Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms
Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic line...
Saved in:
Published in | Molecular ecology Vol. 17; no. 21; pp. 4684 - 4698 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2008
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0962-1083 1365-294X 1365-294X |
DOI | 10.1111/j.1365-294X.2008.03931.x |
Cover
Abstract | Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research. |
---|---|
AbstractList | Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research.Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research. Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research. Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species-level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica. There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research. [PUBLICATION ABSTRACT] Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for example, ecological and toxicological research. Our aim was to examine the genetic structure of common earthworm species, to identify cryptic lineages or species that may be distinct ecotypes or biotypes (and hence confound current research based upon morphotypes) and to try to explain the massive cryptic diversity that eventually emerged. We demonstrated that species such as Allolobophora chlorotica, Aporrectodea longa, Aporrectodea rosea and Lumbricus rubellus all comprise highly divergent lineages with species‐level divergence at the mitochondrial cytochrome oxidase I (COI) gene. In Allo. chlorotica alone, we found 55 haplotypes for COI, with 35 of these being found in pink and 20 in green morph worms. There were no cases of the two colour morphs sharing COI haplotypes. Phylogenetic analyses of mitochondrial COI and 16S genes showed the presence of five highly divergent lineages, suggesting the presence of multiple cryptic species within Allo. chlorotica . There was no clear geographical pattern to lineage distribution and many populations were polymorphic for both mitochondrial DNA lineage and colour morph. Amplified fragment length polymorphism results, based on two primer combinations, were broadly congruent with mitochondrial DNA results with one significant exception. Despite showing over 14% divergence at COI, amplified fragment length polymorphism markers showed that the two green morph lineages may be interbreeding and therefore represent a single taxon. The cryptic diversity revealed by these results has profound consequences for all areas of earthworm research. |
Author | KING, R. ANDREW SYMONDSON, WILLIAM O. C. TIBBLE, AMY L. |
Author_xml | – sequence: 1 fullname: KING, R. ANDREW – sequence: 2 fullname: TIBBLE, AMY L – sequence: 3 fullname: SYMONDSON, WILLIAM O.C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18992008$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v0zAchi00xLrCVwCLA7cUO_4bJJCgjIFUmARM681yE2d1SZxgO7T99jjrGNIumy-25Od5Lf_eE3DkOmcAgBjNcFqvNzNMOMvygi5nOUJyhkhB8Gz3CExuL47ABBU8zzCS5BichLBBCJOcsSfgGMuiGL0JMOe9cdZdQQ1L7WBXw23n2_AGDq73pjSVcdFUMOzbXkdvS1j6fR_TXtk_xgcb93Br49o6-MHbaMMaNkO7SqCtoNE-rq_jnoLHtW6CeXazT8HFp9Of88_Z4vzsy_z9IiuZpDirmay0rrRgkhNS16aqjKio5kxLLBNCUC1wzUu2qrkkUusSizxnHCNarCgiU_DqkNv77vdgQlStDaVpGu1MNwTFi4IRUZB7QSoxESyn94K4oFjQNNgpeHkH3HSDd-m3KseISy4ET9DzG2hYtaZSvbet9nv1r48EyANQ-i4Eb-r_CFJj9WqjxobV2LAaFXVdvdol9d0dtbRRR9u56LVtHhLw9hCwtY3ZP_hh9fV0Pp6Snx18G6LZ3fra_1JcpGmqy29narn8_vFSyIXKE__iwNe6U_rK26AufuRplAinRimm5C-tzOCo |
CitedBy_id | crossref_primary_10_1016_j_soilbio_2015_01_004 crossref_primary_10_1016_j_ympev_2016_09_011 crossref_primary_10_1007_s00300_017_2184_2 crossref_primary_10_1016_j_pedobi_2011_03_004 crossref_primary_10_1016_j_bbrc_2012_12_049 crossref_primary_10_1007_s10530_015_0910_7 crossref_primary_10_1016_j_soilbio_2016_03_015 crossref_primary_10_1016_j_ejsobi_2018_05_001 crossref_primary_10_1071_IS10035 crossref_primary_10_1016_j_apsoil_2022_104798 crossref_primary_10_1016_j_ejsobi_2020_103191 crossref_primary_10_1111_eea_12730 crossref_primary_10_1016_j_ympev_2018_02_021 crossref_primary_10_1111_j_1466_8238_2009_00517_x crossref_primary_10_1016_j_ejsobi_2013_05_004 crossref_primary_10_1016_j_soilbio_2009_07_008 crossref_primary_10_1111_bij_12171 crossref_primary_10_3897_afrinvertebr_61_53380 crossref_primary_10_5650_jos_ess21450 crossref_primary_10_1111_jbi_13744 crossref_primary_10_1016_j_ejsobi_2024_103620 crossref_primary_10_1080_00222933_2012_659769 crossref_primary_10_3109_19401736_2015_1115487 crossref_primary_10_5852_ejt_2021_746_1321 crossref_primary_10_1038_hdy_2013_84 crossref_primary_10_3390_insects11080478 crossref_primary_10_1111_geb_13156 crossref_primary_10_1016_j_apsoil_2016_07_013 crossref_primary_10_1016_j_ympev_2009_08_022 crossref_primary_10_1016_j_envpol_2010_06_019 crossref_primary_10_1093_zoolinnean_zlab011 crossref_primary_10_1016_j_soilbio_2010_05_029 crossref_primary_10_1016_j_ejsobi_2014_07_002 crossref_primary_10_1016_j_pedobi_2011_07_015 crossref_primary_10_1080_14772000_2012_723640 crossref_primary_10_1890_10_0154_1 crossref_primary_10_1098_rsbl_2014_0615 crossref_primary_10_1111_j_1096_3642_2012_00828_x crossref_primary_10_1371_journal_pone_0203909 crossref_primary_10_1111_j_1755_0998_2009_02628_x crossref_primary_10_3390_d13020036 crossref_primary_10_1093_molbev_mst074 crossref_primary_10_1007_s10539_023_09916_y crossref_primary_10_1016_j_pedobi_2020_150634 crossref_primary_10_1016_j_envpol_2014_03_022 crossref_primary_10_1016_j_apsoil_2017_11_001 crossref_primary_10_1016_j_pedobi_2018_03_001 crossref_primary_10_5733_afin_054_0220 crossref_primary_10_1016_j_ympev_2017_05_005 crossref_primary_10_3390_nano10071337 crossref_primary_10_1016_j_ympev_2014_10_024 crossref_primary_10_1126_science_abe4744 crossref_primary_10_1016_j_bse_2015_05_003 crossref_primary_10_1016_j_ympev_2017_07_026 crossref_primary_10_1111_bij_12436 crossref_primary_10_1016_j_pedobi_2012_08_006 crossref_primary_10_1111_cla_12154 crossref_primary_10_1111_ivb_12145 crossref_primary_10_3390_d14111006 crossref_primary_10_1093_sysbio_syy026 crossref_primary_10_1016_j_apsoil_2013_01_001 crossref_primary_10_1111_zsc_12032 crossref_primary_10_1016_j_ejsobi_2012_09_001 crossref_primary_10_1016_j_apsoil_2015_11_012 crossref_primary_10_3390_d14010030 crossref_primary_10_1016_S2095_3119_12_60002_1 crossref_primary_10_1134_S2079059717010130 crossref_primary_10_3375_043_032_0305 crossref_primary_10_1111_j_1755_0998_2011_03098_x crossref_primary_10_1111_j_1365_294X_2011_05403_x crossref_primary_10_3389_fevo_2024_1358984 crossref_primary_10_1111_j_1365_294X_2011_05407_x crossref_primary_10_1371_journal_pone_0136943 crossref_primary_10_3109_19401736_2015_1101594 crossref_primary_10_1016_j_ejsobi_2018_03_004 crossref_primary_10_1016_j_pedobi_2014_09_002 crossref_primary_10_1371_journal_pone_0028153 crossref_primary_10_1016_j_apsoil_2016_08_002 crossref_primary_10_1111_jbi_14518 crossref_primary_10_1016_j_ejsobi_2017_06_004 crossref_primary_10_1016_j_ympev_2010_09_024 crossref_primary_10_1590_S0100_204X2009000800002 crossref_primary_10_1016_j_ympev_2020_106767 crossref_primary_10_1016_j_chemosphere_2017_09_122 crossref_primary_10_1016_j_ejsobi_2017_06_007 crossref_primary_10_1016_j_ympev_2010_04_010 crossref_primary_10_1111_2041_210X_12775 crossref_primary_10_1111_j_1439_0469_2010_00571_x crossref_primary_10_1371_journal_pone_0208904 crossref_primary_10_1111_j_1755_0998_2011_03003_x crossref_primary_10_3897_zookeys_242_3996 crossref_primary_10_1007_s10646_016_1666_2 crossref_primary_10_1016_j_envpol_2019_113238 crossref_primary_10_18699_VJ20_594 crossref_primary_10_1007_s13127_021_00520_0 crossref_primary_10_3377_004_048_0224 crossref_primary_10_1111_j_1755_0998_2009_02822_x crossref_primary_10_1134_S1062359019050042 crossref_primary_10_1016_j_ejsobi_2019_103137 crossref_primary_10_11646_zootaxa_5589_1_7 crossref_primary_10_1016_j_soilbio_2015_10_009 crossref_primary_10_18699_vjgb_24_62 crossref_primary_10_1080_00779962_2012_686319 crossref_primary_10_1111_1755_0998_12517 crossref_primary_10_7717_peerj_2572 crossref_primary_10_1016_j_envpol_2015_07_010 crossref_primary_10_1016_j_soilbio_2023_109262 crossref_primary_10_1371_journal_pone_0204234 crossref_primary_10_1111_j_1096_3642_2012_00864_x crossref_primary_10_1016_j_jcz_2016_06_008 crossref_primary_10_1016_j_ejsobi_2009_11_006 crossref_primary_10_1111_mec_12319 crossref_primary_10_1371_journal_pone_0091907 crossref_primary_10_1002_jez_1834 crossref_primary_10_1016_j_soilbio_2023_109038 crossref_primary_10_3897_zookeys_399_7273 crossref_primary_10_1016_j_ejsobi_2009_06_004 crossref_primary_10_3389_fgene_2020_598196 crossref_primary_10_1016_j_ejsobi_2024_103655 crossref_primary_10_1111_j_1755_0998_2011_03008_x crossref_primary_10_17109_AZH_67_3_235_2021 crossref_primary_10_1186_s12862_015_0488_9 crossref_primary_10_1080_23802359_2019_1610091 crossref_primary_10_1016_j_ejsobi_2016_06_004 crossref_primary_10_1186_s12862_019_1370_y crossref_primary_10_1016_j_scitotenv_2012_09_048 crossref_primary_10_1016_j_soilbio_2011_09_018 crossref_primary_10_3390_d13110580 crossref_primary_10_1111_j_1365_294X_2012_05648_x crossref_primary_10_3390_ijerph17051538 crossref_primary_10_1266_ggs_86_27 crossref_primary_10_1002_etc_5696 crossref_primary_10_1016_j_ympev_2009_11_025 crossref_primary_10_1371_journal_pone_0124406 crossref_primary_10_1016_j_ejsobi_2020_103242 crossref_primary_10_1038_hdy_2010_31 crossref_primary_10_1016_j_pedobi_2013_09_006 crossref_primary_10_1016_j_soilbio_2017_10_030 crossref_primary_10_1016_j_envres_2018_09_023 crossref_primary_10_1093_zoolinnean_zlx031 crossref_primary_10_1111_j_1365_294X_2010_04602_x crossref_primary_10_11609_jott_6888_13_11_19566_19579 crossref_primary_10_7717_peerj_17709 crossref_primary_10_1016_j_envpol_2009_09_021 crossref_primary_10_1016_j_ecoenv_2010_10_028 crossref_primary_10_1016_j_ejsobi_2018_02_004 crossref_primary_10_1016_j_ejsobi_2012_03_007 crossref_primary_10_1016_j_ympev_2009_04_003 crossref_primary_10_1134_S2079086419060057 crossref_primary_10_1007_s11756_024_01622_8 crossref_primary_10_1111_j_1365_294X_2009_04202_x crossref_primary_10_1016_j_apsoil_2016_03_019 crossref_primary_10_1016_j_ejsobi_2021_103382 crossref_primary_10_1080_00222933_2011_560726 crossref_primary_10_1016_j_apsoil_2020_103787 crossref_primary_10_1080_14772000_2020_1730474 crossref_primary_10_1016_j_ympev_2012_04_011 crossref_primary_10_1134_S1022795409110027 crossref_primary_10_1016_j_ejsobi_2011_10_003 crossref_primary_10_1007_s10530_015_1045_6 crossref_primary_10_1016_j_ympev_2015_07_017 crossref_primary_10_1007_s10530_012_0338_2 |
Cites_doi | 10.1007/s10750-004-4414-1 10.1111/j.1365-294X.2007.03309.x 10.1046/j.1365-294x.1998.00289.x 10.1007/s10530-005-6186-6 10.3354/meps215169 10.1046/j.1365-294X.2002.01541.x 10.1098/rspb.2006.3718 10.1078/0031-4056-00208 10.1046/j.1365-294x.1998.00432.x 10.1007/978-94-009-5965-1_10 10.1111/j.1365-294X.2006.03067.x 10.1515/mamm.2002.66.3.341 10.1111/j.1471-8286.2007.01758.x 10.1111/j.1365-294X.2006.03123.x 10.1046/j.1365-294x.2001.01202.x 10.1111/j.0014-3820.2003.tb00355.x 10.1111/j.1095-8312.2000.tb00224.x 10.1046/j.1365-294x.2000.01006.x 10.1016/j.tree.2007.05.004 10.1073/pnas.76.10.5269 10.1534/genetics.107.070672 10.1186/1471-2148-7-57 10.1111/j.1365-294X.2006.03210.x 10.1111/j.1365-2427.2005.01491.x 10.1111/j.1365-294X.2004.02396.x 10.1371/journal.pone.0001249 10.1038/hdy.1996.142 10.1016/j.pedobi.2003.04.001 10.1111/j.1365-294X.2006.02910.x 10.1016/j.pedobi.2006.06.005 10.1016/S0038-0717(96)00041-7 10.1201/9781420039719.pt1 10.1111/j.1365-294X.2005.02681.x 10.1046/j.1365-294X.2003.01731.x 10.1079/BER2006426 10.1111/j.1365-294X.2006.02999.x 10.1111/j.1461-0248.2004.00569.x 10.1016/j.tree.2006.11.004 10.1016/j.agee.2005.08.026 10.1111/j.1096-0031.2006.00128.x 10.1046/j.0962-1083.2001.01357.x 10.1098/rspb.1996.0056 10.2307/2817 10.1093/nar/25.24.4876 10.1007/s00374-006-0154-x 10.1093/oxfordjournals.molbev.a025919 10.1017/S0094837300009684 10.1111/j.1365-294X.2005.02496.x 10.1016/j.pedobi.2005.11.003 10.1111/j.1420-9101.2006.01183.x 10.1098/rstb.2005.1722 10.1890/03-5345 10.1016/S0929-1393(98)00087-0 10.1080/00222935508655698 10.1111/j.0014-3820.2001.tb00603.x 10.1093/genetics/121.3.613 10.1038/sj.hdy.6800543 10.1186/1471-2148-6-83 10.1016/S0169-5347(00)02078-4 10.1111/j.1365-294X.2006.02888.x 10.1098/rspb.2002.2218 10.1016/j.pedobi.2005.02.004 10.1046/j.1365-2540.1998.00342.x 10.1017/S0016672300029827 10.1111/j.1463-6409.2009.00419.x 10.1111/j.1365-294X.2007.03603.x 10.1111/j.1365-2052.1997.00204.x 10.1016/j.pedobi.2008.04.001 10.1007/BF01731581 10.1111/j.1365-294X.2005.02553.x 10.1111/j.0908-8857.2004.03297.x 10.1023/A:1003933603879 10.1111/j.1365-294X.2005.02655.x |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd Journal compilation © 2008 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd – notice: Journal compilation © 2008 Blackwell Publishing Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7ST 7U6 7S9 L.6 7X8 |
DOI | 10.1111/j.1365-294X.2008.03931.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Sustainability Science Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts AGRICOLA MEDLINE Entomology Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 4698 |
ExternalDocumentID | 1583208131 18992008 10_1111_j_1365_294X_2008_03931_x MEC3931 ark_67375_WNG_XXRDW78L_2 US201301561414 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | United Kingdom--UK Great Britain |
GeographicLocations_xml | – name: United Kingdom--UK – name: Great Britain |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/D001188/1 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7ST 7U6 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5841-f58daada758633ffedde7d4a65a81858430f71f6c5bf6838aac1722561049b403 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Sep 05 09:28:58 EDT 2025 Thu Sep 04 16:29:52 EDT 2025 Thu Sep 04 14:28:38 EDT 2025 Wed Aug 13 04:27:24 EDT 2025 Fri May 30 10:59:34 EDT 2025 Thu Apr 24 23:15:54 EDT 2025 Tue Jul 01 01:21:45 EDT 2025 Sun Sep 21 06:20:28 EDT 2025 Sun Sep 21 06:19:09 EDT 2025 Wed Dec 27 19:22:01 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5841-f58daada758633ffedde7d4a65a81858430f71f6c5bf6838aac1722561049b403 |
Notes | http://dx.doi.org/10.1111/j.1365-294X.2008.03931.x istex:1F93B79C19BB2879ECCBA1042EE9E4F242A233FD ark:/67375/WNG-XXRDW78L-2 ArticleID:MEC3931 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 18992008 |
PQID | 210686776 |
PQPubID | 31465 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_69953793 proquest_miscellaneous_48137524 proquest_miscellaneous_19417401 proquest_journals_210686776 pubmed_primary_18992008 crossref_primary_10_1111_j_1365_294X_2008_03931_x crossref_citationtrail_10_1111_j_1365_294X_2008_03931_x wiley_primary_10_1111_j_1365_294X_2008_03931_x_MEC3931 istex_primary_ark_67375_WNG_XXRDW78L_2 fao_agris_US201301561414 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2008 |
PublicationDateYYYYMMDD | 2008-11-01 |
PublicationDate_xml | – month: 11 year: 2008 text: November 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | Edwards CA, Bohlen PJ (1996) The Biology and Ecology of Earthworms. Chapman & Hall, London. Joschko M, Fox CA, Lentzsch P et al . (2006) Spatial analysis of earthworm biodiversity at the regional scale. Agriculture, Ecosystems and Environment, 112, 367-380. Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420, 73-90. Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology, 14, 2899-2914. Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure of invasive earthworms Dendrobaena octaedra in the boreal forests of Alberta: insights into introduction mechanisms. Molecular Ecology, 17, 1189-1197. Gomez A, Wright PJ, Lunt DH et al . (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proceedings of the Royal Society B: Biological Sciences, 274, 199-207. Seddon JM, Santucci F, Reeve NJ, Hewitt GM (2001) DNA footprints of European hedgehogs, Erinaceus europaeus and E. concolor. Pleistocene refugia, postglacial expansion and colonization routes. Molecular Ecology, 10, 2187-2198. Darwin C (1881) The Formation of Vegetable Mould Through the Actions of Worms. John Murray, London. Tully T, D'Haese CA, Richard M, Ferriere R (2006) Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida. Pedobiologia, 50, 95-104. Ferris C, King RA, Vainola R, Hewitt GM (1998) Chloroplast DNA recognises three refugial sources of European oaks and shows independent eastern and western immigrations to Finland. Heredity, 80, 584-593. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50. Pérez-Losada M, Eiroa J, Mato S, Dominguez J (2005) Phylogenetic species delimitation of the earthworms Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouche, 1972 (Oligochaeta, Lumbricidae) based on mitochondrial and nuclear DNA sequences. Pedobiologia, 49, 317-324. Struck TH, Schult N, Kusen T et al . (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology, 6, 57. Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282-291. Palumbi SR, Cipriano F, Hare MP (2001) Predicting nuclear gene coalescence from mitochondrial data: The three-times rule. Evolution, 55, 859-868. Bastrop R, Jurss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Molecular Biology and Evolution, 15, 97-103. Ligthart TN, Peek GJCW (1997) Evolution of earthworm burrow systems after inoculation of lumbricid earthworms in a pasture in the Netherlands. Soil Biology and Biochemistry, 29, 453-462. Piertney SB, Stewart WA, Lambin X et al . (2005) Phylogeographic structure and postglacial evolutionary history of water voles (Arvicola terrestris) in the United Kingdom. Molecular Ecology, 14, 1435-1444. Harper GL, Sheppard SK, Harwood JD et al . (2006) Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators. Bulletin of Entomological Research, 96, 295-304. Bennett KD (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology, 16, 11-21. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360, 1905-1916. Wilke T, Davis GM, Qiu DC, Spear RC (2006) Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host Oncomelania hupensis roberstsoni: another case of ancestral polymorphism. Malacologia, 48, 143-157. Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts. Hofman S, Spolsky C, Uzzell T et al . (2007) Phylogeography of the fire-bellied toads Bombina: independent Pleistocene histories inferred from mitochondrial genomes. Molecular Ecology, 16, 2301-2316. Noor MAF, Garfield DA, Schaeffer SW, Machado CA (2007) Divergence between the Drosophila psuedoobscura and D. persimilis genome sequences in relation to chromosomal inversions. Genetics, 177, 1417-1428. Jolly MT, Jollivet D, Gentil F, Thiebaut E, Viard F (2005) Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity, 94, 23-32. Finston TL, Johnson MS, Humphreys WF, Eberhard SM, Halse SA (2007) Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology, 16, 355-365. Sims RW, Gerard BM (1999) Earthworms. Field Studies Council, Shrewsbury. Heethoff M, Domes K, Laumann M et al . (2007) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology, 20, 392-402. Symondson WOC, Glen DM, Erickson ML, Liddell JE, Langdon CJ (2000) Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crops? Investigations using monoclonal antibodies. Molecular Ecology, 9, 1279-1292. Madsen SA, Madsen AB, Eleros M (2002) Seasonal food of badgers (Meles meles) in Denmark. Mammalia, 66, 341-352. Davison A (2000) An east-west distribution of divergent mitochondrial haplotypes in British populations of the land snail, Cepaea nemoralis (Pulmonata). Biological Journal of the Linnean Society, 70, 697-706. Slatkin M (1991) Inbreeding coefficients and coalescence times. Genetical Research, 58, 167-175. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299. Thompson JD, Gibson TJ, PIewniak F, Jeanmougin F, Higgins DG (1997) Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882. Bickford D, Lohman DJ, Sodhi NS et al . (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148-155. Baus E, Darrock DJ, Bruford MW (2005) Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Molecular Ecology, 14, 3373-3382. Hale CM, Frelich LE, Reich PB (2005) Exotic European earthworm invasion dynamics in northern hardwood forest of Minnesota, USA. Ecological Applications, 15, 848-860. Lentzsch P, Golldack J (2006) Genetic diversity of Aporrectodea caliginosa from agricultural sites in Northeast Brandenburg, Germany. Pedobiologia, 50, 369-376. Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 15, 111-120. Wang-Sattler R, Blandin S, Ning Y et al . (2007) Mosaic genome architecture of the Anopheles gambiae species complex. PLoS ONE 2(11): e1249. doi: 10.1371/journal.pone.0001249. Rosenberg NA (2003) The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution, 57, 1465-1477. Huntley B, Birks HJB (1983) An Atlas of Past and Present Pollen Maps for Europe: 0-13 000 Years Ago. Cambridge University Press, Cambridge. Pop AA, Wink M, Pop VV (2003) Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae). Pedobiologia, 47, 428-433. Palumbi SR, Martin A, Romano S et al . (1991) The Simple Fool's Guide to PCR, Version 2.0. University of Hawaii, Honolulu. Lefébure T, Douady CJ, Gouy M et al . (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology, 15, 1797-1806. Lowe CN, Butt KR (2008) Allolobophora chlorotica (Savigny, 1826): evidence for classification as two separate species. Pedobiologia, doi: 10.1016/j.pedobi.2008.04.001. Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology, 15, 3073-3082. Butt KR (1997) Reproduction and growth of the earthworm Allolobophora chlorotica (Savigny, 1826) in controlled environments. Pedobiologia, 41, 81-87. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611-2620. McHugh D (2005) Molecular systematics of polychaetes (Annelida). Hydrobiologia, 535, 309-318. Beauchamp KA, Kathman RD, McDowell TS, Hedrick RP (2001) Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae). Molecular Biology and Evolution, 19, 216-224. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. Kalmus H, Satchell JE, Bowen JC (1955) On the colour forms of Allolobophora chlorotica Sav. (Lumbricidae). Annals and Magazine of Natural History, 12, 795-800. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313-321. Lowe CN, Butt KR (2007) Life-cycle traits of the dimorphic earthworm species Allolobophora chlorotica (Savigny, 1826) under controlled laboratory conditions. Biology and Fertility of Soils, 43, 495-499. Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453-464. Challis RJ, Mutun S, Nieves-Aldrey JL et al . (2007) Longitudinal range expansion and cryptic eastern specie 1991; 58 1990; 16 1997; 41 2000; 9 2004; 7 2005; 535 2002; 11 2003; 57 2003; 270 1998; 80 2003; 19 1996; 263 1979; 76 1996; 77 1998; 15 2001 2000 2007; 177 2001; 19 2003; 47 2007; 6 2007; 7 1983 2001; 16 2007; 2 2007; 20 2001; 55 2007; 22 2007; 23 1955; 12 2001; 10 2001; 215 2006; 96 2006; 50 2006; 51 2004; 48 1997; 25 2008; 17 2006; 15 2006; 8 1997; 29 2008 1997; 28 2000; 70 1996 2007 2006; 6 2004 1993 2000; 155 1991 2005; 49 2006; 112 2007; 16 1999 1980; 15 2005; 360 1989; 121 2007; 274 2002; 66 2006; 48 2005; 1 1967; 36 1881 2005; 94 2000; 420 2005; 15 1998; 7 2007; 43 1994; 3 1998; 9 2005; 14 e_1_2_6_51_1 e_1_2_6_74_1 Huntley B (e_1_2_6_39_1) 1983 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 Edwards CA (e_1_2_6_20_1) 2004 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 Swofford DL (e_1_2_6_76_1) 2001 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 Sims RW (e_1_2_6_73_1) 1999 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 Pop AA (e_1_2_6_64_1) 2003; 47 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 Palumbi SR (e_1_2_6_59_1) 1991 e_1_2_6_22_1 Kimura M (e_1_2_6_46_1) 1980; 15 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 Beauchamp KA (e_1_2_6_7_1) 2001; 19 e_1_2_6_50_1 e_1_2_6_71_1 Birky CW (e_1_2_6_11_1) 1989; 121 Wilke T (e_1_2_6_84_1) 2006; 48 Edwards CA (e_1_2_6_21_1) 1996 Folmer O (e_1_2_6_27_1) 1994; 3 Darwin C (e_1_2_6_16_1) 1881 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_77_1 Hewitt GM (e_1_2_6_35_1) 1993 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Butt KR (e_1_2_6_12_1) 1997; 41 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_69_1 |
References_xml | – reference: Palumbi SR, Cipriano F, Hare MP (2001) Predicting nuclear gene coalescence from mitochondrial data: The three-times rule. Evolution, 55, 859-868. – reference: Piertney SB, Stewart WA, Lambin X et al . (2005) Phylogeographic structure and postglacial evolutionary history of water voles (Arvicola terrestris) in the United Kingdom. Molecular Ecology, 14, 1435-1444. – reference: Patti FP, Gambi MC (2001) Phylogeography of the invasive polychaete Sabella spallanzanii (Sabellidae) based on the nucleotide sequence of internal transcribed spacer 2 (ITS2) of nuclear rDNA. Marine Ecology Progress Series, 215, 169-177. – reference: Kalmus H, Satchell JE, Bowen JC (1955) On the colour forms of Allolobophora chlorotica Sav. (Lumbricidae). Annals and Magazine of Natural History, 12, 795-800. – reference: Ligthart TN, Peek GJCW (1997) Evolution of earthworm burrow systems after inoculation of lumbricid earthworms in a pasture in the Netherlands. Soil Biology and Biochemistry, 29, 453-462. – reference: Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. – reference: Seddon JM, Santucci F, Reeve NJ, Hewitt GM (2001) DNA footprints of European hedgehogs, Erinaceus europaeus and E. concolor. Pleistocene refugia, postglacial expansion and colonization routes. Molecular Ecology, 10, 2187-2198. – reference: Gomez A, Wright PJ, Lunt DH et al . (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proceedings of the Royal Society B: Biological Sciences, 274, 199-207. – reference: Tully T, D'Haese CA, Richard M, Ferriere R (2006) Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida. Pedobiologia, 50, 95-104. – reference: Symondson WOC, Glen DM, Erickson ML, Liddell JE, Langdon CJ (2000) Do earthworms help to sustain the slug predator Pterostichus melanarius (Coleoptera: Carabidae) within crops? Investigations using monoclonal antibodies. Molecular Ecology, 9, 1279-1292. – reference: King RA, Ferris C (1998) Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Molecular Ecology, 7, 1151-1162. – reference: Joschko M, Fox CA, Lentzsch P et al . (2006) Spatial analysis of earthworm biodiversity at the regional scale. Agriculture, Ecosystems and Environment, 112, 367-380. – reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. – reference: Wilke T, Pfenninger M (2002) Separating historic events from recurrent processes in cryptic species: phylogeography of mud snails (Hydrobia spp.). Molecular Ecology, 11, 1439-1451. – reference: Ferris C, King RA, Vainola R, Hewitt GM (1998) Chloroplast DNA recognises three refugial sources of European oaks and shows independent eastern and western immigrations to Finland. Heredity, 80, 584-593. – reference: Darwin C (1881) The Formation of Vegetable Mould Through the Actions of Worms. John Murray, London. – reference: Bennett KD (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology, 16, 11-21. – reference: Cannavacciuolo M, Bellido A, Cluzeau D, Gascuel C, Trehen P (1998) A geostatistical approach to the study of earthworm distribution in grassland. Applied Soil Ecology, 9, 345-349. – reference: Lefébure T, Douady CJ, Gouy M et al . (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology, 15, 1797-1806. – reference: Challis RJ, Mutun S, Nieves-Aldrey JL et al . (2007) Longitudinal range expansion and cryptic eastern species in the western Palaearctic oak gallwasp, Andricus coriarius. Molecular Ecology, 16, 2103-2114. – reference: Hofman S, Spolsky C, Uzzell T et al . (2007) Phylogeography of the fire-bellied toads Bombina: independent Pleistocene histories inferred from mitochondrial genomes. Molecular Ecology, 16, 2301-2316. – reference: Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology, 14, 2899-2914. – reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611-2620. – reference: Johannesson K (2001) Parallel speciation: a key to sympatric divergence. Trends in Ecology & Evolution, 16, 148-153. – reference: Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282-291. – reference: Haine ER, Martin J, Cook JM (2006) Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. BMC Evolutionary Biology 6. – reference: Wilke T, Davis GM, Qiu DC, Spear RC (2006) Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host Oncomelania hupensis roberstsoni: another case of ancestral polymorphism. Malacologia, 48, 143-157. – reference: Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes, 7, 574-578. – reference: Satchell JE (1967) Colour dimorphism in Allolobophora chlorotica Sav. (Lumbricidae). Journal of Animal Ecology, 36, 623-630. – reference: Baus E, Darrock DJ, Bruford MW (2005) Gene-flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star Asterina gibbosa. Molecular Ecology, 14, 3373-3382. – reference: Pop AA, Wink M, Pop VV (2003) Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae). Pedobiologia, 47, 428-433. – reference: Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology, 15, 3073-3082. – reference: Bastrop R, Jurss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Molecular Biology and Evolution, 15, 97-103. – reference: Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313-321. – reference: Hewitt GM (2001) Speciation, hybrid zones and phylogeography - or seeing genes in space and time. Molecular Ecology, 10, 537-549. – reference: McHugh D (2005) Molecular systematics of polychaetes (Annelida). Hydrobiologia, 535, 309-318. – reference: Swofford DL (2001) paup* - Phylogenetic Analysis Using Parsimony (* and Other Related Methods), Version 4.0b10. Sinauer & Associates, Sunderland, Massachusetts. – reference: Edwards CA, Bohlen PJ (1996) The Biology and Ecology of Earthworms. Chapman & Hall, London. – reference: Bickford D, Lohman DJ, Sodhi NS et al . (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148-155. – reference: Harper GL, Sheppard SK, Harwood JD et al . (2006) Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators. Bulletin of Entomological Research, 96, 295-304. – reference: Zhang DY, Lin K, Hanski I (2004) Coexistence of cryptic species. Ecology Letters, 7, 165-169. – reference: Pérez-Losada M, Eiroa J, Mato S, Dominguez J (2005) Phylogenetic species delimitation of the earthworms Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouche, 1972 (Oligochaeta, Lumbricidae) based on mitochondrial and nuclear DNA sequences. Pedobiologia, 49, 317-324. – reference: Cameron EK, Bayne EM, Coltman DW (2008) Genetic structure of invasive earthworms Dendrobaena octaedra in the boreal forests of Alberta: insights into introduction mechanisms. Molecular Ecology, 17, 1189-1197. – reference: Rousset V, Pleijel F, Rouse GW, Erseus C, Siddall ME (2007) A molecular phylogeny of annelids. Cladistics, 23, 41-63. – reference: Lowe CN, Butt KR (2008) Allolobophora chlorotica (Savigny, 1826): evidence for classification as two separate species. Pedobiologia, doi: 10.1016/j.pedobi.2008.04.001. – reference: Noor MAF, Garfield DA, Schaeffer SW, Machado CA (2007) Divergence between the Drosophila psuedoobscura and D. persimilis genome sequences in relation to chromosomal inversions. Genetics, 177, 1417-1428. – reference: Ajmone-Marsan P, Valentini A, Cassandro M et al . (1997) AFLP (TM) markers for DNA fingerprinting in cattle. Animal Genetics, 28, 418-426. – reference: DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360, 1905-1916. – reference: Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299. – reference: Huntley B, Birks HJB (1983) An Atlas of Past and Present Pollen Maps for Europe: 0-13 000 Years Ago. Cambridge University Press, Cambridge. – reference: Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. – reference: Butt KR (1997) Reproduction and growth of the earthworm Allolobophora chlorotica (Savigny, 1826) in controlled environments. Pedobiologia, 41, 81-87. – reference: Hale CM, Frelich LE, Reich PB (2005) Exotic European earthworm invasion dynamics in northern hardwood forest of Minnesota, USA. Ecological Applications, 15, 848-860. – reference: Thomaz D, Guiller A, Clarke B (1996) Extreme divergence of mitochondrial DNA within species of pulmonate land snails. Proceedings of the Royal Society B: Biological Sciences, 263, 363-368. – reference: Wang-Sattler R, Blandin S, Ning Y et al . (2007) Mosaic genome architecture of the Anopheles gambiae species complex. PLoS ONE 2(11): e1249. doi: 10.1371/journal.pone.0001249. – reference: Avise JC (2000) Phylogeography: The History and Formation of Species. Harvard University Press, Cambridge, Massachusetts. – reference: Heethoff M, Domes K, Laumann M et al . (2007) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology, 20, 392-402. – reference: Heethoff M, Etzold K, Scheu S (2004) Mitochondrial COII sequences indicate that the parthenogenetic earthworm Octolasion tyrtaeum (Savigny 1826) constitutes of two lineages differing in body size and genotype. Pedobiologia, 48, 9-13. – reference: Davison A (2000) An east-west distribution of divergent mitochondrial haplotypes in British populations of the land snail, Cepaea nemoralis (Pulmonata). Biological Journal of the Linnean Society, 70, 697-706. – reference: Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453-464. – reference: Jolly MT, Viard F, Gentil F, Thiebaut E, Jollivet D (2006) Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events. Molecular Ecology, 15, 1841-1855. – reference: Rosenberg NA (2003) The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution, 57, 1465-1477. – reference: Palumbi SR, Martin A, Romano S et al . (1991) The Simple Fool's Guide to PCR, Version 2.0. University of Hawaii, Honolulu. – reference: Slatkin M (1991) Inbreeding coefficients and coalescence times. Genetical Research, 58, 167-175. – reference: Struck TH, Schult N, Kusen T et al . (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evolutionary Biology, 6, 57. – reference: Birky CW, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift-equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics, 121, 613-627. – reference: Lentzsch P, Golldack J (2006) Genetic diversity of Aporrectodea caliginosa from agricultural sites in Northeast Brandenburg, Germany. Pedobiologia, 50, 369-376. – reference: Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50. – reference: Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420, 73-90. – reference: Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms restriction endonucleases. Proceedings of the National Academy of Sciences, USA, 76, 5269-5273. – reference: Jolly MT, Jollivet D, Gentil F, Thiebaut E, Viard F (2005) Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity, 94, 23-32. – reference: Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 15, 111-120. – reference: Hogg ID, Stevens MI, Schnabel KE, Chapman MA (2006) Deeply divergent lineages of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analyses. Freshwater Biology, 51, 236-248. – reference: Sims RW, Gerard BM (1999) Earthworms. Field Studies Council, Shrewsbury. – reference: Beauchamp KA, Kathman RD, McDowell TS, Hedrick RP (2001) Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae). Molecular Biology and Evolution, 19, 216-224. – reference: Schlick-Steiner BC, Seifert B, Stauffer C et al . (2007) Without morphology, cryptic species stay in taxomonic crypsis following discovery. Trends in Ecology & Evolution, 22, 391-392. – reference: Thompson JD, Gibson TJ, PIewniak F, Jeanmougin F, Higgins DG (1997) Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882. – reference: Bastrop R, Blank M (2006) Multiple invasions - a polychaete genus enters the Baltic Sea. Biological Invasions, 8, 1195-1200. – reference: Finston TL, Johnson MS, Humphreys WF, Eberhard SM, Halse SA (2007) Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology, 16, 355-365. – reference: Lowe CN, Butt KR (2007) Life-cycle traits of the dimorphic earthworm species Allolobophora chlorotica (Savigny, 1826) under controlled laboratory conditions. Biology and Fertility of Soils, 43, 495-499. – reference: Madsen SA, Madsen AB, Eleros M (2002) Seasonal food of badgers (Meles meles) in Denmark. Mammalia, 66, 341-352. – volume: 14 start-page: 2899 year: 2005 end-page: 2914 article-title: Ten years of AFLP in ecology and evolution: why so few animals? publication-title: Molecular Ecology – year: 2008 article-title: (Savigny, 1826): evidence for classification as two separate species publication-title: Pedobiologia – volume: 7 start-page: 165 year: 2004 end-page: 169 article-title: Coexistence of cryptic species publication-title: Ecology Letters – volume: 12 start-page: 795 year: 1955 end-page: 800 article-title: On the colour forms of Sav. (Lumbricidae) publication-title: Annals and Magazine of Natural History – volume: 48 start-page: 9 year: 2004 end-page: 13 article-title: Mitochondrial COII sequences indicate that the parthenogenetic earthworm (Savigny 1826) constitutes of two lineages differing in body size and genotype publication-title: Pedobiologia – volume: 215 start-page: 169 year: 2001 end-page: 177 article-title: Phylogeography of the invasive polychaete (Sabellidae) based on the nucleotide sequence of internal transcribed spacer 2 (ITS2) of nuclear rDNA publication-title: Marine Ecology Progress Series – year: 2001 – volume: 80 start-page: 584 year: 1998 end-page: 593 article-title: Chloroplast DNA recognises three refugial sources of European oaks and shows independent eastern and western immigrations to Finland publication-title: Heredity – volume: 14 start-page: 2611 year: 2005 end-page: 2620 article-title: Detecting the number of clusters of individuals using the software Structure: a simulation study publication-title: Molecular Ecology – volume: 96 start-page: 295 year: 2006 end-page: 304 article-title: Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators publication-title: Bulletin of Entomological Research – start-page: 98 year: 1993 end-page: 123 – volume: 41 start-page: 81 year: 1997 end-page: 87 article-title: Reproduction and growth of the earthworm (Savigny, 1826) in controlled environments publication-title: Pedobiologia – volume: 1 start-page: 47 year: 2005 end-page: 50 article-title: Arlequin (version 3.0): an integrated software package for population genetics data analysis publication-title: Evolutionary Bioinformatics Online – volume: 14 start-page: 1435 year: 2005 end-page: 1444 article-title: Phylogeographic structure and postglacial evolutionary history of water voles ( ) in the United Kingdom publication-title: Molecular Ecology – volume: 9 start-page: 1279 year: 2000 end-page: 1292 article-title: Do earthworms help to sustain the slug predator (Coleoptera: Carabidae) within crops? Investigations using monoclonal antibodies publication-title: Molecular Ecology – volume: 274 start-page: 199 year: 2007 end-page: 207 article-title: Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 1881 – volume: 55 start-page: 859 year: 2001 end-page: 868 article-title: Predicting nuclear gene coalescence from mitochondrial data: The three‐times rule publication-title: Evolution – volume: 29 start-page: 453 year: 1997 end-page: 462 article-title: Evolution of earthworm burrow systems after inoculation of lumbricid earthworms in a pasture in the Netherlands publication-title: Soil Biology and Biochemistry – volume: 57 start-page: 1465 year: 2003 end-page: 1477 article-title: The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model publication-title: Evolution – volume: 3 start-page: 294 year: 1994 end-page: 299 article-title: DNA primers for the amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates publication-title: Molecular Marine Biology and Biotechnology – volume: 535 start-page: 309 year: 2005 end-page: 318 article-title: Molecular systematics of polychaetes (Annelida) publication-title: Hydrobiologia – volume: 49 start-page: 317 year: 2005 end-page: 324 article-title: Phylogenetic species delimitation of the earthworms (Savigny, 1826) and Bouche, 1972 (Oligochaeta, Lumbricidae) based on mitochondrial and nuclear DNA sequences publication-title: Pedobiologia – volume: 20 start-page: 392 year: 2007 end-page: 402 article-title: High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite (Acari, Oribatida) publication-title: Journal of Evolutionary Biology – volume: 58 start-page: 167 year: 1991 end-page: 175 article-title: Inbreeding coefficients and coalescence times publication-title: Genetical Research – volume: 15 start-page: 111 year: 1980 end-page: 120 article-title: A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences publication-title: Journal of Molecular Evolution – volume: 43 start-page: 495 year: 2007 end-page: 499 article-title: Life‐cycle traits of the dimorphic earthworm species (Savigny, 1826) under controlled laboratory conditions publication-title: Biology and Fertility of Soils – volume: 66 start-page: 341 year: 2002 end-page: 352 article-title: Seasonal food of badgers ( ) in Denmark publication-title: Mammalia – year: 2004 – volume: 19 start-page: 1572 year: 2003 end-page: 1574 article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics – volume: 77 start-page: 282 year: 1996 end-page: 291 article-title: Spatial patterns of genetic variation generated by different forms of dispersal during range expansion publication-title: Heredity – volume: 177 start-page: 1417 year: 2007 end-page: 1428 article-title: Divergence between the and genome sequences in relation to chromosomal inversions publication-title: Genetics – start-page: 3 year: 2004 end-page: 11 – volume: 19 start-page: 216 year: 2001 end-page: 224 article-title: Molecular phylogeny of tubificid oligochaetes with special emphasis on (Tubificidae) publication-title: Molecular Biology and Evolution – volume: 10 start-page: 2187 year: 2001 end-page: 2198 article-title: DNA footprints of European hedgehogs, and . Pleistocene refugia, postglacial expansion and colonization routes publication-title: Molecular Ecology – volume: 6 year: 2006 article-title: Deep mtDNA divergences indicate cryptic species in a fig‐pollinating wasp publication-title: BMC Evolutionary Biology – volume: 7 start-page: 1151 year: 1998 end-page: 1162 article-title: Chloroplast DNA phylogeography of (L.) Gaertn publication-title: Molecular Ecology – year: 1983 – volume: 14 start-page: 3373 year: 2005 end-page: 3382 article-title: Gene‐flow patterns in Atlantic and Mediterranean populations of the Lusitanian sea star publication-title: Molecular Ecology – volume: 11 start-page: 1439 year: 2002 end-page: 1451 article-title: Separating historic events from recurrent processes in cryptic species: phylogeography of mud snails ( spp.) publication-title: Molecular Ecology – volume: 2 start-page: e1249 issue: 11) year: 2007 article-title: Mosaic genome architecture of the species complex publication-title: PLoS ONE – volume: 22 start-page: 148 year: 2007 end-page: 155 article-title: Cryptic species as a window on diversity and conservation publication-title: Trends in Ecology & Evolution – volume: 28 start-page: 418 year: 1997 end-page: 426 article-title: AFLP (TM) markers for DNA fingerprinting in cattle publication-title: Animal Genetics – year: 2007 – volume: 23 start-page: 41 year: 2007 end-page: 63 article-title: A molecular phylogeny of annelids publication-title: Cladistics – volume: 48 start-page: 143 year: 2006 end-page: 157 article-title: Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host : another case of ancestral polymorphism publication-title: Malacologia – volume: 270 start-page: 313 year: 2003 end-page: 321 article-title: Biological identifications through DNA barcodes publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 2000 – volume: 15 start-page: 97 year: 1998 end-page: 103 article-title: Cryptic species in a marine polychaete and their independent introduction from North America to Europe publication-title: Molecular Biology and Evolution – volume: 16 start-page: 2103 year: 2007 end-page: 2114 article-title: Longitudinal range expansion and cryptic eastern species in the western Palaearctic oak gallwasp, Andricus coriarius publication-title: Molecular Ecology – year: 1996 – volume: 16 start-page: 2301 year: 2007 end-page: 2316 article-title: Phylogeography of the fire‐bellied toads : independent Pleistocene histories inferred from mitochondrial genomes publication-title: Molecular Ecology – volume: 420 start-page: 73 year: 2000 end-page: 90 article-title: Molecular genetic analyses of species boundaries in the sea publication-title: Hydrobiologia – volume: 112 start-page: 367 year: 2006 end-page: 380 article-title: Spatial analysis of earthworm biodiversity at the regional scale publication-title: Agriculture, Ecosystems and Environment – volume: 263 start-page: 363 year: 1996 end-page: 368 article-title: Extreme divergence of mitochondrial DNA within species of pulmonate land snails publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 15 start-page: 3073 year: 2006 end-page: 3082 article-title: DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation publication-title: Molecular Ecology – volume: 121 start-page: 613 year: 1989 end-page: 627 article-title: Organelle gene diversity under migration, mutation, and drift‐equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes publication-title: Genetics – volume: 6 start-page: 57 year: 2007 article-title: Annelid phylogeny and the status of Sipuncula and Echiura publication-title: BMC Evolutionary Biology – volume: 47 start-page: 428 year: 2003 end-page: 433 article-title: Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae) publication-title: Pedobiologia – volume: 16 start-page: 355 year: 2007 end-page: 365 article-title: Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape publication-title: Molecular Ecology – volume: 7 start-page: 453 year: 1998 end-page: 464 article-title: Comparative phylogeography and postglacial colonization routes in Europe publication-title: Molecular Ecology – volume: 17 start-page: 1189 year: 2008 end-page: 1197 article-title: Genetic structure of invasive earthworms in the boreal forests of Alberta: insights into introduction mechanisms publication-title: Molecular Ecology – volume: 51 start-page: 236 year: 2006 end-page: 248 article-title: Deeply divergent lineages of the widespread New Zealand amphipod revealed using allozyme and mitochondrial DNA analyses publication-title: Freshwater Biology – volume: 16 start-page: 148 year: 2001 end-page: 153 article-title: Parallel speciation: a key to sympatric divergence publication-title: Trends in Ecology & Evolution – volume: 8 start-page: 1195 year: 2006 end-page: 1200 article-title: Multiple invasions — a polychaete genus enters the Baltic Sea publication-title: Biological Invasions – volume: 360 start-page: 1905 year: 2005 end-page: 1916 article-title: The unholy trinity: taxonomy, species delimitation and DNA barcoding publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences – volume: 7 start-page: 574 year: 2007 end-page: 578 article-title: Inference of population structure using multilocus genotype data: dominant markers and null alleles publication-title: Molecular Ecology Notes – volume: 16 start-page: 11 year: 1990 end-page: 21 article-title: Milankovitch cycles and their effects on species in ecological and evolutionary time publication-title: Paleobiology – volume: 155 start-page: 945 year: 2000 end-page: 959 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics – volume: 76 start-page: 5269 year: 1979 end-page: 5273 article-title: Mathematical model for studying genetic variation in terms restriction endonucleases publication-title: Proceedings of the National Academy of Sciences, USA – volume: 94 start-page: 23 year: 2005 end-page: 32 article-title: Sharp genetic break between Atlantic and English Channel populations of the polychaete , along the North coast of France publication-title: Heredity – volume: 15 start-page: 1797 year: 2006 end-page: 1806 article-title: Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments publication-title: Molecular Ecology – volume: 25 start-page: 4876 year: 1997 end-page: 4882 article-title: Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools publication-title: Nucleic Acids Research – volume: 10 start-page: 537 year: 2001 end-page: 549 article-title: Speciation, hybrid zones and phylogeography — or seeing genes in space and time publication-title: Molecular Ecology – volume: 15 start-page: 1841 year: 2006 end-page: 1855 article-title: Comparative phylogeography of two coastal polychaete tubeworms in the Northeast Atlantic supports shared history and vicariant events publication-title: Molecular Ecology – volume: 22 start-page: 391 year: 2007 end-page: 392 article-title: Without morphology, cryptic species stay in taxomonic crypsis following discovery publication-title: Trends in Ecology & Evolution – volume: 36 start-page: 623 year: 1967 end-page: 630 article-title: Colour dimorphism in Sav. (Lumbricidae) publication-title: Journal of Animal Ecology – volume: 15 start-page: 848 year: 2005 end-page: 860 article-title: Exotic European earthworm invasion dynamics in northern hardwood forest of Minnesota, USA publication-title: Ecological Applications – volume: 9 start-page: 345 year: 1998 end-page: 349 article-title: A geostatistical approach to the study of earthworm distribution in grassland publication-title: Applied Soil Ecology – volume: 50 start-page: 95 year: 2006 end-page: 104 article-title: Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species publication-title: Pedobiologia – volume: 50 start-page: 369 year: 2006 end-page: 376 article-title: Genetic diversity of from agricultural sites in Northeast Brandenburg, Germany publication-title: Pedobiologia – year: 1991 – volume: 70 start-page: 697 year: 2000 end-page: 706 article-title: An east‐west distribution of divergent mitochondrial haplotypes in British populations of the land snail, (Pulmonata) publication-title: Biological Journal of the Linnean Society – year: 1999 – ident: e_1_2_6_55_1 doi: 10.1007/s10750-004-4414-1 – ident: e_1_2_6_37_1 doi: 10.1111/j.1365-294X.2007.03309.x – ident: e_1_2_6_78_1 doi: 10.1046/j.1365-294x.1998.00289.x – volume: 48 start-page: 143 year: 2006 ident: e_1_2_6_84_1 article-title: Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host Oncomelania hupensis roberstsoni: another case of ancestral polymorphism publication-title: Malacologia – ident: e_1_2_6_4_1 doi: 10.1007/s10530-005-6186-6 – ident: e_1_2_6_61_1 doi: 10.3354/meps215169 – ident: e_1_2_6_83_1 doi: 10.1046/j.1365-294X.2002.01541.x – ident: e_1_2_6_28_1 doi: 10.1098/rspb.2006.3718 – start-page: 98 volume-title: Evolutionary Patterns and Processes year: 1993 ident: e_1_2_6_35_1 – volume: 47 start-page: 428 year: 2003 ident: e_1_2_6_64_1 article-title: Use of 18S, 16S rDNA and cytochrome c oxidase sequences in earthworm taxonomy (Oligochaeta, Lumbricidae) publication-title: Pedobiologia doi: 10.1078/0031-4056-00208 – ident: e_1_2_6_47_1 doi: 10.1046/j.1365-294x.1998.00432.x – volume-title: The Simple Fool's Guide to PCR year: 1991 ident: e_1_2_6_59_1 – ident: e_1_2_6_19_1 doi: 10.1007/978-94-009-5965-1_10 – ident: e_1_2_6_23_1 doi: 10.1111/j.1365-294X.2006.03067.x – ident: e_1_2_6_54_1 doi: 10.1515/mamm.2002.66.3.341 – ident: e_1_2_6_24_1 doi: 10.1111/j.1471-8286.2007.01758.x – ident: e_1_2_6_26_1 doi: 10.1111/j.1365-294X.2006.03123.x – ident: e_1_2_6_36_1 doi: 10.1046/j.1365-294x.2001.01202.x – ident: e_1_2_6_68_1 doi: 10.1111/j.0014-3820.2003.tb00355.x – ident: e_1_2_6_17_1 doi: 10.1111/j.1095-8312.2000.tb00224.x – ident: e_1_2_6_77_1 doi: 10.1046/j.1365-294x.2000.01006.x – ident: e_1_2_6_71_1 doi: 10.1016/j.tree.2007.05.004 – ident: e_1_2_6_56_1 doi: 10.1073/pnas.76.10.5269 – ident: e_1_2_6_57_1 doi: 10.1534/genetics.107.070672 – ident: e_1_2_6_75_1 doi: 10.1186/1471-2148-7-57 – ident: e_1_2_6_15_1 doi: 10.1111/j.1365-294X.2006.03210.x – ident: e_1_2_6_38_1 doi: 10.1111/j.1365-2427.2005.01491.x – ident: e_1_2_6_65_1 doi: 10.1111/j.1365-294X.2004.02396.x – ident: e_1_2_6_66_1 – ident: e_1_2_6_82_1 doi: 10.1371/journal.pone.0001249 – ident: e_1_2_6_40_1 doi: 10.1038/hdy.1996.142 – ident: e_1_2_6_33_1 doi: 10.1016/j.pedobi.2003.04.001 – volume-title: Earthworms year: 1999 ident: e_1_2_6_73_1 – ident: e_1_2_6_43_1 doi: 10.1111/j.1365-294X.2006.02910.x – ident: e_1_2_6_50_1 doi: 10.1016/j.pedobi.2006.06.005 – ident: e_1_2_6_51_1 doi: 10.1016/S0038-0717(96)00041-7 – start-page: 3 volume-title: Earthworm Ecology year: 2004 ident: e_1_2_6_20_1 doi: 10.1201/9781420039719.pt1 – ident: e_1_2_6_6_1 doi: 10.1111/j.1365-294X.2005.02681.x – ident: e_1_2_6_3_1 doi: 10.1046/j.1365-294X.2003.01731.x – ident: e_1_2_6_31_1 doi: 10.1079/BER2006426 – ident: e_1_2_6_85_1 doi: 10.1111/j.1365-294X.2006.02999.x – ident: e_1_2_6_86_1 doi: 10.1111/j.1461-0248.2004.00569.x – ident: e_1_2_6_10_1 doi: 10.1016/j.tree.2006.11.004 – ident: e_1_2_6_44_1 doi: 10.1016/j.agee.2005.08.026 – ident: e_1_2_6_69_1 doi: 10.1111/j.1096-0031.2006.00128.x – ident: e_1_2_6_72_1 doi: 10.1046/j.0962-1083.2001.01357.x – ident: e_1_2_6_79_1 doi: 10.1098/rspb.1996.0056 – volume: 19 start-page: 216 year: 2001 ident: e_1_2_6_7_1 article-title: Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae) publication-title: Molecular Biology and Evolution – ident: e_1_2_6_70_1 doi: 10.2307/2817 – ident: e_1_2_6_80_1 doi: 10.1093/nar/25.24.4876 – ident: e_1_2_6_52_1 doi: 10.1007/s00374-006-0154-x – ident: e_1_2_6_5_1 doi: 10.1093/oxfordjournals.molbev.a025919 – volume: 3 start-page: 294 year: 1994 ident: e_1_2_6_27_1 article-title: DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates publication-title: Molecular Marine Biology and Biotechnology – ident: e_1_2_6_8_1 doi: 10.1017/S0094837300009684 – ident: e_1_2_6_63_1 doi: 10.1111/j.1365-294X.2005.02496.x – ident: e_1_2_6_81_1 doi: 10.1016/j.pedobi.2005.11.003 – ident: e_1_2_6_34_1 doi: 10.1111/j.1420-9101.2006.01183.x – ident: e_1_2_6_18_1 doi: 10.1098/rstb.2005.1722 – volume-title: The Biology and Ecology of Earthworms year: 1996 ident: e_1_2_6_21_1 – ident: e_1_2_6_30_1 doi: 10.1890/03-5345 – ident: e_1_2_6_14_1 doi: 10.1016/S0929-1393(98)00087-0 – ident: e_1_2_6_45_1 doi: 10.1080/00222935508655698 – ident: e_1_2_6_60_1 doi: 10.1111/j.0014-3820.2001.tb00603.x – volume: 121 start-page: 613 year: 1989 ident: e_1_2_6_11_1 article-title: Organelle gene diversity under migration, mutation, and drift‐equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes publication-title: Genetics doi: 10.1093/genetics/121.3.613 – ident: e_1_2_6_42_1 doi: 10.1038/sj.hdy.6800543 – ident: e_1_2_6_29_1 doi: 10.1186/1471-2148-6-83 – volume-title: paup* — Phylogenetic Analysis Using Parsimony (* and Other Related Methods) year: 2001 ident: e_1_2_6_76_1 – ident: e_1_2_6_41_1 doi: 10.1016/S0169-5347(00)02078-4 – ident: e_1_2_6_49_1 doi: 10.1111/j.1365-294X.2006.02888.x – ident: e_1_2_6_32_1 doi: 10.1098/rspb.2002.2218 – volume: 41 start-page: 81 year: 1997 ident: e_1_2_6_12_1 article-title: Reproduction and growth of the earthworm Allolobophora chlorotica (Savigny, 1826) in controlled environments publication-title: Pedobiologia – ident: e_1_2_6_62_1 doi: 10.1016/j.pedobi.2005.02.004 – ident: e_1_2_6_25_1 doi: 10.1046/j.1365-2540.1998.00342.x – volume-title: An Atlas of Past and Present Pollen Maps for Europe: 0–13 000 Years Ago year: 1983 ident: e_1_2_6_39_1 – ident: e_1_2_6_74_1 doi: 10.1017/S0016672300029827 – ident: e_1_2_6_58_1 doi: 10.1111/j.1463-6409.2009.00419.x – ident: e_1_2_6_13_1 doi: 10.1111/j.1365-294X.2007.03603.x – ident: e_1_2_6_2_1 doi: 10.1111/j.1365-2052.1997.00204.x – ident: e_1_2_6_53_1 doi: 10.1016/j.pedobi.2008.04.001 – volume: 15 start-page: 111 year: 1980 ident: e_1_2_6_46_1 article-title: A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences publication-title: Journal of Molecular Evolution doi: 10.1007/BF01731581 – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-294X.2005.02553.x – ident: e_1_2_6_67_1 doi: 10.1111/j.0908-8857.2004.03297.x – volume-title: The Formation of Vegetable Mould Through the Actions of Worms year: 1881 ident: e_1_2_6_16_1 – ident: e_1_2_6_48_1 doi: 10.1023/A:1003933603879 – ident: e_1_2_6_9_1 doi: 10.1111/j.1365-294X.2005.02655.x |
SSID | ssj0013255 |
Score | 2.380526 |
Snippet | Earthworms play a major role in many aspects of soil fertility, food web ecology and ecosystem functioning, and hence are frequently the subjects of, for... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4684 |
SubjectTerms | 16S AFLP Allolobophora chlorotica amplified fragment length polymorphism Amplified Fragment Length Polymorphism Analysis Animals Aporrectodea longa Aporrectodea rosea Biodiversity Biotypes COI color cryptic speciation Cryptic species Cytochrome cytochrome-c oxidase DNA, Mitochondrial DNA, Mitochondrial - genetics earthworms Ecological function Ecology ecosystems Ecotypes Electron Transport Complex IV Electron Transport Complex IV - genetics Evolution, Molecular food webs genes Genes, Mitochondrial Genetic Speciation Genetic structure genetics Genetics, Population Great Britain Haplotypes Lumbricidae Lumbricus rubellus Mitochondria Mitochondria - genetics Mitochondrial DNA Molecular biology morphs Oligochaeta Oligochaeta - genetics Phylogeny Polymorphism, Genetic Population genetics Sequence Alignment Sequence Analysis, DNA Soil fertility sympatric distribution Taxa United Kingdom Worms |
Title | Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms |
URI | https://api.istex.fr/ark:/67375/WNG-XXRDW78L-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2008.03931.x https://www.ncbi.nlm.nih.gov/pubmed/18992008 https://www.proquest.com/docview/210686776 https://www.proquest.com/docview/19417401 https://www.proquest.com/docview/48137524 https://www.proquest.com/docview/69953793 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0962-1083 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgEhIvfMPC-PAD4i1VHTuOzRsaHRNiexhUy5vl2PGYCmnVtGLlr-fOScuKNmlCvEWJ7ciXu_Pv4p_vCHnj8qKugshSrbSFAEWr1FYCmQDK8UwFNwx4GvnoWB6OxacyL3v-E56F6fJDbH64oWVEf40Gbqt228gjQ0uLsqdEcs3ZAPEk43ncsT3JLm0oxAKoANgz8DyKb5N6rhxoa6W6HewU8CuK_uIqMLqNbePidHCfTNbT6jgpk8FyUQ3cr78yPv6feT8g93oMS993SveQ3KqbR-ROV9VyBVejmAl79ZjUSFeBtZFaCl-QTgP9CRC5fUeXzQw8bY2HhGtP29WPWawUQN18BS7MUb9mi1D8T3ze0D73EgVXWkHDc0_BQhff4nBPyPhg9HX_MO3rOqQO4A5LQ668td5CqCI5D6EGF1t4YWVuET4owYehYEG6vApScWWtA5iVIdITuhJD_pTsNNOm3iWUMy7gpvTeBeHqoJQuNKAS64vMK84SUqy_oXF90nOsvfHdXAp-QJwGxdmX5ERxmouEsE3PWZf44wZ9dkFNjD0D_2zGXzLcFWaYapWJhLyNurMZy84nyKkrcnN6_NGU5cmH00J9NllC9tbKZXp30hqIyyUmHpQJeb15Cn4AN3dsU0-XrWFaMKyueH0LoRi8LhPXt5Ba5xwcdkKedVr9Z-YQluNMEyKjbt5YJOZotI9Xz_-14x65Gyk68fjnC7KzmC_rl4ADF9WraOG_ARtHS0g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCLEXvmFhwPyAeEtVx05i84a2jgJtH8aq9c1y7BimbWnVD7Hy13PnpGVFmzQh3qLUduXL3c-_s893hLyzaV4WXiSxksqAg6JkbAqBkQDS8kR62_Z4G7k_yLpD8WWUjppyQHgXps4Psd5wQ8sIeI0GjhvSm1YeQrSUGDUxkVxx1gJCeQ-P69BKD46SK0cKoQQqUPYEsEfyzbCea0faWKvuejMGBovCv7yOjm6y27A8HT4i56uJ1VEpZ63FvGjZX3_lfPxPM39MHjY0ln6s9e4JuVNWT8n9urDlEp46IRn28hkpMWIFlkdqKHxEOvb0J7Dk2Qe6qCYAtiXeEy4dnS0vJqFYALXTJaCYpW4VMEJxq_i0ok36JQpoWkDDU0fBSOc_wnDPyfCwc7zfjZvSDrEFxsNin0pnjDPgrWSce18CyuZOmCw1yCCk4G2fM5_ZtPCZ5NIYC0wrQbInVCHa_AXZqsZVuUMoZ1zAy8w564UtvZQqV0BMjMsTJzmLSL76iNo2ec-x_Ma5vuL_gDg1irOpyoni1JcRYeuekzr3xy367ICeaPMdIFoPvyV4MMww2yoTEXkflGc9lpmeYVhdnuqTwSc9Gh0dnOSyp5OI7K60SzeIMtPgmmeYezCLyN76V4ACPN8xVTlezDRTgmGBxZtbCMng7xJxc4tMqZQDZkfkZa3Wf2YOnjnONCJZUM5bi0T3O_v49OpfO-6RB93jfk_3Pg--7pLtELETboO-Jlvz6aJ8A7RwXrwN5v4bzPRPZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMQL32NhwPyAeGtVx45j84a2lgFbhQbV-mY5dgxTIa36IVb-eu6ctKxokybEW5TYjny5-_l38fmOkFcuy8siiLSllbbgoGjVsoXASADleKqC6wQ8jXzcl4cD8WGYDZv4JzwLU-eHWP9wQ8uIeI0GPvFh08hjhJYWwyYkkmvO2sAnbwkJzhYSpJP0wo5CrIAKjD0F6FF8M6rn0pE2lqqbwY6BwKLszy9jo5vkNq5OvftktJpXHZQyai_mRdv9-ivl4_-Z-ANyryGx9G2tdQ_JjbJ6RG7XZS2XcNWNqbCXj0mJ8SqwOFJL4RPScaA_gSPP3tBFNQGoLfGUcOnpbPljEksFUDddAoY56lfhIhR_FJ9VtEm-RAFLC2h45imY6PxbHO4JGfS6X_YPW01hh5YDvsNaIVPeWm_BV5Gch1ACxuZeWJlZ5A9K8E7IWZAuK4JUXFnrgGelSPWELkSHb5OtalyVO4RyxgXclN67IFwZlNK5BlpifZ56xVlC8tU3NK7Jeo7FN76bC94PiNOgOJuanChOc54Qtu45qTN_XKPPDqiJsV8BoM3gc4rbwgxzrTKRkNdRd9Zj2ekIg-ryzJz235nh8OTgNFdHJk3I7kq5TIMnMwOOucTMgzIhe-unAAS4u2OrcryYGaYFw_KKV7cQisHrUnF1C6l1xgGxE_K01uo_Mwe_HGeaEBl189oiMcfdfbx69q8d98idTwc9c_S-_3GX3I3hOvEo6HOyNZ8uyhfACefFy2jsvwGD3E4T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opening+a+can+of+worms%3A+unprecedented+sympatric+cryptic+diversity+within+British+lumbricid+earthworms&rft.jtitle=Molecular+ecology&rft.au=KING%2C+R+ANDREW&rft.au=TIBBLE%2C+AMY+L&rft.au=SYMONDSON%2C+WILLIAM+O+C&rft.date=2008-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=17&rft.issue=21&rft.spage=4684&rft_id=info:doi/10.1111%2Fj.1365-294X.2008.03931.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1583208131 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |