基于分子描述符和机器学习方法预测和虚拟筛选MMP-13对MMP-1的选择性抑制剂
基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑制MMP家族的其它成员,特别是MMP-1,这将会导致肌与骨的综合症.因此,设计和发现潜在的MMP-13相对于MMP-1的高效选择性抑制剂,在对治疗OA新型药物的研发中具有相当重要的现实意义.本研究通过两种机器学习方法(ML):支持向量机(SVM)和随机森林(RF)来建立分类模型,用于预测不同结构的MMP-13对MMP-1的选择性抑制剂.所建这些模型的预测效果都已经达到了令人满意的精度.在这两种ML模型中,RF对于MMP-...
        Saved in:
      
    
          | Published in | 物理化学学报 Vol. 30; no. 1; pp. 171 - 182 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064%四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064
    
        2014
     四川大学生物治疗国家重点实验室,成都610041  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1000-6818 | 
| DOI | 10.3866/PKU.WHXB201311041 | 
Cover
| Abstract | 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑制MMP家族的其它成员,特别是MMP-1,这将会导致肌与骨的综合症.因此,设计和发现潜在的MMP-13相对于MMP-1的高效选择性抑制剂,在对治疗OA新型药物的研发中具有相当重要的现实意义.本研究通过两种机器学习方法(ML):支持向量机(SVM)和随机森林(RF)来建立分类模型,用于预测不同结构的MMP-13对MMP-1的选择性抑制剂.所建这些模型的预测效果都已经达到了令人满意的精度.在这两种ML模型中,RF对于MMP-13选择性抑制剂和非抑制剂的精度分别达到97-58%和100%.同时,与MMP-13对MMP-1的选择性抑制最相关的分子描述符也基于不同的特征选择方法被两种模型挑选出来.最后,用预测效果最好的RF模型虚拟筛选了ZINC数据库的“fragment—like”子集,从而得到了一系列潜在的候选药物.研究表明,机器学习方法,特别是RF方法,对于发现潜在的MMP-13选择性抑制剂十分有效.同时还得到了一些与MMP-13的选择性抑制相关的分子描述符. | 
    
|---|---|
| AbstractList | 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑制MMP家族的其它成员,特别是MMP-1,这将会导致肌与骨的综合症.因此,设计和发现潜在的MMP-13相对于MMP-1的高效选择性抑制剂,在对治疗OA新型药物的研发中具有相当重要的现实意义.本研究通过两种机器学习方法(ML):支持向量机(SVM)和随机森林(RF)来建立分类模型,用于预测不同结构的MMP-13对MMP-1的选择性抑制剂.所建这些模型的预测效果都已经达到了令人满意的精度.在这两种ML模型中,RF对于MMP-13选择性抑制剂和非抑制剂的精度分别达到97-58%和100%.同时,与MMP-13对MMP-1的选择性抑制最相关的分子描述符也基于不同的特征选择方法被两种模型挑选出来.最后,用预测效果最好的RF模型虚拟筛选了ZINC数据库的“fragment—like”子集,从而得到了一系列潜在的候选药物.研究表明,机器学习方法,特别是RF方法,对于发现潜在的MMP-13选择性抑制剂十分有效.同时还得到了一些与MMP-13的选择性抑制相关的分子描述符. O641; 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑制MMP家族的其它成员,特别是MMP-1,这将会导致肌与骨的综合症.因此,设计和发现潜在的MMP-13相对于MMP-1的高效选择性抑制剂,在对治疗OA新型药物的研发中具有相当重要的现实意义.本研究通过两种机器学习方法(ML):支持向量机(SVM)和随机森林(RF)来建立分类模型,用于预测不同结构的MMP-13对MMP-1的选择性抑制剂.所建这些模型的预测效果都已经达到了令人满意的精度.在这两种ML模型中, RF对于MMP-13选择性抑制剂和非抑制剂的精度分别达到97.58%和100%.同时,与MMP-13对MMP-1的选择性抑制最相关的分子描述符也基于不同的特征选择方法被两种模型挑选出来.最后,用预测效果最好的RF模型虚拟筛选了ZINC数据库的“fragment-like”子集,从而得到了一系列潜在的候选药物.研究表明,机器学习方法,特别是RF方法,对于发现潜在的MMP-13选择性抑制剂十分有效.同时还得到了一些与MMP-13的选择性抑制相关的分子描述符.  | 
    
| Abstract_FL | Matrix metal oproteinase-13 (MMP-13) is an interesting target for the prevention and therapy of osteoarthritis (OA). Interruption of MMP-13 activity with an inhibitor has the potential to affect OA. However, a broad-spectrum inhibitor, which restrains the other members of the MMP family, especial y MMP-1, can cause musculoskeletal syndrome. So, the design and discovery of potential and highly selective inhibitors for MMP-13 over MMP-1 are necessary and of great significance for the development of novel therapeutic agents against OA. Two machine-learning (ML) methods, support vector machine and random forest (RF), were explored in this work to develop classification models for predicting selective inhibitors of MMP-13 over MMP-1 from diverse compounds. These ML models achieved promising prediction accuracies. Among the two ML models, RF gave the better performance, i.e., 97.58% for MMP-13 selective inhibitors and 100%for non-inhibitors. We also used different feature selection methods to extract the molecular features most relevant to selective inhibition of MMP-13 over MMP-1 from the two models. In addition, the better-performing RF model was used to perform virtual screening of MMP-13 selective inhibitors against the“fragment-like”subset of the ZINC database to enrich the potential active agents, thereby obtaining a series of the most potent candidates. Our study suggests that ML methods, particularly RF, are potentially useful for facilitating the discovery of MMP-13 inhibitors and for identifying the molecular descriptors associated with MMP-13 selective inhibitors. | 
    
| Author | 李秉轲 丛湧 田之悦 薛英 | 
    
| AuthorAffiliation | 四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064 四川大学生物治疗国家重点实验室,成都610041 | 
    
| AuthorAffiliation_xml | – name: 四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064%四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064; 四川大学生物治疗国家重点实验室,成都610041 | 
    
| Author_FL | LI Bing-Ke CONG Yong TIAN Zhi-Yue XUE Ying  | 
    
| Author_FL_xml | – sequence: 1 fullname: LI Bing-Ke – sequence: 2 fullname: CONG Yong – sequence: 3 fullname: TIAN Zhi-Yue – sequence: 4 fullname: XUE Ying  | 
    
| Author_xml | – sequence: 1 fullname: 李秉轲 丛湧 田之悦 薛英  | 
    
| BookMark | eNotkE9LAkEYh-dgkJkfoGOnTmszszu747GkMlLyYNRNZnf8F7aWEtpNQkIzsoICLTA6WEFSEAV66cs4o36Lhuz0vrzPw-8H7xzwuHk3CcACggGdmuZybGsnsBveW8UQ6QhBA3mAF0EINZMiOgv8xWLWhlARgk3qBbboDIaDS1E7E70r2WyOfz5Gb11xcyEfBqL1InrdYf9R3vXl5-3kqSq_GgqNW23Z6Ix695NKPRqNaUgX7_2_ZdSuqptsvMrKszy_FrVvUT-dBzMplism_f_TB-Lra_FQWItsb2yGViKaQyjREMY6hMRgQZNiHVvBlMUQ54RQ08YpzjjGSeTYBqTMDHJuWQZnyCQWR9RxFNR9YGkaW2JuirnpxH7-uOCqwkQplymXbfUQAyKIiTIXp6aTybvpo6xyDwvZA1Y4SRhURwRaUP8FzDWArw | 
    
| ClassificationCodes | O641 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2RA 92L CQIGP ~WA 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.3866/PKU.WHXB201311041 | 
    
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| DocumentTitleAlternate | Predicting and Virtually Screening the Selective Inhibitors of MMP-13 over MMP-1 by Molecular Descriptors and Machine Learning Methods | 
    
| DocumentTitle_FL | Predicting and Virtually Screening the Selective Inhibitors of MMP-13 over MMP-1 by Molecular Descriptors and Machine Learning Methods | 
    
| EndPage | 182 | 
    
| ExternalDocumentID | wlhxxb201401025 48315070  | 
    
| GrantInformation_xml | – fundername: The project was supported by the National Natural Science Foundation of China (21173151).@@@@国家自然科学基金 funderid: (21173151)  | 
    
| GroupedDBID | -02 2B. 2C. 2RA 5XA 5XC 92E 92I 92L ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL CQIGP CW9 EBS EJD FIJ OK1 P2P RIG TCJ TGP U1G U5L ~WA 4A8 93N AAXUO AAYWO ADMLS FDB M41 PSX ROL UY8  | 
    
| ID | FETCH-LOGICAL-c585-12230054a96823279f7a1dd5586b2fdad22e1cb408a69dd774da1657d18ccd223 | 
    
| ISSN | 1000-6818 | 
    
| IngestDate | Thu May 29 03:54:35 EDT 2025 Wed Feb 14 10:38:28 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | 基质金属蛋白酶-13 支持向量机 Selective inhibitor 随机森林 虚拟筛选 Matrix metal oproteinase-13 Virtual screening Machine learning method Random forest 机器学习方法 Support vector machine 选择性抑制剂  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c585-12230054a96823279f7a1dd5586b2fdad22e1cb408a69dd774da1657d18ccd223 | 
    
| Notes | 11-1892/06 Matrix metalloproteinase-13 (MMP-13) is an interesting target for the prevention and therapy of osteoarthritis (OA). Interruption of MMP-13 activity with an inhibitor has the potential to affect OA. However, a broad-spectrum inhibitor, which restrains the other members of the MMP family, especially MMP-1, can cause musculoskeletal syndrome. So, the design and discovery of potential and highly selective inhibitors for MMP-13 over MMP-1 are necessary and of great significance for the development of novel therapeutic agents against OA. Two machine-learning (ML) methods, support vector machine and random forest (RF), were explored in this work to develop classification models for predicting selective inhibitors of MMP-13 over MMP-1 from diverse compounds. These ML models achieved promising prediction accuracies. Among the two ML models, RF gave the better performance, i.e., 97.58% for MMP-13 selective inhibitors and 100% for non-inhibitors. We also used different feature selection methods to extract the  | 
    
| PageCount | 12 | 
    
| ParticipantIDs | wanfang_journals_wlhxxb201401025 chongqing_primary_48315070  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014 | 
    
| PublicationDateYYYYMMDD | 2014-01-01 | 
    
| PublicationDate_xml | – year: 2014 text: 2014  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 物理化学学报 | 
    
| PublicationTitleAlternate | Acta Physico-Chimica Sinica | 
    
| PublicationTitle_FL | Acta Physico-Chimica Sinica | 
    
| PublicationYear | 2014 | 
    
| Publisher | 四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064%四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064 四川大学生物治疗国家重点实验室,成都610041  | 
    
| Publisher_xml | – name: 四川大学生物治疗国家重点实验室,成都610041 – name: 四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064%四川大学化学学院,教育部绿色化学与技术重点实验室,成都610064  | 
    
| SSID | ssib001105268 ssj0030168 ssib024507715 ssib002258135 ssib051374152 ssib057925156  | 
    
| Score | 2.0345457 | 
    
| Snippet | 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑... O641; 基质金属蛋白酶-13(MMP-13)为预防和治疗骨关节炎(OA)提供了充满希望的靶标.通过抑制剂来阻断MMP-13的活性将会对治疗OA疾病产生潜在的作用.然而,宽谱抑制剂同样抑...  | 
    
| SourceID | wanfang chongqing  | 
    
| SourceType | Aggregation Database Publisher  | 
    
| StartPage | 171 | 
    
| SubjectTerms | 基质金属蛋白酶-13 支持向量机 机器学习方法 虚拟筛选 选择性抑NN 随机森林  | 
    
| Title | 基于分子描述符和机器学习方法预测和虚拟筛选MMP-13对MMP-1的选择性抑制剂 | 
    
| URI | http://lib.cqvip.com/qk/92644X/201401/48315070.html https://d.wanfangdata.com.cn/periodical/wlhxxb201401025  | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals issn: 1000-6818 databaseCode: FIJ dateStart: 20080115 customDbUrl: isFulltext: true dateEnd: 20150615 titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 omitProxy: true ssIdentifier: ssj0030168 providerName: Ingenta  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw5R1NT9RAtEE46MX4GcGPcHCOi_2azsyx3S1BDIYDRG6bdruVg1n8gEg4EUMMiBE10QQ0wXhATSSaGE3g4p-hBf6F7712tw1o_LiakMnjzZv3Odu-N-nMaNplnUe2o0fNigpiq2KrMKwoB5tQNOLQ5rGgdciR687QuD08wSe6evTSV0sz0-FAY-6n-0r-JaqAg7jiLtm_iGyHKSAAhvhCCxGG9o9izHzO1CDzXObb2EofMVIy6SDg1pjSme8wOYh_vmQeEANGMLfKXKJRJpNVpFFV4gMYxVyZD0ca4AwY4qMchAHwLKY48wEPw23CgFyvxFAiH-WSdA-VRKGgj4ejpM6kGhkZrRgWCQKtsn-RCgYhy5wqZ-BmgM5cQYDLlJHb6pEdQJldL9TOtJEVIHGgQDdkLgHVlFMyrgMQT5e35x9ZWyOHCpSJioCoGvPMggQ8I8kicosrih6QaJOnyXmSSKQJggoSiYrgYIn9nlFefjGKhVdyqUeEnHkClUKlbXJEyYxfGqYooCbzwcnVdqwpyijZBIPI1xYFXTDPw0mCXYq6DnMmq9Ex5DKp55MHgoh8wFU1cr1JUwVG-Uz5NFVckk4Y0L-sD0QRJyqp4dUg1YYMlpn8v7W9lCngkQyOLJKHzkMyywSM7GahPKk0sp_AwXzFkg4unY1eGx-4MTThmXT4lW4bRXLW-WT2_q3J2dnQpAURqFOOaD0mrkDiwbZXh4sCyKDzm0oJOpdGURCZNpR_oigAuGFhRdEpcLhQUO_g6VpZLgtv_3wzcW5s9l0Iqn3lkNJ4Os3kVOvmHci5aQtkKw5aN0vZ-tgJ7XheZve72TPzpNY1N3lKO1pt3255WguT9e2d7SfJ4sNk82m6srL3_fPux43k-eP09Xay-j7Z3NjZepO-3Eq_vNh_u5B-XYauvdW1dHl9d_PV_vxS9vRKPm0RsLu2ALh0-UM6_y599CxZ_JYsPTijjQ36Y9WhSn7fTKXBJa8YUClhBRsoR0KdKVQsAiOKOJdOaMZREJlm02iEti4DR0UR1M1RYDhcRIZsNKDTOqt1t6ZazXNavxM0AS84lHvSjvWmEnpsNeGtKCKTm1HUq_V1XFW_nR0rVLelhdW53qv1576r5--ae_UD0e_7Pcl57RjC2WrxBa17-u5M8yLUT9PhJZoyPwAmyAz9 | 
    
| linkProvider | Ingenta | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%88%86%E5%AD%90%E6%8F%8F%E8%BF%B0%E7%AC%A6%E5%92%8C%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95%E9%A2%84%E6%B5%8B%E5%92%8C%E8%99%9A%E6%8B%9F%E7%AD%9B%E9%80%89MMP-13%E5%AF%B9MMP-1%E7%9A%84%E9%80%89%E6%8B%A9%E6%80%A7%E6%8A%91%E5%88%B6%E5%89%82&rft.jtitle=%E7%89%A9%E7%90%86%E5%8C%96%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E7%A7%89%E8%BD%B2&rft.au=%E4%B8%9B%E6%B9%A7&rft.au=%E7%94%B0%E4%B9%8B%E6%82%A6&rft.au=%E8%96%9B%E8%8B%B1&rft.date=2014&rft.pub=%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%E5%8C%96%E5%AD%A6%E5%AD%A6%E9%99%A2%EF%BC%8C%E6%95%99%E8%82%B2%E9%83%A8%E7%BB%BF%E8%89%B2%E5%8C%96%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E6%88%90%E9%83%BD610064%25%E5%9B%9B%E5%B7%9D%E5%A4%A7%E5%AD%A6%E5%8C%96%E5%AD%A6%E5%AD%A6%E9%99%A2%EF%BC%8C%E6%95%99%E8%82%B2%E9%83%A8%E7%BB%BF%E8%89%B2%E5%8C%96%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E6%88%90%E9%83%BD610064&rft.issn=1000-6818&rft.issue=1&rft.spage=171&rft.epage=182&rft_id=info:doi/10.3866%2FPKU.WHXB201311041&rft.externalDocID=wlhxxb201401025 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F92644X%2F92644X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fwlhxxb%2Fwlhxxb.jpg  |