基于机器视觉的株间机械除草装置的作物识别与定位方法

株间机械除草技术可进一步减少化学除草剂的使用,有利于环境保护和农业可持续发展.为实现智能化的株间机械除草装置自主避让作物并进入株间区域,该研究提出了一种株间机械除草装置的作物识别与定位方法.利用2G-R-B方法将作物RGB彩色图像进行灰度化,再选用Ostu法二值化、连续腐蚀和连续膨胀等方法对图像进行了初步处理.根据行像素累加曲线和曲线的标准偏差扫描线获得作物行区域信息,以作物行区域为处理对象,利用列像素累加曲线、曲线标准偏差和正弦波曲线拟合识别出作物,并结合二值图像中绿色植物连通域的质心获得作物位置信息.试验结果表明,该方法可以正确识别出作物并提供准确的定位信息,能适应不同天气状况、不同种类的...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 10; pp. 12 - 18
Main Author 胡炼 罗锡文 曾山 张智刚 陈雄飞 林潮兴
Format Journal Article
LanguageChinese
Published 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642%华南农业大学工程学院,广州 510642 2013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.10.002

Cover

Abstract 株间机械除草技术可进一步减少化学除草剂的使用,有利于环境保护和农业可持续发展.为实现智能化的株间机械除草装置自主避让作物并进入株间区域,该研究提出了一种株间机械除草装置的作物识别与定位方法.利用2G-R-B方法将作物RGB彩色图像进行灰度化,再选用Ostu法二值化、连续腐蚀和连续膨胀等方法对图像进行了初步处理.根据行像素累加曲线和曲线的标准偏差扫描线获得作物行区域信息,以作物行区域为处理对象,利用列像素累加曲线、曲线标准偏差和正弦波曲线拟合识别出作物,并结合二值图像中绿色植物连通域的质心获得作物位置信息.试验结果表明,该方法可以正确识别出作物并提供准确的定位信息,能适应不同天气状况、不同种类的作物,棉苗正确识别率为95.8%,生菜苗正确识别率为100%,该方法为株间机械除草装置避苗和除草自动控制提供了基本条件.
AbstractList TP2%S224.1+5; 株间机械除草技术可进一步减少化学除草剂的使用,有利于环境保护和农业可持续发展.为实现智能化的株间机械除草装置自主避让作物并进入株间区域,该研究提出了一种株间机械除草装置的作物识别与定位方法.利用2G-R-B方法将作物RGB彩色图像进行灰度化,再选用Ostu法二值化、连续腐蚀和连续膨胀等方法对图像进行了初步处理.根据行像素累加曲线和曲线的标准偏差扫描线获得作物行区域信息,以作物行区域为处理对象,利用列像素累加曲线、曲线标准偏差和正弦波曲线拟合识别出作物,并结合二值图像中绿色植物连通域的质心获得作物位置信息.试验结果表明,该方法可以正确识别出作物并提供准确的定位信息,能适应不同天气状况、不同种类的作物,棉苗正确识别率为95.8%,生菜苗正确识别率为100%,该方法为株间机械除草装置避苗和除草自动控制提供了基本条件.
株间机械除草技术可进一步减少化学除草剂的使用,有利于环境保护和农业可持续发展.为实现智能化的株间机械除草装置自主避让作物并进入株间区域,该研究提出了一种株间机械除草装置的作物识别与定位方法.利用2G-R-B方法将作物RGB彩色图像进行灰度化,再选用Ostu法二值化、连续腐蚀和连续膨胀等方法对图像进行了初步处理.根据行像素累加曲线和曲线的标准偏差扫描线获得作物行区域信息,以作物行区域为处理对象,利用列像素累加曲线、曲线标准偏差和正弦波曲线拟合识别出作物,并结合二值图像中绿色植物连通域的质心获得作物位置信息.试验结果表明,该方法可以正确识别出作物并提供准确的定位信息,能适应不同天气状况、不同种类的作物,棉苗正确识别率为95.8%,生菜苗正确识别率为100%,该方法为株间机械除草装置避苗和除草自动控制提供了基本条件.
Abstract_FL Intra-row mechanical weeding, as a non-chemical weed control technology, reduces the application of chemical herbicides and is beneficial to the environment protection and sustainable development for agriculture as well. Most crops are cultivated in rows with a defined sowing or transplanting pattern, i.e. with a constant spacing distance. This is an important feature that can be used for plant recognition and localization. The goal of this study presented herein is to propose a recognition and localization approach, taking advantage of the knowledge of the sowing or transplanting pattern, to avoid crop automatically and enter into the intra-row area for intelligent intra-row mechanical weeding device. The RGB imaged plants were distinguished from soil by analyzing the excessive green (2G-R-B) vegetation index image. The Ostu algorithm method was employed to transform a gray image to a binary image. And then the binary image was dilated and eroded three times repeatedly to remove isolated pixels in binary images or to remove noise for subsequent analysis. The standard deviation of longitudinal histogram was used as the scanning line to get the crop row area information in a binary image. The next step was to sum up all pixels of the crop row area per column, thus forming a signal with a frequency that corresponds to the average crop distance. The target regions and center points were obtained by analyzing the lateral histogram with the horizontal scan line. The most probable crop regions were filtered from all the target regions using a sinusoid which was fitted lateral histogram based on the distance between crops. The phasing of the sinusoid was given by least square fit for all the center points. After fusing the center of crop row and the centroid of green plants in binary image, the plants localization were obtained through searching the closest fusion result to the sinusoid peeks. Test results showed that, the method was sufficient in plants recognition and localization for intra-row mechanical weeding under different weather and field conditions. The accurate identification rate was 95.8%with the absolute error of 4.2 pixels in the x-direction and 1.4 pixels in the y-direction for cotton seedlings. An identification rate of 100% with the absolute error of 6.8 pixels in the x-direction and 15.3 pixels in the y-direction was achieved for lettuce seedlings. The position of the crop was correctly determined for 100%of all the images. The positioning error for lettuce and cotton seedlings was 17.6 pixels and 5.0 pixels, respectively. Main factors that influence the performance of the recognition and localization are weed pressure and the plant growth conditions. This study provides the basics for mechanical weed control devices to seedling avoidance and automatic weed control.
Author 胡炼 罗锡文 曾山 张智刚 陈雄飞 林潮兴
AuthorAffiliation 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州510642 华南农业大学工程学院,广州510642
AuthorAffiliation_xml – name: 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642%华南农业大学工程学院,广州 510642
Author_xml – sequence: 1
  fullname: 胡炼 罗锡文 曾山 张智刚 陈雄飞 林潮兴
BookMark eNo9j8tKw0AUhmdRwap9CEFwlTiTuSSzlOINC266L5NpUlN0qg2i3Wuxi3an0lJQVKgXqIIutNC3SdL0LRypuDqc7_84h38BZFRNeQCsIGhizvha1QzCUJkIQstgDuKmBRHWq6lBBmT_-TzIhWHgQoqwDSFBWbAb346iUSfpj-LuUzpopoPWpHee3L1Mbz41TO7fp93HtN1KHy4m46GOonF_0npO35rx5Wv01YmHvWjcTq6_k4-rJTDni4PQy_3NRVDc3Cjmt43C3tZOfr1gSOoQw7e5TW3IygKVLYaEj22KkIDYYQ7G0pfEo8R1CLc4dCxmu2XpSYEEowJS10J4EazOzp4K5QtVKVVrJ3WlH5ZUoyLP3N_uujEk2lyemXK_pirHgXaP6sGhqDdKhHLEObHxD4fWeK4
ClassificationCodes TP2%S224.1+5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2013.10.002
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Plant recognition and localization for intra-row mechanical weeding device based on machine vision
DocumentTitle_FL Plant recognition and localization for intra-row mechanical weeding device based on machine vision
EndPage 18
ExternalDocumentID nygcxb201310004
45919947
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c584-f7975706da1d261af37511a0386833cfc4e54b8492908267bdceca1a65a05b213
ISSN 1002-6819
IngestDate Thu May 29 04:04:17 EDT 2025
Wed Feb 14 10:43:10 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords agricultural machinery
intra-row mechanical weed control
机器视觉
作物识别
株间机械除草
除草
定位
crop recognition
weed control
location
农业机械
machine vision
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c584-f7975706da1d261af37511a0386833cfc4e54b8492908267bdceca1a65a05b213
Notes Hu Lian 1,2 , Luo Xiwen 1,2 , Zeng Shan 1,2 , Zhang Zhigang 1,2 , Chen Xiongfei 1,2 , Lin Chaoxing 1,2 (1. Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; 2. College of Engineering, South China Agricultural University, Guangzhou 510642, China)
11-2047/S
Intra-row mechanical weeding, as a non-chemical weed control technology, reduces the application of chemical herbicides and is beneficial to the environment protection and sustainable development for agriculture as well. Most crops are cultivated in rows with a defined sowing or transplanting pattern, i.e. with a constant spacing distance. This is an important feature that can be used for plant recognition and localization. The goal of this study presented herein is to propose a recognition and localization approach, taking advantage of the knowledge of the sowing or transplanting pattern, to avoid crop automatically and enter into the intra-row area for
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201310004
chongqing_primary_45919947
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2013
Publisher 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642%华南农业大学工程学院,广州 510642
Publisher_xml – name: 华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州 510642%华南农业大学工程学院,广州 510642
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.016349
Snippet 株间机械除草技术可进一步减少化学除草剂的使用,有利于环境保护和农业可持续发展.为实现智能化的株间机械除草装置自主避让作物并进入株间区域,该研究提出了一种株间机械除...
TP2%S224.1+5; 株间机械除草技术可进一步减少化学除草剂的使用,有利于环境保护和农业可持续发展.为实现智能化的株间机械除草装置自主避让作物并进入株间区域,该研究提出了...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 12
SubjectTerms 作物识别
农业机械
定位
机器视觉
株间机械除草
除草
Title 基于机器视觉的株间机械除草装置的作物识别与定位方法
URI http://lib.cqvip.com/qk/90712X/201310/45919947.html
https://d.wanfangdata.com.cn/periodical/nygcxb201310004
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThRBcIKYGD0YnxF8hAN9MouzMz093ceZZTaI0RMm3Dbz2FlOiyIkylmJHOCmBkLUqAk-EjTRg5LwN7vL8hdW1fTOTgBRSTaTTlV1dT063VWz1T2GMWonpkhSHpZsOzJLXKZxSSVY6wrOFzKJREInvO_eExP3-eS0Mz0w-LpQtbQwH43Fi4eeKzmOVwEGfsVTsv_h2ZwpAKAN_oUneBie_-RjFjhMVZnvsYDjUwYsEExVCAIoxTzJAsk8l0nRaygWuEwBMUdiz2QeECumXObzQndAWcw3CQV8OHaX49Qd-NhMOsjHH2deUGDIEQIcAhrIy4irNLrDJLR9opEkqoN9lad7AXMcXTBfYcO3WfZdzF7oTBxIvIyDIh19l3kkCWgqfeIJIgnkID1A9SYUiW8zr0yigWaVPobUAP1RVU4kJEd_iyaAz3yS2S_Dr48BQAWtiCRKG16idMX3KdlBWJr7hB_X-sts3MMUA4t7bkGfnDi30cFeB52X2zr3GXGW2aAOWllrHWiTSVPzAbdhg6YRGg8YWkiMVpTUcMlnmTlVz50BomBKyYqGwHAWtYHGr2qfqeAmLNOQlTLLOb5F_uj8bM5aRw1c2I1xuxZS76l6ITIL262uwM8Ct2wf3x8S2EooCgmQ41jOEYs67TGq67T6oVBeoNp80ogfR0iD_3_xE8ZJy4VIFq-RvT3ZTzfK-EYl3w8tvFVC9NN3p2zjxyPykjMsuHCo-kILccoY1RLeOko-vPZlZrbZeAjBLJ0tbKZhs1EIg6fOGWd1_jriZYvReWNgceaCccZrzOk7fOoXjTvtN9ut7dXOxnZ77WN3c6m7uby7_rTz9vPeqx8A7Lz7trf2obuy3H3_bHdnC1CtnY3d5U_dr0vt519aP1fbW-utnZXOy1-d7y8uGVPVYKoyUdLfbCnFkMqUUle5jgvLf1hOLFEOU9uFjC40bSmkbcdpzOsOjySHpAxyD-FGSVyPw3IonNB0IqtsXzYGm7PN-hVjREGnJKzLkKcR58oMkzBRVpRGEjIoN0mGjOHcKrUH2dU8Ne4ovOzcHTJGtJlqer1-VNvn0-G_k1w1Tlv09Rt843rNGJyfW6hfhxxkPrpBE-E3GPTgXw
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%9C%BA%E5%99%A8%E8%A7%86%E8%A7%89%E7%9A%84%E6%A0%AA%E9%97%B4%E6%9C%BA%E6%A2%B0%E9%99%A4%E8%8D%89%E8%A3%85%E7%BD%AE%E7%9A%84%E4%BD%9C%E7%89%A9%E8%AF%86%E5%88%AB%E4%B8%8E%E5%AE%9A%E4%BD%8D%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E8%83%A1%E7%82%BC&rft.au=%E7%BD%97%E9%94%A1%E6%96%87&rft.au=%E6%9B%BE%E5%B1%B1&rft.au=%E5%BC%A0%E6%99%BA%E5%88%9A&rft.date=2013&rft.pub=%E5%8D%8E%E5%8D%97%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%8D%97%E6%96%B9%E5%86%9C%E4%B8%9A%E6%9C%BA%E6%A2%B0%E4%B8%8E%E8%A3%85%E5%A4%87%E5%85%B3%E9%94%AE%E6%8A%80%E6%9C%AF%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%B9%BF%E5%B7%9E+510642%25%E5%8D%8E%E5%8D%97%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E5%B7%9E+510642&rft.issn=1002-6819&rft.issue=10&rft.spage=12&rft.epage=18&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2013.10.002&rft.externalDocID=nygcxb201310004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg