Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms

Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic line...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 17; no. 21; pp. 4684 - 4698
Main Authors KING, R. ANDREW, TIBBLE, AMY L, SYMONDSON, WILLIAM O.C
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.11.2008
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0962-1083
1365-294X
1365-294X
DOI10.1111/j.1365-294X.2008.03931.x

Cover

Abstract Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research.
AbstractList Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research.Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research.
Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research.
Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research. [PUBLICATION ABSTRACT]
Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species‐level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica . There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research.
Author KING, R. ANDREW
SYMONDSON, WILLIAM O. C.
TIBBLE, AMY L.
Author_xml – sequence: 1
  fullname: KING, R. ANDREW
– sequence: 2
  fullname: TIBBLE, AMY L
– sequence: 3
  fullname: SYMONDSON, WILLIAM O.C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18992008$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v0zAchi00xLrCVwCLA7cUO_4bJJCgjIFUmARM681yE2d1SZxgO7T99jjrGNIumy-25Od5Lf_eE3DkOmcAgBjNcFqvNzNMOMvygi5nOUJyhkhB8Gz3CExuL47ABBU8zzCS5BichLBBCJOcsSfgGMuiGL0JMOe9cdZdQQ1L7WBXw23n2_AGDq73pjSVcdFUMOzbXkdvS1j6fR_TXtk_xgcb93Br49o6-MHbaMMaNkO7SqCtoNE-rq_jnoLHtW6CeXazT8HFp9Of88_Z4vzsy_z9IiuZpDirmay0rrRgkhNS16aqjKio5kxLLBNCUC1wzUu2qrkkUusSizxnHCNarCgiU_DqkNv77vdgQlStDaVpGu1MNwTFi4IRUZB7QSoxESyn94K4oFjQNNgpeHkH3HSDd-m3KseISy4ET9DzG2hYtaZSvbet9nv1r48EyANQ-i4Eb-r_CFJj9WqjxobV2LAaFXVdvdol9d0dtbRRR9u56LVtHhLw9hCwtY3ZP_hh9fV0Pp6Snx18G6LZ3fra_1JcpGmqy29narn8_vFSyIXKE__iwNe6U_rK26AufuRplAinRimm5C-tzOCo
CitedBy_id crossref_primary_10_1016_j_soilbio_2015_01_004
crossref_primary_10_1016_j_ympev_2016_09_011
crossref_primary_10_1007_s00300_017_2184_2
crossref_primary_10_1016_j_pedobi_2011_03_004
crossref_primary_10_1016_j_bbrc_2012_12_049
crossref_primary_10_1007_s10530_015_0910_7
crossref_primary_10_1016_j_soilbio_2016_03_015
crossref_primary_10_1016_j_ejsobi_2018_05_001
crossref_primary_10_1071_IS10035
crossref_primary_10_1016_j_apsoil_2022_104798
crossref_primary_10_1016_j_ejsobi_2020_103191
crossref_primary_10_1111_eea_12730
crossref_primary_10_1016_j_ympev_2018_02_021
crossref_primary_10_1111_j_1466_8238_2009_00517_x
crossref_primary_10_1016_j_ejsobi_2013_05_004
crossref_primary_10_1016_j_soilbio_2009_07_008
crossref_primary_10_1111_bij_12171
crossref_primary_10_3897_afrinvertebr_61_53380
crossref_primary_10_5650_jos_ess21450
crossref_primary_10_1111_jbi_13744
crossref_primary_10_1016_j_ejsobi_2024_103620
crossref_primary_10_1080_00222933_2012_659769
crossref_primary_10_3109_19401736_2015_1115487
crossref_primary_10_5852_ejt_2021_746_1321
crossref_primary_10_1038_hdy_2013_84
crossref_primary_10_3390_insects11080478
crossref_primary_10_1111_geb_13156
crossref_primary_10_1016_j_apsoil_2016_07_013
crossref_primary_10_1016_j_ympev_2009_08_022
crossref_primary_10_1016_j_envpol_2010_06_019
crossref_primary_10_1093_zoolinnean_zlab011
crossref_primary_10_1016_j_soilbio_2010_05_029
crossref_primary_10_1016_j_ejsobi_2014_07_002
crossref_primary_10_1016_j_pedobi_2011_07_015
crossref_primary_10_1080_14772000_2012_723640
crossref_primary_10_1890_10_0154_1
crossref_primary_10_1098_rsbl_2014_0615
crossref_primary_10_1111_j_1096_3642_2012_00828_x
crossref_primary_10_1371_journal_pone_0203909
crossref_primary_10_1111_j_1755_0998_2009_02628_x
crossref_primary_10_3390_d13020036
crossref_primary_10_1093_molbev_mst074
crossref_primary_10_1007_s10539_023_09916_y
crossref_primary_10_1016_j_pedobi_2020_150634
crossref_primary_10_1016_j_envpol_2014_03_022
crossref_primary_10_1016_j_apsoil_2017_11_001
crossref_primary_10_1016_j_pedobi_2018_03_001
crossref_primary_10_5733_afin_054_0220
crossref_primary_10_1016_j_ympev_2017_05_005
crossref_primary_10_3390_nano10071337
crossref_primary_10_1016_j_ympev_2014_10_024
crossref_primary_10_1126_science_abe4744
crossref_primary_10_1016_j_bse_2015_05_003
crossref_primary_10_1016_j_ympev_2017_07_026
crossref_primary_10_1111_bij_12436
crossref_primary_10_1016_j_pedobi_2012_08_006
crossref_primary_10_1111_cla_12154
crossref_primary_10_1111_ivb_12145
crossref_primary_10_3390_d14111006
crossref_primary_10_1093_sysbio_syy026
crossref_primary_10_1016_j_apsoil_2013_01_001
crossref_primary_10_1111_zsc_12032
crossref_primary_10_1016_j_ejsobi_2012_09_001
crossref_primary_10_1016_j_apsoil_2015_11_012
crossref_primary_10_3390_d14010030
crossref_primary_10_1016_S2095_3119_12_60002_1
crossref_primary_10_1134_S2079059717010130
crossref_primary_10_3375_043_032_0305
crossref_primary_10_1111_j_1755_0998_2011_03098_x
crossref_primary_10_1111_j_1365_294X_2011_05403_x
crossref_primary_10_3389_fevo_2024_1358984
crossref_primary_10_1111_j_1365_294X_2011_05407_x
crossref_primary_10_1371_journal_pone_0136943
crossref_primary_10_3109_19401736_2015_1101594
crossref_primary_10_1016_j_ejsobi_2018_03_004
crossref_primary_10_1016_j_pedobi_2014_09_002
crossref_primary_10_1371_journal_pone_0028153
crossref_primary_10_1016_j_apsoil_2016_08_002
crossref_primary_10_1111_jbi_14518
crossref_primary_10_1016_j_ejsobi_2017_06_004
crossref_primary_10_1016_j_ympev_2010_09_024
crossref_primary_10_1590_S0100_204X2009000800002
crossref_primary_10_1016_j_ympev_2020_106767
crossref_primary_10_1016_j_chemosphere_2017_09_122
crossref_primary_10_1016_j_ejsobi_2017_06_007
crossref_primary_10_1016_j_ympev_2010_04_010
crossref_primary_10_1111_2041_210X_12775
crossref_primary_10_1111_j_1439_0469_2010_00571_x
crossref_primary_10_1371_journal_pone_0208904
crossref_primary_10_1111_j_1755_0998_2011_03003_x
crossref_primary_10_3897_zookeys_242_3996
crossref_primary_10_1007_s10646_016_1666_2
crossref_primary_10_1016_j_envpol_2019_113238
crossref_primary_10_18699_VJ20_594
crossref_primary_10_1007_s13127_021_00520_0
crossref_primary_10_3377_004_048_0224
crossref_primary_10_1111_j_1755_0998_2009_02822_x
crossref_primary_10_1134_S1062359019050042
crossref_primary_10_1016_j_ejsobi_2019_103137
crossref_primary_10_11646_zootaxa_5589_1_7
crossref_primary_10_1016_j_soilbio_2015_10_009
crossref_primary_10_18699_vjgb_24_62
crossref_primary_10_1080_00779962_2012_686319
crossref_primary_10_1111_1755_0998_12517
crossref_primary_10_7717_peerj_2572
crossref_primary_10_1016_j_envpol_2015_07_010
crossref_primary_10_1016_j_soilbio_2023_109262
crossref_primary_10_1371_journal_pone_0204234
crossref_primary_10_1111_j_1096_3642_2012_00864_x
crossref_primary_10_1016_j_jcz_2016_06_008
crossref_primary_10_1016_j_ejsobi_2009_11_006
