基于多尺度形态学滤波的高分辨率遥感影像分割
针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法。试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像"过分割"和"欠分割"问题,适合于对高空间分辨率遥感影像的多尺度噪声去除。...
Saved in:
| Published in | 农业工程学报 Vol. 29; no. 1; pp. 89 - 95 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
中国农业大学信息与电气工程学院,北京 100083%中国科学院遥感应用研究所,北京 100101%国土资源部土地整治中心,北京 100035
2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.3969/j.issn.1002-6819.2013.z1.013 |
Cover
| Abstract | 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法。试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像"过分割"和"欠分割"问题,适合于对高空间分辨率遥感影像的多尺度噪声去除。 |
|---|---|
| AbstractList | 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法。试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像"过分割"和"欠分割"问题,适合于对高空间分辨率遥感影像的多尺度噪声去除。 P407.8%TP751.1; 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题.该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法.试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像“过分割”和“欠分割”问题,适合于对高空间分辨率遥感影像的多尺度噪声去除. |
| Abstract_FL | The morphological filters can suppress impulse noise or small image components/structures while preserving very important geometrical features such as edges. So, the morphological filters have been widely used in image preprocessing to remove the image noises and noise reduction is critical step for image segmentation. Morphological filters analyze the geometrical structure of image by locally comparing it with a predefined elementary shape called a structure element. Different scale image edges are detected by using several typical structure elements. Large amounts of experimental results demonstrate that the size of structure element have much dependence with image background. Therefore, many studies devote to the adaptive optimization of structure elements of morphological filters. However, the structure element of the same scale is traditionally adopted to establish a filter and remove noise from very high resolution satellite images prior to image segmentation. This method ignores the problem of inconsistencies between different land use types in the noise scale. In this paper, for the complicated background satellite imagery, a multi-scale morphological filtering method, which takes full advantage of the merits of large and small structure element by weighted strategy and combines them with the filtering results of multi-scale structure elements, is proposed based on morphological opening- and closing-reconstruction operations. To evaluate the multi-scale morphological filter for the image segmentation, three filtering approaches and segmentation accuracy assessment results are compared in this study. Qualitative and quantitative experimental results show that the proposed method can effectively solve over-segmentation and under-segmentation problem that result from improper scale of structure element. Compared with accuracy assessments of single scale and multi-scale morphological filters, the multi-scale morphological filter segmentation obtained higher accuracy than single scale filter segmentation, and is suitable for removing the multi-scale noise from very high resolution satellite images. |
| Author | 岳安志 杨建宇 张超 朱德海 郧文聚 |
| AuthorAffiliation | 中国农业大学信息与电气工程学院,北京100083 中国科学院遥感应用研究所,北京100101 国土资源部土地整治中心,北京100035 |
| AuthorAffiliation_xml | – name: 中国农业大学信息与电气工程学院,北京 100083%中国科学院遥感应用研究所,北京 100101%国土资源部土地整治中心,北京 100035 |
| Author_xml | – sequence: 1 fullname: 岳安志 杨建宇 张超 朱德海 郧文聚 |
| BookMark | eNo9j01LwzAAhnOY4Jz7EYLgqTVZmjY5iQy_YOBl95I2yezQTFdEt5PD4cdlXmWXwZhDEMGPW2X-GtO5f2Fl4umFh4f35V0COd3QEoBVBG3MXLZet6M41jaCsGS5FDG7BBG228jOIgfy_3wRFOM4CiBB2IPQQXmwYQbJV9Izo755SUwyNpNhetExz-P0Y5S-D6f97uzp3txcfX8-TnvXs85D2h2Yyau5vMuguX1bBguKH8ay-JcFUN3eqpZ3rcr-zl55s2KFhBJLeoxyJR0m3JJQUDkYehAp1-OOyzHGMhQMBoRIogRGXAgsEOKYUy4lI4TiAlib155xrbiu-fXGaVNng75u1cLz4PdvG0FEMnNlboYHDV07iTL3uBkd8WbLdwhzPEo9_AMLNXF- |
| ClassificationCodes | P407.8%TP751.1 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1002-6819.2013.z1.013 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| DocumentTitleAlternate | Multi-scale morphological filter for image segmentation of very high resolution satellite imagery |
| DocumentTitle_FL | Multi-scale morphological filter for image segmentation of very high resolution satellite imagery |
| EndPage | 95 |
| ExternalDocumentID | nygcxb2013z1015 45947887 |
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
| ID | FETCH-LOGICAL-c585-e798afe49d62df0f430701f67a46a333ecd90b55e5fd31add3d11a3a8aee95583 |
| ISSN | 1002-6819 |
| IngestDate | Thu May 29 04:04:18 EDT 2025 Wed Feb 14 10:43:18 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 滤波 形态学 image segmentation very high resolution satellite imagery multi-scale 影像分割 高空间分辨率遥感影像 mathematical morphology filters 多尺度 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c585-e798afe49d62df0f430701f67a46a333ecd90b55e5fd31add3d11a3a8aee95583 |
| Notes | 11-2047/S image segmentation; filters; mathematical morphology; very high resolution satellite imagery; multi-scale The morphological filters can suppress impulse noise or small image components/structures while preserving very important geometrical features such as edges. So, the morphological filters have been widely used in image preprocessing to remove the image noises and noise reduction is critical step for image segmentation. Morphological filters analyze the geometrical structure of image by locally comparing it with a predefined elementary shape called a structure element. Different scale image edges are detected by using several typical structure elements. Large amounts of experimental results demonstrate that the size of structure element have much dependence with image background. Therefore, many studies devote to the adaptive optimization of structure elements of morphological filters. However, the structure element of the same scale is traditionally adopted to establish a filter and remove noise f |
| PageCount | 7 |
| ParticipantIDs | wanfang_journals_nygcxb2013z1015 chongqing_primary_45947887 |
| PublicationCentury | 2000 |
| PublicationDate | 2013 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | 农业工程学报 |
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationYear | 2013 |
| Publisher | 中国农业大学信息与电气工程学院,北京 100083%中国科学院遥感应用研究所,北京 100101%国土资源部土地整治中心,北京 100035 |
| Publisher_xml | – name: 中国农业大学信息与电气工程学院,北京 100083%中国科学院遥感应用研究所,北京 100101%国土资源部土地整治中心,北京 100035 |
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
| Score | 2.013481 |
| Snippet | 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形... P407.8%TP751.1; 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 89 |
| SubjectTerms | 多尺度 形态学 影像分割 滤波 高空间分辨率遥感影像 |
| Title | 基于多尺度形态学滤波的高分辨率遥感影像分割 |
| URI | http://lib.cqvip.com/qk/90712X/201301/45947887.html https://d.wanfangdata.com.cn/periodical/nygcxb2013z1015 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals issn: 1002-6819 databaseCode: FIJ dateStart: 20090101 customDbUrl: isFulltext: true dateEnd: 20151231 titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 omitProxy: true ssIdentifier: ssj0041925 providerName: Ingenta |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5iBNGD-ETjgxzSJ9l1enp6pvskPZtZYkBPEXJbZuexOW00bkD3ZDD4uMSr5BIIMQhB8HFbib_G2Zh_YVVPZzMbNvFxGZqamqqvqprp6qa72rKmoog2WRbLCo9sVnEzx680I-lUMLf1kiTmqS5W_eChN_PInZ3n82PjO6VdS8udZjXujjxX8j9RBRrEFU_J_kNkB0KBAG2ILzwhwvD8qxiTkBNZJ4EioYtPESJFuUQqbAS2fsXxqTzdmCbKIaGH-xsE1czT-pVHggA_xAbTPD4KEUCRRAVECmQWgghgFiQIiRLIAxqFjzwgTXEt2UVIha5AqxCMiHrpc2hIEjjltFgTPSJr2hBxgN_XMn3UJYIhtAIs4gedRfM6CBxZQhSPlDqR_iELSJ_WoDmaWvgFef0hKTWibG0gqOBDH9eMNWA64EI_IcDyoklx2lV3cGMGwMUIBeiLkRaCx5VfMsxF1IpqC8GhdcOMcYV4uKgTNdvYPslBkkiJUXRqWm8NPGG6iKrdoTojJg4fhdJHQJKOkDU6yEpD0eCKHqFsQ1ESvYjMErvbcVAo3uHAh_wETkLpAs0VRZ8ENbZGwEwMDY9ugD8wQoCmYHYwwmXbwKlo8HHOKCrZmKEZx25PmAG2-Ct1aWnsLa6iMllccXPr0fyASU_q_AAlVgcScYcnq3Zp9aCnDFdgbz9vxc-ayNMFn_BT1mkHF_-wpuz92cO5B8XllcHg6GCJCe9wLs8pw5skBvvPcPcF11sxDIgz1pRBePckfFgDZmGx3XoCma0-aNjOonarlBPPXbDOm8nspCr-TBetse7CJeucai2Zgj7pZetevtH72VvLt9bzz728t53vbvZfrOSftvvft_rfNvfWV_d33udvXv368XFv7fX-yof-6ka--yV_-Q6I-duvV6y5ejhXm6mYS1sqMRe8kvpSRFnqysRzkszOXMwpaOb5ketFjLE0TqTd5DzlWcIoJFcsoTRikYjSVHIu2FVrvL3YTq9Zk9KNme3EMAd0Mjfy7SjxGaVpBnOeSLixf92aGHii8biozdNwucQLQeDlpHFNw_ywnzaOxHHizyw3rLOOvv4Gl1xvWuOdpeX0FkxCOs3bOvi_AaHO3EQ |
| linkProvider | Ingenta |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E5%B0%BA%E5%BA%A6%E5%BD%A2%E6%80%81%E5%AD%A6%E6%BB%A4%E6%B3%A2%E7%9A%84%E9%AB%98%E5%88%86%E8%BE%A8%E7%8E%87%E9%81%A5%E6%84%9F%E5%BD%B1%E5%83%8F%E5%88%86%E5%89%B2&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%B2%B3%E5%AE%89%E5%BF%97&rft.au=%E6%9D%A8%E5%BB%BA%E5%AE%87&rft.au=%E5%BC%A0%E8%B6%85&rft.au=%E6%9C%B1%E5%BE%B7%E6%B5%B7&rft.date=2013&rft.pub=%E4%B8%AD%E5%9B%BD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100083%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6%E6%89%80%2C%E5%8C%97%E4%BA%AC+100101%25%E5%9B%BD%E5%9C%9F%E8%B5%84%E6%BA%90%E9%83%A8%E5%9C%9F%E5%9C%B0%E6%95%B4%E6%B2%BB%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100035&rft.issn=1002-6819&rft.issue=z1&rft.spage=89&rft.epage=95&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2013.z1.013&rft.externalDocID=nygcxb2013z1015 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |