBP1s prevents amyloid‐beta neurotoxicity publication-title: Hum Mol Genet – volume: 116 start-page: 17383 year: 2019 end-page: 17392 ident: CR54 article-title: Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis publication-title: Proc Natl Acad Sci USA – volume: 88 start-page: 92 year: 2013 end-page: 103 ident: CR34 article-title: Cleaning up the masses: exclusion lists to reduce contamination with HPLC‐MS/MS publication-title: J Proteomics – volume: 441 start-page: 513 year: 2006 end-page: 517 ident: CR84 article-title: S‐nitrosylated protein‐disulphide isomerase links protein misfolding to neurodegeneration publication-title: Nature – volume: 109 start-page: 13835 year: 2012 end-page: 13840 ident: CR3 article-title: Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease publication-title: Proc Natl Acad Sci USA – volume: 355 start-page: 365 year: 2007 end-page: 370 ident: CR37 article-title: Reduced eIF2α phosphorylation and increased proapoptotic proteins in aging publication-title: Biochem Biophys Res Commun – volume: 21 start-page: e13598 year: 2022 ident: CR24 article-title: Reducing ER stress with chaperone therapy reverses sleep fragmentation and cognitive decline in aged mice publication-title: Aging Cell – volume: 28 start-page: 6539 year: 2008 end-page: 6548 ident: CR60 article-title: Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling publication-title: J Neurosci – volume: 349 start-page: 500 year: 2015 end-page: 506 ident: CR91 article-title: S‐Nitrosylation links obesity‐associated inflammation to endoplasmic reticulum dysfunction publication-title: Science – volume: 153 start-page: 1435 year: 2013 end-page: 1447 ident: CR81 article-title: XBP‐1 is a cell‐nonautonomous regulator of stress resistance and longevity publication-title: Cell – volume: 39 start-page: 394 year: 2016 end-page: 404 ident: CR23 article-title: Emerging roles for the unfolded protein response in the developing nervous system publication-title: Trends Neurosci – volume: 35 start-page: 1431 year: 2014 end-page: 1441 ident: CR8 article-title: Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis publication-title: Neurobiol Aging – volume: 6 start-page: eaaz1441 year: 2020 ident: CR14 article-title: UPRER promotes lipophagy independent of chaperones to extend life span publication-title: Sci Adv – volume: 286 start-page: 342 year: 2019 end-page: 355 ident: CR35 article-title: The unfolded protein response in neurodegenerative disorders ‐ therapeutic modulation of the PERK pathway publication-title: FEBS J – volume: 134 start-page: 489 year: 2017 end-page: 506 ident: CR17 article-title: IRE1 signaling exacerbates Alzheimer's disease pathogenesis publication-title: Acta Neuropathol – volume: 27 start-page: 973 year: 2006 end-page: 982 ident: CR20 article-title: Cellular environment facilitates protein accumulation in aged rat hippocampus publication-title: Neurobiol Aging – volume: 128 start-page: 1208 year: 2018 end-page: 1216 ident: CR4 article-title: Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives publication-title: J Clin Invest – volume: 28 start-page: 581 year: 2019 end-page: 589.e4 ident: CR38 article-title: XBP‐1 remodels lipid metabolism to extend longevity publication-title: Cell Rep – volume: 11 year: 2015 ident: CR88 article-title: PERK limits drosophila lifespan by promoting intestinal stem cell proliferation in response to ER stress publication-title: PLoS Genet – volume: 390 start-page: 10 year: 2007 end-page: 38 ident: CR76 article-title: Barnes maze, a useful task to assess spatial reference memory in the mice publication-title: Nat Protoc – volume: 368 year: 2020 ident: CR12 article-title: The integrated stress response: from mechanism to disease publication-title: Science – volume: 13 start-page: 240 year: 2012 end-page: 250 ident: CR59 article-title: The ageing cortical synapse: hallmarks and implications for cognitive decline publication-title: Nat Rev Neurosci – volume: 106 start-page: 14914 year: 2009 end-page: 14919 ident: CR6 article-title: Collapse of proteostasis represents an early molecular event in aging publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 477 year: 2017 end-page: 491 ident: CR32 article-title: ER stress and the unfolded protein response in neurodegeneration publication-title: Nat Rev Neurol – volume: 478 start-page: 483 year: 2011 end-page: 489 ident: CR39 article-title: Spatio‐temporal transcriptome of the human brain publication-title: Nature – volume: 139 start-page: 2113 year: 2016 end-page: 2121 ident: CR74 article-title: The unfolded protein response: mechanisms and therapy of neurodegeneration publication-title: Brain – volume: 8 start-page: 329 year: 1987 end-page: 343 ident: CR21 article-title: Calcium and the aging nervous system publication-title: Neurobiol Aging – volume: 1648 start-page: 588 year: 2016 end-page: 593 ident: CR80 article-title: Aging and the UPR(ER) publication-title: Brain Res – volume: 2014 start-page: 8.31.1‐8.31.17 year: 2014 ident: CR86 article-title: Examining object location and object recognition memory in mice publication-title: Curr Protoc Neurosci – volume: 21 start-page: 1332 year: 2018 end-page: 1340 ident: CR75 article-title: Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases publication-title: Nat Neurosci – volume: 111 start-page: 6804 year: 2014 end-page: 6809 ident: CR85 article-title: Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1 publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 1299 year: 2013 end-page: 1305 ident: CR50 article-title: Suppression of eIF2α kinases alleviates Alzheimer's disease–related plasticity and memory deficits publication-title: Nat Neurosci – volume: 91 start-page: 1 year: 2019 end-page: 16 ident: CR67 article-title: Speed‐selectivity in retinal ganglion cells is sharpened by broad spatial frequency, naturalistic stimuli publication-title: Sci Rep – volume: 93 start-page: 491 year: 2006 end-page: 507 ident: CR5 article-title: Adaptive linear step‐up procedures that control the false discovery rate publication-title: Biometrika – volume: 39 start-page: 8 year: 2016 end-page: 16 ident: CR25 article-title: Specialization of biosynthetic membrane trafficking for neuronal form and function publication-title: Curr Opin Neurobiol – volume: 105 start-page: 93 year: 2013 end-page: 99 ident: CR83 article-title: Translational control by eIF2α kinases in long‐lasting synaptic plasticity and long‐term memory publication-title: Neurobiol Learn Mem – volume: 44 start-page: W90 year: 2016 end-page: W97 ident: CR42 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res – volume: 115 start-page: 8209 year: 2018 end-page: 8214 ident: CR57 article-title: Endoplasmic reticulum stress leads to accumulation of wild‐type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis publication-title: Proc Natl Acad Sci USA – volume: 184 start-page: 1545 year: 2021 end-page: 1560 ident: CR31 article-title: Adapting the proteostasis capacity to sustain brain healthspan publication-title: Cell – volume: 18 start-page: 831 year: 2013 end-page: 843 ident: CR48 article-title: TNF‐α mediates PKR‐dependent memory impairment and brain IRS‐1 inhibition induced by Alzheimer's β‐amyloid oligomers in mice and monkeys publication-title: Cell Metab – volume: 16 start-page: 615 year: 2017 end-page: 623 ident: CR52 article-title: Endoplasmic reticulum proteostasis impairment in aging publication-title: Aging Cell – volume: 47 start-page: D442 year: 2019 end-page: D450 ident: CR64 article-title: The PRIDE database and related tools and resources in 2019: Improving support for quantification data publication-title: Nucleic Acids Res – volume: 12 year: 2016 ident: CR77 article-title: WORMHOLE: novel least diverged ortholog prediction through machine learning publication-title: PLoS Comput Biol – volume: 101 start-page: 1 year: 2019 end-page: 14 ident: CR89 article-title: Large‐scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age publication-title: Nat Commun – ident: CR18 – volume: 153 start-page: 1194 year: 2013 end-page: 1217 ident: CR47 article-title: The hallmarks of aging publication-title: Cell – volume: 17 start-page: 1207 year: 2016 end-page: 1216 ident: CR49 article-title: Intestinal IRE1 is required for increased triglyceride metabolism and longer lifespan under dietary restriction publication-title: Cell Rep – volume: 19 year: 2020 ident: CR82 article-title: Mastering organismal aging through the endoplasmic reticulum proteostasis network publication-title: Aging Cell – volume: 367 start-page: 436 year: 2020 end-page: 440 ident: CR19 article-title: Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in publication-title: Science – volume: 131 start-page: 1669 year: 2017 end-page: 1688 ident: CR22 article-title: Redox theory of aging: Implications for health and disease publication-title: Clin Sci (Lond) – volume: 8 year: 2019 ident: CR56 article-title: Loss of XBP1 leads to early‐onset retinal neurodegeneration in a mouse model of type I diabetes publication-title: J Clin Med – volume: 13 start-page: 1 year: 2012 end-page: 4 ident: CR13 article-title: Fold change and p‐value cutoffs significantly alter microarray interpretations publication-title: BMC Bioinformatics – volume: 251 start-page: 21 year: 2013 end-page: 32 ident: CR16 article-title: Dendritic spine changes associated with normal aging publication-title: Neuroscience – volume: 19 start-page: 229 year: 2009 end-page: 235 ident: CR11 article-title: Detection of bursts in neuronal spike trains by the mean inter‐spike interval method publication-title: Prog Nat Sci – volume: 14 year: 2021 ident: CR63 article-title: Correction of eIF2‐dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer's disease publication-title: Sci Signal – volume: 41 start-page: 610 year: 2018 end-page: 624 ident: CR53 article-title: ER Proteostasis control of neuronal physiology and synaptic function publication-title: Trends Neurosci – volume: 376 start-page: 758 year: 2008 end-page: 763 ident: CR28 article-title: Attenuated BDNF‐induced upregulation of GABAergic markers in neurons lacking Xbp1 publication-title: Biochem Biophys Res Commun – volume: 320 start-page: 1492 year: 2008 end-page: 1496 ident: CR43 article-title: Regulation of hepatic lipogenesis by the transcription factor XBP1 publication-title: Science – volume: 19 start-page: 229 year: 2013 end-page: 234 ident: CR46 article-title: Polymorphism ‐116C/G of human X‐box‐binding protein 1 promoter is associated with risk of Alzheimer's disease publication-title: CNS Neurosci Ther – volume: 69 start-page: S33 year: 2014 end-page: S38 ident: CR58 article-title: Proteostasis and the aging proteome in health and disease publication-title: J Gerontol A Biol Sci Med Sci – volume: 159 start-page: 709 year: 2014 end-page: 713 ident: CR40 article-title: Geroscience: linking aging to chronic disease publication-title: Cell – volume: 51 start-page: 1 year: 2015 end-page: 9 ident: CR62 article-title: Regulation of the unfolded protein response via S‐nitrosylation of sensors of endoplasmic reticulum stress publication-title: Sci Rep – volume: 179 start-page: 1306 year: 2019 end-page: 1318.e18 ident: CR71 article-title: The hyaluronidase, TMEM2, promotes ER homeostasis and longevity independent of the UPR ER publication-title: Cell – volume: 27 start-page: 53 year: 2007 end-page: 66 ident: CR2 article-title: XBP1 controls diverse cell type‐ and condition‐specific transcriptional regulatory networks publication-title: Mol Cell – volume: 11 start-page: 7587 year: 2019 end-page: 7604 ident: CR26 article-title: Attenuated activation of the unfolded protein response following exercise in skeletal muscle of older adults publication-title: Aging (Albany NY) – volume: 91 start-page: 1 year: 2016 end-page: 18 ident: CR73 article-title: Age‐related changes in behavior in C57BL/6J mice from young adulthood to middle age publication-title: Mol Brain – volume: 144 start-page: 35 year: 2018 end-page: 49 ident: CR70 article-title: Neuronal activity‐dependent local activation of dendritic unfolded protein response promotes expression of brain‐derived neurotrophic factor in cell soma publication-title: J Neurochem – volume: 11 start-page: 146 year: 2021 ident: CR29 article-title: Exome‐wide age‐of‐onset analysis reveals exonic variants in ERN1 and SPPL2C associated with Alzheimer's disease publication-title: Transl Psychiatry – volume: 8 start-page: 2531 year: 2013 end-page: 2537 ident: CR45 article-title: Object recognition test in mice publication-title: Nat Protoc – ident: CR90 – volume: 21 start-page: 421 year: 2020 end-page: 438 ident: CR33 article-title: Mechanisms, regulation and functions of the unfolded protein response publication-title: Nat Rev Mol Cell Biol – volume: 38 start-page: 648 year: 2018 end-page: 658 ident: CR72 article-title: Local inhibition of PERK enhances memory and reverses age‐related deterioration of cognitive and neuronal properties publication-title: J Neurosci – volume: 11 year: 2019 ident: CR66 article-title: Reaction to endoplasmic reticulum stress via ATF6 in amyotrophic lateral sclerosis deteriorates with aging publication-title: Front Aging Neurosci – volume: 9 start-page: 1 year: 2020 end-page: 22 ident: CR41 article-title: Small molecule cognitive enhancer reverses age‐related memory decline in mice publication-title: Elife – volume: 39 start-page: 245 year: 2014 end-page: 254 ident: CR55 article-title: Getting RIDD of RNA: IRE1 in cell fate regulation publication-title: Trends Biochem Sci – volume: 5 start-page: 1 year: 2016 end-page: 26 ident: CR65 article-title: Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation publication-title: Elife – volume: 9 start-page: 1273 year: 2014 end-page: 1283 ident: CR69 article-title: Characterizing the altered cellular proteome induced by the stress‐independent activation of heat shock factor 1 publication-title: ACS Chem Biol – volume: 47 start-page: D607 year: 2019 end-page: D613 ident: CR78 article-title: STRING v11: protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets publication-title: Nucleic Acids Res – volume: 334 start-page: 1081 year: 2011 end-page: 1086 ident: CR87 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science – volume: 45 start-page: 371 year: 2020 end-page: 374 ident: CR1 article-title: Unfolded protein response (UPR) controls major senescence hallmarks publication-title: Trends Biochem Sci – volume: 209 start-page: 307 year: 2012 end-page: 318 ident: CR36 article-title: IRE1α activation protects mice against acetaminophen‐induced hepatotoxicity publication-title: J Exp Med – volume: 12 start-page: 389 year: 2015 end-page: 393 ident: CR79 article-title: Activation of the unfolded protein response in aged human lenses publication-title: Mol Med Rep – volume: 14 start-page: 1382 year: 2016 end-page: 1394 ident: CR51 article-title: Regulation of memory formation by the transcription factor XBP1 publication-title: Cell Rep – volume: 16 start-page: 634 year: 2017 end-page: 643 ident: CR68 article-title: The space where aging acts: focus on the GABAergic synapse publication-title: Aging Cell – volume: 108 start-page: 8885 year: 2011 end-page: 8890 ident: CR44 article-title: Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion publication-title: Proc Natl Acad Sci USA – volume: 107 start-page: 9730 year: 2010 end-page: 9735 ident: CR30 article-title: Insulin/IGF‐1 signaling mutants reprogram ER stress response regulators to promote longevity publication-title: Proc Natl Acad Sci USA – volume: 412 start-page: 1798 year: 2009 end-page: 1806 ident: CR15 article-title: Protocols to detect senescence‐associated beta‐galactosidase (SA‐βgal) activity, a biomarker of senescent cells in culture and in vivo publication-title: Nat Protoc – volume: 153 start-page: 1194 year: 2013 end-page: 1217 article-title: The hallmarks of aging publication-title: Cell – volume: 320 start-page: 1492 year: 2008 end-page: 1496 article-title: Regulation of hepatic lipogenesis by the transcription factor XBP1 publication-title: Science – volume: 16 start-page: 615 year: 2017 end-page: 623 article-title: Endoplasmic reticulum proteostasis impairment in aging publication-title: Aging Cell – volume: 368 year: 2020 article-title: The integrated stress response: from mechanism to disease publication-title: Science – volume: 115 start-page: 8209 year: 2018 end-page: 8214 article-title: Endoplasmic reticulum stress leads to accumulation of wild‐type SOD1 aggregates associated with sporadic amyotrophic lateral sclerosis publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 146 year: 2021 article-title: Exome‐wide age‐of‐onset analysis reveals exonic variants in ERN1 and SPPL2C associated with Alzheimer's disease publication-title: Transl Psychiatry – volume: 209 start-page: 307 year: 2012 end-page: 318 article-title: IRE1α activation protects mice against acetaminophen‐induced hepatotoxicity publication-title: J Exp Med – volume: 27 start-page: 973 year: 2006 end-page: 982 article-title: Cellular environment facilitates protein accumulation in aged rat hippocampus publication-title: Neurobiol Aging – volume: 184 start-page: 1545 year: 2021 end-page: 1560 article-title: Adapting the proteostasis capacity to sustain brain healthspan publication-title: Cell – volume: 47 start-page: D442 year: 2019 end-page: D450 article-title: The PRIDE database and related tools and resources in 2019: Improving support for quantification data publication-title: Nucleic Acids Res – volume: 251 start-page: 21 year: 2013 end-page: 32 article-title: Dendritic spine changes associated with normal aging publication-title: Neuroscience – volume: 8 start-page: 2531 year: 2013 end-page: 2537 article-title: Object recognition test in mice publication-title: Nat Protoc – volume: 11 year: 2019 article-title: Reaction to endoplasmic reticulum stress via ATF6 in amyotrophic lateral sclerosis deteriorates with aging publication-title: Front Aging Neurosci – volume: 88 start-page: 92 year: 2013 end-page: 103 article-title: Cleaning up the masses: exclusion lists to reduce contamination with HPLC‐MS/MS publication-title: J Proteomics – volume: 51 start-page: 1 year: 2015 end-page: 9 article-title: Regulation of the unfolded protein response via S‐nitrosylation of sensors of endoplasmic reticulum stress publication-title: Sci Rep – volume: 8 start-page: 329 year: 1987 end-page: 343 article-title: Calcium and the aging nervous system publication-title: Neurobiol Aging – volume: 355 start-page: 365 year: 2007 end-page: 370 article-title: Reduced eIF2α phosphorylation and increased proapoptotic proteins in aging publication-title: Biochem Biophys Res Commun – volume: 153 start-page: 1435 year: 2013 end-page: 1447 article-title: XBP‐1 is a cell‐nonautonomous regulator of stress resistance and longevity publication-title: Cell – volume: 91 start-page: 1 year: 2019 end-page: 16 article-title: Speed‐selectivity in retinal ganglion cells is sharpened by broad spatial frequency, naturalistic stimuli publication-title: Sci Rep – volume: 367 start-page: 436 year: 2020 end-page: 440 article-title: Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in publication-title: Science – volume: 38 start-page: 648 year: 2018 end-page: 658 article-title: Local inhibition of PERK enhances memory and reverses age‐related deterioration of cognitive and neuronal properties publication-title: J Neurosci – volume: 349 start-page: 500 year: 2015 end-page: 506 article-title: S‐Nitrosylation links obesity‐associated inflammation to endoplasmic reticulum dysfunction publication-title: Science – volume: 18 start-page: 831 year: 2013 end-page: 843 article-title: TNF‐α mediates PKR‐dependent memory impairment and brain IRS‐1 inhibition induced by Alzheimer's β‐amyloid oligomers in mice and monkeys publication-title: Cell Metab – volume: 16 start-page: 1299 year: 2013 end-page: 1305 article-title: Suppression of eIF2α kinases alleviates Alzheimer's disease–related plasticity and memory deficits publication-title: Nat Neurosci – volume: 16 start-page: 634 year: 2017 end-page: 643 article-title: The space where aging acts: focus on the GABAergic synapse publication-title: Aging Cell – volume: 6 start-page: eaaz1441 year: 2020 article-title: UPRER promotes lipophagy independent of chaperones to extend life span publication-title: Sci Adv – volume: 39 start-page: 245 year: 2014 end-page: 254 article-title: Getting RIDD of RNA: IRE1 in cell fate regulation publication-title: Trends Biochem Sci – volume: 2014 start-page: 8.31.1‐8.31.17 year: 2014 article-title: Examining object location and object recognition memory in mice publication-title: Curr Protoc Neurosci – volume: 159 start-page: 709 year: 2014 end-page: 713 article-title: Geroscience: linking aging to chronic disease publication-title: Cell – year: 2022 – volume: 10 start-page: 640 year: 2011 end-page: 649 article-title: Endoplasmic reticulum stress in wake‐active neurons progresses with aging publication-title: Aging Cell – volume: 20 start-page: 2144 year: 2011 end-page: 2160 article-title: The ER stress factor XBP1s prevents amyloid‐beta neurotoxicity publication-title: Hum Mol Genet – volume: 105 start-page: 15605 year: 2008 end-page: 15610 article-title: Gene expression changes in the course of normal brain aging are sexually dimorphic publication-title: Proc Natl Acad Sci USA – volume: 69 start-page: S33 year: 2014 end-page: S38 article-title: Proteostasis and the aging proteome in health and disease publication-title: J Gerontol A Biol Sci Med Sci – volume: 13 start-page: 240 year: 2012 end-page: 250 article-title: The ageing cortical synapse: hallmarks and implications for cognitive decline publication-title: Nat Rev Neurosci – volume: 12 year: 2016 article-title: WORMHOLE: novel least diverged ortholog prediction through machine learning publication-title: PLoS Comput Biol – volume: 131 start-page: 1669 year: 2017 end-page: 1688 article-title: Redox theory of aging: Implications for health and disease publication-title: Clin Sci (Lond) – volume: 111 start-page: 6804 year: 2014 end-page: 6809 article-title: Control of dopaminergic neuron survival by the unfolded protein response transcription factor XBP1 publication-title: Proc Natl Acad Sci USA – volume: 128 start-page: 1208 year: 2018 end-page: 1216 article-title: Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives publication-title: J Clin Invest – volume: 116 start-page: 17383 year: 2019 end-page: 17392 article-title: Dietary restriction improves proteostasis and increases life span through endoplasmic reticulum hormesis publication-title: Proc Natl Acad Sci USA – volume: 108 start-page: 8885 year: 2011 end-page: 8890 article-title: Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion publication-title: Proc Natl Acad Sci USA – volume: 91 start-page: 1 year: 2016 end-page: 18 article-title: Age‐related changes in behavior in C57BL/6J mice from young adulthood to middle age publication-title: Mol Brain – volume: 11 year: 2015 article-title: PERK limits drosophila lifespan by promoting intestinal stem cell proliferation in response to ER stress publication-title: PLoS Genet – volume: 19 start-page: 229 year: 2009 end-page: 235 article-title: Detection of bursts in neuronal spike trains by the mean inter‐spike interval method publication-title: Prog Nat Sci – volume: 11 start-page: 7587 year: 2019 end-page: 7604 article-title: Attenuated activation of the unfolded protein response following exercise in skeletal muscle of older adults publication-title: Aging (Albany NY) – volume: 12 start-page: 389 year: 2015 end-page: 393 article-title: Activation of the unfolded protein response in aged human lenses publication-title: Mol Med Rep – volume: 106 start-page: 14914 year: 2009 end-page: 14919 article-title: Collapse of proteostasis represents an early molecular event in aging publication-title: Proc Natl Acad Sci USA – volume: 376 start-page: 758 year: 2008 end-page: 763 article-title: Attenuated BDNF‐induced upregulation of GABAergic markers in neurons lacking Xbp1 publication-title: Biochem Biophys Res Commun – volume: 45 start-page: 371 year: 2020 end-page: 374 article-title: Unfolded protein response (UPR) controls major senescence hallmarks publication-title: Trends Biochem Sci – volume: 282 start-page: 34525 year: 2007 end-page: 34534 article-title: The role of brain‐derived neurotrophic factor (BDNF)‐induced XBP1 splicing during brain development publication-title: J Biol Chem – volume: 144 start-page: 35 year: 2018 end-page: 49 article-title: Neuronal activity‐dependent local activation of dendritic unfolded protein response promotes expression of brain‐derived neurotrophic factor in cell soma publication-title: J Neurochem – volume: 39 start-page: 394 year: 2016 end-page: 404 article-title: Emerging roles for the unfolded protein response in the developing nervous system publication-title: Trends Neurosci – volume: 139 start-page: 2113 year: 2016 end-page: 2121 article-title: The unfolded protein response: mechanisms and therapy of neurodegeneration publication-title: Brain – volume: 8 year: 2019 article-title: Loss of XBP1 leads to early‐onset retinal neurodegeneration in a mouse model of type I diabetes publication-title: J Clin Med – volume: 109 start-page: 13835 year: 2012 end-page: 13840 article-title: Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 1 year: 2012 end-page: 4 article-title: Fold change and p‐value cutoffs significantly alter microarray interpretations publication-title: BMC Bioinformatics – volume: 21 start-page: 1332 year: 2018 end-page: 1340 article-title: Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases publication-title: Nat Neurosci – volume: 14 start-page: 1382 year: 2016 end-page: 1394 article-title: Regulation of memory formation by the transcription factor XBP1 publication-title: Cell Rep – volume: 93 start-page: 491 year: 2006 end-page: 507 article-title: Adaptive linear step‐up procedures that control the false discovery rate publication-title: Biometrika – volume: 412 start-page: 1798 year: 2009 end-page: 1806 article-title: Protocols to detect senescence‐associated beta‐galactosidase (SA‐βgal) activity, a biomarker of senescent cells in culture and in vivo publication-title: Nat Protoc – volume: 13 start-page: 477 year: 2017 end-page: 491 article-title: ER stress and the unfolded protein response in neurodegeneration publication-title: Nat Rev Neurol – volume: 286 start-page: 342 year: 2019 end-page: 355 article-title: The unfolded protein response in neurodegenerative disorders ‐ therapeutic modulation of the PERK pathway publication-title: FEBS J – volume: 390 start-page: 10 year: 2007 end-page: 38 article-title: Barnes maze, a useful task to assess spatial reference memory in the mice publication-title: Nat Protoc – volume: 334 start-page: 1081 year: 2011 end-page: 1086 article-title: The unfolded protein response: from stress pathway to homeostatic regulation publication-title: Science – volume: 35 start-page: 1431 year: 2014 end-page: 1441 article-title: Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis publication-title: Neurobiol Aging – volume: 14 year: 2021 article-title: Correction of eIF2‐dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer's disease publication-title: Sci Signal – volume: 5 start-page: 1 year: 2016 end-page: 26 article-title: Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation publication-title: Elife – volume: 9 start-page: 1273 year: 2014 end-page: 1283 article-title: Characterizing the altered cellular proteome induced by the stress‐independent activation of heat shock factor 1 publication-title: ACS Chem Biol – volume: 19 start-page: 229 year: 2013 end-page: 234 article-title: Polymorphism ‐116C/G of human X‐box‐binding protein 1 promoter is associated with risk of Alzheimer's disease publication-title: CNS Neurosci Ther – volume: 19 year: 2020 article-title: Mastering organismal aging through the endoplasmic reticulum proteostasis network publication-title: Aging Cell – volume: 39 start-page: 8 year: 2016 end-page: 16 article-title: Specialization of biosynthetic membrane trafficking for neuronal form and function publication-title: Curr Opin Neurobiol – volume: 101 start-page: 1 year: 2019 end-page: 14 article-title: Large‐scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age publication-title: Nat Commun – volume: 17 start-page: 1207 year: 2016 end-page: 1216 article-title: Intestinal IRE1 is required for increased triglyceride metabolism and longer lifespan under dietary restriction publication-title: Cell Rep – volume: 179 start-page: 1306 year: 2019 end-page: 1318.e18 article-title: The hyaluronidase, TMEM2, promotes ER homeostasis and longevity independent of the UPR ER publication-title: Cell – volume: 107 start-page: 9730 year: 2010 end-page: 9735 article-title: Insulin/IGF‐1 signaling mutants reprogram ER stress response regulators to promote longevity publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 581 year: 2019 end-page: 589.e4 article-title: XBP‐1 remodels lipid metabolism to extend longevity publication-title: Cell Rep – year: 2020 – volume: 134 start-page: 489 year: 2017 end-page: 506 article-title: IRE1 signaling exacerbates Alzheimer's disease pathogenesis publication-title: Acta Neuropathol – volume: 1648 start-page: 588 year: 2016 end-page: 593 article-title: Aging and the UPR(ER) publication-title: Brain Res – volume: 441 start-page: 513 year: 2006 end-page: 517 article-title: S‐nitrosylated protein‐disulphide isomerase links protein misfolding to neurodegeneration publication-title: Nature – volume: 9 start-page: 1 year: 2020 end-page: 22 article-title: Small molecule cognitive enhancer reverses age‐related memory decline in mice publication-title: Elife – volume: 41 start-page: 610 year: 2018 end-page: 624 article-title: ER Proteostasis control of neuronal physiology and synaptic function publication-title: Trends Neurosci – volume: 21 start-page: e13598 year: 2022 article-title: Reducing ER stress with chaperone therapy reverses sleep fragmentation and cognitive decline in aged mice publication-title: Aging Cell – volume: 44 start-page: W90 year: 2016 end-page: W97 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res – volume: 478 start-page: 483 year: 2011 end-page: 489 article-title: Spatio‐temporal transcriptome of the human brain publication-title: Nature – volume: 105 start-page: 93 year: 2013 end-page: 99 article-title: Translational control by eIF2α kinases in long‐lasting synaptic plasticity and long‐term memory publication-title: Neurobiol Learn Mem – volume: 27 start-page: 53 year: 2007 end-page: 66 article-title: XBP1 controls diverse cell type‐ and condition‐specific transcriptional regulatory networks publication-title: Mol Cell – volume: 47 start-page: D607 year: 2019 end-page: D613 article-title: STRING v11: protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets publication-title: Nucleic Acids Res – volume: 21 start-page: 421 year: 2020 end-page: 438 article-title: Mechanisms, regulation and functions of the unfolded protein response publication-title: Nat Rev Mol Cell Biol – volume: 28 start-page: 6539 year: 2008 end-page: 6548 article-title: Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling publication-title: J Neurosci – ident: e_1_2_9_24_1 doi: 10.1111/acel.13598 – ident: e_1_2_9_59_1 doi: 10.1038/nrn3200 – ident: e_1_2_9_3_1 doi: 10.1016/j.molcel.2007.06.011 – ident: e_1_2_9_26_1 doi: 10.18632/aging.102273 – ident: e_1_2_9_49_1 doi: 10.1016/j.celrep.2016.10.003 – ident: e_1_2_9_53_1 doi: 10.1016/j.tins.2018.05.009 – ident: e_1_2_9_61_1 doi: 10.1111/j.1474-9726.2011.00699.x – ident: e_1_2_9_19_1 doi: 10.1126/science.aaz6896 – ident: e_1_2_9_58_1 doi: 10.1093/gerona/glu049 – ident: e_1_2_9_45_1 doi: 10.1038/nprot.2013.155 – ident: e_1_2_9_60_1 doi: 10.1523/JNEUROSCI.5685-07.2008 – volume: 91 start-page: 1 year: 2016 ident: e_1_2_9_73_1 article-title: Age‐related changes in behavior in C57BL/6J mice from young adulthood to middle age publication-title: Mol Brain – ident: e_1_2_9_36_1 doi: 10.1084/jem.20111298 – ident: e_1_2_9_65_1 doi: 10.7554/eLife.15550 – ident: e_1_2_9_68_1 doi: 10.1111/acel.12605 – ident: e_1_2_9_31_1 doi: 10.1016/j.cell.2021.02.007 – ident: e_1_2_9_87_1 doi: 10.1126/science.1209038 – ident: e_1_2_9_38_1 doi: 10.1016/j.celrep.2019.06.057 – ident: e_1_2_9_34_1 doi: 10.1016/j.jprot.2013.02.023 – ident: e_1_2_9_4_1 doi: 10.1073/pnas.1201209109 – ident: e_1_2_9_32_1 doi: 10.1038/nrneurol.2017.99 – volume: 51 start-page: 1 year: 2015 ident: e_1_2_9_62_1 article-title: Regulation of the unfolded protein response via S‐nitrosylation of sensors of endoplasmic reticulum stress publication-title: Sci Rep – ident: e_1_2_9_30_1 doi: 10.1073/pnas.1002575107 – volume: 101 start-page: 1 year: 2019 ident: e_1_2_9_89_1 article-title: Large‐scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age publication-title: Nat Commun – ident: e_1_2_9_13_1 doi: 10.1186/1471-2105-13-S2-S11 – ident: e_1_2_9_72_1 doi: 10.1523/JNEUROSCI.0628-17.2017 – ident: e_1_2_9_90_1 – ident: e_1_2_9_25_1 doi: 10.1016/j.conb.2016.03.004 – ident: e_1_2_9_52_1 doi: 10.1111/acel.12599 – ident: e_1_2_9_28_1 doi: 10.1016/j.bbrc.2008.09.059 – ident: e_1_2_9_77_1 doi: 10.1371/journal.pcbi.1005182 – ident: e_1_2_9_55_1 doi: 10.1016/j.tibs.2014.02.008 – ident: e_1_2_9_66_1 doi: 10.3389/fnagi.2019.00005 – ident: e_1_2_9_74_1 doi: 10.1093/brain/aww101 – ident: e_1_2_9_27_1 doi: 10.1074/jbc.M704300200 – ident: e_1_2_9_57_1 doi: 10.1073/pnas.1801109115 – ident: e_1_2_9_2_1 doi: 10.1016/j.tibs.2020.02.005 – ident: e_1_2_9_70_1 doi: 10.1111/jnc.14221 – volume: 91 start-page: 1 year: 2019 ident: e_1_2_9_67_1 article-title: Speed‐selectivity in retinal ganglion cells is sharpened by broad spatial frequency, naturalistic stimuli publication-title: Sci Rep – ident: e_1_2_9_23_1 doi: 10.1016/j.tins.2016.04.002 – ident: e_1_2_9_41_1 doi: 10.7554/eLife.62048 – ident: e_1_2_9_63_1 doi: 10.1126/scisignal.abc5429 – ident: e_1_2_9_5_1 doi: 10.1172/JCI95145 – ident: e_1_2_9_48_1 doi: 10.1016/j.cmet.2013.11.002 – ident: e_1_2_9_85_1 doi: 10.1073/pnas.1321845111 – ident: e_1_2_9_20_1 doi: 10.1016/j.neurobiolaging.2005.05.010 – ident: e_1_2_9_12_1 doi: 10.1126/science.aat5314 – ident: e_1_2_9_56_1 doi: 10.3390/jcm8060906 – volume: 390 start-page: 10 year: 2007 ident: e_1_2_9_76_1 article-title: Barnes maze, a useful task to assess spatial reference memory in the mice publication-title: Nat Protoc – ident: e_1_2_9_8_1 doi: 10.1073/pnas.0806883105 – ident: e_1_2_9_17_1 doi: 10.1007/s00401-017-1694-x – ident: e_1_2_9_39_1 doi: 10.1038/nature10523 – ident: e_1_2_9_44_1 doi: 10.1073/pnas.1105564108 – ident: e_1_2_9_54_1 doi: 10.1073/pnas.1900055116 – ident: e_1_2_9_69_1 doi: 10.1021/cb500062n – ident: e_1_2_9_7_1 doi: 10.1073/pnas.0902882106 – ident: e_1_2_9_11_1 doi: 10.1016/j.pnsc.2008.05.027 – ident: e_1_2_9_50_1 doi: 10.1038/nn.3486 – ident: e_1_2_9_71_1 doi: 10.1016/j.cell.2019.10.018 – ident: e_1_2_9_80_1 doi: 10.1016/j.brainres.2016.04.017 – ident: e_1_2_9_18_1 doi: 10.1101/2022.06.21.496869 – ident: e_1_2_9_78_1 doi: 10.1093/nar/gky1131 – ident: e_1_2_9_22_1 doi: 10.1042/CS20160897 – ident: e_1_2_9_51_1 doi: 10.1016/j.celrep.2016.01.028 – volume: 2014 start-page: 8.31.1‐8.31.17 year: 2014 ident: e_1_2_9_86_1 article-title: Examining object location and object recognition memory in mice publication-title: Curr Protoc Neurosci – ident: e_1_2_9_46_1 doi: 10.1111/cns.12064 – ident: e_1_2_9_84_1 doi: 10.1038/nature04782 – ident: e_1_2_9_15_1 doi: 10.1038/nprot.2009.191 – ident: e_1_2_9_35_1 doi: 10.1111/febs.14422 – ident: e_1_2_9_47_1 doi: 10.1016/j.cell.2013.05.039 – ident: e_1_2_9_82_1 doi: 10.1111/acel.13265 – ident: e_1_2_9_79_1 doi: 10.3892/mmr.2015.3417 – ident: e_1_2_9_14_1 doi: 10.1126/sciadv.aaz1441 – ident: e_1_2_9_75_1 doi: 10.1038/s41593-018-0235-9 – ident: e_1_2_9_6_1 doi: 10.1093/biomet/93.3.491 – ident: e_1_2_9_16_1 doi: 10.1016/j.neuroscience.2012.09.077 – ident: e_1_2_9_43_1 doi: 10.1126/science.1158042 – ident: e_1_2_9_91_1 doi: 10.1126/science.aaa0079 – ident: e_1_2_9_29_1 doi: 10.1038/s41398-021-01263-4 – ident: e_1_2_9_64_1 doi: 10.1093/nar/gky1106 – ident: e_1_2_9_42_1 doi: 10.1093/nar/gkw377 – ident: e_1_2_9_9_1 doi: 10.1016/j.neurobiolaging.2013.12.005 – ident: e_1_2_9_10_1 doi: 10.1093/hmg/ddr100 – ident: e_1_2_9_81_1 doi: 10.1016/j.cell.2013.05.042 – ident: e_1_2_9_88_1 doi: 10.1371/journal.pgen.1005220 – ident: e_1_2_9_33_1 doi: 10.1038/s41580-020-0250-z – ident: e_1_2_9_40_1 doi: 10.1016/j.cell.2014.10.039 – ident: e_1_2_9_83_1 doi: 10.1016/j.nlm.2013.04.013 – ident: e_1_2_9_21_1 doi: 10.1016/0197-4580(87)90072-8 – ident: e_1_2_9_37_1 doi: 10.1016/j.bbrc.2007.01.156 |
SSID | ssj0005871 |
Score | 2.578743 |
Snippet | Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e111952 |
SubjectTerms | Ablation Age Aging Aging (natural) Aging - genetics aging brain Animal models Animals Brain Brain - metabolism Cognitive ability EMBO24 EMBO27 EMBO32 Endoplasmic reticulum Endoplasmic Reticulum Stress - genetics ER stress Gene transfer Hippocampus Mammals Mice Neurodegeneration Neurodegenerative diseases Phenotypes Physiology Protein folding Protein Serine-Threonine Kinases - genetics Proteins Proteomics proteostasis Risk analysis Risk factors Senescence Signal transduction Signal Transduction - physiology Signaling Synapses Unfolded Protein Response UPR X-Box Binding Protein 1 - genetics X-Box Binding Protein 1 - metabolism XBP1s |
Title | Unfolded protein response IRE1/XBP1 signaling is required for healthy mammalian brain aging |
URI | https://link.springer.com/article/10.15252/embj.2022111952 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.2022111952 https://www.ncbi.nlm.nih.gov/pubmed/36314651 https://www.proquest.com/docview/2737031560 https://www.proquest.com/docview/2730647425 https://pubmed.ncbi.nlm.nih.gov/PMC9670206 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD6IIuuLeFndeiOCL7tQZjI9aZtHHUZUUER2YMCH0kuCszhVdObBf-85aafjoK74GJI2Tc9J8n3JuQAcpWERGEskx-i28hEDWgdVGvuxzbCdkwZhzgf6l1fhWR8vBmpQn3ewL8zb-3vVUZ2WGWX_iMZ1iKhIrWixXVK07LIud8PuzJgjdtTKnaagjHV9IfnRG-Y3oHeo8r1xZHNDOo9f3QZ0ugarNXIUx5Wo12HBlBuwXOWSfNmAH91p6rZNuO2T2twXphAuDMOwFE-VKawR5zc92RqcXEvBlhspO6OL4TPVs0UwPUAYVlS-kS9ilI5G7hhEZJxIQriERj-hf9r72z3z6ywKfk5UoOOnqAviGIjKFBi0aVy54ZjqEhVikVvCUEVGpC7XNoq1lZnVaUxtYyKLNkIdbMFi-VCaXyCs1RIzJD5tDWY61Ta0BJ8CY9AGqHMPWtNfm-R1iHHOdHGfMNVgYSQsjGQmDA9-N088VuE1_tN2byqtpJ5ozwmhL47AT7jNg8Ommn4333ukpXmYuDbsUkurkwfblXCbzoIwkJwO3oNoTuxNAw6_PV9TDu9cGG4dRoS1Qw_-TBVk9lmfj0E5FfpysEnv8uRiVtz5Tie7sMIF9piU0R4sjp8mZp-g0zg7cLPmFTngDXM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD6aQBO8TIxrGDBP2gtIUevmOIkfoSoqjCI0UakSD1EutujUBsTlgX-_c5w0XQVs2mNkO459bOf7fG4A39OwCIwlkmN0W_mIAZ2DKo392GbYzmkFYc4X-oPLsD_E85Ea1fcd7Avzp_5edVSnZabZL6JxHSIqUis6bJdZb8lR8rthd27METtq5W5TUMa6Vki-9YbFH9ArVPnaOLLRkC7iV_cDOl2DTzVyFMeVqD_DB1Ouw8cql-TLOqx0Z6nbNuBmSMtmUphCuDAM41I8VKawRpz97MnW6ORKCrbcSNkZXYwfqZwtgqkBYVhR-Ua-iGk6nbprEJFxIgnhEhptwvC0d93t-3UWBT8nKtDxU9QFcQxEZQoM2jSu3HBMdYkKscgtYagiI1KXaxvF2srM6jSmujGRRRuhDrZgqbwrzQ4Ia7XEDIlPW4OZTrUNLcGnwBi0Aercg9ZsapO8DjHOmS4mCVMNFkbCwkjmwvDgsGlxX4XX-EvdvZm0knqjPSaEvjgCP-E2D741xTTdrPdIS3P37OqwSy2dTh5sV8JtOgvCQHI6eA-iBbE3FTj89mJJOb51Ybh1GBHWDj04mi2Q-We9PwblltA_B5v0Bifn88fd_-nkK6z0rwcXycXZ5Y8vsMoF7D0poz1Yenp4NvsEo56yA7eDfgMOHBBi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5VoBYuCGgB8-pW6qWVrGTj8WOPEBLxFqoaKVIPlh-7IigxiIQD_56Z9SOKKEU9Oru2s57x-vt2Z74B-J4EuacNkRyt2r6L6NE86CeRG5kU2xl5EGa8oH91HZwO8HzoD6sFt2kd7V5vSZY5DazSVMxaD7mp6_V0WnqS3hG56xB9kcqnKXiZlbo4pK8bdOchHpElXHaNBWWkqm3Kv11h8bP0Cmu-Dpls9k0XUa39LPXXYa3Ck-KodIAN-KCLTfhYVph83oSVbl3Q7TP8GZAzjXOdCyvOMCrEYxkgq8XZr55sDY9vpOB4joRT1MVoSu0cJ0wnELIVZcbks5gkk4ldHBEpl5cQtszRFxj0e7-7p25VW8HNiCB03ARVTswD0dc5em0aV6ZZaV2ij5hnhpBVnhLVy5QJI2VkalQSUd-IKKQJUXlbsFTcF3oHhDFKYorEso3GVCXKBIZAlac1Gg9V5kCrfrRxVgmPc_2LccwEhI0RszHiuTEc-NGc8VCKbvyj735trbh6_aYxYTLW5Sc058C3ppkeN--GJIW-f7J9ONGW5iwHtkvjNjfzAk9ykXgHwgWzNx1YlHuxpRjdWnFuFYSEwAMHftYOMv9bb4_Bty707mDj3tXx-fxw939u8hU-3Zz048uz64s9WOXfOaVShvuwNHt80geErWbpoX2BXgBxIxiy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unfolded+protein+response+IRE1%2FXBP1+signaling+is+required+for+healthy+mammalian+brain+aging&rft.jtitle=The+EMBO+journal&rft.au=Cabral-Miranda%2C+Felipe&rft.au=Tamburini%2C+Giovanni&rft.au=Martinez%2C+Gabriela&rft.au=Ardiles%2C+Alvaro+O&rft.date=2022-11-17&rft.eissn=1460-2075&rft.volume=41&rft.issue=22&rft.spage=e111952&rft_id=info:doi/10.15252%2Fembj.2022111952&rft_id=info%3Apmid%2F36314651&rft.externalDocID=36314651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |