基于多尺度形态学滤波的高分辨率遥感影像分割

针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法。试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像"过分割"和"欠分割"问题,适合于对高空间分辨率遥感影像的多尺度噪声去除。...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 1; pp. 89 - 95
Main Author 岳安志 杨建宇 张超 朱德海 郧文聚
Format Journal Article
LanguageChinese
Published 中国农业大学信息与电气工程学院,北京 100083%中国科学院遥感应用研究所,北京 100101%国土资源部土地整治中心,北京 100035 2013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.z1.013

Cover

Abstract 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法。试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像"过分割"和"欠分割"问题,适合于对高空间分辨率遥感影像的多尺度噪声去除。
AbstractList 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法。试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像"过分割"和"欠分割"问题,适合于对高空间分辨率遥感影像的多尺度噪声去除。
P407.8%TP751.1; 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题.该文基于形态学开闭重建运算,采用加权思想,充分利用不同尺度结构元素能去除对应尺度噪声的特点,结合多个尺度结构元素的滤波结果,提出一种多尺度形态学滤波方法.试验结果表明,该方法能有效抑制由于滤波尺度选择不合适造成的影像“过分割”和“欠分割”问题,适合于对高空间分辨率遥感影像的多尺度噪声去除.
Abstract_FL The morphological filters can suppress impulse noise or small image components/structures while preserving very important geometrical features such as edges. So, the morphological filters have been widely used in image preprocessing to remove the image noises and noise reduction is critical step for image segmentation. Morphological filters analyze the geometrical structure of image by locally comparing it with a predefined elementary shape called a structure element. Different scale image edges are detected by using several typical structure elements. Large amounts of experimental results demonstrate that the size of structure element have much dependence with image background. Therefore, many studies devote to the adaptive optimization of structure elements of morphological filters. However, the structure element of the same scale is traditionally adopted to establish a filter and remove noise from very high resolution satellite images prior to image segmentation. This method ignores the problem of inconsistencies between different land use types in the noise scale. In this paper, for the complicated background satellite imagery, a multi-scale morphological filtering method, which takes full advantage of the merits of large and small structure element by weighted strategy and combines them with the filtering results of multi-scale structure elements, is proposed based on morphological opening- and closing-reconstruction operations. To evaluate the multi-scale morphological filter for the image segmentation, three filtering approaches and segmentation accuracy assessment results are compared in this study. Qualitative and quantitative experimental results show that the proposed method can effectively solve over-segmentation and under-segmentation problem that result from improper scale of structure element. Compared with accuracy assessments of single scale and multi-scale morphological filters, the multi-scale morphological filter segmentation obtained higher accuracy than single scale filter segmentation, and is suitable for removing the multi-scale noise from very high resolution satellite images.
Author 岳安志 杨建宇 张超 朱德海 郧文聚
AuthorAffiliation 中国农业大学信息与电气工程学院,北京100083 中国科学院遥感应用研究所,北京100101 国土资源部土地整治中心,北京100035
AuthorAffiliation_xml – name: 中国农业大学信息与电气工程学院,北京 100083%中国科学院遥感应用研究所,北京 100101%国土资源部土地整治中心,北京 100035
Author_xml – sequence: 1
  fullname: 岳安志 杨建宇 张超 朱德海 郧文聚
BookMark eNo9j01LwzAAhnOY4Jz7EYLgqTVZmjY5iQy_YOBl95I2yezQTFdEt5PD4cdlXmWXwZhDEMGPW2X-GtO5f2Fl4umFh4f35V0COd3QEoBVBG3MXLZet6M41jaCsGS5FDG7BBG228jOIgfy_3wRFOM4CiBB2IPQQXmwYQbJV9Izo755SUwyNpNhetExz-P0Y5S-D6f97uzp3txcfX8-TnvXs85D2h2Yyau5vMuguX1bBguKH8ay-JcFUN3eqpZ3rcr-zl55s2KFhBJLeoxyJR0m3JJQUDkYehAp1-OOyzHGMhQMBoRIogRGXAgsEOKYUy4lI4TiAlib155xrbiu-fXGaVNng75u1cLz4PdvG0FEMnNlboYHDV07iTL3uBkd8WbLdwhzPEo9_AMLNXF-
ClassificationCodes P407.8%TP751.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2013.z1.013
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Multi-scale morphological filter for image segmentation of very high resolution satellite imagery
DocumentTitle_FL Multi-scale morphological filter for image segmentation of very high resolution satellite imagery
EndPage 95
ExternalDocumentID nygcxb2013z1015
45947887
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c585-e798afe49d62df0f430701f67a46a333ecd90b55e5fd31add3d11a3a8aee95583
ISSN 1002-6819
IngestDate Thu May 29 04:04:18 EDT 2025
Wed Feb 14 10:43:18 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 滤波
形态学
image segmentation
very high resolution satellite imagery
multi-scale
影像分割
高空间分辨率遥感影像
mathematical morphology
filters
多尺度
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c585-e798afe49d62df0f430701f67a46a333ecd90b55e5fd31add3d11a3a8aee95583
Notes 11-2047/S
image segmentation; filters; mathematical morphology; very high resolution satellite imagery; multi-scale
The morphological filters can suppress impulse noise or small image components/structures while preserving very important geometrical features such as edges. So, the morphological filters have been widely used in image preprocessing to remove the image noises and noise reduction is critical step for image segmentation. Morphological filters analyze the geometrical structure of image by locally comparing it with a predefined elementary shape called a structure element. Different scale image edges are detected by using several typical structure elements. Large amounts of experimental results demonstrate that the size of structure element have much dependence with image background. Therefore, many studies devote to the adaptive optimization of structure elements of morphological filters. However, the structure element of the same scale is traditionally adopted to establish a filter and remove noise f
PageCount 7
ParticipantIDs wanfang_journals_nygcxb2013z1015
chongqing_primary_45947887
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2013
Publisher 中国农业大学信息与电气工程学院,北京 100083%中国科学院遥感应用研究所,北京 100101%国土资源部土地整治中心,北京 100035
Publisher_xml – name: 中国农业大学信息与电气工程学院,北京 100083%中国科学院遥感应用研究所,北京 100101%国土资源部土地整治中心,北京 100035
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.013481
Snippet 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致的问题。该文基于形...
P407.8%TP751.1; 针对目前高空间分辨率遥感影像分割预处理噪声去除过程中,通常都是对影像采用同一尺度,即同一尺寸的结构元素,进行滤波,忽略了不同地类中的噪声尺度不一致...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 89
SubjectTerms 多尺度
形态学
影像分割
滤波
高空间分辨率遥感影像
Title 基于多尺度形态学滤波的高分辨率遥感影像分割
URI http://lib.cqvip.com/qk/90712X/201301/45947887.html
https://d.wanfangdata.com.cn/periodical/nygcxb2013z1015
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5iBNGD-ETjgxzSJ9l1enp6pvskPZtZYkBPEXJbZuexOW00bkD3ZDD4uMSr5BIIMQhB8HFbib_G2Zh_YVVPZzMbNvFxGZqamqqvqprp6qa72rKmoog2WRbLCo9sVnEzx680I-lUMLf1kiTmqS5W_eChN_PInZ3n82PjO6VdS8udZjXujjxX8j9RBRrEFU_J_kNkB0KBAG2ILzwhwvD8qxiTkBNZJ4EioYtPESJFuUQqbAS2fsXxqTzdmCbKIaGH-xsE1czT-pVHggA_xAbTPD4KEUCRRAVECmQWgghgFiQIiRLIAxqFjzwgTXEt2UVIha5AqxCMiHrpc2hIEjjltFgTPSJr2hBxgN_XMn3UJYIhtAIs4gedRfM6CBxZQhSPlDqR_iELSJ_WoDmaWvgFef0hKTWibG0gqOBDH9eMNWA64EI_IcDyoklx2lV3cGMGwMUIBeiLkRaCx5VfMsxF1IpqC8GhdcOMcYV4uKgTNdvYPslBkkiJUXRqWm8NPGG6iKrdoTojJg4fhdJHQJKOkDU6yEpD0eCKHqFsQ1ESvYjMErvbcVAo3uHAh_wETkLpAs0VRZ8ENbZGwEwMDY9ugD8wQoCmYHYwwmXbwKlo8HHOKCrZmKEZx25PmAG2-Ct1aWnsLa6iMllccXPr0fyASU_q_AAlVgcScYcnq3Zp9aCnDFdgbz9vxc-ayNMFn_BT1mkHF_-wpuz92cO5B8XllcHg6GCJCe9wLs8pw5skBvvPcPcF11sxDIgz1pRBePckfFgDZmGx3XoCma0-aNjOonarlBPPXbDOm8nspCr-TBetse7CJeucai2Zgj7pZetevtH72VvLt9bzz728t53vbvZfrOSftvvft_rfNvfWV_d33udvXv368XFv7fX-yof-6ka--yV_-Q6I-duvV6y5ejhXm6mYS1sqMRe8kvpSRFnqysRzkszOXMwpaOb5ketFjLE0TqTd5DzlWcIoJFcsoTRikYjSVHIu2FVrvL3YTq9Zk9KNme3EMAd0Mjfy7SjxGaVpBnOeSLixf92aGHii8biozdNwucQLQeDlpHFNw_ywnzaOxHHizyw3rLOOvv4Gl1xvWuOdpeX0FkxCOs3bOvi_AaHO3EQ
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E5%B0%BA%E5%BA%A6%E5%BD%A2%E6%80%81%E5%AD%A6%E6%BB%A4%E6%B3%A2%E7%9A%84%E9%AB%98%E5%88%86%E8%BE%A8%E7%8E%87%E9%81%A5%E6%84%9F%E5%BD%B1%E5%83%8F%E5%88%86%E5%89%B2&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%B2%B3%E5%AE%89%E5%BF%97&rft.au=%E6%9D%A8%E5%BB%BA%E5%AE%87&rft.au=%E5%BC%A0%E8%B6%85&rft.au=%E6%9C%B1%E5%BE%B7%E6%B5%B7&rft.date=2013&rft.pub=%E4%B8%AD%E5%9B%BD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100083%25%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6%E6%89%80%2C%E5%8C%97%E4%BA%AC+100101%25%E5%9B%BD%E5%9C%9F%E8%B5%84%E6%BA%90%E9%83%A8%E5%9C%9F%E5%9C%B0%E6%95%B4%E6%B2%BB%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100035&rft.issn=1002-6819&rft.issue=z1&rft.spage=89&rft.epage=95&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2013.z1.013&rft.externalDocID=nygcxb2013z1015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg