Angiotensin II Induces Interleukin-6 in Humans Through a Mineralocorticoid Receptor–Dependent Mechanism

This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 μg/kg per hour for 10 hours followed by 0.9 μg/kg per hour for 4 hours) and vehicle in a r...

Full description

Saved in:
Bibliographic Details
Published inHypertension (Dallas, Tex. 1979) Vol. 48; no. 6; pp. 1050 - 1057
Main Authors Luther, James M., Gainer, James V., Murphey, Laine J., Yu, Chang, Vaughan, Douglas E., Morrow, Jason D., Brown, Nancy J.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Heart Association, Inc 01.12.2006
Hagerstown, MD Lippincott
Subjects
Online AccessGet full text
ISSN0194-911X
1524-4563
1524-4563
DOI10.1161/01.HYP.0000248135.97380.76

Cover

Abstract This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 μg/kg per hour for 10 hours followed by 0.9 μg/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7±4.9 to 9.4±7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure13.7±7.5 and 15.2±9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (−202±73 and −167±112 mL/min/1.73 kg/m; P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0±10.6 versus 9.0±5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F2-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8±1.1 to 2.4±1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F2-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor–dependent mechanism in humans. In contrast, angiotensin II–induced oxidative stress, as measured by F2-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent.
AbstractList This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 μg/kg per hour for 10 hours followed by 0.9 μg/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7±4.9 to 9.4±7.1 pg/mL; F=4.94; P =0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7±7.5 and 15.2±9.4 mm Hg during placebo and spironolactone, respectively; P <0.001 for angiotensin II) and decreased renal plasma flow (−202±73 and −167±112 mL/min/1.73 kg/m 2 ; P <0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0±10.6 versus 9.0±5.7 ng/dL; P =0.002). Angiotensin II transiently increased free plasma F 2 -isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8±1.1 to 2.4±1.4 pg/mL; F=4.5; P =0.04) but spironolactone prevented this effect (F=6.4; P =0.03 for spironolactone effect). Norepinephrine increased blood pressure and F 2 -isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor–dependent mechanism in humans. In contrast, angiotensin II–induced oxidative stress, as measured by F 2 -isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent.
This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 mug/kg per hour for 10 hours followed by 0.9 mug/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7+/-4.9 to 9.4+/-7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7+/-7.5 and 15.2+/-9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (-202+/-73 and -167+/-112 mL/min/1.73 kg/m(2); P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0+/-10.6 versus 9.0+/-5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F(2)-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8+/-1.1 to 2.4+/-1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F(2)-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor-dependent mechanism in humans. In contrast, angiotensin II-induced oxidative stress, as measured by F(2)-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent.This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 mug/kg per hour for 10 hours followed by 0.9 mug/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7+/-4.9 to 9.4+/-7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7+/-7.5 and 15.2+/-9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (-202+/-73 and -167+/-112 mL/min/1.73 kg/m(2); P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0+/-10.6 versus 9.0+/-5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F(2)-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8+/-1.1 to 2.4+/-1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F(2)-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor-dependent mechanism in humans. In contrast, angiotensin II-induced oxidative stress, as measured by F(2)-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent.
This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 kg/kg per hour for 10 hours followed by 0.9 kg/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7c4.9 to 9.4c7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7c7.5 and 15.2c9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (-202c73 and -167c112 mL/min/1.73 kg/m super(2); P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0c10.6 versus 9.0c5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F sub(2)-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8c1.1 to 2.4c1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F sub(2)-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor-dependent mechanism in humans. In contrast, angiotensin II-induced oxidative stress, as measured by F sub(2)-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent.
This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 mug/kg per hour for 10 hours followed by 0.9 mug/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7+/-4.9 to 9.4+/-7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure: 13.7+/-7.5 and 15.2+/-9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (-202+/-73 and -167+/-112 mL/min/1.73 kg/m(2); P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0+/-10.6 versus 9.0+/-5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F(2)-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8+/-1.1 to 2.4+/-1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F(2)-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor-dependent mechanism in humans. In contrast, angiotensin II-induced oxidative stress, as measured by F(2)-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent.
This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We measured the effect of intravenous aldosterone (0.7 μg/kg per hour for 10 hours followed by 0.9 μg/kg per hour for 4 hours) and vehicle in a randomized, double-blind crossover study in 11 sodium-restricted normotensive subjects. Aldosterone increased interleukin (IL)-6 (from 4.7±4.9 to 9.4±7.1 pg/mL; F=4.94; P=0.04) but did not affect blood pressure, serum potassium, or high-sensitivity C-reactive protein. We next conducted a randomized, double-blind, placebo-controlled, crossover study to measure the effect of 3-hour infusion of angiotensin II (2 ng/kg per minute) and norepinephrine (30 ng/kg per minute) on separate days after 2 weeks of placebo or spironolactone (50 mg per day) in 14 salt-replete normotensive subjects. Angiotensin II increased blood pressure (increase in systolic pressure13.7±7.5 and 15.2±9.4 mm Hg during placebo and spironolactone, respectively; P<0.001 for angiotensin II) and decreased renal plasma flow (−202±73 and −167±112 mL/min/1.73 kg/m; P<0.001 for angiotensin II effect) similarly during placebo and spironolactone. Spironolactone enhanced the aldosterone response to angiotensin II (increase of 17.0±10.6 versus 9.0±5.7 ng/dL; P=0.002). Angiotensin II transiently increased free plasma F2-isoprostanes similarly during placebo and spironolactone. Angiotensin II increased serum IL-6 concentrations during placebo (from 1.8±1.1 to 2.4±1.4 pg/mL; F=4.5; P=0.04) but spironolactone prevented this effect (F=6.4; P=0.03 for spironolactone effect). Norepinephrine increased blood pressure and F2-isoprostanes but not aldosterone or IL-6. Aldosterone increases IL-6 in humans. These data suggest that angiotensin II induces IL-6 through a mineralocorticoid receptor–dependent mechanism in humans. In contrast, angiotensin II–induced oxidative stress, as measured by F2-isoprostanes, is mineralocorticoid receptor independent and may be pressor dependent.
Author Murphey, Laine J.
Yu, Chang
Luther, James M.
Vaughan, Douglas E.
Gainer, James V.
Morrow, Jason D.
Brown, Nancy J.
AuthorAffiliation From the Divisions of Clinical Pharmacology (J.M.L., J.V.G., L.J.M., J.D.M., N.J.B.), Nephrology and Hypertension (J.M.L.), and Cardiovascular Medicine (D.E.V.), the Departments of Medicine and Pharmacology, and the Department of Biostatistics (C.Y.), Vanderbilt University Medical Center; Nashville, Tenn; and the Veterans Affairs Medical Center (D.E.V.), Nashville, Tenn
AuthorAffiliation_xml – name: From the Divisions of Clinical Pharmacology (J.M.L., J.V.G., L.J.M., J.D.M., N.J.B.), Nephrology and Hypertension (J.M.L.), and Cardiovascular Medicine (D.E.V.), the Departments of Medicine and Pharmacology, and the Department of Biostatistics (C.Y.), Vanderbilt University Medical Center; Nashville, Tenn; and the Veterans Affairs Medical Center (D.E.V.), Nashville, Tenn
Author_xml – sequence: 1
  givenname: James
  surname: Luther
  middlename: M.
  fullname: Luther, James M.
  organization: From the Divisions of Clinical Pharmacology (J.M.L., J.V.G., L.J.M., J.D.M., N.J.B.), Nephrology and Hypertension (J.M.L.), and Cardiovascular Medicine (D.E.V.), the Departments of Medicine and Pharmacology, and the Department of Biostatistics (C.Y.), Vanderbilt University Medical Center; Nashville, Tenn; and the Veterans Affairs Medical Center (D.E.V.), Nashville, Tenn
– sequence: 2
  givenname: James
  surname: Gainer
  middlename: V.
  fullname: Gainer, James V.
– sequence: 3
  givenname: Laine
  surname: Murphey
  middlename: J.
  fullname: Murphey, Laine J.
– sequence: 4
  givenname: Chang
  surname: Yu
  fullname: Yu, Chang
– sequence: 5
  givenname: Douglas
  surname: Vaughan
  middlename: E.
  fullname: Vaughan, Douglas E.
– sequence: 6
  givenname: Jason
  surname: Morrow
  middlename: D.
  fullname: Morrow, Jason D.
– sequence: 7
  givenname: Nancy
  surname: Brown
  middlename: J.
  fullname: Brown, Nancy J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18323939$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17043157$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFV0AREnBK8MSOnXBqVQq7UisQKhKcLMeZdE0Te7ETVb3xDrwhT4LbXajEAWFpPIf55h_p_w_InvMOCXkGtAAQ8IpCsfzyoaDplbwGVhWNZDUtpHhAFlCVPOeVYHtkQaHheQPweZ8cxPiVUuCcy0dkHyTlDCq5IPbYXVo_oYvWZatVtnLdbDCmPmEYcL6yLhdZmi3nUbuYXayDny_Xmc7OrcOgB298mKzxtss-osHN5MPP7z_e4AZdh27KztGstbNxfEwe9nqI-GTXD8mnt6cXJ8v87P271cnxWW6qmpd5K0BQ2em6BlMZLsu-6oXhWAnRAgeUrehAdLXQPa001F3DWcvaZIRgaVCxQ_Jyq7sJ_tuMcVKjjQaHQTv0c1QyWZA8E00iX_yTFDUIJgUk8OkOnNsRO7UJdtThRv22MQHPd4CORg990M7YeM_VrGQNu714tOVM8DEG7JWxk56sd1PQdlBA1W3CioJKCav7hNVdwkqKJPH6L4k_V_5nmW-Xr_2Q8o1Xw3yNQa1RD9P6boOXos5LSgWkj-apoGS_AHnouos
CODEN HPRTDN
CitedBy_id crossref_primary_10_3389_fcvm_2020_568720
crossref_primary_10_1161_HYPERTENSIONAHA_121_17659
crossref_primary_10_2147_DMSO_S438618
crossref_primary_10_3390_v13101906
crossref_primary_10_1016_j_neubiorev_2009_07_005
crossref_primary_10_3892_ijmm_2017_3201
crossref_primary_10_1155_2021_9951540
crossref_primary_10_1016_j_tem_2009_05_006
crossref_primary_10_1007_s00424_022_02705_8
crossref_primary_10_1007_s11906_010_0125_3
crossref_primary_10_1161_JAHA_120_018716
crossref_primary_10_1111_cen_13891
crossref_primary_10_1038_s41371_021_00627_z
crossref_primary_10_1152_ajpregu_90995_2008
crossref_primary_10_1038_s41440_022_01077_x
crossref_primary_10_3389_fcimb_2020_00317
crossref_primary_10_3389_fmicb_2022_1042200
crossref_primary_10_1016_j_virusres_2023_199091
crossref_primary_10_1152_physiolgenomics_00083_2018
crossref_primary_10_3390_ijms23169243
crossref_primary_10_1183_13993003_01634_2020
crossref_primary_10_1111_j_1464_5491_2010_03087_x
crossref_primary_10_1016_j_mce_2014_08_003
crossref_primary_10_15171_jnp_2017_04
crossref_primary_10_1177_1470320315575848
crossref_primary_10_1002_prp2_1189
crossref_primary_10_1007_s11560_007_0119_6
crossref_primary_10_1038_s41598_024_54930_z
crossref_primary_10_1681_ASN_2014111137
crossref_primary_10_1007_s11010_024_05043_8
crossref_primary_10_1007_s11906_019_1003_2
crossref_primary_10_1097_CRD_0b013e3181b18e03
crossref_primary_10_1007_s11906_014_0521_1
crossref_primary_10_3389_fimmu_2024_1502299
crossref_primary_10_1055_s_0040_1713346
crossref_primary_10_3390_jcm9113547
crossref_primary_10_52727_2078_256X_2021_3_85_96
crossref_primary_10_3389_fphar_2024_1377113
crossref_primary_10_1152_ajpregu_00207_2009
crossref_primary_10_1021_acschemneuro_1c00359
crossref_primary_10_1007_s12170_017_0537_6
crossref_primary_10_3390_ijms231810374
crossref_primary_10_3390_jcm12062445
crossref_primary_10_3389_fphar_2020_01154
crossref_primary_10_1016_j_steroids_2014_08_016
crossref_primary_10_1073_pnas_0804037106
crossref_primary_10_2310_6650_2007_00020
crossref_primary_10_3390_ijtm3020018
crossref_primary_10_3389_fphar_2020_01278
crossref_primary_10_1186_s13027_021_00369_0
crossref_primary_10_1016_j_bcp_2022_114978
crossref_primary_10_1016_j_mce_2011_06_014
crossref_primary_10_1016_j_steroids_2014_08_014
crossref_primary_10_1097_HJH_0000000000002990
crossref_primary_10_1016_j_imlet_2021_02_002
crossref_primary_10_3390_ijms20205214
crossref_primary_10_1089_ars_2013_5258
crossref_primary_10_1089_met_2009_0116
crossref_primary_10_3389_fphys_2020_588248
crossref_primary_10_1016_j_biopha_2024_116648
crossref_primary_10_1210_er_2007_0030
crossref_primary_10_3390_ijms22094762
crossref_primary_10_1586_eem_10_10
crossref_primary_10_1161_HYPERTENSIONAHA_124_21712
crossref_primary_10_1038_ajh_2011_113
crossref_primary_10_1016_j_ijcard_2016_04_133
crossref_primary_10_1007_s10741_019_09860_8
crossref_primary_10_1042_CS20070123
crossref_primary_10_1016_j_cjca_2014_12_006
crossref_primary_10_1183_13993003_00848_2018
crossref_primary_10_1016_j_lfs_2023_121405
crossref_primary_10_1159_000441223
crossref_primary_10_3389_fimmu_2024_1465625
crossref_primary_10_1161_CIRCRESAHA_116_303697
crossref_primary_10_1038_nrneph_2010_30
crossref_primary_10_1016_j_ijcard_2013_08_022
crossref_primary_10_1152_ajprenal_00594_2015
crossref_primary_10_1097_MAT_0000000000000129
crossref_primary_10_1016_j_mehy_2008_09_008
crossref_primary_10_3803_EnM_2020_797
crossref_primary_10_1016_j_freeradbiomed_2018_05_085
crossref_primary_10_1016_j_cyto_2012_08_016
crossref_primary_10_1016_j_jash_2012_11_007
crossref_primary_10_1097_CCM_0b013e31825b8be2
crossref_primary_10_1097_HJH_0000000000000358
crossref_primary_10_3109_08037051_2014_940710
crossref_primary_10_1186_s13098_016_0164_2
crossref_primary_10_1016_j_cpcardiol_2024_102742
crossref_primary_10_1016_j_thromres_2008_12_040
crossref_primary_10_1016_j_steroids_2011_02_015
crossref_primary_10_1007_s11010_017_3026_9
crossref_primary_10_1111_1440_1681_12085
crossref_primary_10_1681_ASN_2011030287
crossref_primary_10_3389_fcvm_2022_1037369
crossref_primary_10_3390_medicina61020362
crossref_primary_10_1186_1479_5876_9_169
crossref_primary_10_1093_eurjhf_hfp023
crossref_primary_10_1007_s11357_024_01170_8
crossref_primary_10_1124_pharmrev_124_001060
crossref_primary_10_3390_ijms18122563
crossref_primary_10_1055_a_1172_1352
crossref_primary_10_1016_j_pharmthera_2020_107799
crossref_primary_10_1002_ehf2_14127
crossref_primary_10_3389_fimmu_2020_01472
crossref_primary_10_3390_ijms25021082
Cites_doi 10.1016/S0140-6736(02)08089-3
10.1056/NEJM199104183241605
10.1097/01.hjh.0000170379.08214.5a
10.1111/j.1651-2227.1999.tb00065.x
10.1002/j.1460-2075.1989.tb08554.x
10.1016/S0002-9610(00)00534-1
10.1161/circ.99.20.2694
10.1016/S0140-6736(01)06178-5
10.1056/NEJM200003233421202
10.1677/joe.1.06017
10.1161/01.cir.0000125690.80303.a8
10.1161/01.hyp.0000176236.55322.18
10.1161/res.85.1.23
10.1161/circ.102.9.994
10.1016/j.freeradbiomed.2004.09.017
10.1056/NEJM200001203420301
10.1089/152308602762197407
10.1016/S0002-9440(10)64454-9
10.1172/JCI111176
10.1152/ajpheart.1984.246.4.H608
10.1161/hyp.33.4.981
10.1253/circj.68.376
10.1161/circ.99.7.855
10.1172/JCI118623
10.1056/NEJM197203022860901
10.1016/0196-9781(91)90070-6
10.1161/01.cir.0000039528.49161.e9
10.1016/S0140-6736(03)14286-9
10.1042/cs0870397
10.1161/circ.96.10.3542
10.1161/circ.99.16.2079
10.1161/01.hyp.0000034738.79310.06
10.1016/j.jacc.2004.03.065
10.1210/endo-111-3-988
10.1016/S0165-2478(98)00025-X
10.1016/S0895-7061(02)02957-6
10.1210/jcem.87.2.7980
10.1161/01.cir.0000153272.48711.b9
10.1161/01.hyp.0000174327.53863.86
10.1161/circ.105.3.393
10.1139/y05-068
10.1056/NEJM199505043321804
10.1161/01.hyp.0000226046.58883.32
10.1161/01.res.0000159937.05502.d1
10.1016/j.steroids.2004.05.005
10.1161/01.res.0000204452.46568.57
10.1038/nature01323
10.1016/S0891-5849(03)00395-2
10.1161/01.cir.0000140265.21608.8e
10.1161/hyp.39.1.149
10.1161/01.hyp.20.1.67
10.1097/01.fjc.0000185783.00391.60
10.1210/er.2005-0004
10.1007/s11906-001-0082-y
10.1161/hyp.37.2.787
ContentType Journal Article
Copyright 2006 American Heart Association, Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 American Heart Association, Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
DOI 10.1161/01.HYP.0000248135.97380.76
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList CrossRef
MEDLINE - Academic
AIDS and Cancer Research Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4563
EndPage 1057
ExternalDocumentID 17043157
18323939
10_1161_01_HYP_0000248135_97380_76
00004268-200612000-00012
Genre Randomized Controlled Trial
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL060906
– fundername: NIEHS NIH HHS
  grantid: ES013125
– fundername: NIGMS NIH HHS
  grantid: GM015431
– fundername: NCI NIH HHS
  grantid: CA077839
– fundername: NIGMS NIH HHS
  grantid: GM 007569
– fundername: NHLBI NIH HHS
  grantid: HL077389
– fundername: NCRR NIH HHS
  grantid: RR000095
– fundername: NIDDK NIH HHS
  grantid: DK048831
– fundername: NHLBI NIH HHS
  grantid: HL067308
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
18M
1J1
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFDTB
AFEXH
AFFNX
AFNMH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BAWUL
BCGUY
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N4W
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OCUKA
ODA
ODMTH
OGROG
OHYEH
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YHZ
YOC
YYM
YYP
ZFV
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
IQODW
OZ-
ACIJW
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OLW
RHF
7X8
7T5
ADKSD
H94
ID FETCH-LOGICAL-c5842-b61607da881c5c472f5f6c4e566b141e7b6d16d86af05a18d943b3b24863d1653
ISSN 0194-911X
1524-4563
IngestDate Mon Sep 08 05:04:44 EDT 2025
Fri Sep 05 08:43:46 EDT 2025
Wed Feb 19 01:44:37 EST 2025
Mon Jul 21 09:13:26 EDT 2025
Tue Jul 01 04:30:41 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
Fri May 16 03:51:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Systolic pressure
Oxidative stress
Potassium sparing diuretic
Intravenous administration
Mineralocorticoid
Peptide hormone
Cardiovascular disease
Aldosterone
Inorganic element
Interleukin 6
Octapeptide
Spironolactone
oxidative
Arterial pressure
Blood pressure
Angiotensin II
C reactive protein
Human
Hypertension
stress
F2-isoprostanes
Steroid hormone
Inflammation
mineralocorticoid receptor
Catecholamine
IL-6
Aldosterone antagonist
Sodium
Adrenal hormone
Neurotransmitter
Double blind study
Norepinephrine
Potassium
Comparative study
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5842-b61607da881c5c472f5f6c4e566b141e7b6d16d86af05a18d943b3b24863d1653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/01.HYP.0000248135.97380.76
PMID 17043157
PQID 68163761
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_744713569
proquest_miscellaneous_68163761
pubmed_primary_17043157
pascalfrancis_primary_18323939
crossref_citationtrail_10_1161_01_HYP_0000248135_97380_76
crossref_primary_10_1161_01_HYP_0000248135_97380_76
wolterskluwer_health_00004268-200612000-00012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-December
PublicationDateYYYYMMDD 2006-12-01
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-December
PublicationDecade 2000
PublicationPlace Philadelphia, PA
Hagerstown, MD
PublicationPlace_xml – name: Philadelphia, PA
– name: Hagerstown, MD
– name: United States
PublicationTitle Hypertension (Dallas, Tex. 1979)
PublicationTitleAlternate Hypertension
PublicationYear 2006
Publisher American Heart Association, Inc
Lippincott
Publisher_xml – name: American Heart Association, Inc
– name: Lippincott
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_1_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
(e_1_3_2_47_2) 1993; 122
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
(e_1_3_2_28_2) 1980; 13
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
17261639 - Hypertension. 2007 Mar;49(3):e18; author reply e19
References_xml – ident: e_1_3_2_4_2
  doi: 10.1016/S0140-6736(02)08089-3
– ident: e_1_3_2_1_2
  doi: 10.1056/NEJM199104183241605
– ident: e_1_3_2_37_2
  doi: 10.1097/01.hjh.0000170379.08214.5a
– ident: e_1_3_2_42_2
  doi: 10.1111/j.1651-2227.1999.tb00065.x
– ident: e_1_3_2_41_2
  doi: 10.1002/j.1460-2075.1989.tb08554.x
– ident: e_1_3_2_43_2
  doi: 10.1016/S0002-9610(00)00534-1
– ident: e_1_3_2_50_2
  doi: 10.1161/circ.99.20.2694
– ident: e_1_3_2_3_2
  doi: 10.1016/S0140-6736(01)06178-5
– ident: e_1_3_2_12_2
  doi: 10.1056/NEJM200003233421202
– ident: e_1_3_2_33_2
  doi: 10.1677/joe.1.06017
– ident: e_1_3_2_13_2
  doi: 10.1161/01.cir.0000125690.80303.a8
– ident: e_1_3_2_20_2
  doi: 10.1161/01.hyp.0000176236.55322.18
– ident: e_1_3_2_53_2
  doi: 10.1161/res.85.1.23
– ident: e_1_3_2_38_2
  doi: 10.1161/circ.102.9.994
– ident: e_1_3_2_51_2
  doi: 10.1016/j.freeradbiomed.2004.09.017
– ident: e_1_3_2_6_2
  doi: 10.1056/NEJM200001203420301
– ident: e_1_3_2_52_2
  doi: 10.1089/152308602762197407
– ident: e_1_3_2_21_2
  doi: 10.1016/S0002-9440(10)64454-9
– ident: e_1_3_2_29_2
  doi: 10.1172/JCI111176
– ident: e_1_3_2_25_2
  doi: 10.1152/ajpheart.1984.246.4.H608
– ident: e_1_3_2_46_2
  doi: 10.1161/hyp.33.4.981
– ident: e_1_3_2_36_2
  doi: 10.1253/circj.68.376
– ident: e_1_3_2_11_2
  doi: 10.1161/circ.99.7.855
– ident: e_1_3_2_55_2
  doi: 10.1172/JCI118623
– ident: e_1_3_2_2_2
  doi: 10.1056/NEJM197203022860901
– ident: e_1_3_2_30_2
  doi: 10.1016/0196-9781(91)90070-6
– ident: e_1_3_2_15_2
  doi: 10.1161/01.cir.0000039528.49161.e9
– ident: e_1_3_2_5_2
  doi: 10.1016/S0140-6736(03)14286-9
– ident: e_1_3_2_27_2
  doi: 10.1042/cs0870397
– ident: e_1_3_2_44_2
  doi: 10.1161/circ.96.10.3542
– ident: e_1_3_2_10_2
  doi: 10.1161/circ.99.16.2079
– ident: e_1_3_2_26_2
  doi: 10.1161/01.hyp.0000034738.79310.06
– ident: e_1_3_2_18_2
  doi: 10.1016/j.jacc.2004.03.065
– ident: e_1_3_2_45_2
  doi: 10.1210/endo-111-3-988
– ident: e_1_3_2_40_2
  doi: 10.1016/S0165-2478(98)00025-X
– ident: e_1_3_2_49_2
  doi: 10.1016/S0895-7061(02)02957-6
– ident: e_1_3_2_57_2
  doi: 10.1210/jcem.87.2.7980
– ident: e_1_3_2_19_2
  doi: 10.1161/01.cir.0000153272.48711.b9
– ident: e_1_3_2_56_2
  doi: 10.1161/01.hyp.0000174327.53863.86
– ident: e_1_3_2_8_2
  doi: 10.1161/circ.105.3.393
– ident: e_1_3_2_24_2
  doi: 10.1139/y05-068
– ident: e_1_3_2_31_2
  doi: 10.1056/NEJM199505043321804
– ident: e_1_3_2_17_2
  doi: 10.1161/01.hyp.0000226046.58883.32
– ident: e_1_3_2_23_2
  doi: 10.1161/01.res.0000159937.05502.d1
– ident: e_1_3_2_35_2
  doi: 10.1016/j.steroids.2004.05.005
– ident: e_1_3_2_39_2
  doi: 10.1161/01.res.0000204452.46568.57
– ident: e_1_3_2_9_2
  doi: 10.1038/nature01323
– volume: 13
  start-page: 26
  year: 1980
  ident: e_1_3_2_28_2
  publication-title: Clin Nephrol
– ident: e_1_3_2_14_2
  doi: 10.1016/S0891-5849(03)00395-2
– ident: e_1_3_2_32_2
  doi: 10.1161/01.cir.0000140265.21608.8e
– volume: 122
  start-page: 404
  year: 1993
  ident: e_1_3_2_47_2
  publication-title: J Lab Clin Med
– ident: e_1_3_2_54_2
  doi: 10.1161/hyp.39.1.149
– ident: e_1_3_2_48_2
  doi: 10.1161/01.hyp.20.1.67
– ident: e_1_3_2_16_2
  doi: 10.1097/01.fjc.0000185783.00391.60
– ident: e_1_3_2_34_2
  doi: 10.1210/er.2005-0004
– ident: e_1_3_2_7_2
  doi: 10.1007/s11906-001-0082-y
– ident: e_1_3_2_22_2
  doi: 10.1161/hyp.37.2.787
– reference: 17261639 - Hypertension. 2007 Mar;49(3):e18; author reply e19
SSID ssj0014447
Score 2.270876
Snippet This study tested the hypothesis that angiotensin promotes oxidative stress and inflammation in humans via aldosterone and the mineralocorticoid receptor. We...
SourceID proquest
pubmed
pascalfrancis
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1050
SubjectTerms Adult
Aldosterone - administration & dosage
Angiotensin II - metabolism
Arterial hypertension. Arterial hypotension
Biological and medical sciences
Blood and lymphatic vessels
Cardiology. Vascular system
Clinical manifestations. Epidemiology. Investigative techniques. Etiology
Cross-Over Studies
Diet, Sodium-Restricted
Double-Blind Method
Endocrine kidney. Renin-angiotensin-aldosterone system
Female
Fundamental and applied biological sciences. Psychology
Humans
Hydroxycorticosteroids - administration & dosage
Infusions, Intravenous
Interleukin-6 - metabolism
Male
Medical sciences
Mineralocorticoid Receptor Antagonists - pharmacology
Oxidative Stress - drug effects
Receptors, Mineralocorticoid - metabolism
Spironolactone - pharmacology
Vertebrates: endocrinology
Title Angiotensin II Induces Interleukin-6 in Humans Through a Mineralocorticoid Receptor–Dependent Mechanism
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00004268-200612000-00012
https://www.ncbi.nlm.nih.gov/pubmed/17043157
https://www.proquest.com/docview/68163761
https://www.proquest.com/docview/744713569
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1524-4563
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014447
  issn: 0194-911X
  databaseCode: KQ8
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1524-4563
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0014447
  issn: 0194-911X
  databaseCode: DIK
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1524-4563
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0014447
  issn: 0194-911X
  databaseCode: GX1
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBASmrjTAcMPvFUpdezYzuPErQWGQNrQ9hTFjjNFo0nVNgLxA_jdHDtuk7JWGrykbezYVb4vJ-fY54LQyyjS8JZXWQCmgwiY1DpQOhOB4jTlucx1LmyA8_FnPj5lH86is17vd8drqV6qof61Na7kf1CFc4CrjZL9B2TXg8IJ-A74whEQhuO1MD4qL4rKuaCXg8lkAOZ13ThYWTdNU18WZcDtgoYrxLdY1-RJB9PCJZuuwPSEQavChrBY_5ZqHqyq4i4HU2OjglcpBr0COwa7de6mdLSRb-xCfONqZH4OByQWcWdx4ZPzn19747ZLr-_Touw2fNsA3i-j2z7tttV57d0D_Lu2Xapo3T6MF68hC0Blo135y2SHZ11hCqrfaLuU58RFLgzH519cAsqQSUKjYSyoHA2bejId-GdThz8RNpFQkw77rxzbq6Yb6GYoOLeVMD5-bXejGGPCJ6yFqV_tntimoPVDbeg5d2bpAh65vKmVss2YgT4_Kusfsbh04REdJefkLtr31gk-aqh2D_VMeR_dOvb-Fw_QRYdxeDLBnnF4g3HwCzeMw55xOMVXGIevMg6vGfcQnb57e_J6HPhSHYEGDTaER9smKsxSKYmONBNhHuVcMwPGgiKMGKF4RngmeZqPopTILGZUUQW3j1NoiOgjtFdWpXmCMCdagcwI45DAp4kUyWQKPUc5aN6G0D6KVzc20T6PvS2n8j1x9iwnyYgkgE_S4pM4fBLB-4iur5012VyuddXhBn7tpfA6pDGN--jFCtAEpLPdcktLU9WLhEuQhIKTPsI7egjgFkzGYZDHDRXa4T2V-ijY4EbShEi7vwoKtpOJYKj4HBEkPNg50lN023WD5zIkz9Decl6b56BUL9WhY_wfYdfDuw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiotensin+II+induces+interleukin-6+in+humans+through+a+mineralocorticoid+receptor-dependent+mechanism&rft.jtitle=Hypertension+%28Dallas%2C+Tex.+1979%29&rft.au=Luther%2C+James+M&rft.au=Gainer%2C+James+V&rft.au=Murphey%2C+Laine+J&rft.au=Yu%2C+Chang&rft.date=2006-12-01&rft.eissn=1524-4563&rft.volume=48&rft.issue=6&rft.spage=1050&rft_id=info:doi/10.1161%2F01.HYP.0000248135.97380.76&rft_id=info%3Apmid%2F17043157&rft.externalDocID=17043157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-911X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-911X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-911X&client=summon