crossref_primary_10_1111_mec_12319
crossref_primary_10_1371_journal_pone_0091907
crossref_primary_10_1002_jez_1834
crossref_primary_10_1016_j_soilbio_2023_109038
crossref_primary_10_3897_zookeys_399_7273
crossref_primary_10_1016_j_ejsobi_2009_06_004
crossref_primary_10_3389_fgene_2020_598196
crossref_primary_10_1016_j_ejsobi_2024_103655
crossref_primary_10_1111_j_1755_0998_2011_03008_x
crossref_primary_10_17109_AZH_67_3_235_2021
crossref_primary_10_1186_s12862_015_0488_9
crossref_primary_10_1080_23802359_2019_1610091
crossref_primary_10_1016_j_ejsobi_2016_06_004
crossref_primary_10_1186_s12862_019_1370_y
crossref_primary_10_1016_j_scitotenv_2012_09_048
crossref_primary_10_1016_j_soilbio_2011_09_018
crossref_primary_10_3390_d13110580
crossref_primary_10_1111_j_1365_294X_2012_05648_x
crossref_primary_10_3390_ijerph17051538
crossref_primary_10_1266_ggs_86_27
crossref_primary_10_1002_etc_5696
crossref_primary_10_1016_j_ympev_2009_11_025
crossref_primary_10_1371_journal_pone_0124406
crossref_primary_10_1016_j_ejsobi_2020_103242
crossref_primary_10_1038_hdy_2010_31
crossref_primary_10_1016_j_pedobi_2013_09_006
crossref_primary_10_1016_j_soilbio_2017_10_030
crossref_primary_10_1016_j_envres_2018_09_023
crossref_primary_10_1093_zoolinnean_zlx031
crossref_primary_10_1111_j_1365_294X_2010_04602_x
crossref_primary_10_11609_jott_6888_13_11_19566_19579
crossref_primary_10_7717_peerj_17709
crossref_primary_10_1016_j_envpol_2009_09_021
crossref_primary_10_1016_j_ecoenv_2010_10_028
crossref_primary_10_1016_j_ejsobi_2018_02_004
crossref_primary_10_1016_j_ejsobi_2012_03_007
crossref_primary_10_1016_j_ympev_2009_04_003
crossref_primary_10_1134_S2079086419060057
crossref_primary_10_1007_s11756_024_01622_8
crossref_primary_10_1111_j_1365_294X_2009_04202_x
crossref_primary_10_1016_j_apsoil_2016_03_019
crossref_primary_10_1016_j_ejsobi_2021_103382
crossref_primary_10_1080_00222933_2011_560726
crossref_primary_10_1016_j_apsoil_2020_103787
crossref_primary_10_1080_14772000_2020_1730474
crossref_primary_10_1016_j_ympev_2012_04_011
crossref_primary_10_1134_S1022795409110027
crossref_primary_10_1016_j_ejsobi_2011_10_003
crossref_primary_10_1007_s10530_015_1045_6
crossref_primary_10_1016_j_ympev_2015_07_017
crossref_primary_10_1007_s10530_012_0338_2
Cites_doi 10.1007/s10750-004-4414-1
10.1111/j.1365-294X.2007.03309.x
10.1046/j.1365-294x.1998.00289.x
10.1007/s10530-005-6186-6
10.3354/meps215169
10.1046/j.1365-294X.2002.01541.x
10.1098/rspb.2006.3718
10.1078/0031-4056-00208
10.1046/j.1365-294x.1998.00432.x
10.1007/978-94-009-5965-1_10
10.1111/j.1365-294X.2006.03067.x
10.1515/mamm.2002.66.3.341
10.1111/j.1471-8286.2007.01758.x
10.1111/j.1365-294X.2006.03123.x
10.1046/j.1365-294x.2001.01202.x
10.1111/j.0014-3820.2003.tb00355.x
10.1111/j.1095-8312.2000.tb00224.x
10.1046/j.1365-294x.2000.01006.x
10.1016/j.tree.2007.05.004
10.1073/pnas.76.10.5269
10.1534/genetics.107.070672
10.1186/1471-2148-7-57
10.1111/j.1365-294X.2006.03210.x
10.1111/j.1365-2427.2005.01491.x
10.1111/j.1365-294X.2004.02396.x
10.1371/journal.pone.0001249
10.1038/hdy.1996.142
10.1016/j.pedobi.2003.04.001
10.1111/j.1365-294X.2006.02910.x
10.1016/j.pedobi.2006.06.005
10.1016/S0038-0717(96)00041-7
10.1201/9781420039719.pt1
10.1111/j.1365-294X.2005.02681.x
10.1046/j.1365-294X.2003.01731.x
10.1079/BER2006426
10.1111/j.1365-294X.2006.02999.x
10.1111/j.1461-0248.2004.00569.x
10.1016/j.tree.2006.11.004
10.1016/j.agee.2005.08.026
10.1111/j.1096-0031.2006.00128.x
10.1046/j.0962-1083.2001.01357.x
10.1098/rspb.1996.0056
10.2307/2817
10.1093/nar/25.24.4876
10.1007/s00374-006-0154-x
10.1093/oxfordjournals.molbev.a025919
10.1017/S0094837300009684
10.1111/j.1365-294X.2005.02496.x
10.1016/j.pedobi.2005.11.003
10.1111/j.1420-9101.2006.01183.x
10.1098/rstb.2005.1722
10.1890/03-5345
10.1016/S0929-1393(98)00087-0
10.1080/00222935508655698
10.1111/j.0014-3820.2001.tb00603.x
10.1093/genetics/121.3.613
10.1038/sj.hdy.6800543
10.1186/1471-2148-6-83
10.1016/S0169-5347(00)02078-4
10.1111/j.1365-294X.2006.02888.x
10.1098/rspb.2002.2218
10.1016/j.pedobi.2005.02.004
10.1046/j.1365-2540.1998.00342.x
10.1017/S0016672300029827
10.1111/j.1463-6409.2009.00419.x
10.1111/j.1365-294X.2007.03603.x
10.1111/j.1365-2052.1997.00204.x
10.1016/j.pedobi.2008.04.001
10.1007/BF01731581
10.1111/j.1365-294X.2005.02553.x
10.1111/j.0908-8857.2004.03297.x
10.1023/A:1003933603879
10.1111/j.1365-294X.2005.02655.x
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
Journal compilation © 2008 Blackwell Publishing Ltd
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
– notice: Journal compilation © 2008 Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7ST
7U6
7S9
L.6
7X8
DOI 10.1111/j.1365-294X.2008.03931.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Sustainability Science Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
AGRICOLA
MEDLINE
Entomology Abstracts
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 4698
ExternalDocumentID 1583208131
18992008
10_1111_j_1365_294X_2008_03931_x
MEC3931
ark_67375_WNG_XXRDW78L_2
US201301561414
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations United Kingdom--UK
Great Britain
GeographicLocations_xml – name: United Kingdom--UK
– name: Great Britain
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/D001188/1
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7ST
7U6
7S9
L.6
7X8
ID FETCH-LOGICAL-c5841-f58daada758633ffedde7d4a65a81858430f71f6c5bf6838aac1722561049b403
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Fri Sep 05 09:28:58 EDT 2025
Thu Sep 04 16:29:52 EDT 2025
Thu Sep 04 14:28:38 EDT 2025
Wed Aug 13 04:27:24 EDT 2025
Fri May 30 10:59:34 EDT 2025
Thu Apr 24 23:15:54 EDT 2025
Tue Jul 01 01:21:45 EDT 2025
Sun Sep 21 06:20:28 EDT 2025
Sun Sep 21 06:19:09 EDT 2025
Wed Dec 27 19:22:01 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5841-f58daada758633ffedde7d4a65a81858430f71f6c5bf6838aac1722561049b403
Notes http://dx.doi.org/10.1111/j.1365-294X.2008.03931.x
istex:1F93B79C19BB2879ECCBA1042EE9E4F242A233FD
ark:/67375/WNG-XXRDW78L-2
ArticleID:MEC3931
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 18992008
PQID 210686776
PQPubID 31465
PageCount 15
ParticipantIDs proquest_miscellaneous_69953793
proquest_miscellaneous_48137524
proquest_miscellaneous_19417401
proquest_journals_210686776
pubmed_primary_18992008
crossref_primary_10_1111_j_1365_294X_2008_03931_x
crossref_citationtrail_10_1111_j_1365_294X_2008_03931_x
wiley_primary_10_1111_j_1365_294X_2008_03931_x_MEC3931
istex_primary_ark_67375_WNG_XXRDW78L_2
fao_agris_US201301561414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2008
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: November 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Edwards CA, Bohlen PJ (1996) The Biology and Ecology of Earthworms. Chapman & Hall, London.
Joschko M, Fox CA, Lentzsch P et al . (2006) Spatial analysis of earthworm biodiversity at the regional scale. Agriculture, Ecosystems and Environment, 112, 367-380.
Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420, 73-90.
Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology, 14, 2899-2914.
Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure of invasive earthworms Dendrobaena octaedra in the boreal forests of Alberta: insights into introduction mechanisms. Molecular Ecology, 17, 1189-1197.
Gomez A, Wright PJ, Lunt DH et al . (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proceedings of the Royal Society B: Biological Sciences, 274, 199-207.
Seddon JM, Santucci F, Reeve NJ, Hewitt GM (2001) DNA footprints of European hedgehogs, Erinaceus europaeus and E. concolor. Pleistocene refugia, postglacial expansion and colonization routes. Molecular Ecology, 10, 2187-2198.
Darwin C (1881) The Formation of Vegetable Mould Through the Actions of Worms. John Murray, London.
Tully T, D'Haese CA, Richard M, Ferriere R (2006) Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida. Pedobiologia, 50, 95-104.
Ferris C, King RA, Vainola R, Hewitt GM (1998) Chloroplast DNA recognises three refugial sources of European oaks and shows independent eastern and western immigrations to Finland. Heredity, 80, 584-593.
Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
Pérez-Losada M, Eiroa J, Mato S, Dominguez J (2005) Phylogenetic species delimitation of the earthworms Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouche, 1972 (Oligochaeta, Lumbricidae) based on mitochondrial and nuclear DNA sequences. Pedobiologia, 49, 317-324.
Struck TH, Schult N, Kusen T et al . (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology, 6, 57.
Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282-291.
Palumbi SR, Cipriano F, Hare MP (2001) Predicting nuclear gene coalescence from mitochondrial data: The three-times rule. Evolution, 55, 859-868.
Bastrop R, Jurss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Molecular Biology and Evolution, 15, 97-103.
Ligthart TN, Peek GJCW (1997) Evolution of earthworm burrow systems after inoculation of lumbricid earthworms in a pasture in the Netherlands. Soil Biology and Biochemistry, 29, 453-462.
Piertney SB, Stewart WA, Lambin X et al . (2005) Phylogeographic structure and postglacial evolutionary history of water voles (Arvicola terrestris) in the United Kingdom. Molecular Ecology, 14, 1435-1444.
Harper GL, Sheppard SK, Harwood JD et al . (2006) Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators. Bulletin of Entomological Research, 96, 295-304.
Bennett KD (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology, 16, 11-21.
DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360, 1905-1916.
Wilke T, Davis GM, Qiu DC, Spear RC (2006) Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host Oncomelania hupensis roberstsoni: another case of ancestral polymorphism. Malacologia, 48, 143-157.
Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts.
Hofman S, Spolsky C, Uzzell T et al . (2007) Phylogeography of the fire-bellied toads Bombina: independent Pleistocene histories inferred from mitochondrial genomes. Molecular Ecology, 16, 2301-2316.
Noor MAF, Garfield DA, Schaeffer SW, Machado CA (2007) Divergence between the Drosophila psuedoobscura and D. persimilis genome sequences in relation to chromosomal inversions. Genetics, 177, 1417-1428.
Jolly MT, Jollivet D, Gentil F, Thiebaut E, Viard F (2005) Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity, 94, 23-32.
Finston TL, Johnson MS, Humphreys WF, Eberhard SM, Halse SA (2007) Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology, 16, 355-365.
Sims RW, Gerard BM (1999) Earthworms. Field Studies Council, Shrewsbury.
Heethoff M, Domes K, Laumann M et al . (2007) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology, 20, 392-402.
Symondson WOC, Glen DM, Erickson ML, Liddell JE, Langdon CJ (2000) Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crops? Investigations using monoclonal antibodies. Molecular Ecology, 9, 1279-1292.
Madsen SA, Madsen AB, Eleros M (2002) Seasonal food of badgers (Meles meles) in Denmark. Mammalia, 66, 341-352.
Davison A (2000) An east-west distribution of divergent mitochondrial haplotypes in British populations of the land snail, Cepaea nemoralis (Pulmonata). Biological Journal of the Linnean Society, 70, 697-706.
Slatkin M (1991) Inbreeding coefficients and coalescence times. Genetical Research, 58, 167-175.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
Thompson JD, Gibson TJ, PIewniak F, Jeanmougin F, Higgins DG (1997) Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882.
Bickford D, Lohman DJ, Sodhi NS et al . (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148-155.
Baus E, Darrock DJ, Bruford MW (2005) Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Molecular Ecology, 14, 3373-3382.
Hale CM, Frelich LE, Reich PB (2005) Exotic European earthworm invasion dynamics in northern hardwood forest of Minnesota, USA. Ecological Applications, 15, 848-860.
Lentzsch P, Golldack J (2006) Genetic diversity of Aporrectodea caliginosa from agricultural sites in Northeast Brandenburg, Germany. Pedobiologia, 50, 369-376.
Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 15, 111-120.
Wang-Sattler R, Blandin S, Ning Y et al . (2007) Mosaic genome architecture of the Anopheles gambiae species complex. PLoS ONE 2(11): e1249. doi: 10.1371/journal.pone.0001249.
Rosenberg NA (2003) The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution, 57, 1465-1477.
Huntley B, Birks HJB (1983) An Atlas of Past and Present Pollen Maps for Europe: 0-13 000 Years Ago. Cambridge University Press, Cambridge.
Pop AA, Wink M, Pop VV (2003) Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae). Pedobiologia, 47, 428-433.
Palumbi SR, Martin A, Romano S et al . (1991) The Simple Fool's Guide to PCR, Version 2.0. University of Hawaii, Honolulu.
Lefébure T, Douady CJ, Gouy M et al . (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology, 15, 1797-1806.
Lowe CN, Butt KR (2008) Allolobophora chlorotica (Savigny, 1826): evidence for classification as two separate species. Pedobiologia, doi: 10.1016/j.pedobi.2008.04.001.
Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology, 15, 3073-3082.
Butt KR (1997) Reproduction and growth of the earthworm Allolobophora chlorotica (Savigny, 1826) in controlled environments. Pedobiologia, 41, 81-87.
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611-2620.
McHugh D (2005) Molecular systematics of polychaetes (Annelida). Hydrobiologia, 535, 309-318.
Beauchamp KA, Kathman RD, McDowell TS, Hedrick RP (2001) Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae). Molecular Biology and Evolution, 19, 216-224.
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
Kalmus H, Satchell JE, Bowen JC (1955) On the colour forms of Allolobophora chlorotica Sav. (Lumbricidae). Annals and Magazine of Natural History, 12, 795-800.
Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313-321.
Lowe CN, Butt KR (2007) Life-cycle traits of the dimorphic earthworm species Allolobophora chlorotica (Savigny, 1826) under controlled laboratory conditions. Biology and Fertility of Soils, 43, 495-499.
Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453-464.
Challis RJ, Mutun S, Nieves-Aldrey JL et al . (2007) Longitudinal range expansion and cryptic eastern specie
1991; 58
1990; 16
1997; 41
2000; 9
2004; 7
2005; 535
2002; 11
2003; 57
2003; 270
1998; 80
2003; 19
1996; 263
1979; 76
1996; 77
1998; 15
2001
2000
2007; 177
2001; 19
2003; 47
2007; 6
2007; 7
1983
2001; 16
2007; 2
2007; 20
2001; 55
2007; 22
2007; 23
1955; 12
2001; 10
2001; 215
2006; 96
2006; 50
2006; 51
2004; 48
1997; 25
2008; 17
2006; 15
2006; 8
1997; 29
2008
1997; 28
2000; 70
1996
2007
2006; 6
2004
1993
2000; 155
1991
2005; 49
2006; 112
2007; 16
1999
1980; 15
2005; 360
1989; 121
2007; 274
2002; 66
2006; 48
2005; 1
1967; 36
1881
2005; 94
2000; 420
2005; 15
1998; 7
2007; 43
1994; 3
1998; 9
2005; 14
e_1_2_6_51_1
e_1_2_6_74_1
Huntley B (e_1_2_6_39_1) 1983
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
Edwards CA (e_1_2_6_20_1) 2004
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
Swofford DL (e_1_2_6_76_1) 2001
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
Sims RW (e_1_2_6_73_1) 1999
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_85_1
Pop AA (e_1_2_6_64_1) 2003; 47
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
Palumbi SR (e_1_2_6_59_1) 1991
e_1_2_6_22_1
Kimura M (e_1_2_6_46_1) 1980; 15
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
Beauchamp KA (e_1_2_6_7_1) 2001; 19
e_1_2_6_50_1
e_1_2_6_71_1
Birky CW (e_1_2_6_11_1) 1989; 121
Wilke T (e_1_2_6_84_1) 2006; 48
Edwards CA (e_1_2_6_21_1) 1996
Folmer O (e_1_2_6_27_1) 1994; 3
Darwin C (e_1_2_6_16_1) 1881
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_77_1
Hewitt GM (e_1_2_6_35_1) 1993
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_86_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Butt KR (e_1_2_6_12_1) 1997; 41
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_69_1
References_xml – reference: Palumbi SR, Cipriano F, Hare MP (2001) Predicting nuclear gene coalescence from mitochondrial data: The three-times rule. Evolution, 55, 859-868.
– reference: Piertney SB, Stewart WA, Lambin X et al . (2005) Phylogeographic structure and postglacial evolutionary history of water voles (Arvicola terrestris) in the United Kingdom. Molecular Ecology, 14, 1435-1444.
– reference: Patti FP, Gambi MC (2001) Phylogeography of the invasive polychaete Sabella spallanzanii (Sabellidae) based on the nucleotide sequence of internal transcribed spacer 2 (ITS2) of nuclear rDNA. Marine Ecology Progress Series, 215, 169-177.
– reference: Kalmus H, Satchell JE, Bowen JC (1955) On the colour forms of Allolobophora chlorotica Sav. (Lumbricidae). Annals and Magazine of Natural History, 12, 795-800.
– reference: Ligthart TN, Peek GJCW (1997) Evolution of earthworm burrow systems after inoculation of lumbricid earthworms in a pasture in the Netherlands. Soil Biology and Biochemistry, 29, 453-462.
– reference: Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
– reference: Seddon JM, Santucci F, Reeve NJ, Hewitt GM (2001) DNA footprints of European hedgehogs, Erinaceus europaeus and E. concolor. Pleistocene refugia, postglacial expansion and colonization routes. Molecular Ecology, 10, 2187-2198.
– reference: Gomez A, Wright PJ, Lunt DH et al . (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proceedings of the Royal Society B: Biological Sciences, 274, 199-207.
– reference: Tully T, D'Haese CA, Richard M, Ferriere R (2006) Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida. Pedobiologia, 50, 95-104.
– reference: Symondson WOC, Glen DM, Erickson ML, Liddell JE, Langdon CJ (2000) Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crops? Investigations using monoclonal antibodies. Molecular Ecology, 9, 1279-1292.
– reference: King RA, Ferris C (1998) Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Molecular Ecology, 7, 1151-1162.
– reference: Joschko M, Fox CA, Lentzsch P et al . (2006) Spatial analysis of earthworm biodiversity at the regional scale. Agriculture, Ecosystems and Environment, 112, 367-380.
– reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
– reference: Wilke T, Pfenninger M (2002) Separating historic events from recurrent processes in cryptic species: phylogeography of mud snails (Hydrobia spp.). Molecular Ecology, 11, 1439-1451.
– reference: Ferris C, King RA, Vainola R, Hewitt GM (1998) Chloroplast DNA recognises three refugial sources of European oaks and shows independent eastern and western immigrations to Finland. Heredity, 80, 584-593.
– reference: Darwin C (1881) The Formation of Vegetable Mould Through the Actions of Worms. John Murray, London.
– reference: Bennett KD (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology, 16, 11-21.
– reference: Cannavacciuolo M, Bellido A, Cluzeau D, Gascuel C, Trehen P (1998) A geostatistical approach to the study of earthworm distribution in grassland. Applied Soil Ecology, 9, 345-349.
– reference: Lefébure T, Douady CJ, Gouy M et al . (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology, 15, 1797-1806.
– reference: Challis RJ, Mutun S, Nieves-Aldrey JL et al . (2007) Longitudinal range expansion and cryptic eastern species in the western Palaearctic oak gallwasp, Andricus coriarius. Molecular Ecology, 16, 2103-2114.
– reference: Hofman S, Spolsky C, Uzzell T et al . (2007) Phylogeography of the fire-bellied toads Bombina: independent Pleistocene histories inferred from mitochondrial genomes. Molecular Ecology, 16, 2301-2316.
– reference: Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology, 14, 2899-2914.
– reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611-2620.
– reference: Johannesson K (2001) Parallel speciation: a key to sympatric divergence. Trends in Ecology & Evolution, 16, 148-153.
– reference: Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282-291.
– reference: Haine ER, Martin J, Cook JM (2006) Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. BMC Evolutionary Biology 6.
– reference: Wilke T, Davis GM, Qiu DC, Spear RC (2006) Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host Oncomelania hupensis roberstsoni: another case of ancestral polymorphism. Malacologia, 48, 143-157.
– reference: Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, 7, 574-578.
– reference: Satchell JE (1967) Colour dimorphism in Allolobophora chlorotica Sav. (Lumbricidae). Journal of Animal Ecology, 36, 623-630.
– reference: Baus E, Darrock DJ, Bruford MW (2005) Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Molecular Ecology, 14, 3373-3382.
– reference: Pop AA, Wink M, Pop VV (2003) Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae). Pedobiologia, 47, 428-433.
– reference: Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology, 15, 3073-3082.
– reference: Bastrop R, Jurss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Molecular Biology and Evolution, 15, 97-103.
– reference: Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313-321.
– reference: Hewitt GM (2001) Speciation, hybrid zones and phylogeography - or seeing genes in space and time. Molecular Ecology, 10, 537-549.
– reference: McHugh D (2005) Molecular systematics of polychaetes (Annelida). Hydrobiologia, 535, 309-318.
– reference: Swofford DL (2001) paup* - Phylogenetic Analysis Using Parsimony (* and Other Related Methods), Version 4.0b10. Sinauer & Associates, Sunderland, Massachusetts.
– reference: Edwards CA, Bohlen PJ (1996) The Biology and Ecology of Earthworms. Chapman & Hall, London.
– reference: Bickford D, Lohman DJ, Sodhi NS et al . (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148-155.
– reference: Harper GL, Sheppard SK, Harwood JD et al . (2006) Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators. Bulletin of Entomological Research, 96, 295-304.
– reference: Zhang DY, Lin K, Hanski I (2004) Coexistence of cryptic species. Ecology Letters, 7, 165-169.
– reference: Pérez-Losada M, Eiroa J, Mato S, Dominguez J (2005) Phylogenetic species delimitation of the earthworms Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouche, 1972 (Oligochaeta, Lumbricidae) based on mitochondrial and nuclear DNA sequences. Pedobiologia, 49, 317-324.
– reference: Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure of invasive earthworms Dendrobaena octaedra in the boreal forests of Alberta: insights into introduction mechanisms. Molecular Ecology, 17, 1189-1197.
– reference: Rousset V, Pleijel F, Rouse GW, Erseus C, Siddall ME (2007) A molecular phylogeny of annelids. Cladistics, 23, 41-63.
– reference: Lowe CN, Butt KR (2008) Allolobophora chlorotica (Savigny, 1826): evidence for classification as two separate species. Pedobiologia, doi: 10.1016/j.pedobi.2008.04.001.
– reference: Noor MAF, Garfield DA, Schaeffer SW, Machado CA (2007) Divergence between the Drosophila psuedoobscura and D. persimilis genome sequences in relation to chromosomal inversions. Genetics, 177, 1417-1428.
– reference: Ajmone-Marsan P, Valentini A, Cassandro M et al . (1997) AFLP (TM) markers for DNA fingerprinting in cattle. Animal Genetics, 28, 418-426.
– reference: DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360, 1905-1916.
– reference: Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
– reference: Huntley B, Birks HJB (1983) An Atlas of Past and Present Pollen Maps for Europe: 0-13 000 Years Ago. Cambridge University Press, Cambridge.
– reference: Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
– reference: Butt KR (1997) Reproduction and growth of the earthworm Allolobophora chlorotica (Savigny, 1826) in controlled environments. Pedobiologia, 41, 81-87.
– reference: Hale CM, Frelich LE, Reich PB (2005) Exotic European earthworm invasion dynamics in northern hardwood forest of Minnesota, USA. Ecological Applications, 15, 848-860.
– reference: Thomaz D, Guiller A, Clarke B (1996) Extreme divergence of mitochondrial DNA within species of pulmonate land snails. Proceedings of the Royal Society B: Biological Sciences, 263, 363-368.
– reference: Wang-Sattler R, Blandin S, Ning Y et al . (2007) Mosaic genome architecture of the Anopheles gambiae species complex. PLoS ONE 2(11): e1249. doi: 10.1371/journal.pone.0001249.
– reference: Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts.
– reference: Heethoff M, Domes K, Laumann M et al . (2007) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology, 20, 392-402.
– reference: Heethoff M, Etzold K, Scheu S (2004) Mitochondrial COII sequences indicate that the parthenogenetic earthworm Octolasion tyrtaeum (Savigny 1826) constitutes of two lineages differing in body size and genotype. Pedobiologia, 48, 9-13.
– reference: Davison A (2000) An east-west distribution of divergent mitochondrial haplotypes in British populations of the land snail, Cepaea nemoralis (Pulmonata). Biological Journal of the Linnean Society, 70, 697-706.
– reference: Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453-464.
– reference: Jolly MT, Viard F, Gentil F, Thiebaut E, Jollivet D (2006) Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events. Molecular Ecology, 15, 1841-1855.
– reference: Rosenberg NA (2003) The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution, 57, 1465-1477.
– reference: Palumbi SR, Martin A, Romano S et al . (1991) The Simple Fool's Guide to PCR, Version 2.0. University of Hawaii, Honolulu.
– reference: Slatkin M (1991) Inbreeding coefficients and coalescence times. Genetical Research, 58, 167-175.
– reference: Struck TH, Schult N, Kusen T et al . (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology, 6, 57.
– reference: Birky CW, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift-equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121, 613-627.
– reference: Lentzsch P, Golldack J (2006) Genetic diversity of Aporrectodea caliginosa from agricultural sites in Northeast Brandenburg, Germany. Pedobiologia, 50, 369-376.
– reference: Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
– reference: Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420, 73-90.
– reference: Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms restriction endonucleases. Proceedings of the National Academy of Sciences, USA, 76, 5269-5273.
– reference: Jolly MT, Jollivet D, Gentil F, Thiebaut E, Viard F (2005) Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity, 94, 23-32.
– reference: Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 15, 111-120.
– reference: Hogg ID, Stevens MI, Schnabel KE, Chapman MA (2006) Deeply divergent lineages of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analyses. Freshwater Biology, 51, 236-248.
– reference: Sims RW, Gerard BM (1999) Earthworms. Field Studies Council, Shrewsbury.
– reference: Beauchamp KA, Kathman RD, McDowell TS, Hedrick RP (2001) Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae). Molecular Biology and Evolution, 19, 216-224.
– reference: Schlick-Steiner BC, Seifert B, Stauffer C et al . (2007) Without morphology, cryptic species stay in taxomonic crypsis following discovery. Trends in Ecology & Evolution, 22, 391-392.
– reference: Thompson JD, Gibson TJ, PIewniak F, Jeanmougin F, Higgins DG (1997) Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882.
– reference: Bastrop R, Blank M (2006) Multiple invasions - a polychaete genus enters the Baltic Sea. Biological Invasions, 8, 1195-1200.
– reference: Finston TL, Johnson MS, Humphreys WF, Eberhard SM, Halse SA (2007) Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology, 16, 355-365.
– reference: Lowe CN, Butt KR (2007) Life-cycle traits of the dimorphic earthworm species Allolobophora chlorotica (Savigny, 1826) under controlled laboratory conditions. Biology and Fertility of Soils, 43, 495-499.
– reference: Madsen SA, Madsen AB, Eleros M (2002) Seasonal food of badgers (Meles meles) in Denmark. Mammalia, 66, 341-352.
– volume: 14
  start-page: 2899
  year: 2005
  end-page: 2914
  article-title: Ten years of AFLP in ecology and evolution: why so few animals?
  publication-title: Molecular Ecology
– year: 2008
  article-title: (Savigny, 1826): evidence for classification as two separate species
  publication-title: Pedobiologia
– volume: 7
  start-page: 165
  year: 2004
  end-page: 169
  article-title: Coexistence of cryptic species
  publication-title: Ecology Letters
– volume: 12
  start-page: 795
  year: 1955
  end-page: 800
  article-title: On the colour forms of Sav. (Lumbricidae)
  publication-title: Annals and Magazine of Natural History
– volume: 48
  start-page: 9
  year: 2004
  end-page: 13
  article-title: Mitochondrial COII sequences indicate that the parthenogenetic earthworm (Savigny 1826) constitutes of two lineages differing in body size and genotype
  publication-title: Pedobiologia
– volume: 215
  start-page: 169
  year: 2001
  end-page: 177
  article-title: Phylogeography of the invasive polychaete (Sabellidae) based on the nucleotide sequence of internal transcribed spacer 2 (ITS2) of nuclear rDNA
  publication-title: Marine Ecology Progress Series
– year: 2001
– volume: 80
  start-page: 584
  year: 1998
  end-page: 593
  article-title: Chloroplast DNA recognises three refugial sources of European oaks and shows independent eastern and western immigrations to Finland
  publication-title: Heredity
– volume: 14
  start-page: 2611
  year: 2005
  end-page: 2620
  article-title: Detecting the number of clusters of individuals using the software Structure: a simulation study
  publication-title: Molecular Ecology
– volume: 96
  start-page: 295
  year: 2006
  end-page: 304
  article-title: Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators
  publication-title: Bulletin of Entomological Research
– start-page: 98
  year: 1993
  end-page: 123
– volume: 41
  start-page: 81
  year: 1997
  end-page: 87
  article-title: Reproduction and growth of the earthworm (Savigny, 1826) in controlled environments
  publication-title: Pedobiologia
– volume: 1
  start-page: 47
  year: 2005
  end-page: 50
  article-title: Arlequin (version 3.0): an integrated software package for population genetics data analysis
  publication-title: Evolutionary Bioinformatics Online
– volume: 14
  start-page: 1435
  year: 2005
  end-page: 1444
  article-title: Phylogeographic structure and postglacial evolutionary history of water voles ( ) in the United Kingdom
  publication-title: Molecular Ecology
– volume: 9
  start-page: 1279
  year: 2000
  end-page: 1292
  article-title: Do earthworms help to sustain the slug predator (Coleoptera: Carabidae) within crops? Investigations using monoclonal antibodies
  publication-title: Molecular Ecology
– volume: 274
  start-page: 199
  year: 2007
  end-page: 207
  article-title: Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– year: 1881
– volume: 55
  start-page: 859
  year: 2001
  end-page: 868
  article-title: Predicting nuclear gene coalescence from mitochondrial data: The three‐times rule
  publication-title: Evolution
– volume: 29
  start-page: 453
  year: 1997
  end-page: 462
  article-title: Evolution of earthworm burrow systems after inoculation of lumbricid earthworms in a pasture in the Netherlands
  publication-title: Soil Biology and Biochemistry
– volume: 57
  start-page: 1465
  year: 2003
  end-page: 1477
  article-title: The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model
  publication-title: Evolution
– volume: 3
  start-page: 294
  year: 1994
  end-page: 299
  article-title: DNA primers for the amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates
  publication-title: Molecular Marine Biology and Biotechnology
– volume: 535
  start-page: 309
  year: 2005
  end-page: 318
  article-title: Molecular systematics of polychaetes (Annelida)
  publication-title: Hydrobiologia
– volume: 49
  start-page: 317
  year: 2005
  end-page: 324
  article-title: Phylogenetic species delimitation of the earthworms (Savigny, 1826) and Bouche, 1972 (Oligochaeta, Lumbricidae) based on mitochondrial and nuclear DNA sequences
  publication-title: Pedobiologia
– volume: 20
  start-page: 392
  year: 2007
  end-page: 402
  article-title: High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite (Acari, Oribatida)
  publication-title: Journal of Evolutionary Biology
– volume: 58
  start-page: 167
  year: 1991
  end-page: 175
  article-title: Inbreeding coefficients and coalescence times
  publication-title: Genetical Research
– volume: 15
  start-page: 111
  year: 1980
  end-page: 120
  article-title: A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences
  publication-title: Journal of Molecular Evolution
– volume: 43
  start-page: 495
  year: 2007
  end-page: 499
  article-title: Life‐cycle traits of the dimorphic earthworm species (Savigny, 1826) under controlled laboratory conditions
  publication-title: Biology and Fertility of Soils
– volume: 66
  start-page: 341
  year: 2002
  end-page: 352
  article-title: Seasonal food of badgers ( ) in Denmark
  publication-title: Mammalia
– year: 2004
– volume: 19
  start-page: 1572
  year: 2003
  end-page: 1574
  article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models
  publication-title: Bioinformatics
– volume: 77
  start-page: 282
  year: 1996
  end-page: 291
  article-title: Spatial patterns of genetic variation generated by different forms of dispersal during range expansion
  publication-title: Heredity
– volume: 177
  start-page: 1417
  year: 2007
  end-page: 1428
  article-title: Divergence between the and genome sequences in relation to chromosomal inversions
  publication-title: Genetics
– start-page: 3
  year: 2004
  end-page: 11
– volume: 19
  start-page: 216
  year: 2001
  end-page: 224
  article-title: Molecular phylogeny of tubificid oligochaetes with special emphasis on (Tubificidae)
  publication-title: Molecular Biology and Evolution
– volume: 10
  start-page: 2187
  year: 2001
  end-page: 2198
  article-title: DNA footprints of European hedgehogs, and . Pleistocene refugia, postglacial expansion and colonization routes
  publication-title: Molecular Ecology
– volume: 6
  year: 2006
  article-title: Deep mtDNA divergences indicate cryptic species in a fig‐pollinating wasp
  publication-title: BMC Evolutionary Biology
– volume: 7
  start-page: 1151
  year: 1998
  end-page: 1162
  article-title: Chloroplast DNA phylogeography of (L.) Gaertn
  publication-title: Molecular Ecology
– year: 1983
– volume: 14
  start-page: 3373
  year: 2005
  end-page: 3382
  article-title: Gene‐flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star
  publication-title: Molecular Ecology
– volume: 11
  start-page: 1439
  year: 2002
  end-page: 1451
  article-title: Separating historic events from recurrent processes in cryptic species: phylogeography of mud snails ( spp.)
  publication-title: Molecular Ecology
– volume: 2
  start-page: e1249
  issue: 11)
  year: 2007
  article-title: Mosaic genome architecture of the species complex
  publication-title: PLoS ONE
– volume: 22
  start-page: 148
  year: 2007
  end-page: 155
  article-title: Cryptic species as a window on diversity and conservation
  publication-title: Trends in Ecology & Evolution
– volume: 28
  start-page: 418
  year: 1997
  end-page: 426
  article-title: AFLP (TM) markers for DNA fingerprinting in cattle
  publication-title: Animal Genetics
– year: 2007
– volume: 23
  start-page: 41
  year: 2007
  end-page: 63
  article-title: A molecular phylogeny of annelids
  publication-title: Cladistics
– volume: 48
  start-page: 143
  year: 2006
  end-page: 157
  article-title: Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host : another case of ancestral polymorphism
  publication-title: Malacologia
– volume: 270
  start-page: 313
  year: 2003
  end-page: 321
  article-title: Biological identifications through DNA barcodes
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– year: 2000
– volume: 15
  start-page: 97
  year: 1998
  end-page: 103
  article-title: Cryptic species in a marine polychaete and their independent introduction from North America to Europe
  publication-title: Molecular Biology and Evolution
– volume: 16
  start-page: 2103
  year: 2007
  end-page: 2114
  article-title: Longitudinal range expansion and cryptic eastern species in the western Palaearctic oak gallwasp, Andricus coriarius
  publication-title: Molecular Ecology
– year: 1996
– volume: 16
  start-page: 2301
  year: 2007
  end-page: 2316
  article-title: Phylogeography of the fire‐bellied toads : independent Pleistocene histories inferred from mitochondrial genomes
  publication-title: Molecular Ecology
– volume: 420
  start-page: 73
  year: 2000
  end-page: 90
  article-title: Molecular genetic analyses of species boundaries in the sea
  publication-title: Hydrobiologia
– volume: 112
  start-page: 367
  year: 2006
  end-page: 380
  article-title: Spatial analysis of earthworm biodiversity at the regional scale
  publication-title: Agriculture, Ecosystems and Environment
– volume: 263
  start-page: 363
  year: 1996
  end-page: 368
  article-title: Extreme divergence of mitochondrial DNA within species of pulmonate land snails
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 15
  start-page: 3073
  year: 2006
  end-page: 3082
  article-title: DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation
  publication-title: Molecular Ecology
– volume: 121
  start-page: 613
  year: 1989
  end-page: 627
  article-title: Organelle gene diversity under migration, mutation, and drift‐equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes
  publication-title: Genetics
– volume: 6
  start-page: 57
  year: 2007
  article-title: Annelid phylogeny and the status of Sipuncula and Echiura
  publication-title: BMC Evolutionary Biology
– volume: 47
  start-page: 428
  year: 2003
  end-page: 433
  article-title: Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae)
  publication-title: Pedobiologia
– volume: 16
  start-page: 355
  year: 2007
  end-page: 365
  article-title: Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape
  publication-title: Molecular Ecology
– volume: 7
  start-page: 453
  year: 1998
  end-page: 464
  article-title: Comparative phylogeography and postglacial colonization routes in Europe
  publication-title: Molecular Ecology
– volume: 17
  start-page: 1189
  year: 2008
  end-page: 1197
  article-title: Genetic structure of invasive earthworms in the boreal forests of Alberta: insights into introduction mechanisms
  publication-title: Molecular Ecology
– volume: 51
  start-page: 236
  year: 2006
  end-page: 248
  article-title: Deeply divergent lineages of the widespread New Zealand amphipod revealed using allozyme and mitochondrial DNA analyses
  publication-title: Freshwater Biology
– volume: 16
  start-page: 148
  year: 2001
  end-page: 153
  article-title: Parallel speciation: a key to sympatric divergence
  publication-title: Trends in Ecology & Evolution
– volume: 8
  start-page: 1195
  year: 2006
  end-page: 1200
  article-title: Multiple invasions — a polychaete genus enters the Baltic Sea
  publication-title: Biological Invasions
– volume: 360
  start-page: 1905
  year: 2005
  end-page: 1916
  article-title: The unholy trinity: taxonomy, species delimitation and DNA barcoding
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
– volume: 7
  start-page: 574
  year: 2007
  end-page: 578
  article-title: Inference of population structure using multilocus genotype data: dominant markers and null alleles
  publication-title: Molecular Ecology Notes
– volume: 16
  start-page: 11
  year: 1990
  end-page: 21
  article-title: Milankovitch cycles and their effects on species in ecological and evolutionary time
  publication-title: Paleobiology
– volume: 155
  start-page: 945
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 76
  start-page: 5269
  year: 1979
  end-page: 5273
  article-title: Mathematical model for studying genetic variation in terms restriction endonucleases
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 94
  start-page: 23
  year: 2005
  end-page: 32
  article-title: Sharp genetic break between Atlantic and English Channel populations of the polychaete , along the North coast of France
  publication-title: Heredity
– volume: 15
  start-page: 1797
  year: 2006
  end-page: 1806
  article-title: Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments
  publication-title: Molecular Ecology
– volume: 25
  start-page: 4876
  year: 1997
  end-page: 4882
  article-title: Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools
  publication-title: Nucleic Acids Research
– volume: 10
  start-page: 537
  year: 2001
  end-page: 549
  article-title: Speciation, hybrid zones and phylogeography — or seeing genes in space and time
  publication-title: Molecular Ecology
– volume: 15
  start-page: 1841
  year: 2006
  end-page: 1855
  article-title: Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events
  publication-title: Molecular Ecology
– volume: 22
  start-page: 391
  year: 2007
  end-page: 392
  article-title: Without morphology, cryptic species stay in taxomonic crypsis following discovery
  publication-title: Trends in Ecology & Evolution
– volume: 36
  start-page: 623
  year: 1967
  end-page: 630
  article-title: Colour dimorphism in Sav. (Lumbricidae)
  publication-title: Journal of Animal Ecology
– volume: 15
  start-page: 848
  year: 2005
  end-page: 860
  article-title: Exotic European earthworm invasion dynamics in northern hardwood forest of Minnesota, USA
  publication-title: Ecological Applications
– volume: 9
  start-page: 345
  year: 1998
  end-page: 349
  article-title: A geostatistical approach to the study of earthworm distribution in grassland
  publication-title: Applied Soil Ecology
– volume: 50
  start-page: 95
  year: 2006
  end-page: 104
  article-title: Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species
  publication-title: Pedobiologia
– volume: 50
  start-page: 369
  year: 2006
  end-page: 376
  article-title: Genetic diversity of from agricultural sites in Northeast Brandenburg, Germany
  publication-title: Pedobiologia
– year: 1991
– volume: 70
  start-page: 697
  year: 2000
  end-page: 706
  article-title: An east‐west distribution of divergent mitochondrial haplotypes in British populations of the land snail, (Pulmonata)
  publication-title: Biological Journal of the Linnean Society
– year: 1999
– ident: e_1_2_6_55_1
  doi: 10.1007/s10750-004-4414-1
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1365-294X.2007.03309.x
– ident: e_1_2_6_78_1
  doi: 10.1046/j.1365-294x.1998.00289.x
– volume: 48
  start-page: 143
  year: 2006
  ident: e_1_2_6_84_1
  article-title: Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host Oncomelania hupensis roberstsoni: another case of ancestral polymorphism
  publication-title: Malacologia
– ident: e_1_2_6_4_1
  doi: 10.1007/s10530-005-6186-6
– ident: e_1_2_6_61_1
  doi: 10.3354/meps215169
– ident: e_1_2_6_83_1
  doi: 10.1046/j.1365-294X.2002.01541.x
– ident: e_1_2_6_28_1
  doi: 10.1098/rspb.2006.3718
– start-page: 98
  volume-title: Evolutionary Patterns and Processes
  year: 1993
  ident: e_1_2_6_35_1
– volume: 47
  start-page: 428
  year: 2003
  ident: e_1_2_6_64_1
  article-title: Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae)
  publication-title: Pedobiologia
  doi: 10.1078/0031-4056-00208
– ident: e_1_2_6_47_1
  doi: 10.1046/j.1365-294x.1998.00432.x
– volume-title: The Simple Fool's Guide to PCR
  year: 1991
  ident: e_1_2_6_59_1
– ident: e_1_2_6_19_1
  doi: 10.1007/978-94-009-5965-1_10
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365-294X.2006.03067.x
– ident: e_1_2_6_54_1
  doi: 10.1515/mamm.2002.66.3.341
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1471-8286.2007.01758.x
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1365-294X.2006.03123.x
– ident: e_1_2_6_36_1
  doi: 10.1046/j.1365-294x.2001.01202.x
– ident: e_1_2_6_68_1
  doi: 10.1111/j.0014-3820.2003.tb00355.x
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1095-8312.2000.tb00224.x
– ident: e_1_2_6_77_1
  doi: 10.1046/j.1365-294x.2000.01006.x
– ident: e_1_2_6_71_1
  doi: 10.1016/j.tree.2007.05.004
– ident: e_1_2_6_56_1
  doi: 10.1073/pnas.76.10.5269
– ident: e_1_2_6_57_1
  doi: 10.1534/genetics.107.070672
– ident: e_1_2_6_75_1
  doi: 10.1186/1471-2148-7-57
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1365-294X.2006.03210.x
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1365-2427.2005.01491.x
– ident: e_1_2_6_65_1
  doi: 10.1111/j.1365-294X.2004.02396.x
– ident: e_1_2_6_66_1
– ident: e_1_2_6_82_1
  doi: 10.1371/journal.pone.0001249
– ident: e_1_2_6_40_1
  doi: 10.1038/hdy.1996.142
– ident: e_1_2_6_33_1
  doi: 10.1016/j.pedobi.2003.04.001
– volume-title: Earthworms
  year: 1999
  ident: e_1_2_6_73_1
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1365-294X.2006.02910.x
– ident: e_1_2_6_50_1
  doi: 10.1016/j.pedobi.2006.06.005
– ident: e_1_2_6_51_1
  doi: 10.1016/S0038-0717(96)00041-7
– start-page: 3
  volume-title: Earthworm Ecology
  year: 2004
  ident: e_1_2_6_20_1
  doi: 10.1201/9781420039719.pt1
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1365-294X.2005.02681.x
– ident: e_1_2_6_3_1
  doi: 10.1046/j.1365-294X.2003.01731.x
– ident: e_1_2_6_31_1
  doi: 10.1079/BER2006426
– ident: e_1_2_6_85_1
  doi: 10.1111/j.1365-294X.2006.02999.x
– ident: e_1_2_6_86_1
  doi: 10.1111/j.1461-0248.2004.00569.x
– ident: e_1_2_6_10_1
  doi: 10.1016/j.tree.2006.11.004
– ident: e_1_2_6_44_1
  doi: 10.1016/j.agee.2005.08.026
– ident: e_1_2_6_69_1
  doi: 10.1111/j.1096-0031.2006.00128.x
– ident: e_1_2_6_72_1
  doi: 10.1046/j.0962-1083.2001.01357.x
– ident: e_1_2_6_79_1
  doi: 10.1098/rspb.1996.0056
– volume: 19
  start-page: 216
  year: 2001
  ident: e_1_2_6_7_1
  article-title: Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae)
  publication-title: Molecular Biology and Evolution
– ident: e_1_2_6_70_1
  doi: 10.2307/2817
– ident: e_1_2_6_80_1
  doi: 10.1093/nar/25.24.4876
– ident: e_1_2_6_52_1
  doi: 10.1007/s00374-006-0154-x
– ident: e_1_2_6_5_1
  doi: 10.1093/oxfordjournals.molbev.a025919
– volume: 3
  start-page: 294
  year: 1994
  ident: e_1_2_6_27_1
  article-title: DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates
  publication-title: Molecular Marine Biology and Biotechnology
– ident: e_1_2_6_8_1
  doi: 10.1017/S0094837300009684
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1365-294X.2005.02496.x
– ident: e_1_2_6_81_1
  doi: 10.1016/j.pedobi.2005.11.003
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1420-9101.2006.01183.x
– ident: e_1_2_6_18_1
  doi: 10.1098/rstb.2005.1722
– volume-title: The Biology and Ecology of Earthworms
  year: 1996
  ident: e_1_2_6_21_1
– ident: e_1_2_6_30_1
  doi: 10.1890/03-5345
– ident: e_1_2_6_14_1
  doi: 10.1016/S0929-1393(98)00087-0
– ident: e_1_2_6_45_1
  doi: 10.1080/00222935508655698
– ident: e_1_2_6_60_1
  doi: 10.1111/j.0014-3820.2001.tb00603.x
– volume: 121
  start-page: 613
  year: 1989
  ident: e_1_2_6_11_1
  article-title: Organelle gene diversity under migration, mutation, and drift‐equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes
  publication-title: Genetics
  doi: 10.1093/genetics/121.3.613
– ident: e_1_2_6_42_1
  doi: 10.1038/sj.hdy.6800543
– ident: e_1_2_6_29_1
  doi: 10.1186/1471-2148-6-83
– volume-title: paup* — Phylogenetic Analysis Using Parsimony (* and Other Related Methods)
  year: 2001
  ident: e_1_2_6_76_1
– ident: e_1_2_6_41_1
  doi: 10.1016/S0169-5347(00)02078-4
– ident: e_1_2_6_49_1
  doi: 10.1111/j.1365-294X.2006.02888.x
– ident: e_1_2_6_32_1
  doi: 10.1098/rspb.2002.2218
– volume: 41
  start-page: 81
  year: 1997
  ident: e_1_2_6_12_1
  article-title: Reproduction and growth of the earthworm Allolobophora chlorotica (Savigny, 1826) in controlled environments
  publication-title: Pedobiologia
– ident: e_1_2_6_62_1
  doi: 10.1016/j.pedobi.2005.02.004
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1365-2540.1998.00342.x
– volume-title: An Atlas of Past and Present Pollen Maps for Europe: 0–13 000 Years Ago
  year: 1983
  ident: e_1_2_6_39_1
– ident: e_1_2_6_74_1
  doi: 10.1017/S0016672300029827
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1463-6409.2009.00419.x
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1365-294X.2007.03603.x
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1365-2052.1997.00204.x
– ident: e_1_2_6_53_1
  doi: 10.1016/j.pedobi.2008.04.001
– volume: 15
  start-page: 111
  year: 1980
  ident: e_1_2_6_46_1
  article-title: A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences
  publication-title: Journal of Molecular Evolution
  doi: 10.1007/BF01731581
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_2_6_67_1
  doi: 10.1111/j.0908-8857.2004.03297.x
– volume-title: The Formation of Vegetable Mould Through the Actions of Worms
  year: 1881
  ident: e_1_2_6_16_1
– ident: e_1_2_6_48_1
  doi: 10.1023/A:1003933603879
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-294X.2005.02655.x
SSID ssj0013255
Score 2.380526
Snippet Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4684
SubjectTerms 16S
AFLP
Allolobophora chlorotica
amplified fragment length polymorphism
Amplified Fragment Length Polymorphism Analysis
Animals
Aporrectodea longa
Aporrectodea rosea
Biodiversity
Biotypes
COI
color
cryptic speciation
Cryptic species
Cytochrome
cytochrome-c oxidase
DNA, Mitochondrial
DNA, Mitochondrial - genetics
earthworms
Ecological function
Ecology
ecosystems
Ecotypes
Electron Transport Complex IV
Electron Transport Complex IV - genetics
Evolution, Molecular
food webs
genes
Genes, Mitochondrial
Genetic Speciation
Genetic structure
genetics
Genetics, Population
Great Britain
Haplotypes
Lumbricidae
Lumbricus rubellus
Mitochondria
Mitochondria - genetics
Mitochondrial DNA
Molecular biology
morphs
Oligochaeta
Oligochaeta - genetics
Phylogeny
Polymorphism, Genetic
Population genetics
Sequence Alignment
Sequence Analysis, DNA
Soil fertility
sympatric distribution
Taxa
United Kingdom
Worms
Title Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms
URI https://api.istex.fr/ark:/67375/WNG-XXRDW78L-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2008.03931.x
https://www.ncbi.nlm.nih.gov/pubmed/18992008
https://www.proquest.com/docview/210686776
https://www.proquest.com/docview/19417401
https://www.proquest.com/docview/48137524
https://www.proquest.com/docview/69953793
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0962-1083
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgEhIvfMPC-PAD4i1VHTuOzRsaHRNiexhUy5vl2PGYCmnVtGLlr-fOScuKNmlCvEWJ7ciXu_Pv4p_vCHnj8qKugshSrbSFAEWr1FYCmQDK8UwFNwx4GvnoWB6OxacyL3v-E56F6fJDbH64oWVEf40Gbqt228gjQ0uLsqdEcs3ZAPEk43ncsT3JLm0oxAKoANgz8DyKb5N6rhxoa6W6HewU8CuK_uIqMLqNbePidHCfTNbT6jgpk8FyUQ3cr78yPv6feT8g93oMS993SveQ3KqbR-ROV9VyBVejmAl79ZjUSFeBtZFaCl-QTgP9CRC5fUeXzQw8bY2HhGtP29WPWawUQN18BS7MUb9mi1D8T3ze0D73EgVXWkHDc0_BQhff4nBPyPhg9HX_MO3rOqQO4A5LQ668td5CqCI5D6EGF1t4YWVuET4owYehYEG6vApScWWtA5iVIdITuhJD_pTsNNOm3iWUMy7gpvTeBeHqoJQuNKAS64vMK84SUqy_oXF90nOsvfHdXAp-QJwGxdmX5ERxmouEsE3PWZf44wZ9dkFNjD0D_2zGXzLcFWaYapWJhLyNurMZy84nyKkrcnN6_NGU5cmH00J9NllC9tbKZXp30hqIyyUmHpQJeb15Cn4AN3dsU0-XrWFaMKyueH0LoRi8LhPXt5Ba5xwcdkKedVr9Z-YQluNMEyKjbt5YJOZotI9Xz_-14x65Gyk68fjnC7KzmC_rl4ADF9WraOG_ARtHS0g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCLEXvmFhwPyAeEtVx05i84a2jgJtH8aq9c1y7BimbWnVD7Hy13PnpGVFmzQh3qLUduXL3c-_s893hLyzaV4WXiSxksqAg6JkbAqBkQDS8kR62_Z4G7k_yLpD8WWUjppyQHgXps4Psd5wQ8sIeI0GjhvSm1YeQrSUGDUxkVxx1gJCeQ-P69BKD46SK0cKoQQqUPYEsEfyzbCea0faWKvuejMGBovCv7yOjm6y27A8HT4i56uJ1VEpZ63FvGjZX3_lfPxPM39MHjY0ln6s9e4JuVNWT8n9urDlEp46IRn28hkpMWIFlkdqKHxEOvb0J7Dk2Qe6qCYAtiXeEy4dnS0vJqFYALXTJaCYpW4VMEJxq_i0ok36JQpoWkDDU0fBSOc_wnDPyfCwc7zfjZvSDrEFxsNin0pnjDPgrWSce18CyuZOmCw1yCCk4G2fM5_ZtPCZ5NIYC0wrQbInVCHa_AXZqsZVuUMoZ1zAy8w564UtvZQqV0BMjMsTJzmLSL76iNo2ec-x_Ma5vuL_gDg1irOpyoni1JcRYeuekzr3xy367ICeaPMdIFoPvyV4MMww2yoTEXkflGc9lpmeYVhdnuqTwSc9Gh0dnOSyp5OI7K60SzeIMtPgmmeYezCLyN76V4ACPN8xVTlezDRTgmGBxZtbCMng7xJxc4tMqZQDZkfkZa3Wf2YOnjnONCJZUM5bi0T3O_v49OpfO-6RB93jfk_3Pg--7pLtELETboO-Jlvz6aJ8A7RwXrwN5v4bzPRPZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMQL32NhwPyAeGtVx45j84a2lgFbhQbV-mY5dgxTIa36IVb-eu6ctKxokybEW5TYjny5-_l38fmOkFcuy8siiLSllbbgoGjVsoXASADleKqC6wQ8jXzcl4cD8WGYDZv4JzwLU-eHWP9wQ8uIeI0GPvFh08hjhJYWwyYkkmvO2sAnbwkJzhYSpJP0wo5CrIAKjD0F6FF8M6rn0pE2lqqbwY6BwKLszy9jo5vkNq5OvftktJpXHZQyai_mRdv9-ivl4_-Z-ANyryGx9G2tdQ_JjbJ6RG7XZS2XcNWNqbCXj0mJ8SqwOFJL4RPScaA_gSPP3tBFNQGoLfGUcOnpbPljEksFUDddAoY56lfhIhR_FJ9VtEm-RAFLC2h45imY6PxbHO4JGfS6X_YPW01hh5YDvsNaIVPeWm_BV5Gch1ACxuZeWJlZ5A9K8E7IWZAuK4JUXFnrgGelSPWELkSHb5OtalyVO4RyxgXclN67IFwZlNK5BlpifZ56xVlC8tU3NK7Jeo7FN76bC94PiNOgOJuanChOc54Qtu45qTN_XKPPDqiJsV8BoM3gc4rbwgxzrTKRkNdRd9Zj2ekIg-ryzJz235nh8OTgNFdHJk3I7kq5TIMnMwOOucTMgzIhe-unAAS4u2OrcryYGaYFw_KKV7cQisHrUnF1C6l1xgGxE_K01uo_Mwe_HGeaEBl189oiMcfdfbx69q8d98idTwc9c_S-_3GX3I3hOvEo6HOyNZ8uyhfACefFy2jsvwGD3E4T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opening+a+can+of+worms%3A+unprecedented+sympatric+cryptic+diversity+within+British+lumbricid+earthworms&rft.jtitle=Molecular+ecology&rft.au=KING%2C+R+ANDREW&rft.au=TIBBLE%2C+AMY+L&rft.au=SYMONDSON%2C+WILLIAM+O+C&rft.date=2008-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=17&rft.issue=21&rft.spage=4684&rft_id=info:doi/10.1111%2Fj.1365-294X.2008.03931.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1583208131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon