基于介电特征选择的苹果内部品质无损分级

为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹果无损分级的最少介电特征。在整个内部品质的分级过程中,贪心选择法、基于快速聚类的特征子集选择法、稀疏主成分分析法和以信息增益为评价函数的属性排序法共4种方法被用来从108种介电特征中选择出对等级划分最有帮助的关键介电特征。试验结果显示,基于快速聚类的特征子集选择法仅选择了4种特征时分级正确率就达到了80%左右,而贪心选择法的性能明显更优,在分级正确率超过90%时,其选择的特征一般不超过10种,其最优情况为当选择了4种介电特征时...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 21; pp. 279 - 287
Main Author 蔡骋 李永超 马惠玲 李晓龙
Format Journal Article
LanguageChinese
Published 西北农林科技大学信息工程学院,杨凌,712100%西北农林科技大学生命科学学院,杨凌,712100%宁夏农科院种质资源研究所,银川,750212 2013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.21.035

Cover

Abstract 为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹果无损分级的最少介电特征。在整个内部品质的分级过程中,贪心选择法、基于快速聚类的特征子集选择法、稀疏主成分分析法和以信息增益为评价函数的属性排序法共4种方法被用来从108种介电特征中选择出对等级划分最有帮助的关键介电特征。试验结果显示,基于快速聚类的特征子集选择法仅选择了4种特征时分级正确率就达到了80%左右,而贪心选择法的性能明显更优,在分级正确率超过90%时,其选择的特征一般不超过10种,其最优情况为当选择了4种介电特征时,分级正确率为91.22%,而当选择了10种介电特征时,其分级正确率为95.95%。该研究为水果等农产品的品质与病虫害快速无损检测等提供参考。
AbstractList S126%S661.1; 为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹果无损分级的最少介电特征。在整个内部品质的分级过程中,贪心选择法、基于快速聚类的特征子集选择法、稀疏主成分分析法和以信息增益为评价函数的属性排序法共4种方法被用来从108种介电特征中选择出对等级划分最有帮助的关键介电特征。试验结果显示,基于快速聚类的特征子集选择法仅选择了4种特征时分级正确率就达到了80%左右,而贪心选择法的性能明显更优,在分级正确率超过90%时,其选择的特征一般不超过10种,其最优情况为当选择了4种介电特征时,分级正确率为91.22%,而当选择了10种介电特征时,其分级正确率为95.95%。该研究为水果等农产品的品质与病虫害快速无损检测等提供参考。
为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹果无损分级的最少介电特征。在整个内部品质的分级过程中,贪心选择法、基于快速聚类的特征子集选择法、稀疏主成分分析法和以信息增益为评价函数的属性排序法共4种方法被用来从108种介电特征中选择出对等级划分最有帮助的关键介电特征。试验结果显示,基于快速聚类的特征子集选择法仅选择了4种特征时分级正确率就达到了80%左右,而贪心选择法的性能明显更优,在分级正确率超过90%时,其选择的特征一般不超过10种,其最优情况为当选择了4种介电特征时,分级正确率为91.22%,而当选择了10种介电特征时,其分级正确率为95.95%。该研究为水果等农产品的品质与病虫害快速无损检测等提供参考。
Abstract_FL In order to reduce the cost of the application of dielectric signals in nondestructive detection of fruits and crops, it is important to find effective methods to select the key features from all other dielectric features. In this paper, we propose a two stage framework to achieve a low cost effective apple internal quality estimation system. In the first stage, we search a compact discriminative dielectric feature sub set. And in the second stage, based on the dielectric features selected by the first stage, we propose a nondestructive apple internal quality estimation system by evaluating several classifiers. In our experiments, the internal quality of Fuji apples is graded into 5 grades according to a compact set of dielectric features which are selected from the 108 dielectric features obtained from 12 dielectric parameters under 9 frequency points ranging from 158Hz~3.98MHz, and all the dielectric features are measured with HIOKI 3532-50 LCR tester and labeled with a number ranging from 1 to 108. Meanwhile, 100 randomly selected apples of each grade, i.e. a total of 500 apples, are used as the experimental samples, and each apple sample is assigned a 5-grade quality label by its weight loss rate (WLR):the fresh apple is classified as Grade One whose WLR is 0, those with WLR is equal to 5%, 10%, 15%, are labeled as Grade Two, Three, and Four respectively, and the apple with brown stain is grouped into Grade Five. During our whole experiments, 80%samples selected randomly from the dataset are used to train the classifier and the other 20% are used to test the classification accuracy. In the dielectric feature selection stage, greedy feature selection, fast clustering-based feature subset selection (FAST), sparse principal component analysis (SPCA), and attribute ranker method with the attribute evaluator of information gain are employed. With the dielectric feature dataset, FAST can only select a fixed number of discriminative dielectric features, while SPCA, greedy selector, and attribute ranker method can adjust the algorithm parameters to control the number of the key dielectric features. The compact set of dielectric features are the most discriminative for apple internal quality estimation. In the internal quality estimation stage, three classifiers are evaluated. They are sparse representation classification (SRC), artificial neural network (ANN), and support vector machine (SVM). According to the experimental results, FAST only selects four dielectric features and the classification rate is about 80%. SPCA tends to select the dielectric features with the same dielectric parameter, and its classification accuracy compared with the other three classifiers is mediocre;the performance of greedy selector is significantly outstanding. When the classification rate is higher than 90%, the number of the selected features of greedy selector is generally, lower than 10. With the greedy selector, the best classification rates are 91.22%and 95.95% when the number of the selected dielectric features is 4 and 10 respectively. The results show the dielectric features are highly relevant to the apple internal quality, and apple internal quality can be estimated with a compact set of dielectric features. The experimental results provide a reference for quick and nondestructive detection of the quality and insect pests to fruits and crops.
Author 蔡骋 李永超 马惠玲 李晓龙
AuthorAffiliation 西北农林科技大学信息工程学院,杨凌712100 西北农林科技大学生命科学学院,杨凌712100 宁夏农科院种质资源研究所,银川750021
AuthorAffiliation_xml – name: 西北农林科技大学信息工程学院,杨凌,712100%西北农林科技大学生命科学学院,杨凌,712100%宁夏农科院种质资源研究所,银川,750212
Author_FL Li Yongchao
Cai Cheng
Ma Huiling
Li Xiaolong
Author_FL_xml – sequence: 1
  fullname: Cai Cheng
– sequence: 2
  fullname: Li Yongchao
– sequence: 3
  fullname: Ma Huiling
– sequence: 4
  fullname: Li Xiaolong
Author_xml – sequence: 1
  fullname: 蔡骋 李永超 马惠玲 李晓龙
BookMark eNo9j81Kw0AYRWdRwVr7EILgKvGbmU4ys5TiHxTcdF9m0iSm6EQbRLuzqKUl6EZBELHurHtdtIJP0yTtWxipuLpwONzLXUEFHWoXoXUMJhWW2GyZQRRpEwMQw-JYmAQwNQk2gbICKv7zZVSOokABw9QGqOAiEslwMp3cTb_i7OEzG4yT7-78cpDG79nT9Swepy_PSe9mfjVK7ruzj1H6-JreDpN-L5u8raIlTx5FbvkvS6i-s12v7hm1g9396lbNcBhnhkUkqxCXeqCo62G7KSxqSXBslmM7VzzMsQKPMs65y0ACB0HAEQqUEk1CS2hjUXsutSe132iFZ22dDzZ0x3cu1O9TgvOfubm2MJ3DUPunQe6etINj2e40KhxshrmgPzbhar4
ClassificationCodes S126%S661.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2013.21.035
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Nondestructive classification of internal quality of apple based on dielectric feature selection
DocumentTitle_FL Nondestructive classification of internal quality of apple based on dielectric feature selection
EndPage 287
ExternalDocumentID nygcxb201321035
48075189
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 陕西省自然科学基金资助项目; 农业部“现代苹果产业技术体系”
  funderid: (61202188); (2010K06-15); 农业部“现代苹果产业技术体系”
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c585-62a542e3f0b3ef17d9636a0c755427c58f181b0f35888e50a080920c9b0bb9d23
ISSN 1002-6819
IngestDate Thu May 29 04:04:18 EDT 2025
Wed Feb 14 10:38:32 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 21
Keywords nondestructive examination
内部品质
苹果
grading
fruits
水果
介电特征
dielectric properties
internal quality
无损检测
分级
apples
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c585-62a542e3f0b3ef17d9636a0c755427c58f181b0f35888e50a080920c9b0bb9d23
Notes In order to reduce the cost of the application of dielectric signals in nondestructive detection of fruits and crops, it is important to find effective methods to select the key features from all other dielectric features. In this paper, we propose a two stage framework to achieve a low cost effective apple internal quality estimation system. In the first stage, we search a compact discriminative dielectric feature sub set. And in the second stage,based on the dielectric features selected by the first stage, we propose a nondestructive apple internal quality estimation system by evaluating several classifiers. In our experiments, the internal quality of Fuji apples is graded into 5 grades according to a compact set of dielectric features which are selected from the 108 dielectric features obtained from 12 dielectric parameters under 9 frequency points ranging from 158Hz-3.98MHz, and all the dielectric features are measured with HIOKI 3532-50 LCR tester and labeled with a number ranging from 1 to 108. Meanwhil
PageCount 9
ParticipantIDs wanfang_journals_nygcxb201321035
chongqing_primary_48075189
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2013
Publisher 西北农林科技大学信息工程学院,杨凌,712100%西北农林科技大学生命科学学院,杨凌,712100%宁夏农科院种质资源研究所,银川,750212
Publisher_xml – name: 西北农林科技大学信息工程学院,杨凌,712100%西北农林科技大学生命科学学院,杨凌,712100%宁夏农科院种质资源研究所,银川,750212
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0137868
Snippet 为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个品质等级富士苹...
S126%S661.1; 为了快速而准确地利用介电特性对苹果内部品质进行无损分级,该文对500个富士苹果的108种特征值(12种介电参数在9个频率点下)进行了分析筛选,以获取用于5个...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 279
SubjectTerms 介电特征
内部品质
分级
无损检测
水果
苹果
Title 基于介电特征选择的苹果内部品质无损分级
URI http://lib.cqvip.com/qk/90712X/201321/48075189.html
https://d.wanfangdata.com.cn/periodical/nygcxb201321035
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZKkRAcEE_R8lAP9TFh11577aM32ahUglOReot2k016SktpJeiJCqioKriAhIQQ5UY5A4cWiV_TJO2_YMbebKKqKlBx2VjOePzNI-uxY48JmYaIXjXwT1apZFIKpNIlnIKVsoRpv6n9TNkUG_cfyJmHwey8mB8b_zaya2l1JS031o49V3Iaq0Id2BVPyf6DZQumUAFlsC88wcLw_Csb01hQXaORoXGATxXbQkRVROOQaigLLChNI43EUQyRI4017m-AylgipdGWGJoHNFZYE9mvdEx1BVspIBO2FadG2U655aNoFNgaIA6p8SzDKkLCVgobAmcAZsLRIDjnicwBocKuERtwsGiNxQA1pkqNtDyBgxi4BnYLkhkrhwHU0fAbYFq1WpA08pA1QkT0QxKN8pqKZcst5hBbROxYLlqjrNAINOeuWBoskbizrdadsReAHjmxK6iLoYROj6EVDLTs5_KAAVDCACuHogbIxDgan5raiXrRiM4w-JHkkJ1tVIgYWCXEpG0eZeL_wbMu5awLlFF1pFVBcwp40MT5pe1R1UbgFfwH3FwNONnQ-RR6OfquRFfT1qJgV4CKBY0OgEJZp0cw1qSRzHULwACMwDsIRgZoHMGlyodZ925yR-wHI7C7mygP5piL5o7GCVxLbeME5FkueOJOT15mftlzKXSOZGLvPG03nqRIAwri4gw5y3AREHPL3psdzkF8XGYpBkmGqSbkcE4vfI43ShT70HAXhrBbMnIQ58h0jvDuSfgwF8zCYqf9CCJce-Cw00o67ZHYeO4SuZhPaqeMe0NdJmNrC1fIBdNezhP7ZFeJ7m7v7e-92f-51X_3o7-52_21fvhss7f1tf_hxcHWbu_Tx-7Gy8PnO9236wffd3rvP_deb3dfbfT3vlwjc7V4rjJTyq9tKTUEnmRiiQhYxlteyrOWHzZhiJeJ1whh4sJCIGnBpCL1WlwopTLhJTBn1cxr6NRLU91k_DoZ7yx2shtkSsjQa3qtLIWPgDOlw9Tnicp8HTZVyoMJMlnooL7ksvPUMUeG8JWeIFO5Uur5K_tx_YgFJ_9McpOcZ_YCHFx0vUXGV5ZXs9swDVlJ71iz_wb1M9Qs
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BB%8B%E7%94%B5%E7%89%B9%E5%BE%81%E9%80%89%E6%8B%A9%E7%9A%84%E8%8B%B9%E6%9E%9C%E5%86%85%E9%83%A8%E5%93%81%E8%B4%A8%E6%97%A0%E6%8D%9F%E5%88%86%E7%BA%A7&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E8%94%A1%E9%AA%8B&rft.au=%E6%9D%8E%E6%B0%B8%E8%B6%85&rft.au=%E9%A9%AC%E6%83%A0%E7%8E%B2&rft.au=%E6%9D%8E%E6%99%93%E9%BE%99&rft.date=2013&rft.pub=%E8%A5%BF%E5%8C%97%E5%86%9C%E6%9E%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%9D%A8%E5%87%8C%2C712100%25%E8%A5%BF%E5%8C%97%E5%86%9C%E6%9E%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E7%94%9F%E5%91%BD%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E6%9D%A8%E5%87%8C%2C712100%25%E5%AE%81%E5%A4%8F%E5%86%9C%E7%A7%91%E9%99%A2%E7%A7%8D%E8%B4%A8%E8%B5%84%E6%BA%90%E7%A0%94%E7%A9%B6%E6%89%80%2C%E9%93%B6%E5%B7%9D%2C750212&rft.issn=1002-6819&rft.issue=21&rft.spage=279&rft.epage=287&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2013.21.035&rft.externalDocID=nygcxb201321035
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg