基于介电特征选择的苹果内部品质无损分级
为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹果无损分级的最少介电特征。在整个内部品质的分级过程中,贪心选择法、基于快速聚类的特征子集选择法、稀疏主成分分析法和以信息增益为评价函数的属性排序法共4种方法被用来从108种介电特征中选择出对等级划分最有帮助的关键介电特征。试验结果显示,基于快速聚类的特征子集选择法仅选择了4种特征时分级正确率就达到了80%左右,而贪心选择法的性能明显更优,在分级正确率超过90%时,其选择的特征一般不超过10种,其最优情况为当选择了4种介电特征时...
Saved in:
| Published in | 农业工程学报 Vol. 29; no. 21; pp. 279 - 287 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
西北农林科技大学信息工程学院,杨凌,712100%西北农林科技大学生命科学学院,杨凌,712100%宁夏农科院种质资源研究所,银川,750212
2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.3969/j.issn.1002-6819.2013.21.035 |
Cover
| Abstract | 为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹果无损分级的最少介电特征。在整个内部品质的分级过程中,贪心选择法、基于快速聚类的特征子集选择法、稀疏主成分分析法和以信息增益为评价函数的属性排序法共4种方法被用来从108种介电特征中选择出对等级划分最有帮助的关键介电特征。试验结果显示,基于快速聚类的特征子集选择法仅选择了4种特征时分级正确率就达到了80%左右,而贪心选择法的性能明显更优,在分级正确率超过90%时,其选择的特征一般不超过10种,其最优情况为当选择了4种介电特征时,分级正确率为91.22%,而当选择了10种介电特征时,其分级正确率为95.95%。该研究为水果等农产品的品质与病虫害快速无损检测等提供参考。 |
|---|---|
| AbstractList | S126%S661.1; 为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹果无损分级的最少介电特征。在整个内部品质的分级过程中,贪心选择法、基于快速聚类的特征子集选择法、稀疏主成分分析法和以信息增益为评价函数的属性排序法共4种方法被用来从108种介电特征中选择出对等级划分最有帮助的关键介电特征。试验结果显示,基于快速聚类的特征子集选择法仅选择了4种特征时分级正确率就达到了80%左右,而贪心选择法的性能明显更优,在分级正确率超过90%时,其选择的特征一般不超过10种,其最优情况为当选择了4种介电特征时,分级正确率为91.22%,而当选择了10种介电特征时,其分级正确率为95.95%。该研究为水果等农产品的品质与病虫害快速无损检测等提供参考。 为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹果无损分级的最少介电特征。在整个内部品质的分级过程中,贪心选择法、基于快速聚类的特征子集选择法、稀疏主成分分析法和以信息增益为评价函数的属性排序法共4种方法被用来从108种介电特征中选择出对等级划分最有帮助的关键介电特征。试验结果显示,基于快速聚类的特征子集选择法仅选择了4种特征时分级正确率就达到了80%左右,而贪心选择法的性能明显更优,在分级正确率超过90%时,其选择的特征一般不超过10种,其最优情况为当选择了4种介电特征时,分级正确率为91.22%,而当选择了10种介电特征时,其分级正确率为95.95%。该研究为水果等农产品的品质与病虫害快速无损检测等提供参考。 |
| Abstract_FL | In order to reduce the cost of the application of dielectric signals in nondestructive detection of fruits and crops, it is important to find effective methods to select the key features from all other dielectric features. In this paper, we propose a two stage framework to achieve a low cost effective apple internal quality estimation system. In the first stage, we search a compact discriminative dielectric feature sub set. And in the second stage, based on the dielectric features selected by the first stage, we propose a nondestructive apple internal quality estimation system by evaluating several classifiers. In our experiments, the internal quality of Fuji apples is graded into 5 grades according to a compact set of dielectric features which are selected from the 108 dielectric features obtained from 12 dielectric parameters under 9 frequency points ranging from 158Hz~3.98MHz, and all the dielectric features are measured with HIOKI 3532-50 LCR tester and labeled with a number ranging from 1 to 108. Meanwhile, 100 randomly selected apples of each grade, i.e. a total of 500 apples, are used as the experimental samples, and each apple sample is assigned a 5-grade quality label by its weight loss rate (WLR):the fresh apple is classified as Grade One whose WLR is 0, those with WLR is equal to 5%, 10%, 15%, are labeled as Grade Two, Three, and Four respectively, and the apple with brown stain is grouped into Grade Five. During our whole experiments, 80%samples selected randomly from the dataset are used to train the classifier and the other 20% are used to test the classification accuracy. In the dielectric feature selection stage, greedy feature selection, fast clustering-based feature subset selection (FAST), sparse principal component analysis (SPCA), and attribute ranker method with the attribute evaluator of information gain are employed. With the dielectric feature dataset, FAST can only select a fixed number of discriminative dielectric features, while SPCA, greedy selector, and attribute ranker method can adjust the algorithm parameters to control the number of the key dielectric features. The compact set of dielectric features are the most discriminative for apple internal quality estimation. In the internal quality estimation stage, three classifiers are evaluated. They are sparse representation classification (SRC), artificial neural network (ANN), and support vector machine (SVM). According to the experimental results, FAST only selects four dielectric features and the classification rate is about 80%. SPCA tends to select the dielectric features with the same dielectric parameter, and its classification accuracy compared with the other three classifiers is mediocre;the performance of greedy selector is significantly outstanding. When the classification rate is higher than 90%, the number of the selected features of greedy selector is generally, lower than 10. With the greedy selector, the best classification rates are 91.22%and 95.95% when the number of the selected dielectric features is 4 and 10 respectively. The results show the dielectric features are highly relevant to the apple internal quality, and apple internal quality can be estimated with a compact set of dielectric features. The experimental results provide a reference for quick and nondestructive detection of the quality and insect pests to fruits and crops. |
| Author | 蔡骋 李永超 马惠玲 李晓龙 |
| AuthorAffiliation | 西北农林科技大学信息工程学院,杨凌712100 西北农林科技大学生命科学学院,杨凌712100 宁夏农科院种质资源研究所,银川750021 |
| AuthorAffiliation_xml | – name: 西北农林科技大学信息工程学院,杨凌,712100%西北农林科技大学生命科学学院,杨凌,712100%宁夏农科院种质资源研究所,银川,750212 |
| Author_FL | Li Yongchao Cai Cheng Ma Huiling Li Xiaolong |
| Author_FL_xml | – sequence: 1 fullname: Cai Cheng – sequence: 2 fullname: Li Yongchao – sequence: 3 fullname: Ma Huiling – sequence: 4 fullname: Li Xiaolong |
| Author_xml | – sequence: 1 fullname: 蔡骋 李永超 马惠玲 李晓龙 |
| BookMark | eNo9j81Kw0AYRWdRwVr7EILgKvGbmU4ys5TiHxTcdF9m0iSm6EQbRLuzqKUl6EZBELHurHtdtIJP0yTtWxipuLpwONzLXUEFHWoXoXUMJhWW2GyZQRRpEwMQw-JYmAQwNQk2gbICKv7zZVSOokABw9QGqOAiEslwMp3cTb_i7OEzG4yT7-78cpDG79nT9Swepy_PSe9mfjVK7ruzj1H6-JreDpN-L5u8raIlTx5FbvkvS6i-s12v7hm1g9396lbNcBhnhkUkqxCXeqCo62G7KSxqSXBslmM7VzzMsQKPMs65y0ACB0HAEQqUEk1CS2hjUXsutSe132iFZ22dDzZ0x3cu1O9TgvOfubm2MJ3DUPunQe6etINj2e40KhxshrmgPzbhar4 |
| ClassificationCodes | S126%S661.1 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1002-6819.2013.21.035 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| DocumentTitleAlternate | Nondestructive classification of internal quality of apple based on dielectric feature selection |
| DocumentTitle_FL | Nondestructive classification of internal quality of apple based on dielectric feature selection |
| EndPage | 287 |
| ExternalDocumentID | nygcxb201321035 48075189 |
| GrantInformation_xml | – fundername: 国家自然科学基金资助项目; 陕西省自然科学基金资助项目; 农业部“现代苹果产业技术体系” funderid: (61202188); (2010K06-15); 农业部“现代苹果产业技术体系” |
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ACUHS PSX |
| ID | FETCH-LOGICAL-c585-62a542e3f0b3ef17d9636a0c755427c58f181b0f35888e50a080920c9b0bb9d23 |
| ISSN | 1002-6819 |
| IngestDate | Thu May 29 04:04:18 EDT 2025 Wed Feb 14 10:38:32 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 21 |
| Keywords | nondestructive examination 内部品质 苹果 grading fruits 水果 介电特征 dielectric properties internal quality 无损检测 分级 apples |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c585-62a542e3f0b3ef17d9636a0c755427c58f181b0f35888e50a080920c9b0bb9d23 |
| Notes | In order to reduce the cost of the application of dielectric signals in nondestructive detection of fruits and crops, it is important to find effective methods to select the key features from all other dielectric features. In this paper, we propose a two stage framework to achieve a low cost effective apple internal quality estimation system. In the first stage, we search a compact discriminative dielectric feature sub set. And in the second stage,based on the dielectric features selected by the first stage, we propose a nondestructive apple internal quality estimation system by evaluating several classifiers. In our experiments, the internal quality of Fuji apples is graded into 5 grades according to a compact set of dielectric features which are selected from the 108 dielectric features obtained from 12 dielectric parameters under 9 frequency points ranging from 158Hz-3.98MHz, and all the dielectric features are measured with HIOKI 3532-50 LCR tester and labeled with a number ranging from 1 to 108. Meanwhil |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_nygcxb201321035 chongqing_primary_48075189 |
| PublicationCentury | 2000 |
| PublicationDate | 2013 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | 农业工程学报 |
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationYear | 2013 |
| Publisher | 西北农林科技大学信息工程学院,杨凌,712100%西北农林科技大学生命科学学院,杨凌,712100%宁夏农科院种质资源研究所,银川,750212 |
| Publisher_xml | – name: 西北农林科技大学信息工程学院,杨凌,712100%西北农林科技大学生命科学学院,杨凌,712100%宁夏农科院种质资源研究所,银川,750212 |
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
| Score | 2.0137868 |
| Snippet | 为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹... S126%S661.1; 为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 279 |
| SubjectTerms | 介电特征 内部品质 分级 无损检测 水果 苹果 |
| Title | 基于介电特征选择的苹果内部品质无损分级 |
| URI | http://lib.cqvip.com/qk/90712X/201321/48075189.html https://d.wanfangdata.com.cn/periodical/nygcxb201321035 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals issn: 1002-6819 databaseCode: FIJ dateStart: 20090101 customDbUrl: isFulltext: true dateEnd: 20151231 titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 omitProxy: true ssIdentifier: ssj0041925 providerName: Ingenta |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZKkRAcEE_R8lAP9TFh11577aM32ahUglOReot2k016SktpJeiJCqioKriAhIQQ5UY5A4cWiV_TJO2_YMbebKKqKlBx2VjOePzNI-uxY48JmYaIXjXwT1apZFIKpNIlnIKVsoRpv6n9TNkUG_cfyJmHwey8mB8b_zaya2l1JS031o49V3Iaq0Id2BVPyf6DZQumUAFlsC88wcLw_Csb01hQXaORoXGATxXbQkRVROOQaigLLChNI43EUQyRI4017m-AylgipdGWGJoHNFZYE9mvdEx1BVspIBO2FadG2U655aNoFNgaIA6p8SzDKkLCVgobAmcAZsLRIDjnicwBocKuERtwsGiNxQA1pkqNtDyBgxi4BnYLkhkrhwHU0fAbYFq1WpA08pA1QkT0QxKN8pqKZcst5hBbROxYLlqjrNAINOeuWBoskbizrdadsReAHjmxK6iLoYROj6EVDLTs5_KAAVDCACuHogbIxDgan5raiXrRiM4w-JHkkJ1tVIgYWCXEpG0eZeL_wbMu5awLlFF1pFVBcwp40MT5pe1R1UbgFfwH3FwNONnQ-RR6OfquRFfT1qJgV4CKBY0OgEJZp0cw1qSRzHULwACMwDsIRgZoHMGlyodZ925yR-wHI7C7mygP5piL5o7GCVxLbeME5FkueOJOT15mftlzKXSOZGLvPG03nqRIAwri4gw5y3AREHPL3psdzkF8XGYpBkmGqSbkcE4vfI43ShT70HAXhrBbMnIQ58h0jvDuSfgwF8zCYqf9CCJce-Cw00o67ZHYeO4SuZhPaqeMe0NdJmNrC1fIBdNezhP7ZFeJ7m7v7e-92f-51X_3o7-52_21fvhss7f1tf_hxcHWbu_Tx-7Gy8PnO9236wffd3rvP_deb3dfbfT3vlwjc7V4rjJTyq9tKTUEnmRiiQhYxlteyrOWHzZhiJeJ1whh4sJCIGnBpCL1WlwopTLhJTBn1cxr6NRLU91k_DoZ7yx2shtkSsjQa3qtLIWPgDOlw9Tnicp8HTZVyoMJMlnooL7ksvPUMUeG8JWeIFO5Uur5K_tx_YgFJ_9McpOcZ_YCHFx0vUXGV5ZXs9swDVlJ71iz_wb1M9Qs |
| linkProvider | Ingenta |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BB%8B%E7%94%B5%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%E7%9A%84%E8%8B%B9%E6%9E%9C%E5%86%85%E9%83%A8%E5%93%81%E8%B4%A8%E6%97%A0%E6%8D%9F%E5%88%86%E7%BA%A7&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E8%94%A1%E9%AA%8B&rft.au=%E6%9D%8E%E6%B0%B8%E8%B6%85&rft.au=%E9%A9%AC%E6%83%A0%E7%8E%B2&rft.au=%E6%9D%8E%E6%99%93%E9%BE%99&rft.date=2013&rft.pub=%E8%A5%BF%E5%8C%97%E5%86%9C%E6%9E%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%9D%A8%E5%87%8C%2C712100%25%E8%A5%BF%E5%8C%97%E5%86%9C%E6%9E%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%94%9F%E5%91%BD%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%9D%A8%E5%87%8C%2C712100%25%E5%AE%81%E5%A4%8F%E5%86%9C%E7%A7%91%E9%99%A2%E7%A7%8D%E8%B4%A8%E8%B5%84%E6%BA%90%E7%A0%94%E7%A9%B6%E6%89%80%2C%E9%93%B6%E5%B7%9D%2C750212&rft.issn=1002-6819&rft.issue=21&rft.spage=279&rft.epage=287&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2013.21.035&rft.externalDocID=nygcxb201321035 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |