Effect of in-painting on cortical thickness measurements in multiple sclerosis: A large cohort study

A comprehensive analysis of the effect of lesion in‐painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large cohort of 918 relapsing‐remitting multiple sclerosis patients who participated in a phase III multicenter clinical trial. An automatic lesion...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 36; no. 10; pp. 3749 - 3760
Main Authors Govindarajan, Koushik A., Datta, Sushmita, Hasan, Khader M., Choi, Sangbum, Rahbar, Mohammad H, Cofield, Stacey S., Cutter, Gary R., Lublin, Fred D., Wolinsky, Jerry S., Narayana, Ponnada A.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.10.2015
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.22875

Cover

Abstract A comprehensive analysis of the effect of lesion in‐painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large cohort of 918 relapsing‐remitting multiple sclerosis patients who participated in a phase III multicenter clinical trial. An automatic lesion in‐painting algorithm was developed and implemented. Cortical thickness was measured using the FreeSurfer pipeline with and without in‐painting. The effect of in‐painting was evaluated using FreeSurfer's paired analysis pipeline. Multivariate regression analysis was also performed with field strength and lesion load as additional factors. Overall, the estimated cortical thickness was different with in‐painting than without. The effect of in‐painting was observed to be region dependent, more significant in the left hemisphere compared to the right, was more prominent at 1.5 T relative to 3 T, and was greater at higher lesion volumes. Our results show that even for data acquired at 1.5 T in patients with high lesion load, the mean cortical thickness difference with and without in‐painting is ∼2%. Based on these results, it appears that in‐painting has only a small effect on the estimated regional and global cortical thickness. Hum Brain Mapp 36:3749–3760, 2015. © 2015 Wiley Periodicals, Inc.
AbstractList A comprehensive analysis of the effect of lesion in‐painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large cohort of 918 relapsing‐remitting multiple sclerosis patients who participated in a phase III multicenter clinical trial. An automatic lesion in‐painting algorithm was developed and implemented. Cortical thickness was measured using the FreeSurfer pipeline with and without in‐painting. The effect of in‐painting was evaluated using FreeSurfer's paired analysis pipeline. Multivariate regression analysis was also performed with field strength and lesion load as additional factors. Overall, the estimated cortical thickness was different with in‐painting than without. The effect of in‐painting was observed to be region dependent, more significant in the left hemisphere compared to the right, was more prominent at 1.5 T relative to 3 T, and was greater at higher lesion volumes. Our results show that even for data acquired at 1.5 T in patients with high lesion load, the mean cortical thickness difference with and without in‐painting is ∼2%. Based on these results, it appears that in‐painting has only a small effect on the estimated regional and global cortical thickness. Hum Brain Mapp 36:3749–3760, 2015 . © 2015 Wiley Periodicals, Inc.
A comprehensive analysis of the effect of lesion in‐painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large cohort of 918 relapsing‐remitting multiple sclerosis patients who participated in a phase III multicenter clinical trial. An automatic lesion in‐painting algorithm was developed and implemented. Cortical thickness was measured using the FreeSurfer pipeline with and without in‐painting. The effect of in‐painting was evaluated using FreeSurfer's paired analysis pipeline. Multivariate regression analysis was also performed with field strength and lesion load as additional factors. Overall, the estimated cortical thickness was different with in‐painting than without. The effect of in‐painting was observed to be region dependent, more significant in the left hemisphere compared to the right, was more prominent at 1.5 T relative to 3 T, and was greater at higher lesion volumes. Our results show that even for data acquired at 1.5 T in patients with high lesion load, the mean cortical thickness difference with and without in‐painting is ∼2%. Based on these results, it appears that in‐painting has only a small effect on the estimated regional and global cortical thickness. Hum Brain Mapp 36:3749–3760, 2015. © 2015 Wiley Periodicals, Inc.
A comprehensive analysis of the effect of lesion in-painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large cohort of 918 relapsing-remitting multiple sclerosis patients who participated in a phase III multicenter clinical trial. An automatic lesion in-painting algorithm was developed and implemented. Cortical thickness was measured using the FreeSurfer pipeline with and without in-painting. The effect of in-painting was evaluated using FreeSurfer's paired analysis pipeline. Multivariate regression analysis was also performed with field strength and lesion load as additional factors. Overall, the estimated cortical thickness was different with in-painting than without. The effect of in-painting was observed to be region dependent, more significant in the left hemisphere compared to the right, was more prominent at 1.5 T relative to 3 T, and was greater at higher lesion volumes. Our results show that even for data acquired at 1.5 T in patients with high lesion load, the mean cortical thickness difference with and without in-painting is ∼2%. Based on these results, it appears that in-painting has only a small effect on the estimated regional and global cortical thickness. Hum Brain Mapp 36:3749-3760, 2015. © 2015 Wiley Periodicals, Inc.A comprehensive analysis of the effect of lesion in-painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large cohort of 918 relapsing-remitting multiple sclerosis patients who participated in a phase III multicenter clinical trial. An automatic lesion in-painting algorithm was developed and implemented. Cortical thickness was measured using the FreeSurfer pipeline with and without in-painting. The effect of in-painting was evaluated using FreeSurfer's paired analysis pipeline. Multivariate regression analysis was also performed with field strength and lesion load as additional factors. Overall, the estimated cortical thickness was different with in-painting than without. The effect of in-painting was observed to be region dependent, more significant in the left hemisphere compared to the right, was more prominent at 1.5 T relative to 3 T, and was greater at higher lesion volumes. Our results show that even for data acquired at 1.5 T in patients with high lesion load, the mean cortical thickness difference with and without in-painting is ∼2%. Based on these results, it appears that in-painting has only a small effect on the estimated regional and global cortical thickness. Hum Brain Mapp 36:3749-3760, 2015. © 2015 Wiley Periodicals, Inc.
A comprehensive analysis of the effect of lesion in-painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large cohort of 918 relapsing-remitting multiple sclerosis patients who participated in a phase III multicenter clinical trial. An automatic lesion in-painting algorithm was developed and implemented. Cortical thickness was measured using the FreeSurfer pipeline with and without in-painting. The effect of in-painting was evaluated using FreeSurfer's paired analysis pipeline. Multivariate regression analysis was also performed with field strength and lesion load as additional factors. Overall, the estimated cortical thickness was different with in-painting than without. The effect of in-painting was observed to be region dependent, more significant in the left hemisphere compared to the right, was more prominent at 1.5 T relative to 3 T, and was greater at higher lesion volumes. Our results show that even for data acquired at 1.5 T in patients with high lesion load, the mean cortical thickness difference with and without in-painting is 2%. Based on these results, it appears that in-painting has only a small effect on the estimated regional and global cortical thickness. Hum Brain Mapp 36:3749-3760, 2015. © 2015 Wiley Periodicals, Inc.
A comprehensive analysis of the effect of lesion in-painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large cohort of 918 relapsing-remitting multiple sclerosis patients who participated in a phase III multicenter clinical trial. An automatic lesion in-painting algorithm was developed and implemented. Cortical thickness was measured using the FreeSurfer pipeline with and without in-painting. The effect of in-painting was evaluated using FreeSurfer's paired analysis pipeline. Multivariate regression analysis was also performed with field strength and lesion load as additional factors. Overall, the estimated cortical thickness was different with in-painting than without. The effect of in-painting was observed to be region dependent, more significant in the left hemisphere compared to the right, was more prominent at 1.5 T relative to 3 T, and was greater at higher lesion volumes. Our results show that even for data acquired at 1.5 T in patients with high lesion load, the mean cortical thickness difference with and without in-painting is 2%. Based on these results, it appears that in-painting has only a small effect on the estimated regional and global cortical thickness. Hum Brain Mapp 36:3749-3760, 2015. copyright 2015 Wiley Periodicals, Inc.
Author Datta, Sushmita
Choi, Sangbum
Cofield, Stacey S.
Rahbar, Mohammad H
Cutter, Gary R.
Narayana, Ponnada A.
Hasan, Khader M.
Lublin, Fred D.
Wolinsky, Jerry S.
Govindarajan, Koushik A.
AuthorAffiliation 5 Department of Neurology University of Texas Medical School at Houston Houston Texas
3 Department of Biostatistics University of Alabama at Birmingham Birmingham Alabama
4 The Corinne Goldsmith Dickinson Center for Multiple Sclerosis Mount Sinai School of Medicine New York New York
1 Department of Diagnostic and Interventional Imaging University of Texas Medical School at Houston Houston Texas
2 Division of Clinical and Translational Sciences Internal Medicine University of Texas Medical School at Houston Houston Texas
AuthorAffiliation_xml – name: 2 Division of Clinical and Translational Sciences Internal Medicine University of Texas Medical School at Houston Houston Texas
– name: 3 Department of Biostatistics University of Alabama at Birmingham Birmingham Alabama
– name: 4 The Corinne Goldsmith Dickinson Center for Multiple Sclerosis Mount Sinai School of Medicine New York New York
– name: 5 Department of Neurology University of Texas Medical School at Houston Houston Texas
– name: 1 Department of Diagnostic and Interventional Imaging University of Texas Medical School at Houston Houston Texas
Author_xml – sequence: 1
  givenname: Koushik A.
  surname: Govindarajan
  fullname: Govindarajan, Koushik A.
  organization: Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Texas, Houston
– sequence: 2
  givenname: Sushmita
  surname: Datta
  fullname: Datta, Sushmita
  organization: Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Texas, Houston
– sequence: 3
  givenname: Khader M.
  surname: Hasan
  fullname: Hasan, Khader M.
  organization: Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Texas, Houston
– sequence: 4
  givenname: Sangbum
  surname: Choi
  fullname: Choi, Sangbum
  organization: Division of Clinical and Translational Sciences, Internal Medicine, University of Texas Medical School at Houston, Texas, Houston
– sequence: 5
  givenname: Mohammad H
  surname: Rahbar
  fullname: Rahbar, Mohammad H
  organization: Division of Clinical and Translational Sciences, Internal Medicine, University of Texas Medical School at Houston, Texas, Houston
– sequence: 6
  givenname: Stacey S.
  surname: Cofield
  fullname: Cofield, Stacey S.
  organization: Department of Biostatistics, University of Alabama at Birmingham, Alabama, Birmingham
– sequence: 7
  givenname: Gary R.
  surname: Cutter
  fullname: Cutter, Gary R.
  organization: Department of Biostatistics, University of Alabama at Birmingham, Alabama, Birmingham
– sequence: 8
  givenname: Fred D.
  surname: Lublin
  fullname: Lublin, Fred D.
  organization: The Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai School of Medicine, New York, New York
– sequence: 9
  givenname: Jerry S.
  surname: Wolinsky
  fullname: Wolinsky, Jerry S.
  organization: Department of Neurology, University of Texas Medical School at Houston, Texas, Houston
– sequence: 10
  givenname: Ponnada A.
  surname: Narayana
  fullname: Narayana, Ponnada A.
  email: Ponnada.a.narayana@uth.tmc.edu
  organization: Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Texas, Houston
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26096844$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxSNURP_AgS-ALHGhSGnt2E7iHpBKKS1igQMg9mY5jrPr1rGD7bTst8dhtwUqQByssTS_9zTzZjfbss6qLHuM4AGCsDhcNv1BUdQVvZftIMiqHCKGt6Z_SXNGKrSd7YZwASFCFKIH2XZRQlbWhOxk7WnXKRmB64C2-SC0jdougLNAOh-1FAbEpZaXVoUAeiXC6FWvbAwJB_1ooh6MAkEa5V3Q4QgcAyP8QiX5MhmAEMd29TC73wkT1KNN3cs-vz79dHKezz6cvTk5nuWS1oTmiFFIWVGKTjRUsRa3SLQUQ8IkJW3dINJI2UqhSNWQrkKNqgrYNi0roaSsUXgve772He0gVtfCGD543Qu_4gjyKSqeouI_okrwizU8jE2vWpmW8uKnwAnNf-9YveQLd8VJjVlRs2TwbGPg3ddRhch7HaQyRljlxsBRVRTpVQX-DxSVDGNYTujTO-iFG71NsU0UrWmNa5KoJ78Ofzv1zWETcLgGZLpL8KrjUkcRtZt20eaPeezfUfwru437tTZq9XeQn798d6PI1wodovp2qxD-kpcVTuSX92f849s5ns3nlL_C3wGb4-Jz
CitedBy_id crossref_primary_10_1148_radiol_2019191061
crossref_primary_10_1002_acn3_52237
crossref_primary_10_1007_s00234_022_03041_5
crossref_primary_10_1590_0004_282x20170072
crossref_primary_10_1007_s00415_023_11870_4
crossref_primary_10_1007_s00429_022_02498_7
crossref_primary_10_1111_ene_13923
crossref_primary_10_1007_s13311_016_0479_6
crossref_primary_10_1111_jon_12611
crossref_primary_10_1016_j_neuroimage_2016_07_035
crossref_primary_10_1038_s41598_022_08477_6
crossref_primary_10_1097_MD_0000000000003208
crossref_primary_10_1093_braincomms_fcad153
crossref_primary_10_3389_fneur_2020_00021
Cites_doi 10.1037/0033-2909.83.4.579
10.1016/j.neuroimage.2005.07.042
10.1016/j.msard.2012.01.006
10.1016/j.jns.2008.12.034
10.1212/WNL.0b013e3181cbcd03
10.1080/01621459.1974.10480224
10.3174/ajnr.A3083
10.1002/jmri.20356
10.1016/j.neuroimage.2004.03.032
10.1016/j.neuroimage.2012.09.051
10.1186/1471-2202-15-106
10.1371/journal.pone.0096429
10.1002/hbm.20566
10.1002/jmri.20896
10.1016/j.neurobiolaging.2010.07.013
10.1109/42.906426
10.1002/hbm.10062
10.1118/1.595535
10.1136/jnnp-2011-300414
10.1016/j.neuroimage.2008.10.037
10.1148/radiol.2361040450
10.1038/nrn1009
10.1016/j.neuroimage.2006.02.051
10.1006/nimg.1998.0395
10.1007/s10439-005-9009-0
10.1006/nimg.1998.0396
10.1109/83.935036
10.1002/hbm.21344
10.1073/pnas.200033797
10.1002/hbm.22409
10.1111/j.1552-6569.2011.00585.x
10.1016/j.nicl.2012.11.009
10.1016/j.neurobiolaging.2007.07.022
10.1177/1352458511405561
10.1002/jmri.22214
10.1016/j.neuroimage.2006.01.021
10.1523/JNEUROSCI.3692-13.2014
10.1016/j.neuroimage.2006.10.006
10.1097/00004728-199403000-00005
10.1007/978-94-009-3143-5
10.1093/brain/awg175
ContentType Journal Article
Contributor Birnbaum, G
Fodor, P
Bomprezzi, R
Stone, L
Dunn, J
Lallana, E
Turel, A
Edwards, K
Preiningerova, J
Thadani, V
English, J
Jacobs, D
Lynch, S
Freedman, M
Sheppard, C
Gudesblatt, M
Kita, M
Vollmer, T
Kaufman, M
McGee, F
Gruental, M
Johnson, K
Riskind, P
Rammohan, K
Thrower, B
Felton, W
Blevins, G
Camac, A
Galetta, S
Kattah, J
Kasper, L
Brown, T
Wynn, D
Garmany, G
Herbert, J
Holub, R
Weinstock-Guttman, B
Carter, J
Panitch, H
Wendt, J
Burkholder, J
Cross, A
Khan, O
Ford, C
Mejico, L
Stuart, W
Dewitt, L
Scarberry, S
Bashir, K
Scott, T
Corboy, J
Lava, N
Honeycutt, W
Hughes, B
Cohen, B
Koffman, B
Yeung, M
O'Connor, P
Agius, M
Rolak, L
Subramaniam, S
Boster, A
Thomas, F
Hamill, R
Eggenberger, E
Loge, P
Riley, C
Tullman, M
Khatri, B
Royal, W
Schulman, A
Louis, Saint
Metz, L
Baumhefner, R
Gottesman, M
Lindsey, J
Pandey, K
Williams, R
Goodman, A
Keegan, M
Gottschalk, C
Sheremata, W
Campagnolo, D
Hutton, G
Waldman, S
Cooper, J
Contributor_xml – sequence: 1
  givenname: M
  surname: Agius
  fullname: Agius, M
– sequence: 2
  givenname: K
  surname: Bashir
  fullname: Bashir, K
– sequence: 3
  givenname: R
  surname: Baumhefner
  fullname: Baumhefner, R
– sequence: 4
  givenname: G
  surname: Birnbaum
  fullname: Birnbaum, G
– sequence: 5
  givenname: G
  surname: Blevins
  fullname: Blevins, G
– sequence: 6
  givenname: R
  surname: Bomprezzi
  fullname: Bomprezzi, R
– sequence: 7
  givenname: A
  surname: Boster
  fullname: Boster, A
– sequence: 8
  givenname: T
  surname: Brown
  fullname: Brown, T
– sequence: 9
  givenname: J
  surname: Burkholder
  fullname: Burkholder, J
– sequence: 10
  givenname: A
  surname: Camac
  fullname: Camac, A
– sequence: 11
  givenname: D
  surname: Campagnolo
  fullname: Campagnolo, D
– sequence: 12
  givenname: J
  surname: Carter
  fullname: Carter, J
– sequence: 13
  givenname: B
  surname: Cohen
  fullname: Cohen, B
– sequence: 14
  givenname: J
  surname: Cooper
  fullname: Cooper, J
– sequence: 15
  givenname: J
  surname: Corboy
  fullname: Corboy, J
– sequence: 16
  givenname: A
  surname: Cross
  fullname: Cross, A
– sequence: 17
  givenname: L
  surname: Dewitt
  fullname: Dewitt, L
– sequence: 18
  givenname: J
  surname: Dunn
  fullname: Dunn, J
– sequence: 19
  givenname: K
  surname: Edwards
  fullname: Edwards, K
– sequence: 20
  givenname: E
  surname: Eggenberger
  fullname: Eggenberger, E
– sequence: 21
  givenname: J
  surname: English
  fullname: English, J
– sequence: 22
  givenname: W
  surname: Felton
  fullname: Felton, W
– sequence: 23
  givenname: P
  surname: Fodor
  fullname: Fodor, P
– sequence: 24
  givenname: C
  surname: Ford
  fullname: Ford, C
– sequence: 25
  givenname: M
  surname: Freedman
  fullname: Freedman, M
– sequence: 26
  givenname: S
  surname: Galetta
  fullname: Galetta, S
– sequence: 27
  givenname: G
  surname: Garmany
  fullname: Garmany, G
– sequence: 28
  givenname: A
  surname: Goodman
  fullname: Goodman, A
– sequence: 29
  givenname: M
  surname: Gottesman
  fullname: Gottesman, M
– sequence: 30
  givenname: C
  surname: Gottschalk
  fullname: Gottschalk, C
– sequence: 31
  givenname: M
  surname: Gruental
  fullname: Gruental, M
– sequence: 32
  givenname: M
  surname: Gudesblatt
  fullname: Gudesblatt, M
– sequence: 33
  givenname: R
  surname: Hamill
  fullname: Hamill, R
– sequence: 34
  givenname: J
  surname: Herbert
  fullname: Herbert, J
– sequence: 35
  givenname: R
  surname: Holub
  fullname: Holub, R
– sequence: 36
  givenname: W
  surname: Honeycutt
  fullname: Honeycutt, W
– sequence: 37
  givenname: B
  surname: Hughes
  fullname: Hughes, B
– sequence: 38
  givenname: G
  surname: Hutton
  fullname: Hutton, G
– sequence: 39
  givenname: D
  surname: Jacobs
  fullname: Jacobs, D
– sequence: 40
  givenname: K
  surname: Johnson
  fullname: Johnson, K
– sequence: 41
  givenname: L
  surname: Kasper
  fullname: Kasper, L
– sequence: 42
  givenname: J
  surname: Kattah
  fullname: Kattah, J
– sequence: 43
  givenname: M
  surname: Kaufman
  fullname: Kaufman, M
– sequence: 44
  givenname: M
  surname: Keegan
  fullname: Keegan, M
– sequence: 45
  givenname: O
  surname: Khan
  fullname: Khan, O
– sequence: 46
  givenname: B
  surname: Khatri
  fullname: Khatri, B
– sequence: 47
  givenname: M
  surname: Kita
  fullname: Kita, M
– sequence: 48
  givenname: B
  surname: Koffman
  fullname: Koffman, B
– sequence: 49
  givenname: E
  surname: Lallana
  fullname: Lallana, E
– sequence: 50
  givenname: N
  surname: Lava
  fullname: Lava, N
– sequence: 51
  givenname: J
  surname: Lindsey
  fullname: Lindsey, J
– sequence: 52
  givenname: P
  surname: Loge
  fullname: Loge, P
– sequence: 53
  givenname: S
  surname: Lynch
  fullname: Lynch, S
– sequence: 54
  givenname: F
  surname: McGee
  fullname: McGee, F
– sequence: 55
  givenname: L
  surname: Mejico
  fullname: Mejico, L
– sequence: 56
  givenname: L
  surname: Metz
  fullname: Metz, L
– sequence: 57
  givenname: P
  surname: O'Connor
  fullname: O'Connor, P
– sequence: 58
  givenname: K
  surname: Pandey
  fullname: Pandey, K
– sequence: 59
  givenname: H
  surname: Panitch
  fullname: Panitch, H
– sequence: 60
  givenname: J
  surname: Preiningerova
  fullname: Preiningerova, J
– sequence: 61
  givenname: K
  surname: Rammohan
  fullname: Rammohan, K
– sequence: 62
  givenname: C
  surname: Riley
  fullname: Riley, C
– sequence: 63
  givenname: P
  surname: Riskind
  fullname: Riskind, P
– sequence: 64
  givenname: L
  surname: Rolak
  fullname: Rolak, L
– sequence: 65
  givenname: W
  surname: Royal
  fullname: Royal, W
– sequence: 66
  givenname: S
  surname: Scarberry
  fullname: Scarberry, S
– sequence: 67
  givenname: A
  surname: Schulman
  fullname: Schulman, A
– sequence: 68
  givenname: T
  surname: Scott
  fullname: Scott, T
– sequence: 69
  givenname: C
  surname: Sheppard
  fullname: Sheppard, C
– sequence: 70
  givenname: W
  surname: Sheremata
  fullname: Sheremata, W
– sequence: 71
  givenname: L
  surname: Stone
  fullname: Stone, L
– sequence: 72
  givenname: W
  surname: Stuart
  fullname: Stuart, W
– sequence: 73
  givenname: S
  surname: Subramaniam
  fullname: Subramaniam, S
– sequence: 74
  givenname: V
  surname: Thadani
  fullname: Thadani, V
– sequence: 75
  givenname: F
  surname: Thomas
  fullname: Thomas, F
– sequence: 76
  givenname: Saint
  surname: Louis
  fullname: Louis, Saint
– sequence: 77
  givenname: B
  surname: Thrower
  fullname: Thrower, B
– sequence: 78
  givenname: M
  surname: Tullman
  fullname: Tullman, M
– sequence: 79
  givenname: A
  surname: Turel
  fullname: Turel, A
– sequence: 80
  givenname: T
  surname: Vollmer
  fullname: Vollmer, T
– sequence: 81
  givenname: S
  surname: Waldman
  fullname: Waldman, S
– sequence: 82
  givenname: B
  surname: Weinstock-Guttman
  fullname: Weinstock-Guttman, B
– sequence: 83
  givenname: J
  surname: Wendt
  fullname: Wendt, J
– sequence: 84
  givenname: R
  surname: Williams
  fullname: Williams, R
– sequence: 85
  givenname: D
  surname: Wynn
  fullname: Wynn, D
– sequence: 86
  givenname: M
  surname: Yeung
  fullname: Yeung, M
Copyright 2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
CorporateAuthor MRI Analysis Center at Houston, The CombiRx Investigators Group
CombiRx Investigators Group
MRI Analysis Center at Houston
CorporateAuthor_xml – name: MRI Analysis Center at Houston, The CombiRx Investigators Group
– name: MRI Analysis Center at Houston
– name: CombiRx Investigators Group
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.22875
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Technology Research Database
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Effect of Lesions on Cortical Thickness in MS
EISSN 1097-0193
EndPage 3760
ExternalDocumentID oai:pubmedcentral.nih.gov:4839289
PMC4839289
3816077411
26096844
10_1002_hbm_22875
HBM22875
ark_67375_WNG_SKX3LXX5_D
Genre article
Clinical Trial, Phase III
Multicenter Study
Randomized Controlled Trial
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB/NIH (Image segmentation)
  funderid: 2 R01 EB02095
– fundername: NINDS/NIH (CombiRx trial)
  funderid: U01 NS045719
– fundername: NINDS/NIH
  funderid: R01NS078244
– fundername: NINDS NIH HHS
  grantid: R01NS078244
– fundername: NINDS NIH HHS
  grantid: R01 NS078244
– fundername: NINDS NIH HHS
  grantid: U01 NS045719
– fundername: NIBIB NIH HHS
  grantid: 2R01 EB02095
– fundername: NIBIB NIH HHS
  grantid: R01 EB002095
– fundername: NIBIB/NIH (Image segmentation)
  grantid: 2 R01 EB02095
– fundername: NINDS/NIH
  grantid: R01NS078244
– fundername: NINDS/NIH (CombiRx trial)
  grantid: U01 NS045719
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
33P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
C45
RWD
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5845-19505926afab5e9d3d1ad53049c54d8b14bccdcae47b4f71be720dbd960c59be3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 03:10:52 EDT 2025
Tue Sep 30 16:55:26 EDT 2025
Thu Oct 02 05:57:03 EDT 2025
Thu Oct 02 08:52:01 EDT 2025
Tue Oct 07 06:24:52 EDT 2025
Thu Apr 03 07:05:32 EDT 2025
Wed Oct 01 05:04:39 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Wed Jan 22 16:49:51 EST 2025
Sun Sep 21 06:19:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords multiple sclerosis lesions
FreeSurfer
cortical thickness
multiple sclerosis
lesion in-painting
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5845-19505926afab5e9d3d1ad53049c54d8b14bccdcae47b4f71be720dbd960c59be3
Notes NINDS/NIH (CombiRx trial) - No. U01 NS045719
istex:3713FF85D9D2C2267A74491A2859E2EA48B5A64C
NIBIB/NIH (Image segmentation) - No. 2 R01 EB02095
ArticleID:HBM22875
ark:/67375/WNG-SKX3LXX5-D
NINDS/NIH - No. R01NS078244
CombiRx Investigators Group: M. Agius, Sacramento, CA; K. Bashir, Birmingham, AL; R. Baumhefner, Los Angeles, CA; G. Birnbaum, Golden Valley, MN; G. Blevins, Edmonton, AB, Canada; R. Bomprezzi, Phoenix, AZ; A. Boster, Columbus, OH; T. Brown, Kirkland, WA; J. Burkholder, Canton, OH; A. Camac, Lexington, MA; D. Campagnolo, Phoenix, AZ; J. Carter, Scottsdale, AZ; B. Cohen, Chicago, IL; J. Cooper, Berkeley, CA; J. Corboy, Aurora, CO; A. Cross, Saint Louis, MO; L. Dewitt, Salt Lake City, UT; J. Dunn, Kirkland, WA; K. Edwards, Latham, NY; E. Eggenberger, East Lansing, MI; J. English, Atlanta, GA; W. Felton, Richmond, VA; P. Fodor, Colorado Springs, CO; C. Ford, Albuquerque, NM; M. Freedman, Ottawa, Ontario, Canada; S. Galetta, Philadelphia, PA; G. Garmany, Boulder, CO; A. Goodman, Rochester, NY; M. Gottesman, Mineola, NY; C. Gottschalk, New Haven, CT; M. Gruental, Albany, NY; M. Gudesblatt, Patchogue, NY; R. Hamill, Burlington, VT; J. Herbert, New York, NY; R. Holub, Albany, NY; W. Honeycutt, Maitland, FL; B. Hughes, Des Moines, IA; G. Hutton, Houston, TX; D. Jacobs, Philadelphia, PA; K. Johnson, Baltimore, MD; L. Kasper, Lebanon, NH; J. Kattah, Peoria, IL; M. Kaufman, Charlotte, NC; M. Keegan, Rochester, NY; O. Khan, Detroit, MI; B. Khatri, Milwaukee, WI; M. Kita, Seattle, WA; B. Koffman, Toledo, OH; E. Lallana, Lebanon, NH; N. Lava, Albany, NY; J. Lindsey, Houston, TX; P. Loge, Billings, MT; S. Lynch, Kansas City, KS; F. McGee, Richmond, VA; L. Mejico, Syracuse, NY; L. Metz, Calgary, AB, Canada; P. O'Connor, Toronto, ON, Canada; K. Pandey, Albany, NY; H. Panitch, Burlington, VT; J. Preiningerova, New Haven, CT; K. Rammohan, Columbus, OH; C. Riley, New Haven, CT; P. Riskind, Worcester, MA; L. Rolak, Marshfield, WI; W. Royal, Baltimore, MD; S. Scarberry, Fargo, ND; A. Schulman, Richmond, VA; T. Scott, Pittsburgh, PA; C. Sheppard, Uniontown, OH; W. Sheremata, Miami, FL; L. Stone, Cleveland, OH; W. Stuart, Atlanta, GA; S. Subramaniam, Nashville, TN; V. Thadani, Lebanon, NH; F. Thomas, Saint Louis, MO; B. Thrower, Atlanta, GA; M. Tullman, New York, NY; A. Turel, Danville, PA; T. Vollmer, Phoenix, AZ; S. Waldman, La Habra, CA; B. Weinstock‐Guttman, Buffalo, NY; J. Wendt, Tucson, AZ; R. Williams, Billings, MT; D. Wynn, Northbrook, IL; M. Yeung, Calgary, AB Canada.
Koushik A. Govindarajan and Sushmita Datta contributed equally to this work.
MRI Analysis Center: JS Wolinsky, PA Narayana, F Nelson, I Vainrub, S Datta, R He, B Gates, K Ton.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/hbm.22875
PMID 26096844
PQID 1715858384
PQPubID 996345
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_hbm_22875
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4839289
proquest_miscellaneous_1722172723
proquest_miscellaneous_1716933063
proquest_journals_1715858384
pubmed_primary_26096844
crossref_citationtrail_10_1002_hbm_22875
crossref_primary_10_1002_hbm_22875
wiley_primary_10_1002_hbm_22875_HBM22875
istex_primary_ark_67375_WNG_SKX3LXX5_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Datta S, Sajja BR, He R, Wolinsky JS, Gupta RK, Narayana PA (2006): Segmentation and quantification of black holes in multiple sclerosis. Neuroimage 29:467-474.
Calabrese M, Rinaldi F, Mattisi I, Grossi P, Favaretto A, Atzori M, Bernardi V, Barachino L, Romualdi C, Rinaldi L, Perini P, Gallo P (2010): Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 74:321-328.
Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS (2012): Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 33:617.e1-617.e9.
Calabrese M, Grossi P, Favaretto A, Romualdi C, Atzori M, Rinaldi F, Perini P, Saladini M, Gallo P (2012): Cortical pathology in multiple sclerosis patients with epilepsy: A 3 year longitudinal study. J Neurol Neurosurg Psychiatry 83:49-54.
Dale AM, Fischl B, Sereno MI (1999): Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179-194.
Ballester C, Bertalmio M, Caselles V, Sapiro G, Verdera J (2001): Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans Image Process 10:1200-1211.
Charil A, Dagher A, Lerch JP, Zijdenbos AP, Worsley K, Evans AC (2007): Focal cortical atrophy in multiple sclerosis: Relation to lesion load and disability. Neuroimage 34:509-517.
Lindsey JW, Scott TF, Lynch SG, Cofield SS, Nelson, F, Conwit R, et al. (2012): The CombiRx trial of combined therapy with interferon and glatiramer acetate in relapsing remitting MS: Design and baseline characteristics. Mult Scler Relat Disord 1:81-86.
Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004): A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060-1075.
Ceccarelli A, Jackson JS, Tauhid S, Arora A, Gorky J, Dell'Oglio E, Bakshi A, Chitnis T, Khoury SJ, Weiner HL, Guttmann CR, Bakshi R, Neema M (2012): The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. Am J Neuroradiol 33:1579-1585.
Holland CM, Charil A, Csapo I, Liptak Z, Ichise M, Khoury SJ, Bakshi R, Weiner HL, Guttmann CR (2012): The relationship between normal cerebral perfusion patterns and white matter lesion distribution in 1249 patients with multiple sclerosis. J Neuroimaging 22:129-136.
Dickerson BC, Feczko E, Augustinack JC, Pacheco J, Morris JC, Fischl B, Buckner RL (2009): Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area. Neurobiol Aging 30:432-440.
Fischl B, Dale AM (2000): Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050-11055.
Olson CL (1974): Comparative robustness of six tests in multivariate analysis of variance. J Am Stat Assoc 69:894-908.
Collins DL, Neelin P, Peters TM, Evans AC (1994): Automatic 3-D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192-205.
Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA (2005): Intracortical lesions in multiple sclerosis: Improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254-260.
Fischl B, Lui A, Dale AM (2001): Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging 20:70-80.
Lu H, Nagae-Poetscher LM, Golay X, Lin D, van Pomper M, Zijl PCM (2005): Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 22:13-22.
Bock NA, Hashim E, Janik R, Konyer NB, Weiss M, Stanisz GJ, Turner R, Geyer S (2013): Optimizing T1-weighted imaging of cortical myelin content at 3.0 T. Neuroimage 65:1-12.
Battaglini M, Jenkinson M, De Stefano N (2012): Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33:2062-2071.
Fischl B, Sereno MI, Dale AM (1999): Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195-207.
Sdika M, Pelletier D (2009): Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum Brain Mapp 30:1060-1067.
Hand DJ, Taylor CC (1987): Multivariate Analysis of Variance and Repeated Measures. London, UK: Chapman and Hall.
Wonderlick JS, Ziegler DA, Hosseini-Varnamkhasti P, Locascio JJ, Bakkour A, van der Kouwe A, Triantafyllou C, Corkin S, Dickerson BC (2009): Reliability of MRI-derived cortical and subcortical morphometric measures: Effects of pulse sequence, voxel geometry and parallel imaging. Neuroimage 44:1324-1333.
Bottomley PA, Foster TH, Argersinger RE, Pfeifer LH (1984): A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: Dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425-448.
Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006): Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180-194.
Datta S, Sajja BR, He R, Gupta RK, Wolinsky JS, Narayana PA (2007): Segmentation of gadolinium-enhanced lesions on MRI in multiple sclerosis. J Magn Reson Imaging 25:932-937.
Plessan KJ, Hugdahl K, Bansal R, Hao X, Peterson B (2014): Sex, age, and cognitive correlates of asymmetries in thickness of the cortical mantle across the life span. J Neurosci 34:6294-6302.
Ramasamy DP, Benedict RH, Cox JL, Fritz D, Abdelrahman N, Hussein S, Minagar A, Dwyer MG, Zivadinov R (2009): Extent of cerebellum, subcortical and cortical atrophy in patients with MS: A case-control study. J Neurol Sci 282:47-54.
Sajja BR, Datta S, He R, Mehta M, Gupta RK, Wolinsky JS, Narayana PA (2006): Unified approach for multiple sclerosis lesion segmentation on brain MRI. Ann Biomed Eng 34:142-151.
Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CA (2010): Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging 32:223-228.
Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968-980.
Shiee N, Bazin PL, Cuzzocreo JL, Ye C, Kishore B, Carass A, Calabresi PA, Reich DS, Prince JL, Pham DL (2014): Reconstruction of the human cerebral cortex robust to white matter lesions: Method and validation. Hum Brain Mapp 35:3385-3401.
Narayana PA, Govindarajan KA, Goel P, Datta S, Lincoln JA, Cofield SS, Cutter GR, Lublin FD, Wolinsky JS, the CombiRX Investigators Group (2013): Regional cortical thickness in relapsing remitting multiple sclerosis: A multi-center study. Neuroimage Clin 2:120-131.
Olson CL (1976): On choosing a test statistic in multivariate analysis of variance. Psychol Bull 83:579-586.
Govindarajan KA, Freeman L, Cai C, Rahbar MH, Narayana PA (2014): Effect of intrinsic and extrinsic factors on global and regional cortical thickness. PLoS One 9:e96429.
Magon S, Gaetano L, Chakravarthy MM, Lerch JP, Naegelin Y, Stippich C, Kappos L, Radue EW, Sprenger T (2014): White matter lesion filling improves the accuracy of cortical thickness measurements in multiple sclerosis patients: A longitudinal study. BMC Neurosci 15:106-115.
Smith SM (2002): Fast robust automated brain extraction. Hum Brain Mapp 17:143-155.
Nelson F, Datta S, Garcia N, Rozario NL, Perez F, Cutter G, Narayana PA, Wolinsky JS (2011): Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis. Mult Scler 17:1122-1129.
Sailer M, Fischl B, Salat D, Tempelmann C, Schönfeld MA, Busa E, Bodammer N, Heinze HJ, Dale A (2003): Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126:1734-1744.
Thompson PM, Toga AW (2003): Mapping brain asymmetry. Nat Rev Neurosci 4:37-48.
2012; 83
2004; 22
2002; 17
2009; 44
2010; 32
2006; 31
2013; 2
2006; 34
2013; 65
2006; 32
1976; 83
2005; 236
2011; 17
2012; 33
2007; 34
2005; 22
2001; 20
1999; 9
1974; 69
2009; 30
2012; 1
1984; 11
2000; 97
1987
2014; 15
2006; 29
2003; 4
2014; 35
2009; 282
1994; 18
2014
2014; 9
2003; 126
2012; 22
2010; 74
2014; 34
2007; 25
2001; 10
1988
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
21543552 - Mult Scler. 2011 Sep;17(9):1122-9
12511860 - Nat Rev Neurosci. 2003 Jan;4(1):37-48
19038349 - Neuroimage. 2009 Feb 15;44(4):1324-33
15987979 - Radiology. 2005 Jul;236(1):254-60
20575080 - J Magn Reson Imaging. 2010 Jul;32(1):223-8
16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
17869384 - Neurobiol Aging. 2009 Mar;30(3):432-40
16525763 - Ann Biomed Eng. 2006 Jan;34(1):142-51
9931268 - Neuroimage. 1999 Feb;9(2):179-94
19201003 - J Neurol Sci. 2009 Jul 15;282(1-2):47-54
12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
20739099 - Neurobiol Aging. 2012 Mar;33(3):617.e1-9
24789100 - PLoS One. 2014;9(5):e96429
11293693 - IEEE Trans Med Imaging. 2001 Jan;20(1):70-80
12805100 - Brain. 2003 Aug;126(Pt 8):1734-44
15971174 - J Magn Reson Imaging. 2005 Jul;22(1):13-22
9931269 - Neuroimage. 1999 Feb;9(2):195-207
16126416 - Neuroimage. 2006 Jan 15;29(2):467-74
24382742 - Hum Brain Mapp. 2014 Jul;35(7):3385-401
8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
25200127 - BMC Neurosci. 2014;15:106
23036446 - Neuroimage. 2013 Jan 15;65:1-12
25876935 - Mult Scler Relat Disord. 2012 Apr;1(2):81-6
6482839 - Med Phys. 1984 Jul-Aug;11(4):425-48
15219578 - Neuroimage. 2004 Jul;22(3):1060-75
10984517 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5
18412131 - Hum Brain Mapp. 2009 Apr;30(4):1060-7
21890577 - J Neurol Neurosurg Psychiatry. 2012 Jan;83(1):49-54
16651008 - Neuroimage. 2006 Aug 1;32(1):180-94
21447022 - J Neuroimaging. 2012 Apr;22(2):129-36
24790200 - J Neurosci. 2014 Apr 30;34(18):6294-302
21882300 - Hum Brain Mapp. 2012 Sep;33(9):2062-71
17112743 - Neuroimage. 2007 Jan 15;34(2):509-17
18255537 - IEEE Trans Image Process. 2001;10(8):1200-11
20101038 - Neurology. 2010 Jan 26;74(4):321-8
22460341 - AJNR Am J Neuroradiol. 2012 Sep;33(8):1579-85
17457804 - J Magn Reson Imaging. 2007 May;25(5):932-7
24179765 - Neuroimage Clin. 2012 Nov 30;2:120-31
References_xml – reference: Bottomley PA, Foster TH, Argersinger RE, Pfeifer LH (1984): A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: Dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425-448.
– reference: Chard DT, Jackson JS, Miller DH, Wheeler-Kingshott CA (2010): Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. J Magn Reson Imaging 32:223-228.
– reference: Fischl B, Dale AM (2000): Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050-11055.
– reference: Bock NA, Hashim E, Janik R, Konyer NB, Weiss M, Stanisz GJ, Turner R, Geyer S (2013): Optimizing T1-weighted imaging of cortical myelin content at 3.0 T. Neuroimage 65:1-12.
– reference: Sailer M, Fischl B, Salat D, Tempelmann C, Schönfeld MA, Busa E, Bodammer N, Heinze HJ, Dale A (2003): Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126:1734-1744.
– reference: Sajja BR, Datta S, He R, Mehta M, Gupta RK, Wolinsky JS, Narayana PA (2006): Unified approach for multiple sclerosis lesion segmentation on brain MRI. Ann Biomed Eng 34:142-151.
– reference: Thompson PM, Toga AW (2003): Mapping brain asymmetry. Nat Rev Neurosci 4:37-48.
– reference: Calabrese M, Rinaldi F, Mattisi I, Grossi P, Favaretto A, Atzori M, Bernardi V, Barachino L, Romualdi C, Rinaldi L, Perini P, Gallo P (2010): Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 74:321-328.
– reference: Wonderlick JS, Ziegler DA, Hosseini-Varnamkhasti P, Locascio JJ, Bakkour A, van der Kouwe A, Triantafyllou C, Corkin S, Dickerson BC (2009): Reliability of MRI-derived cortical and subcortical morphometric measures: Effects of pulse sequence, voxel geometry and parallel imaging. Neuroimage 44:1324-1333.
– reference: Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, Mattay VS (2012): Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol Aging 33:617.e1-617.e9.
– reference: Smith SM (2002): Fast robust automated brain extraction. Hum Brain Mapp 17:143-155.
– reference: Calabrese M, Grossi P, Favaretto A, Romualdi C, Atzori M, Rinaldi F, Perini P, Saladini M, Gallo P (2012): Cortical pathology in multiple sclerosis patients with epilepsy: A 3 year longitudinal study. J Neurol Neurosurg Psychiatry 83:49-54.
– reference: Nelson F, Datta S, Garcia N, Rozario NL, Perez F, Cutter G, Narayana PA, Wolinsky JS (2011): Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis. Mult Scler 17:1122-1129.
– reference: Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006): Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. Neuroimage 32:180-194.
– reference: Collins DL, Neelin P, Peters TM, Evans AC (1994): Automatic 3-D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192-205.
– reference: Ballester C, Bertalmio M, Caselles V, Sapiro G, Verdera J (2001): Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans Image Process 10:1200-1211.
– reference: Dickerson BC, Feczko E, Augustinack JC, Pacheco J, Morris JC, Fischl B, Buckner RL (2009): Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area. Neurobiol Aging 30:432-440.
– reference: Olson CL (1974): Comparative robustness of six tests in multivariate analysis of variance. J Am Stat Assoc 69:894-908.
– reference: Datta S, Sajja BR, He R, Gupta RK, Wolinsky JS, Narayana PA (2007): Segmentation of gadolinium-enhanced lesions on MRI in multiple sclerosis. J Magn Reson Imaging 25:932-937.
– reference: Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006): An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968-980.
– reference: Olson CL (1976): On choosing a test statistic in multivariate analysis of variance. Psychol Bull 83:579-586.
– reference: Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA (2005): Intracortical lesions in multiple sclerosis: Improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254-260.
– reference: Magon S, Gaetano L, Chakravarthy MM, Lerch JP, Naegelin Y, Stippich C, Kappos L, Radue EW, Sprenger T (2014): White matter lesion filling improves the accuracy of cortical thickness measurements in multiple sclerosis patients: A longitudinal study. BMC Neurosci 15:106-115.
– reference: Shiee N, Bazin PL, Cuzzocreo JL, Ye C, Kishore B, Carass A, Calabresi PA, Reich DS, Prince JL, Pham DL (2014): Reconstruction of the human cerebral cortex robust to white matter lesions: Method and validation. Hum Brain Mapp 35:3385-3401.
– reference: Govindarajan KA, Freeman L, Cai C, Rahbar MH, Narayana PA (2014): Effect of intrinsic and extrinsic factors on global and regional cortical thickness. PLoS One 9:e96429.
– reference: Dale AM, Fischl B, Sereno MI (1999): Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179-194.
– reference: Lu H, Nagae-Poetscher LM, Golay X, Lin D, van Pomper M, Zijl PCM (2005): Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 22:13-22.
– reference: Narayana PA, Govindarajan KA, Goel P, Datta S, Lincoln JA, Cofield SS, Cutter GR, Lublin FD, Wolinsky JS, the CombiRX Investigators Group (2013): Regional cortical thickness in relapsing remitting multiple sclerosis: A multi-center study. Neuroimage Clin 2:120-131.
– reference: Ceccarelli A, Jackson JS, Tauhid S, Arora A, Gorky J, Dell'Oglio E, Bakshi A, Chitnis T, Khoury SJ, Weiner HL, Guttmann CR, Bakshi R, Neema M (2012): The impact of lesion in-painting and registration methods on voxel-based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis. Am J Neuroradiol 33:1579-1585.
– reference: Plessan KJ, Hugdahl K, Bansal R, Hao X, Peterson B (2014): Sex, age, and cognitive correlates of asymmetries in thickness of the cortical mantle across the life span. J Neurosci 34:6294-6302.
– reference: Lindsey JW, Scott TF, Lynch SG, Cofield SS, Nelson, F, Conwit R, et al. (2012): The CombiRx trial of combined therapy with interferon and glatiramer acetate in relapsing remitting MS: Design and baseline characteristics. Mult Scler Relat Disord 1:81-86.
– reference: Datta S, Sajja BR, He R, Wolinsky JS, Gupta RK, Narayana PA (2006): Segmentation and quantification of black holes in multiple sclerosis. Neuroimage 29:467-474.
– reference: Ramasamy DP, Benedict RH, Cox JL, Fritz D, Abdelrahman N, Hussein S, Minagar A, Dwyer MG, Zivadinov R (2009): Extent of cerebellum, subcortical and cortical atrophy in patients with MS: A case-control study. J Neurol Sci 282:47-54.
– reference: Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004): A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060-1075.
– reference: Battaglini M, Jenkinson M, De Stefano N (2012): Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33:2062-2071.
– reference: Sdika M, Pelletier D (2009): Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Hum Brain Mapp 30:1060-1067.
– reference: Fischl B, Sereno MI, Dale AM (1999): Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195-207.
– reference: Fischl B, Lui A, Dale AM (2001): Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging 20:70-80.
– reference: Charil A, Dagher A, Lerch JP, Zijdenbos AP, Worsley K, Evans AC (2007): Focal cortical atrophy in multiple sclerosis: Relation to lesion load and disability. Neuroimage 34:509-517.
– reference: Hand DJ, Taylor CC (1987): Multivariate Analysis of Variance and Repeated Measures. London, UK: Chapman and Hall.
– reference: Holland CM, Charil A, Csapo I, Liptak Z, Ichise M, Khoury SJ, Bakshi R, Weiner HL, Guttmann CR (2012): The relationship between normal cerebral perfusion patterns and white matter lesion distribution in 1249 patients with multiple sclerosis. J Neuroimaging 22:129-136.
– volume: 25
  start-page: 932
  year: 2007
  end-page: 937
  article-title: Segmentation of gadolinium‐enhanced lesions on MRI in multiple sclerosis
  publication-title: J Magn Reson Imaging
– volume: 33
  start-page: 2062
  year: 2012
  end-page: 2071
  article-title: Evaluating and reducing the impact of white matter lesions on brain volume measurements
  publication-title: Hum Brain Mapp
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  article-title: Cortical surface‐based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
– volume: 20
  start-page: 70
  year: 2001
  end-page: 80
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Transactions on Medical Imaging
– volume: 22
  start-page: 13
  year: 2005
  end-page: 22
  article-title: Routine clinical brain MRI sequences for use at 3.0 Tesla
  publication-title: J Magn Reson Imaging
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc Natl Acad Sci USA
– volume: 34
  start-page: 509
  year: 2007
  end-page: 517
  article-title: Focal cortical atrophy in multiple sclerosis: Relation to lesion load and disability
  publication-title: Neuroimage
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  article-title: Cortical surface‐based analysis. II: Inflation, flattening, and a surface‐based coordinate system
  publication-title: Neuroimage
– year: 1987
– volume: 282
  start-page: 47
  year: 2009
  end-page: 54
  article-title: Extent of cerebellum, subcortical and cortical atrophy in patients with MS: A case‐control study
  publication-title: J Neurol Sci
– volume: 1
  start-page: 81
  year: 2012
  end-page: 86
  article-title: The CombiRx trial of combined therapy with interferon and glatiramer acetate in relapsing remitting MS: Design and baseline characteristics
  publication-title: Mult Scler Relat Disord
– volume: 126
  start-page: 1734
  year: 2003
  end-page: 1744
  article-title: Focal thinning of the cerebral cortex in multiple sclerosis
  publication-title: Brain
– volume: 15
  start-page: 106
  year: 2014
  end-page: 115
  article-title: White matter lesion filling improves the accuracy of cortical thickness measurements in multiple sclerosis patients: A longitudinal study
  publication-title: BMC Neurosci
– volume: 83
  start-page: 579
  year: 1976
  end-page: 586
  article-title: On choosing a test statistic in multivariate analysis of variance
  publication-title: Psychol Bull
– volume: 65
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Optimizing T1‐weighted imaging of cortical myelin content at 3.0 T
  publication-title: Neuroimage
– volume: 30
  start-page: 1060
  year: 2009
  end-page: 1067
  article-title: Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping
  publication-title: Hum Brain Mapp
– volume: 34
  start-page: 142
  year: 2006
  end-page: 151
  article-title: Unified approach for multiple sclerosis lesion segmentation on brain MRI
  publication-title: Ann Biomed Eng
– volume: 29
  start-page: 467
  year: 2006
  end-page: 474
  article-title: Segmentation and quantification of black holes in multiple sclerosis
  publication-title: Neuroimage
– volume: 2
  start-page: 120
  year: 2013
  end-page: 131
  article-title: Regional cortical thickness in relapsing remitting multiple sclerosis: A multi‐center study
  publication-title: Neuroimage Clin
– volume: 22
  start-page: 129
  year: 2012
  end-page: 136
  article-title: The relationship between normal cerebral perfusion patterns and white matter lesion distribution in 1249 patients with multiple sclerosis
  publication-title: J Neuroimaging
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  article-title: Automatic 3‐D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J Comput Assist Tomogr
– year: 2014
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– volume: 4
  start-page: 37
  year: 2003
  end-page: 48
  article-title: Mapping brain asymmetry
  publication-title: Nat Rev Neurosci
– volume: 34
  start-page: 6294
  year: 2014
  end-page: 6302
  article-title: Sex, age, and cognitive correlates of asymmetries in thickness of the cortical mantle across the life span
  publication-title: J Neurosci
– volume: 83
  start-page: 49
  year: 2012
  end-page: 54
  article-title: Cortical pathology in multiple sclerosis patients with epilepsy: A 3 year longitudinal study
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 44
  start-page: 1324
  year: 2009
  end-page: 1333
  article-title: Reliability of MRI‐derived cortical and subcortical morphometric measures: Effects of pulse sequence, voxel geometry and parallel imaging
  publication-title: Neuroimage
– volume: 10
  start-page: 1200
  year: 2001
  end-page: 1211
  article-title: Filling‐in by joint interpolation of vector fields and gray levels
  publication-title: IEEE Trans Image Process
– volume: 32
  start-page: 180
  year: 2006
  end-page: 194
  article-title: Reliability of MRI‐derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer
  publication-title: Neuroimage
– volume: 9
  start-page: e96429.
  year: 2014
  article-title: Effect of intrinsic and extrinsic factors on global and regional cortical thickness
  publication-title: PLoS One
– volume: 69
  start-page: 894
  year: 1974
  end-page: 908
  article-title: Comparative robustness of six tests in multivariate analysis of variance
  publication-title: J Am Stat Assoc
– volume: 22
  start-page: 1060
  year: 2004
  end-page: 1075
  article-title: A hybrid approach to the skull stripping problem in MRI
  publication-title: Neuroimage
– volume: 11
  start-page: 425
  year: 1984
  end-page: 448
  article-title: A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: Dependence on tissue type, NMR frequency, temperature, species, excision, and age
  publication-title: Med Phys
– volume: 35
  start-page: 3385
  year: 2014
  end-page: 3401
  article-title: Reconstruction of the human cerebral cortex robust to white matter lesions: Method and validation
  publication-title: Hum Brain Mapp
– year: 1988
– volume: 33
  start-page: 617.e1
  year: 2012
  end-page: 617.e9
  article-title: Normal age‐related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume?
  publication-title: Neurobiol Aging
– volume: 236
  start-page: 254
  year: 2005
  end-page: 260
  article-title: Intracortical lesions in multiple sclerosis: Improved detection with 3D double inversion‐recovery MR imaging
  publication-title: Radiology
– volume: 17
  start-page: 1122
  year: 2011
  end-page: 1129
  article-title: Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis
  publication-title: Mult Scler
– volume: 31
  start-page: 968
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
– volume: 30
  start-page: 432
  year: 2009
  end-page: 440
  article-title: Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area
  publication-title: Neurobiol Aging
– volume: 74
  start-page: 321
  year: 2010
  end-page: 328
  article-title: Widespread cortical thinning characterizes patients with MS with mild cognitive impairment
  publication-title: Neurology
– volume: 33
  start-page: 1579
  year: 2012
  end-page: 1585
  article-title: The impact of lesion in‐painting and registration methods on voxel‐based morphometry in detecting regional cerebral gray matter atrophy in multiple sclerosis
  publication-title: Am J Neuroradiol
– volume: 32
  start-page: 223
  year: 2010
  end-page: 228
  article-title: Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes
  publication-title: J Magn Reson Imaging
– ident: e_1_2_5_34_1
  doi: 10.1037/0033-2909.83.4.579
– ident: e_1_2_5_13_1
  doi: 10.1016/j.neuroimage.2005.07.042
– ident: e_1_2_5_15_1
– ident: e_1_2_5_28_1
  doi: 10.1016/j.msard.2012.01.006
– ident: e_1_2_5_36_1
  doi: 10.1016/j.jns.2008.12.034
– ident: e_1_2_5_6_1
  doi: 10.1212/WNL.0b013e3181cbcd03
– ident: e_1_2_5_33_1
  doi: 10.1080/01621459.1974.10480224
– ident: e_1_2_5_8_1
  doi: 10.3174/ajnr.A3083
– ident: e_1_2_5_26_1
– ident: e_1_2_5_29_1
  doi: 10.1002/jmri.20356
– ident: e_1_2_5_40_1
  doi: 10.1016/j.neuroimage.2004.03.032
– ident: e_1_2_5_4_1
  doi: 10.1016/j.neuroimage.2012.09.051
– ident: e_1_2_5_30_1
  doi: 10.1186/1471-2202-15-106
– ident: e_1_2_5_22_1
  doi: 10.1371/journal.pone.0096429
– ident: e_1_2_5_39_1
  doi: 10.1002/hbm.20566
– ident: e_1_2_5_14_1
  doi: 10.1002/jmri.20896
– ident: e_1_2_5_27_1
  doi: 10.1016/j.neurobiolaging.2010.07.013
– ident: e_1_2_5_20_1
  doi: 10.1109/42.906426
– ident: e_1_2_5_42_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_5_5_1
  doi: 10.1118/1.595535
– ident: e_1_2_5_7_1
  doi: 10.1136/jnnp-2011-300414
– ident: e_1_2_5_44_1
  doi: 10.1016/j.neuroimage.2008.10.037
– ident: e_1_2_5_21_1
  doi: 10.1148/radiol.2361040450
– ident: e_1_2_5_43_1
  doi: 10.1038/nrn1009
– ident: e_1_2_5_23_1
  doi: 10.1016/j.neuroimage.2006.02.051
– ident: e_1_2_5_12_1
  doi: 10.1006/nimg.1998.0395
– ident: e_1_2_5_38_1
  doi: 10.1007/s10439-005-9009-0
– ident: e_1_2_5_19_1
  doi: 10.1006/nimg.1998.0396
– ident: e_1_2_5_2_1
  doi: 10.1109/83.935036
– ident: e_1_2_5_3_1
  doi: 10.1002/hbm.21344
– ident: e_1_2_5_18_1
  doi: 10.1073/pnas.200033797
– ident: e_1_2_5_41_1
  doi: 10.1002/hbm.22409
– ident: e_1_2_5_25_1
  doi: 10.1111/j.1552-6569.2011.00585.x
– ident: e_1_2_5_31_1
  doi: 10.1016/j.nicl.2012.11.009
– ident: e_1_2_5_17_1
  doi: 10.1016/j.neurobiolaging.2007.07.022
– ident: e_1_2_5_32_1
  doi: 10.1177/1352458511405561
– ident: e_1_2_5_9_1
  doi: 10.1002/jmri.22214
– ident: e_1_2_5_16_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_5_35_1
  doi: 10.1523/JNEUROSCI.3692-13.2014
– ident: e_1_2_5_10_1
  doi: 10.1016/j.neuroimage.2006.10.006
– ident: e_1_2_5_11_1
  doi: 10.1097/00004728-199403000-00005
– ident: e_1_2_5_24_1
  doi: 10.1007/978-94-009-3143-5
– ident: e_1_2_5_37_1
  doi: 10.1093/brain/awg175
– reference: 6482839 - Med Phys. 1984 Jul-Aug;11(4):425-48
– reference: 11293693 - IEEE Trans Med Imaging. 2001 Jan;20(1):70-80
– reference: 24790200 - J Neurosci. 2014 Apr 30;34(18):6294-302
– reference: 15987979 - Radiology. 2005 Jul;236(1):254-60
– reference: 17869384 - Neurobiol Aging. 2009 Mar;30(3):432-40
– reference: 15219578 - Neuroimage. 2004 Jul;22(3):1060-75
– reference: 19201003 - J Neurol Sci. 2009 Jul 15;282(1-2):47-54
– reference: 21890577 - J Neurol Neurosurg Psychiatry. 2012 Jan;83(1):49-54
– reference: 21882300 - Hum Brain Mapp. 2012 Sep;33(9):2062-71
– reference: 12511860 - Nat Rev Neurosci. 2003 Jan;4(1):37-48
– reference: 23036446 - Neuroimage. 2013 Jan 15;65:1-12
– reference: 20101038 - Neurology. 2010 Jan 26;74(4):321-8
– reference: 16525763 - Ann Biomed Eng. 2006 Jan;34(1):142-51
– reference: 25200127 - BMC Neurosci. 2014;15:106
– reference: 10984517 - Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5
– reference: 19038349 - Neuroimage. 2009 Feb 15;44(4):1324-33
– reference: 25876935 - Mult Scler Relat Disord. 2012 Apr;1(2):81-6
– reference: 17457804 - J Magn Reson Imaging. 2007 May;25(5):932-7
– reference: 18255537 - IEEE Trans Image Process. 2001;10(8):1200-11
– reference: 16530430 - Neuroimage. 2006 Jul 1;31(3):968-80
– reference: 16126416 - Neuroimage. 2006 Jan 15;29(2):467-74
– reference: 8126267 - J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192-205
– reference: 22460341 - AJNR Am J Neuroradiol. 2012 Sep;33(8):1579-85
– reference: 18412131 - Hum Brain Mapp. 2009 Apr;30(4):1060-7
– reference: 24789100 - PLoS One. 2014;9(5):e96429
– reference: 20575080 - J Magn Reson Imaging. 2010 Jul;32(1):223-8
– reference: 21447022 - J Neuroimaging. 2012 Apr;22(2):129-36
– reference: 9931268 - Neuroimage. 1999 Feb;9(2):179-94
– reference: 24382742 - Hum Brain Mapp. 2014 Jul;35(7):3385-401
– reference: 21543552 - Mult Scler. 2011 Sep;17(9):1122-9
– reference: 20739099 - Neurobiol Aging. 2012 Mar;33(3):617.e1-9
– reference: 9931269 - Neuroimage. 1999 Feb;9(2):195-207
– reference: 24179765 - Neuroimage Clin. 2012 Nov 30;2:120-31
– reference: 17112743 - Neuroimage. 2007 Jan 15;34(2):509-17
– reference: 12391568 - Hum Brain Mapp. 2002 Nov;17(3):143-55
– reference: 16651008 - Neuroimage. 2006 Aug 1;32(1):180-94
– reference: 15971174 - J Magn Reson Imaging. 2005 Jul;22(1):13-22
– reference: 12805100 - Brain. 2003 Aug;126(Pt 8):1734-44
SSID ssj0011501
Score 2.2574375
Snippet A comprehensive analysis of the effect of lesion in‐painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large...
A comprehensive analysis of the effect of lesion in-painting on the estimation of cortical thickness using magnetic resonance imaging was performed on a large...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3749
SubjectTerms Adolescent
Adult
Algorithms
Cerebral Cortex - pathology
Cohort Studies
cortical thickness
Double-Blind Method
Electromagnetic Fields
Female
FreeSurfer
Humans
Image Processing, Computer-Assisted - methods
lesion in-painting
Magnetic Resonance Imaging - methods
Male
Middle Aged
multiple sclerosis
Multiple Sclerosis - pathology
multiple sclerosis lesions
Multiple Sclerosis, Relapsing-Remitting - pathology
Multivariate Analysis
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwELaWVgJeOHY5Agsyh1b7ktI4dpzwVo6lAlohQUX2KbIdR1u1TaumFSxP_AR-I7-EsXNAtId4i5LJNRkn33i-fIPQ84BwCYmFdhWHdJV6Qrum2ONmkvBUSk-SyPzvPBoHwwl9H7N4B9Ut69rle_LiRC56BEA9u4K6AQO03UHdyfjT4NgWMQPmRlVO1TeiogBGavGgf_dtfXK6xnvfz8OTZ2mR17b5Spx-E_N5G7rab8_RzZIDWVjJQkM5mfW2G9lTP84KOl54W7fQjQp44kEZKbfRjs530d4gh6R7cYoPsKWC2jn2XXR1VFXc91BWyhvjZYan-e-fv1ZiantL4GWOIXG1M-HYcOZn5p2JF3-nHAvYAdd8RVzAScE70-IlHuC5oZ9j05t3vcFW4PYOmhy9_fJ66Fa9GVwFkIW5pnssi0ggMiGZjlI_9UTKTM1OMZqG0qNSqVQJTbmkGfek5qSfyhQeoWKR1P5d1MmXub6PsOpz6WkKK3WfpoGKMglZDDf1PRIGGXHQYf34ElUJl5v-GfOklFwmCbgzse500NPGdFWqdZxndGBjoLEQ65mht3GWfB2_Sz5_iP2PccySNw7ar4MkqUZ2kXjcgwwr9EPqoCfNZhiTptAicr3cWpvATBQF_mU2xPQG4wRs7pVx11wQ5JhREFI4A29FZGNgNMHbW_LpidUGpwbwhpGDnjWxe5knDm1UX2yRDF-N7MKD_zrgQ3QdACUryY77qLNZb_UjAG0b-bgat38Ahyw-cw
  priority: 102
  providerName: Unpaywall
Title Effect of in-painting on cortical thickness measurements in multiple sclerosis: A large cohort study
URI https://api.istex.fr/ark:/67375/WNG-SKX3LXX5-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.22875
https://www.ncbi.nlm.nih.gov/pubmed/26096844
https://www.proquest.com/docview/1715858384
https://www.proquest.com/docview/1716933063
https://www.proquest.com/docview/1722172723
https://pubmed.ncbi.nlm.nih.gov/PMC4839289
http://doi.org/10.1002/hbm.22875
UnpaywallVersion submittedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF5VrQS8cLQchlIth6q-OI3Xa68NT-EoEZAIAVGNhGTtrtdqlMSJcgjKEz-B38gvYWZ9VIFSId4seyzb49nd-WZmvyHkcciEAmBhXC0ArnJPGheTPW6umMiU8hSLcb9zrx92B_x1EiQb5Gm9F6bkh2gCbjgy7HyNA1yqxeEZaeiJmrQY-Pu4wdzzQwun3jfUUejoWLAFS6wbwwxcswq12WFz59patIVq_Xqeo_lnveTlVTGTp1_keLzu09pF6ega-Vx_TlmLMmqtlqqlv_3G9Pif33udXK2cVdopresG2TDFNtnpFADUJ6d0n9ryURuX3yaXelWWfofkJSUyneZ0WPz8_mMmh7YfBZ0WFMCujZ5TrLMf4TxLJ2dhygXcQOsaR7qAh4LihosntEPHWLJOsZ_vfEktKe5NMjh6-fF51636Obga3JzAxY6zQcxCmUsVmDjzM09mAeb5dMCzSHlcaZ1pabhQPBeeMoK1M5UByNJBrIx_i2wW08LcIVS3hfIMh5OmzbNQx7kC5CMwJ8iiMGcOOaj_bKorsnPsuTFOS5pmloI6U6tOhzxsRGclw8d5QvvWPBoJOR9hSZwI0uP-q_TDm8R_myRB-sIhu7X9pNVssEg94QEqi_yIO-RBcxnGMSZnZGGmKysTYnAp9C-SYdhPTDCQuV2aZPNCgEvjMOLwBLFmrI0A8oivXymGJ5ZPnKOTHMUOedSY9UWaOLBW-neJtPusZw_u_rvoPXIFPNGgrJLcJZvL-crcB29vqfbssN4jW4P-u86nXy5cVHY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVqJceLQ8AgWWh6penMbrXa-NuIRHCTTJAVo1F7TyrtdqlMSJ8hCUEz-B38gvYWYduwqUCnGz4rFsb2Z3v29m_A0hz0MmNRAL6xkJdJX7ifUw2eNlmslUa1-zGL937nTD1jH_0BO9NfKy_Bam0IeoAm44M9x6jRMcA9L756qhp3pUZwD4xRWywUPgKQiJPlbiUQh1HN2CTdaLYQ0udYUabL-6dGU32sCB_XoR1PyzYnJzkU-Ssy_JcLiKat22dHCDfC5fqKhGGdQXc103337TevzfN75Jri_xKm0WDnaLrNl8i2w3c-DqozO6S10FqQvNb5GrnWWifptkhSoyHWe0n__8_mOS9F1LCjrOKfBdF0CnWGo_wKWWjs4jlTO4gJZljnQGN4WR689e0CYdYtU6xZa-0zl1uri3yfHB26PXLW_Z0sEzgHSEh01nRczCJEu0sHEapH6SCkz1GcHTSPtcG5OaxHKpeSZ9bSVrpDoFnmVErG1wh6zn49zeI9Q0pPYthx9tg6ehiTMN5EdiWpBFYcZqZK_8a5VZ6p1j242hKpSamYLhVG44a-RpZTopRD4uMtp1_lFZJNMBVsVJoU6679Snw17Q7vWEelMjO6UDqeWCMFO-9IGYRUHEa-RJdRqmMuZnktyOF84mxPhSGFxmw7ClmGRgc7fwyeqBgJrGYcThDnLFWysDlBJfPZP3T52kOEecHMU18qzy68tGYs-56d8tVOtVxx3c_3fTx2SzddRpq_b77uEDcg2AqSiKJnfI-ny6sA8B_M31IzfHfwGYhFbn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJo29cNmAFQaYi6a9pGtcO04QL4VSClsrBEz0BVmx42hV27TqRTCe-An8Rn4J5zhNpsKYEG9RcqLEJ8f2uXz5DiFPAyY1BBbWMxLCVe7H1sNij5dqJhOtfc0i_N-50w3aJ_xtT_TWyPPiX5icH6JMuOHMcOs1TnA7SdLDc9bQUz2qMnD4xRWywUUUIqCv-b4kj0JXx4VbsMl6EazBBa9QjR2Wt67sRhuo2K8XuZp_IiavLrJJfPYlHg5XvVq3LbWuk8_FgHI0yqC6mOuq-fYb1-P_jvgGubb0V2kjN7CbZM1m22SnkUGsPjqj-9QhSF1qfptsdpaF-h2S5qzIdJzSfvbz-49J3HctKeg4oxDvugQ6Raj9AJdaOjrPVM7gBlrAHOkMHgqa68-e0QYdImqdYkvf6Zw6Xtxb5KT16uPLtrds6eAZ8HSEh01nRcSCOI21sFFST_w4EVjqM4Inofa5NiYxseVS81T62kpWS3QCcZYRkbb122Q9G2d2l1BTk9q3HE7aGk8CE6Uagh-JZUEWBimrkIPi0yqz5DvHthtDlTM1MwXqVE6dFfK4FJ3kJB8XCe07-ygl4ukAUXFSqE_d1-rDUa9-3OsJ1ayQvcKA1HJBmClf-hCYhfWQV8ij8jJMZazPxJkdL5xMgPmloH6ZDMOWYpKBzJ3cJssXgtA0CkIOT5Ar1loKIJX46pWsf-ooxTn6yWFUIU9Ku75MEwfOTP8uodovOu7g7r-LPiSb75otdfyme3SPbIFfKnLM5B5Zn08X9j74fnP9wE3xX80mVms
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zj9MwELaWVgJeOHY5Agsyh1b7ktI4dpzwVo6lAlohQUX2KbIdR1u1TaumFSxP_AR-I7-EsXNAtId4i5LJNRkn33i-fIPQ84BwCYmFdhWHdJV6Qrum2ONmkvBUSk-SyPzvPBoHwwl9H7N4B9Ut69rle_LiRC56BEA9u4K6AQO03UHdyfjT4NgWMQPmRlVO1TeiogBGavGgf_dtfXK6xnvfz8OTZ2mR17b5Spx-E_N5G7rab8_RzZIDWVjJQkM5mfW2G9lTP84KOl54W7fQjQp44kEZKbfRjs530d4gh6R7cYoPsKWC2jn2XXR1VFXc91BWyhvjZYan-e-fv1ZiantL4GWOIXG1M-HYcOZn5p2JF3-nHAvYAdd8RVzAScE70-IlHuC5oZ9j05t3vcFW4PYOmhy9_fJ66Fa9GVwFkIW5pnssi0ggMiGZjlI_9UTKTM1OMZqG0qNSqVQJTbmkGfek5qSfyhQeoWKR1P5d1MmXub6PsOpz6WkKK3WfpoGKMglZDDf1PRIGGXHQYf34ElUJl5v-GfOklFwmCbgzse500NPGdFWqdZxndGBjoLEQ65mht3GWfB2_Sz5_iP2PccySNw7ar4MkqUZ2kXjcgwwr9EPqoCfNZhiTptAicr3cWpvATBQF_mU2xPQG4wRs7pVx11wQ5JhREFI4A29FZGNgNMHbW_LpidUGpwbwhpGDnjWxe5knDm1UX2yRDF-N7MKD_zrgQ3QdACUryY77qLNZb_UjAG0b-bgat38Ahyw-cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+in%E2%80%90painting+on+cortical+thickness+measurements+in+multiple+sclerosis%3A+A+large+cohort+study&rft.jtitle=Human+brain+mapping&rft.au=Govindarajan%2C+Koushik+A.&rft.au=Datta%2C+Sushmita&rft.au=Hasan%2C+Khader+M.&rft.au=Choi%2C+Sangbum&rft.date=2015-10-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=36&rft.issue=10&rft.spage=3749&rft.epage=3760&rft_id=info:doi/10.1002%2Fhbm.22875&rft_id=info%3Apmid%2F26096844&rft.externalDocID=PMC4839289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon