Angiotensin II Induces Interleukin-6 in Humans Through a Mineralocorticoid Receptor–Dependent Mechanism
This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 μg/kg per hour for 10 hours followed by 0.9 μg/kg per hour for 4 hours) and vehicle in a r...
Saved in:
Published in | Hypertension (Dallas, Tex. 1979) Vol. 48; no. 6; pp. 1050 - 1057 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Heart Association, Inc
01.12.2006
Hagerstown, MD Lippincott |
Subjects | |
Online Access | Get full text |
ISSN | 0194-911X 1524-4563 1524-4563 |
DOI | 10.1161/01.HYP.0000248135.97380.76 |
Cover
Abstract | This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 μg/kg per hour for 10 hours followed by 0.9 μg/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7±4.9 to 9.4±7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure13.7±7.5 and 15.2±9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (−202±73 and −167±112 mL/min/1.73 kg/m; P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0±10.6 versus 9.0±5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F2-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8±1.1 to 2.4±1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F2-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor–dependent mechanism in humans. In contrast, angiotensin II–induced oxidative stress, as measured by F2-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent. |
---|---|
AbstractList | This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 μg/kg per hour for 10 hours followed by 0.9 μg/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7±4.9 to 9.4±7.1 pg/mL; F=4.94;
P
=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7±7.5 and 15.2±9.4 mm Hg during placebo and spironolactone, respectively;
P
<0.001 for angiotensin II) and decreased renal plasma flow (−202±73 and −167±112 mL/min/1.73 kg/m
2
;
P
<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0±10.6 versus 9.0±5.7 ng/dL;
P
=0.002). Angiotensin II transiently increased free plasma F
2
-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8±1.1 to 2.4±1.4 pg/mL; F=4.5;
P
=0.04) but spironolactone prevented this effect (F=6.4;
P
=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F
2
-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor–dependent mechanism in humans. In contrast, angiotensin II–induced oxidative stress, as measured by F
2
-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent. This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 mug/kg per hour for 10 hours followed by 0.9 mug/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7+/-4.9 to 9.4+/-7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7+/-7.5 and 15.2+/-9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (-202+/-73 and -167+/-112 mL/min/1.73 kg/m(2); P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0+/-10.6 versus 9.0+/-5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F(2)-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8+/-1.1 to 2.4+/-1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F(2)-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor-dependent mechanism in humans. In contrast, angiotensin II-induced oxidative stress, as measured by F(2)-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent.This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 mug/kg per hour for 10 hours followed by 0.9 mug/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7+/-4.9 to 9.4+/-7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7+/-7.5 and 15.2+/-9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (-202+/-73 and -167+/-112 mL/min/1.73 kg/m(2); P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0+/-10.6 versus 9.0+/-5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F(2)-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8+/-1.1 to 2.4+/-1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F(2)-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor-dependent mechanism in humans. In contrast, angiotensin II-induced oxidative stress, as measured by F(2)-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent. This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 kg/kg per hour for 10 hours followed by 0.9 kg/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7c4.9 to 9.4c7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7c7.5 and 15.2c9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (-202c73 and -167c112 mL/min/1.73 kg/m super(2); P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0c10.6 versus 9.0c5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F sub(2)-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8c1.1 to 2.4c1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F sub(2)-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor-dependent mechanism in humans. In contrast, angiotensin II-induced oxidative stress, as measured by F sub(2)-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent. This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 mug/kg per hour for 10 hours followed by 0.9 mug/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7+/-4.9 to 9.4+/-7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7+/-7.5 and 15.2+/-9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (-202+/-73 and -167+/-112 mL/min/1.73 kg/m(2); P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0+/-10.6 versus 9.0+/-5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F(2)-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8+/-1.1 to 2.4+/-1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F(2)-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor-dependent mechanism in humans. In contrast, angiotensin II-induced oxidative stress, as measured by F(2)-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent. This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 μg/kg per hour for 10 hours followed by 0.9 μg/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7±4.9 to 9.4±7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure13.7±7.5 and 15.2±9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (−202±73 and −167±112 mL/min/1.73 kg/m; P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0±10.6 versus 9.0±5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F2-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8±1.1 to 2.4±1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F2-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor–dependent mechanism in humans. In contrast, angiotensin II–induced oxidative stress, as measured by F2-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent. |
Author | Murphey, Laine J. Yu, Chang Luther, James M. Vaughan, Douglas E. Gainer, James V. Morrow, Jason D. Brown, Nancy J. |
AuthorAffiliation | From the Divisions of Clinical Pharmacology (J.M.L., J.V.G., L.J.M., J.D.M., N.J.B.), Nephrology and Hypertension (J.M.L.), and Cardiovascular Medicine (D.E.V.), the Departments of Medicine and Pharmacology, and the Department of Biostatistics (C.Y.), Vanderbilt University Medical Center; Nashville, Tenn; and the Veterans Affairs Medical Center (D.E.V.), Nashville, Tenn |
AuthorAffiliation_xml | – name: From the Divisions of Clinical Pharmacology (J.M.L., J.V.G., L.J.M., J.D.M., N.J.B.), Nephrology and Hypertension (J.M.L.), and Cardiovascular Medicine (D.E.V.), the Departments of Medicine and Pharmacology, and the Department of Biostatistics (C.Y.), Vanderbilt University Medical Center; Nashville, Tenn; and the Veterans Affairs Medical Center (D.E.V.), Nashville, Tenn |
Author_xml | – sequence: 1 givenname: James surname: Luther middlename: M. fullname: Luther, James M. organization: From the Divisions of Clinical Pharmacology (J.M.L., J.V.G., L.J.M., J.D.M., N.J.B.), Nephrology and Hypertension (J.M.L.), and Cardiovascular Medicine (D.E.V.), the Departments of Medicine and Pharmacology, and the Department of Biostatistics (C.Y.), Vanderbilt University Medical Center; Nashville, Tenn; and the Veterans Affairs Medical Center (D.E.V.), Nashville, Tenn – sequence: 2 givenname: James surname: Gainer middlename: V. fullname: Gainer, James V. – sequence: 3 givenname: Laine surname: Murphey middlename: J. fullname: Murphey, Laine J. – sequence: 4 givenname: Chang surname: Yu fullname: Yu, Chang – sequence: 5 givenname: Douglas surname: Vaughan middlename: E. fullname: Vaughan, Douglas E. – sequence: 6 givenname: Jason surname: Morrow middlename: D. fullname: Morrow, Jason D. – sequence: 7 givenname: Nancy surname: Brown middlename: J. fullname: Brown, Nancy J. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18323939$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17043157$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLeFV0AREnBK8MSOnXBqVQq7UisQKhKcLMeZdE0Te7ETVb3xDrwhT4LbXajEAWFpPIf55h_p_w_InvMOCXkGtAAQ8IpCsfzyoaDplbwGVhWNZDUtpHhAFlCVPOeVYHtkQaHheQPweZ8cxPiVUuCcy0dkHyTlDCq5IPbYXVo_oYvWZatVtnLdbDCmPmEYcL6yLhdZmi3nUbuYXayDny_Xmc7OrcOgB298mKzxtss-osHN5MPP7z_e4AZdh27KztGstbNxfEwe9nqI-GTXD8mnt6cXJ8v87P271cnxWW6qmpd5K0BQ2em6BlMZLsu-6oXhWAnRAgeUrehAdLXQPa001F3DWcvaZIRgaVCxQ_Jyq7sJ_tuMcVKjjQaHQTv0c1QyWZA8E00iX_yTFDUIJgUk8OkOnNsRO7UJdtThRv22MQHPd4CORg990M7YeM_VrGQNu714tOVM8DEG7JWxk56sd1PQdlBA1W3CioJKCav7hNVdwkqKJPH6L4k_V_5nmW-Xr_2Q8o1Xw3yNQa1RD9P6boOXos5LSgWkj-apoGS_AHnouos |
CODEN | HPRTDN |
CitedBy_id | crossref_primary_10_3389_fcvm_2020_568720 crossref_primary_10_1161_HYPERTENSIONAHA_121_17659 crossref_primary_10_2147_DMSO_S438618 crossref_primary_10_3390_v13101906 crossref_primary_10_1016_j_neubiorev_2009_07_005 crossref_primary_10_3892_ijmm_2017_3201 crossref_primary_10_1155_2021_9951540 crossref_primary_10_1016_j_tem_2009_05_006 crossref_primary_10_1007_s00424_022_02705_8 crossref_primary_10_1007_s11906_010_0125_3 crossref_primary_10_1161_JAHA_120_018716 crossref_primary_10_1111_cen_13891 crossref_primary_10_1038_s41371_021_00627_z crossref_primary_10_1152_ajpregu_90995_2008 crossref_primary_10_1038_s41440_022_01077_x crossref_primary_10_3389_fcimb_2020_00317 crossref_primary_10_3389_fmicb_2022_1042200 crossref_primary_10_1016_j_virusres_2023_199091 crossref_primary_10_1152_physiolgenomics_00083_2018 crossref_primary_10_3390_ijms23169243 crossref_primary_10_1183_13993003_01634_2020 crossref_primary_10_1111_j_1464_5491_2010_03087_x crossref_primary_10_1016_j_mce_2014_08_003 crossref_primary_10_15171_jnp_2017_04 crossref_primary_10_1177_1470320315575848 crossref_primary_10_1002_prp2_1189 crossref_primary_10_1007_s11560_007_0119_6 crossref_primary_10_1038_s41598_024_54930_z crossref_primary_10_1681_ASN_2014111137 crossref_primary_10_1007_s11010_024_05043_8 crossref_primary_10_1007_s11906_019_1003_2 crossref_primary_10_1097_CRD_0b013e3181b18e03 crossref_primary_10_1007_s11906_014_0521_1 crossref_primary_10_3389_fimmu_2024_1502299 crossref_primary_10_1055_s_0040_1713346 crossref_primary_10_3390_jcm9113547 crossref_primary_10_52727_2078_256X_2021_3_85_96 crossref_primary_10_3389_fphar_2024_1377113 crossref_primary_10_1152_ajpregu_00207_2009 crossref_primary_10_1021_acschemneuro_1c00359 crossref_primary_10_1007_s12170_017_0537_6 crossref_primary_10_3390_ijms231810374 crossref_primary_10_3390_jcm12062445 crossref_primary_10_3389_fphar_2020_01154 crossref_primary_10_1016_j_steroids_2014_08_016 crossref_primary_10_1073_pnas_0804037106 crossref_primary_10_2310_6650_2007_00020 crossref_primary_10_3390_ijtm3020018 crossref_primary_10_3389_fphar_2020_01278 crossref_primary_10_1186_s13027_021_00369_0 crossref_primary_10_1016_j_bcp_2022_114978 crossref_primary_10_1016_j_mce_2011_06_014 crossref_primary_10_1016_j_steroids_2014_08_014 crossref_primary_10_1097_HJH_0000000000002990 crossref_primary_10_1016_j_imlet_2021_02_002 crossref_primary_10_3390_ijms20205214 crossref_primary_10_1089_ars_2013_5258 crossref_primary_10_1089_met_2009_0116 crossref_primary_10_3389_fphys_2020_588248 crossref_primary_10_1016_j_biopha_2024_116648 crossref_primary_10_1210_er_2007_0030 crossref_primary_10_3390_ijms22094762 crossref_primary_10_1586_eem_10_10 crossref_primary_10_1161_HYPERTENSIONAHA_124_21712 crossref_primary_10_1038_ajh_2011_113 crossref_primary_10_1016_j_ijcard_2016_04_133 crossref_primary_10_1007_s10741_019_09860_8 crossref_primary_10_1042_CS20070123 crossref_primary_10_1016_j_cjca_2014_12_006 crossref_primary_10_1183_13993003_00848_2018 crossref_primary_10_1016_j_lfs_2023_121405 crossref_primary_10_1159_000441223 crossref_primary_10_3389_fimmu_2024_1465625 crossref_primary_10_1161_CIRCRESAHA_116_303697 crossref_primary_10_1038_nrneph_2010_30 crossref_primary_10_1016_j_ijcard_2013_08_022 crossref_primary_10_1152_ajprenal_00594_2015 crossref_primary_10_1097_MAT_0000000000000129 crossref_primary_10_1016_j_mehy_2008_09_008 crossref_primary_10_3803_EnM_2020_797 crossref_primary_10_1016_j_freeradbiomed_2018_05_085 crossref_primary_10_1016_j_cyto_2012_08_016 crossref_primary_10_1016_j_jash_2012_11_007 crossref_primary_10_1097_CCM_0b013e31825b8be2 crossref_primary_10_1097_HJH_0000000000000358 crossref_primary_10_3109_08037051_2014_940710 crossref_primary_10_1186_s13098_016_0164_2 crossref_primary_10_1016_j_cpcardiol_2024_102742 crossref_primary_10_1016_j_thromres_2008_12_040 crossref_primary_10_1016_j_steroids_2011_02_015 crossref_primary_10_1007_s11010_017_3026_9 crossref_primary_10_1111_1440_1681_12085 crossref_primary_10_1681_ASN_2011030287 crossref_primary_10_3389_fcvm_2022_1037369 crossref_primary_10_3390_medicina61020362 crossref_primary_10_1186_1479_5876_9_169 crossref_primary_10_1093_eurjhf_hfp023 crossref_primary_10_1007_s11357_024_01170_8 crossref_primary_10_1124_pharmrev_124_001060 crossref_primary_10_3390_ijms18122563 crossref_primary_10_1055_a_1172_1352 crossref_primary_10_1016_j_pharmthera_2020_107799 crossref_primary_10_1002_ehf2_14127 crossref_primary_10_3389_fimmu_2020_01472 crossref_primary_10_3390_ijms25021082 |
Cites_doi | 10.1016/S0140-6736(02)08089-3 10.1056/NEJM199104183241605 10.1097/01.hjh.0000170379.08214.5a 10.1111/j.1651-2227.1999.tb00065.x 10.1002/j.1460-2075.1989.tb08554.x 10.1016/S0002-9610(00)00534-1 10.1161/circ.99.20.2694 10.1016/S0140-6736(01)06178-5 10.1056/NEJM200003233421202 10.1677/joe.1.06017 10.1161/01.cir.0000125690.80303.a8 10.1161/01.hyp.0000176236.55322.18 10.1161/res.85.1.23 10.1161/circ.102.9.994 10.1016/j.freeradbiomed.2004.09.017 10.1056/NEJM200001203420301 10.1089/152308602762197407 10.1016/S0002-9440(10)64454-9 10.1172/JCI111176 10.1152/ajpheart.1984.246.4.H608 10.1161/hyp.33.4.981 10.1253/circj.68.376 10.1161/circ.99.7.855 10.1172/JCI118623 10.1056/NEJM197203022860901 10.1016/0196-9781(91)90070-6 10.1161/01.cir.0000039528.49161.e9 10.1016/S0140-6736(03)14286-9 10.1042/cs0870397 10.1161/circ.96.10.3542 10.1161/circ.99.16.2079 10.1161/01.hyp.0000034738.79310.06 10.1016/j.jacc.2004.03.065 10.1210/endo-111-3-988 10.1016/S0165-2478(98)00025-X 10.1016/S0895-7061(02)02957-6 10.1210/jcem.87.2.7980 10.1161/01.cir.0000153272.48711.b9 10.1161/01.hyp.0000174327.53863.86 10.1161/circ.105.3.393 10.1139/y05-068 10.1056/NEJM199505043321804 10.1161/01.hyp.0000226046.58883.32 10.1161/01.res.0000159937.05502.d1 10.1016/j.steroids.2004.05.005 10.1161/01.res.0000204452.46568.57 10.1038/nature01323 10.1016/S0891-5849(03)00395-2 10.1161/01.cir.0000140265.21608.8e 10.1161/hyp.39.1.149 10.1161/01.hyp.20.1.67 10.1097/01.fjc.0000185783.00391.60 10.1210/er.2005-0004 10.1007/s11906-001-0082-y 10.1161/hyp.37.2.787 |
ContentType | Journal Article |
Copyright | 2006 American Heart Association, Inc. 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 American Heart Association, Inc. – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 |
DOI | 10.1161/01.HYP.0000248135.97380.76 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4563 |
EndPage | 1057 |
ExternalDocumentID | 17043157 18323939 10_1161_01_HYP_0000248135_97380_76 00004268-200612000-00012 |
Genre | Randomized Controlled Trial Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL060906 – fundername: NIEHS NIH HHS grantid: ES013125 – fundername: NIGMS NIH HHS grantid: GM015431 – fundername: NCI NIH HHS grantid: CA077839 – fundername: NIGMS NIH HHS grantid: GM 007569 – fundername: NHLBI NIH HHS grantid: HL077389 – fundername: NCRR NIH HHS grantid: RR000095 – fundername: NIDDK NIH HHS grantid: DK048831 – fundername: NHLBI NIH HHS grantid: HL067308 |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 18M 1J1 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO AAYEP ABASU ABBUW ABDIG ABJNI ABOCM ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFBFQ AFDTB AFEXH AFFNX AFNMH AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BAWUL BCGUY BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B N4W N9A N~7 N~B N~M O9- OAG OAH OB3 OCUKA ODA ODMTH OGROG OHYEH OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YHZ YOC YYM YYP ZFV ZGI ZZMQN AAYXX ADGHP CITATION IQODW OZ- ACIJW AWKKM CGR CUY CVF ECM EIF NPM OLW RHF 7X8 7T5 ADKSD H94 |
ID | FETCH-LOGICAL-c5842-b61607da881c5c472f5f6c4e566b141e7b6d16d86af05a18d943b3b24863d1653 |
ISSN | 0194-911X 1524-4563 |
IngestDate | Mon Sep 08 05:04:44 EDT 2025 Fri Sep 05 08:43:46 EDT 2025 Wed Feb 19 01:44:37 EST 2025 Mon Jul 21 09:13:26 EDT 2025 Tue Jul 01 04:30:41 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 Fri May 16 03:51:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Systolic pressure Oxidative stress Potassium sparing diuretic Intravenous administration Mineralocorticoid Peptide hormone Cardiovascular disease Aldosterone Inorganic element Interleukin 6 Octapeptide Spironolactone oxidative Arterial pressure Blood pressure Angiotensin II C reactive protein Human Hypertension stress F2-isoprostanes Steroid hormone Inflammation mineralocorticoid receptor Catecholamine IL-6 Aldosterone antagonist Sodium Adrenal hormone Neurotransmitter Double blind study Norepinephrine Potassium Comparative study |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5842-b61607da881c5c472f5f6c4e566b141e7b6d16d86af05a18d943b3b24863d1653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/01.HYP.0000248135.97380.76 |
PMID | 17043157 |
PQID | 68163761 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_744713569 proquest_miscellaneous_68163761 pubmed_primary_17043157 pascalfrancis_primary_18323939 crossref_citationtrail_10_1161_01_HYP_0000248135_97380_76 crossref_primary_10_1161_01_HYP_0000248135_97380_76 wolterskluwer_health_00004268-200612000-00012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-December |
PublicationDateYYYYMMDD | 2006-12-01 |
PublicationDate_xml | – month: 12 year: 2006 text: 2006-December |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA Hagerstown, MD |
PublicationPlace_xml | – name: Philadelphia, PA – name: Hagerstown, MD – name: United States |
PublicationTitle | Hypertension (Dallas, Tex. 1979) |
PublicationTitleAlternate | Hypertension |
PublicationYear | 2006 |
Publisher | American Heart Association, Inc Lippincott |
Publisher_xml | – name: American Heart Association, Inc – name: Lippincott |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_1_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 (e_1_3_2_47_2) 1993; 122 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 (e_1_3_2_28_2) 1980; 13 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 17261639 - Hypertension. 2007 Mar;49(3):e18; author reply e19 |
References_xml | – ident: e_1_3_2_4_2 doi: 10.1016/S0140-6736(02)08089-3 – ident: e_1_3_2_1_2 doi: 10.1056/NEJM199104183241605 – ident: e_1_3_2_37_2 doi: 10.1097/01.hjh.0000170379.08214.5a – ident: e_1_3_2_42_2 doi: 10.1111/j.1651-2227.1999.tb00065.x – ident: e_1_3_2_41_2 doi: 10.1002/j.1460-2075.1989.tb08554.x – ident: e_1_3_2_43_2 doi: 10.1016/S0002-9610(00)00534-1 – ident: e_1_3_2_50_2 doi: 10.1161/circ.99.20.2694 – ident: e_1_3_2_3_2 doi: 10.1016/S0140-6736(01)06178-5 – ident: e_1_3_2_12_2 doi: 10.1056/NEJM200003233421202 – ident: e_1_3_2_33_2 doi: 10.1677/joe.1.06017 – ident: e_1_3_2_13_2 doi: 10.1161/01.cir.0000125690.80303.a8 – ident: e_1_3_2_20_2 doi: 10.1161/01.hyp.0000176236.55322.18 – ident: e_1_3_2_53_2 doi: 10.1161/res.85.1.23 – ident: e_1_3_2_38_2 doi: 10.1161/circ.102.9.994 – ident: e_1_3_2_51_2 doi: 10.1016/j.freeradbiomed.2004.09.017 – ident: e_1_3_2_6_2 doi: 10.1056/NEJM200001203420301 – ident: e_1_3_2_52_2 doi: 10.1089/152308602762197407 – ident: e_1_3_2_21_2 doi: 10.1016/S0002-9440(10)64454-9 – ident: e_1_3_2_29_2 doi: 10.1172/JCI111176 – ident: e_1_3_2_25_2 doi: 10.1152/ajpheart.1984.246.4.H608 – ident: e_1_3_2_46_2 doi: 10.1161/hyp.33.4.981 – ident: e_1_3_2_36_2 doi: 10.1253/circj.68.376 – ident: e_1_3_2_11_2 doi: 10.1161/circ.99.7.855 – ident: e_1_3_2_55_2 doi: 10.1172/JCI118623 – ident: e_1_3_2_2_2 doi: 10.1056/NEJM197203022860901 – ident: e_1_3_2_30_2 doi: 10.1016/0196-9781(91)90070-6 – ident: e_1_3_2_15_2 doi: 10.1161/01.cir.0000039528.49161.e9 – ident: e_1_3_2_5_2 doi: 10.1016/S0140-6736(03)14286-9 – ident: e_1_3_2_27_2 doi: 10.1042/cs0870397 – ident: e_1_3_2_44_2 doi: 10.1161/circ.96.10.3542 – ident: e_1_3_2_10_2 doi: 10.1161/circ.99.16.2079 – ident: e_1_3_2_26_2 doi: 10.1161/01.hyp.0000034738.79310.06 – ident: e_1_3_2_18_2 doi: 10.1016/j.jacc.2004.03.065 – ident: e_1_3_2_45_2 doi: 10.1210/endo-111-3-988 – ident: e_1_3_2_40_2 doi: 10.1016/S0165-2478(98)00025-X – ident: e_1_3_2_49_2 doi: 10.1016/S0895-7061(02)02957-6 – ident: e_1_3_2_57_2 doi: 10.1210/jcem.87.2.7980 – ident: e_1_3_2_19_2 doi: 10.1161/01.cir.0000153272.48711.b9 – ident: e_1_3_2_56_2 doi: 10.1161/01.hyp.0000174327.53863.86 – ident: e_1_3_2_8_2 doi: 10.1161/circ.105.3.393 – ident: e_1_3_2_24_2 doi: 10.1139/y05-068 – ident: e_1_3_2_31_2 doi: 10.1056/NEJM199505043321804 – ident: e_1_3_2_17_2 doi: 10.1161/01.hyp.0000226046.58883.32 – ident: e_1_3_2_23_2 doi: 10.1161/01.res.0000159937.05502.d1 – ident: e_1_3_2_35_2 doi: 10.1016/j.steroids.2004.05.005 – ident: e_1_3_2_39_2 doi: 10.1161/01.res.0000204452.46568.57 – ident: e_1_3_2_9_2 doi: 10.1038/nature01323 – volume: 13 start-page: 26 year: 1980 ident: e_1_3_2_28_2 publication-title: Clin Nephrol – ident: e_1_3_2_14_2 doi: 10.1016/S0891-5849(03)00395-2 – ident: e_1_3_2_32_2 doi: 10.1161/01.cir.0000140265.21608.8e – volume: 122 start-page: 404 year: 1993 ident: e_1_3_2_47_2 publication-title: J Lab Clin Med – ident: e_1_3_2_54_2 doi: 10.1161/hyp.39.1.149 – ident: e_1_3_2_48_2 doi: 10.1161/01.hyp.20.1.67 – ident: e_1_3_2_16_2 doi: 10.1097/01.fjc.0000185783.00391.60 – ident: e_1_3_2_34_2 doi: 10.1210/er.2005-0004 – ident: e_1_3_2_7_2 doi: 10.1007/s11906-001-0082-y – ident: e_1_3_2_22_2 doi: 10.1161/hyp.37.2.787 – reference: 17261639 - Hypertension. 2007 Mar;49(3):e18; author reply e19 |
SSID | ssj0014447 |
Score | 2.270876 |
Snippet | This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We... |
SourceID | proquest pubmed pascalfrancis crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1050 |
SubjectTerms | Adult Aldosterone - administration & dosage Angiotensin II - metabolism Arterial hypertension. Arterial hypotension Biological and medical sciences Blood and lymphatic vessels Cardiology. Vascular system Clinical manifestations. Epidemiology. Investigative techniques. Etiology Cross-Over Studies Diet, Sodium-Restricted Double-Blind Method Endocrine kidney. Renin-angiotensin-aldosterone system Female Fundamental and applied biological sciences. Psychology Humans Hydroxycorticosteroids - administration & dosage Infusions, Intravenous Interleukin-6 - metabolism Male Medical sciences Mineralocorticoid Receptor Antagonists - pharmacology Oxidative Stress - drug effects Receptors, Mineralocorticoid - metabolism Spironolactone - pharmacology Vertebrates: endocrinology |
Title | Angiotensin II Induces Interleukin-6 in Humans Through a Mineralocorticoid Receptor–Dependent Mechanism |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004268-200612000-00012 https://www.ncbi.nlm.nih.gov/pubmed/17043157 https://www.proquest.com/docview/68163761 https://www.proquest.com/docview/744713569 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1524-4563 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014447 issn: 0194-911X databaseCode: KQ8 dateStart: 19790101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1524-4563 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014447 issn: 0194-911X databaseCode: DIK dateStart: 19790101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1524-4563 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014447 issn: 0194-911X databaseCode: GX1 dateStart: 19790101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBASmrjTAcMPvFUpdezYzuPErQWGQNrQ9hTFjjNFo0nVNgLxA_jdHDtuk7JWGrykbezYVb4vJ-fY54LQyyjS8JZXWQCmgwiY1DpQOhOB4jTlucx1LmyA8_FnPj5lH86is17vd8drqV6qof61Na7kf1CFc4CrjZL9B2TXg8IJ-A74whEQhuO1MD4qL4rKuaCXg8lkAOZ13ThYWTdNU18WZcDtgoYrxLdY1-RJB9PCJZuuwPSEQavChrBY_5ZqHqyq4i4HU2OjglcpBr0COwa7de6mdLSRb-xCfONqZH4OByQWcWdx4ZPzn19747ZLr-_Touw2fNsA3i-j2z7tttV57d0D_Lu2Xapo3T6MF68hC0Blo135y2SHZ11hCqrfaLuU58RFLgzH519cAsqQSUKjYSyoHA2bejId-GdThz8RNpFQkw77rxzbq6Yb6GYoOLeVMD5-bXejGGPCJ6yFqV_tntimoPVDbeg5d2bpAh65vKmVss2YgT4_Kusfsbh04REdJefkLtr31gk-aqh2D_VMeR_dOvb-Fw_QRYdxeDLBnnF4g3HwCzeMw55xOMVXGIevMg6vGfcQnb57e_J6HPhSHYEGDTaER9smKsxSKYmONBNhHuVcMwPGgiKMGKF4RngmeZqPopTILGZUUQW3j1NoiOgjtFdWpXmCMCdagcwI45DAp4kUyWQKPUc5aN6G0D6KVzc20T6PvS2n8j1x9iwnyYgkgE_S4pM4fBLB-4iur5012VyuddXhBn7tpfA6pDGN--jFCtAEpLPdcktLU9WLhEuQhIKTPsI7egjgFkzGYZDHDRXa4T2V-ijY4EbShEi7vwoKtpOJYKj4HBEkPNg50lN023WD5zIkz9Decl6b56BUL9WhY_wfYdfDuw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiotensin+II+induces+interleukin-6+in+humans+through+a+mineralocorticoid+receptor-dependent+mechanism&rft.jtitle=Hypertension+%28Dallas%2C+Tex.+1979%29&rft.au=Luther%2C+James+M&rft.au=Gainer%2C+James+V&rft.au=Murphey%2C+Laine+J&rft.au=Yu%2C+Chang&rft.date=2006-12-01&rft.eissn=1524-4563&rft.volume=48&rft.issue=6&rft.spage=1050&rft_id=info:doi/10.1161%2F01.HYP.0000248135.97380.76&rft_id=info%3Apmid%2F17043157&rft.externalDocID=17043157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-911X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-911X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-911X&client=summon |