基于分子描述符和机器学习方法预测和虚拟筛选MMP-13对MMP-1的选择性抑制剂

基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑制MMP家族的其它成员,特别是MMP-1,这将会导致肌与骨的综合症.因此,设计和发现潜在的MMP-13相对于MMP-1的高效选择性抑制剂,在对治疗OA新型药物的研发中具有相当重要的现实意义.本研究通过两种机器学习方法(ML):支持向量机(SVM)和随机森林(RF)来建立分类模型,用于预测不同结构的MMP-13对MMP-1的选择性抑制剂.所建这些模型的预测效果都已经达到了令人满意的精度.在这两种ML模型中,RF对于MMP-...

Full description

Saved in:
Bibliographic Details
Published in物理化学学报 Vol. 30; no. 1; pp. 171 - 182
Main Author 李秉轲 丛湧 田之悦 薛英
Format Journal Article
LanguageChinese
Published 四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064%四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064 2014
四川大学生物治疗国家重点实验室,成都610041
Subjects
Online AccessGet full text
ISSN1000-6818
DOI10.3866/PKU.WHXB201311041

Cover

Abstract 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑制MMP家族的其它成员,特别是MMP-1,这将会导致肌与骨的综合症.因此,设计和发现潜在的MMP-13相对于MMP-1的高效选择性抑制剂,在对治疗OA新型药物的研发中具有相当重要的现实意义.本研究通过两种机器学习方法(ML):支持向量机(SVM)和随机森林(RF)来建立分类模型,用于预测不同结构的MMP-13对MMP-1的选择性抑制剂.所建这些模型的预测效果都已经达到了令人满意的精度.在这两种ML模型中,RF对于MMP-13选择性抑制剂和非抑制剂的精度分别达到97-58%和100%.同时,与MMP-13对MMP-1的选择性抑制最相关的分子描述符也基于不同的特征选择方法被两种模型挑选出来.最后,用预测效果最好的RF模型虚拟筛选了ZINC数据库的“fragment—like”子集,从而得到了一系列潜在的候选药物.研究表明,机器学习方法,特别是RF方法,对于发现潜在的MMP-13选择性抑制剂十分有效.同时还得到了一些与MMP-13的选择性抑制相关的分子描述符.
AbstractList 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑制MMP家族的其它成员,特别是MMP-1,这将会导致肌与骨的综合症.因此,设计和发现潜在的MMP-13相对于MMP-1的高效选择性抑制剂,在对治疗OA新型药物的研发中具有相当重要的现实意义.本研究通过两种机器学习方法(ML):支持向量机(SVM)和随机森林(RF)来建立分类模型,用于预测不同结构的MMP-13对MMP-1的选择性抑制剂.所建这些模型的预测效果都已经达到了令人满意的精度.在这两种ML模型中,RF对于MMP-13选择性抑制剂和非抑制剂的精度分别达到97-58%和100%.同时,与MMP-13对MMP-1的选择性抑制最相关的分子描述符也基于不同的特征选择方法被两种模型挑选出来.最后,用预测效果最好的RF模型虚拟筛选了ZINC数据库的“fragment—like”子集,从而得到了一系列潜在的候选药物.研究表明,机器学习方法,特别是RF方法,对于发现潜在的MMP-13选择性抑制剂十分有效.同时还得到了一些与MMP-13的选择性抑制相关的分子描述符.
O641; 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑制MMP家族的其它成员,特别是MMP-1,这将会导致肌与骨的综合症.因此,设计和发现潜在的MMP-13相对于MMP-1的高效选择性抑制剂,在对治疗OA新型药物的研发中具有相当重要的现实意义.本研究通过两种机器学习方法(ML):支持向量机(SVM)和随机森林(RF)来建立分类模型,用于预测不同结构的MMP-13对MMP-1的选择性抑制剂.所建这些模型的预测效果都已经达到了令人满意的精度.在这两种ML模型中, RF对于MMP-13选择性抑制剂和非抑制剂的精度分别达到97.58%和100%.同时,与MMP-13对MMP-1的选择性抑制最相关的分子描述符也基于不同的特征选择方法被两种模型挑选出来.最后,用预测效果最好的RF模型虚拟筛选了ZINC数据库的“fragment-like”子集,从而得到了一系列潜在的候选药物.研究表明,机器学习方法,特别是RF方法,对于发现潜在的MMP-13选择性抑制剂十分有效.同时还得到了一些与MMP-13的选择性抑制相关的分子描述符.
Abstract_FL Matrix metal oproteinase-13 (MMP-13) is an interesting target for the prevention and therapy of osteoarthritis (OA). Interruption of MMP-13 activity with an inhibitor has the potential to affect OA. However, a broad-spectrum inhibitor, which restrains the other members of the MMP family, especial y MMP-1, can cause musculoskeletal syndrome. So, the design and discovery of potential and highly selective inhibitors for MMP-13 over MMP-1 are necessary and of great significance for the development of novel therapeutic agents against OA. Two machine-learning (ML) methods, support vector machine and random forest (RF), were explored in this work to develop classification models for predicting selective inhibitors of MMP-13 over MMP-1 from diverse compounds. These ML models achieved promising prediction accuracies. Among the two ML models, RF gave the better performance, i.e., 97.58% for MMP-13 selective inhibitors and 100%for non-inhibitors. We also used different feature selection methods to extract the molecular features most relevant to selective inhibition of MMP-13 over MMP-1 from the two models. In addition, the better-performing RF model was used to perform virtual screening of MMP-13 selective inhibitors against the“fragment-like”subset of the ZINC database to enrich the potential active agents, thereby obtaining a series of the most potent candidates. Our study suggests that ML methods, particularly RF, are potentially useful for facilitating the discovery of MMP-13 inhibitors and for identifying the molecular descriptors associated with MMP-13 selective inhibitors.
Author 李秉轲 丛湧 田之悦 薛英
AuthorAffiliation 四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064 四川大学生物治疗国家重点实验室,成都610041
AuthorAffiliation_xml – name: 四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064%四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064; 四川大学生物治疗国家重点实验室,成都610041
Author_FL LI Bing-Ke
CONG Yong
TIAN Zhi-Yue
XUE Ying
Author_FL_xml – sequence: 1
  fullname: LI Bing-Ke
– sequence: 2
  fullname: CONG Yong
– sequence: 3
  fullname: TIAN Zhi-Yue
– sequence: 4
  fullname: XUE Ying
Author_xml – sequence: 1
  fullname: 李秉轲 丛湧 田之悦 薛英
BookMark eNotkE9LAkEYh-dgkJkfoGOnTmszszu747GkMlLyYNRNZnf8F7aWEtpNQkIzsoICLTA6WEFSEAV66cs4o36Lhuz0vrzPw-8H7xzwuHk3CcACggGdmuZybGsnsBveW8UQ6QhBA3mAF0EINZMiOgv8xWLWhlARgk3qBbboDIaDS1E7E70r2WyOfz5Gb11xcyEfBqL1InrdYf9R3vXl5-3kqSq_GgqNW23Z6Ix695NKPRqNaUgX7_2_ZdSuqptsvMrKszy_FrVvUT-dBzMplism_f_TB-Lra_FQWItsb2yGViKaQyjREMY6hMRgQZNiHVvBlMUQ54RQ08YpzjjGSeTYBqTMDHJuWQZnyCQWR9RxFNR9YGkaW2JuirnpxH7-uOCqwkQplymXbfUQAyKIiTIXp6aTybvpo6xyDwvZA1Y4SRhURwRaUP8FzDWArw
ClassificationCodes O641
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3866/PKU.WHXB201311041
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Predicting and Virtually Screening the Selective Inhibitors of MMP-13 over MMP-1 by Molecular Descriptors and Machine Learning Methods
DocumentTitle_FL Predicting and Virtually Screening the Selective Inhibitors of MMP-13 over MMP-1 by Molecular Descriptors and Machine Learning Methods
EndPage 182
ExternalDocumentID wlhxxb201401025
48315070
GrantInformation_xml – fundername: The project was supported by the National Natural Science Foundation of China (21173151).@@@@国家自然科学基金
  funderid: (21173151)
GroupedDBID -02
2B.
2C.
2RA
5XA
5XC
92E
92I
92L
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CQIGP
CW9
EBS
EJD
FIJ
OK1
P2P
RIG
TCJ
TGP
U1G
U5L
~WA
4A8
93N
AAXUO
AAYWO
ADMLS
FDB
M41
PSX
ROL
UY8
ID FETCH-LOGICAL-c585-12230054a96823279f7a1dd5586b2fdad22e1cb408a69dd774da1657d18ccd223
ISSN 1000-6818
IngestDate Thu May 29 03:54:35 EDT 2025
Wed Feb 14 10:38:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 基质金属蛋白酶-13
支持向量机
Selective inhibitor
随机森林
虚拟筛选
Matrix metal oproteinase-13
Virtual screening
Machine learning method
Random forest
机器学习方法
Support vector machine
选择性抑制剂
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c585-12230054a96823279f7a1dd5586b2fdad22e1cb408a69dd774da1657d18ccd223
Notes 11-1892/06
Matrix metalloproteinase-13 (MMP-13) is an interesting target for the prevention and therapy of osteoarthritis (OA). Interruption of MMP-13 activity with an inhibitor has the potential to affect OA. However, a broad-spectrum inhibitor, which restrains the other members of the MMP family, especially MMP-1, can cause musculoskeletal syndrome. So, the design and discovery of potential and highly selective inhibitors for MMP-13 over MMP-1 are necessary and of great significance for the development of novel therapeutic agents against OA. Two machine-learning (ML) methods, support vector machine and random forest (RF), were explored in this work to develop classification models for predicting selective inhibitors of MMP-13 over MMP-1 from diverse compounds. These ML models achieved promising prediction accuracies. Among the two ML models, RF gave the better performance, i.e., 97.58% for MMP-13 selective inhibitors and 100% for non-inhibitors. We also used different feature selection methods to extract the
PageCount 12
ParticipantIDs wanfang_journals_wlhxxb201401025
chongqing_primary_48315070
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 物理化学学报
PublicationTitleAlternate Acta Physico-Chimica Sinica
PublicationTitle_FL Acta Physico-Chimica Sinica
PublicationYear 2014
Publisher 四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064%四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064
四川大学生物治疗国家重点实验室,成都610041
Publisher_xml – name: 四川大学生物治疗国家重点实验室,成都610041
– name: 四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064%四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064
SSID ssib001105268
ssj0030168
ssib024507715
ssib002258135
ssib051374152
ssib057925156
Score 2.0345457
Snippet 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑...
O641; 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 171
SubjectTerms 基质金属蛋白酶-13
支持向量机
机器学习方法
虚拟筛选
选择性抑NN
随机森林
Title 基于分子描述符和机器学习方法预测和虚拟筛选MMP-13对MMP-1的选择性抑制剂
URI http://lib.cqvip.com/qk/92644X/201401/48315070.html
https://d.wanfangdata.com.cn/periodical/wlhxxb201401025
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1000-6818
  databaseCode: FIJ
  dateStart: 20080115
  customDbUrl:
  isFulltext: true
  dateEnd: 20150615
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0030168
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw5R1NT9RAtEE46MX4GcGPcHCOi_2azsyx3S1BDIYDRG6bdruVg1n8gEg4EUMMiBE10QQ0wXhATSSaGE3g4p-hBf6F7712tw1o_LiakMnjzZv3Odu-N-nMaNplnUe2o0fNigpiq2KrMKwoB5tQNOLQ5rGgdciR687QuD08wSe6evTSV0sz0-FAY-6n-0r-JaqAg7jiLtm_iGyHKSAAhvhCCxGG9o9izHzO1CDzXObb2EofMVIy6SDg1pjSme8wOYh_vmQeEANGMLfKXKJRJpNVpFFV4gMYxVyZD0ca4AwY4qMchAHwLKY48wEPw23CgFyvxFAiH-WSdA-VRKGgj4ejpM6kGhkZrRgWCQKtsn-RCgYhy5wqZ-BmgM5cQYDLlJHb6pEdQJldL9TOtJEVIHGgQDdkLgHVlFMyrgMQT5e35x9ZWyOHCpSJioCoGvPMggQ8I8kicosrih6QaJOnyXmSSKQJggoSiYrgYIn9nlFefjGKhVdyqUeEnHkClUKlbXJEyYxfGqYooCbzwcnVdqwpyijZBIPI1xYFXTDPw0mCXYq6DnMmq9Ex5DKp55MHgoh8wFU1cr1JUwVG-Uz5NFVckk4Y0L-sD0QRJyqp4dUg1YYMlpn8v7W9lCngkQyOLJKHzkMyywSM7GahPKk0sp_AwXzFkg4unY1eGx-4MTThmXT4lW4bRXLW-WT2_q3J2dnQpAURqFOOaD0mrkDiwbZXh4sCyKDzm0oJOpdGURCZNpR_oigAuGFhRdEpcLhQUO_g6VpZLgtv_3wzcW5s9l0Iqn3lkNJ4Os3kVOvmHci5aQtkKw5aN0vZ-tgJ7XheZve72TPzpNY1N3lKO1pt3255WguT9e2d7SfJ4sNk82m6srL3_fPux43k-eP09Xay-j7Z3NjZepO-3Eq_vNh_u5B-XYauvdW1dHl9d_PV_vxS9vRKPm0RsLu2ALh0-UM6_y599CxZ_JYsPTijjQ36Y9WhSn7fTKXBJa8YUClhBRsoR0KdKVQsAiOKOJdOaMZREJlm02iEti4DR0UR1M1RYDhcRIZsNKDTOqt1t6ZazXNavxM0AS84lHvSjvWmEnpsNeGtKCKTm1HUq_V1XFW_nR0rVLelhdW53qv1576r5--ae_UD0e_7Pcl57RjC2WrxBa17-u5M8yLUT9PhJZoyPwAmyAz9
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%88%86%E5%AD%90%E6%8F%8F%E8%BF%B0%E7%AC%A6%E5%92%8C%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95%E9%A2%84%E6%B5%8B%E5%92%8C%E8%99%9A%E6%8B%9F%E7%AD%9B%E9%80%89MMP-13%E5%AF%B9MMP-1%E7%9A%84%E9%80%89%E6%8B%A9%E6%80%A7%E6%8A%91%E5%88%B6%E5%89%82&rft.jtitle=%E7%89%A9%E7%90%86%E5%8C%96%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E7%A7%89%E8%BD%B2&rft.au=%E4%B8%9B%E6%B9%A7&rft.au=%E7%94%B0%E4%B9%8B%E6%82%A6&rft.au=%E8%96%9B%E8%8B%B1&rft.date=2014&rft.pub=%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%E5%8C%96%E5%AD%A6%E5%AD%A6%E9%99%A2%EF%BC%8C%E6%95%99%E8%82%B2%E9%83%A8%E7%BB%BF%E8%89%B2%E5%8C%96%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E6%88%90%E9%83%BD610064%25%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%E5%8C%96%E5%AD%A6%E5%AD%A6%E9%99%A2%EF%BC%8C%E6%95%99%E8%82%B2%E9%83%A8%E7%BB%BF%E8%89%B2%E5%8C%96%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E6%88%90%E9%83%BD610064&rft.issn=1000-6818&rft.issue=1&rft.spage=171&rft.epage=182&rft_id=info:doi/10.3866%2FPKU.WHXB201311041&rft.externalDocID=wlhxxb201401025
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F92644X%2F92644X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fwlhxxb%2Fwlhxxb.jpg