基于道路结构特征的智能车单目视觉定位
高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定位精度.视觉定位技术通过图像特征匹配进行位置估计,被广泛研究.然而传统基于特征点的方法容易受到移动目标的干扰,在高动态交通场景中的应用面临挑战.在结构化道路场景中,车道等线特征普遍存在,为人类驾驶员的视觉理解与决策提供重要线索.受该思路的启发,本文利用场景中的三垂线和点特征构建道路结构特征(Road structural feature,RSF),并在此基础上提出一个基于道路结构特征的单目视觉定位算法....
Saved in:
| Published in | 自动化学报 Vol. 43; no. 5; pp. 725 - 734 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
北京大学机器感知与智能教育部重点实验室 北京 100871
2017
北京大学信息科学技术学院 北京 100871 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0254-4156 1874-1029 |
| DOI | 10.16383/j.aas.2017.c160413 |
Cover
| Abstract | 高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定位精度.视觉定位技术通过图像特征匹配进行位置估计,被广泛研究.然而传统基于特征点的方法容易受到移动目标的干扰,在高动态交通场景中的应用面临挑战.在结构化道路场景中,车道等线特征普遍存在,为人类驾驶员的视觉理解与决策提供重要线索.受该思路的启发,本文利用场景中的三垂线和点特征构建道路结构特征(Road structural feature,RSF),并在此基础上提出一个基于道路结构特征的单目视觉定位算法.本文利用在北京市区的典型路口、路段、街道等场所采集的车载视频数据进行实验验证,以同步采集的高精度GPS惯性导航组合定位系统数据为参照,与传统视觉定位算法进行比较.结果表明,本文算法在朝向估计上明显优于传统算法,对环境中的动态干扰有更高的鲁棒性.在卫星信号易受干扰的区域,可以有效地弥补GPS等定位系统的不足,为满足自动驾驶所需的车道级定位要求提供重要的技术手段. |
|---|---|
| AbstractList | 高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定位精度.视觉定位技术通过图像特征匹配进行位置估计,被广泛研究.然而传统基于特征点的方法容易受到移动目标的干扰,在高动态交通场景中的应用面临挑战.在结构化道路场景中,车道等线特征普遍存在,为人类驾驶员的视觉理解与决策提供重要线索.受该思路的启发,本文利用场景中的三垂线和点特征构建道路结构特征(Road structural feature,RSF),并在此基础上提出一个基于道路结构特征的单目视觉定位算法.本文利用在北京市区的典型路口、路段、街道等场所采集的车载视频数据进行实验验证,以同步采集的高精度GPS惯性导航组合定位系统数据为参照,与传统视觉定位算法进行比较.结果表明,本文算法在朝向估计上明显优于传统算法,对环境中的动态干扰有更高的鲁棒性.在卫星信号易受干扰的区域,可以有效地弥补GPS等定位系统的不足,为满足自动驾驶所需的车道级定位要求提供重要的技术手段. 高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定位精度.视觉定位技术通过图像特征匹配进行位置估计,被广泛研究.然而传统基于特征点的方法容易受到移动目标的干扰,在高动态交通场景中的应用面临挑战.在结构化道路场景中,车道等线特征普遍存在,为人类驾驶员的视觉理解与决策提供重要线索.受该思路的启发,本文利用场景中的三垂线和点特征构建道路结构特征(Road structural feature,RSF),并在此基础上提出一个基于道路结构特征的单目视觉定位算法.本文利用在北京市区的典型路口、路段、街道等场所采集的车载视频数据进行实验验证,以同步采集的高精度GPS惯性导航组合定位系统数据为参照,与传统视觉定位算法进行比较.结果表明,本文算法在朝向估计上明显优于传统算法,对环境中的动态干扰有更高的鲁棒性.在卫星信号易受干扰的区域,可以有效地弥补GPS等定位系统的不足,为满足自动驾驶所需的车道级定位要求提供重要的技术手段. |
| Abstract_FL | Precise localization is an essential issue for autonomous driving applications, while global positioning system (GPS)-based systems are challenged to meet requirements such as lane-level accuracy, especially in crowded urban envi-ronment. This paper introduces a new visual-based localization approach in dynamic traffic environments, focusing on structured roads like straight roads or intersections. Such environments show several line segments on lane markings, curbs, poles, building edges, etc., which demonstrate the road's longitude, latitude and vertical directions. Based on this observation, we define a road structural feature (RSF) as sets of segments along three perpendicular axes together with feature points, and propose an RSF based monocular visual localization method. Extensive experiments are conducted on three typical scenarios, including highway, intersection and downtown streets. Results show better accuracy compared with a state-of-the-art visual localization method using feature points. We demonstrate that the proposed method can help improving localization accuracy in GPS restricted area, and discuss the remained challenges leading to future studies. |
| Author | 俞毓锋 赵卉菁 崔锦实 查红彬 |
| AuthorAffiliation | 北京大学信息科学技术学院,北京100871 北京大学机器感知与智能教育部重点实验室,北京100871 |
| AuthorAffiliation_xml | – name: 北京大学信息科学技术学院 北京 100871;北京大学机器感知与智能教育部重点实验室 北京 100871 |
| Author_FL | CUI Jin-Shi ZHAO Hui-Jing YU Yu-Feng ZHA Hong-Bin |
| Author_FL_xml | – sequence: 1 fullname: YU Yu-Feng – sequence: 2 fullname: ZHAO Hui-Jing – sequence: 3 fullname: CUI Jin-Shi – sequence: 4 fullname: ZHA Hong-Bin |
| Author_xml | – sequence: 1 fullname: 俞毓锋 赵卉菁 崔锦实 查红彬 |
| BookMark | eNotjztLw0AAxw-pYK39BG4Obon3yl1ulOILCg66h7trrg800QbxsRVLoUNdioMVdLNbHcVI_DRNE7-FkTr94c-P_2MdlIIw8AHYRNBGjLhkp2NLGdkYIm5rxCBFZAWUkcuphSAWJVCG2KEWRQ5bA9UoaquCpFxgAsuApa_xPH746Y3zj_fsa7x46WfDz_S7l036i6c4v0_y5C0dPWbPs3w6yKfDdDaZJ6MNsGrkWeRX_7UCTvb3TmuHVv344Ki2W7e041JLI66pMtooSIRmGPvKV0Q3hFBKOpoaozGWrm8oKea6UsvC9oWRBrvcCFIB28vUaxkYGTS9TnjVDYo-767RulF_j6EDIS3ArSWoW2HQvGwX6EW3fS67tx7jGDEKOSG_ZtVrfA |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.16383/j.aas.2017.c160413 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Road Structural Feature Based Monocular Visual Localization for Intelligent Vehicle |
| DocumentTitle_FL | Road Structural Feature Based Monocular Visual Localization for Intelligent Vehicle |
| EISSN | 1874-1029 |
| EndPage | 734 |
| ExternalDocumentID | zdhxb201705004 672164073 |
| GrantInformation_xml | – fundername: 国家高技术研究发展计划(863 计划); 国家自然科学基金(61573027) 资助 Supported by National High Technology Research and Devel-opment Program of China(863 Program); National Natural Science Foundation of China funderid: (2012AA011801); (2012AA011801); (61573027) |
| GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
| ID | FETCH-LOGICAL-c584-c17c4bfcfb039c622ebeb3cd99bba5c4ffc22a8ef431878acaba5e9faf287f93 |
| ISSN | 0254-4156 |
| IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 10:01:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | 单目相机 Monocular camera 三垂线 road structural feature (RSF) 视觉定位 perpendicular axes 道路结构特征 visual localization |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c584-c17c4bfcfb039c622ebeb3cd99bba5c4ffc22a8ef431878acaba5e9faf287f93 |
| Notes | Monocular camera, visual localization, road structural feature (RSF), perpendicular axes Precise localization is an essential issue for autonomous driving applications, while global positioning system (GPS)-based systems are challenged to meet requirements such as lane:level accuracy, especially in crowded urban envi- ronment. This paper introduces a new visual-based localization approach in dynamic traffic environments, focusing on structured roads like straight roads or intersections. Such environments show several line segments on lane markings, curbs, poles, building edges, etc., which demonstrate the roadts longitude, latitude and vertical directions. Based on this observation, we define a road structural feature (RSF) as sets of segments along three perpendicular axes together with feature points, and propose an RSF based monocular visual localization method. Extensive experiments are conducted on three typical scenarios, including highway, intersection and downtown streets. Results show better accuracy |
| PageCount | 10 |
| ParticipantIDs | wanfang_journals_zdhxb201705004 chongqing_primary_672164073 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | 自动化学报 |
| PublicationTitleAlternate | Acta Automatica Sinica |
| PublicationTitle_FL | Acta Automatica Sinica |
| PublicationYear | 2017 |
| Publisher | 北京大学机器感知与智能教育部重点实验室 北京 100871 北京大学信息科学技术学院 北京 100871 |
| Publisher_xml | – name: 北京大学机器感知与智能教育部重点实验室 北京 100871 – name: 北京大学信息科学技术学院 北京 100871 |
| SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
| Score | 2.1909893 |
| Snippet | 高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所... 高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 725 |
| SubjectTerms | 三垂线 单目相机 视觉定位 道路结构特征 |
| Title | 基于道路结构特征的智能车单目视觉定位 |
| URI | http://lib.cqvip.com/qk/90250X/201705/672164073.html https://d.wanfangdata.com.cn/periodical/zdhxb201705004 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1874-1029 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059721 issn: 0254-4156 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMCrtBQ6Ipyjl0QM-VYFdJ3bso7ObpULAhYJ6WyXepD1tebQS6q2iQuqhXCoOFAluVOJQjoii8jXd7vIXzIzTbmCReEgrKxmPJ_NwPGNnPfa8G2EUyHqqAz8HX-fjXmtf29T6dWsFh05ka3QO2b37cvZheGdezI-d-Fj519LKcnbTrv52X8n_WBVgYFfcJfsPlj0mCgC4BvtCCRaG8q9szBLBdIvFhiUhliphiYbYkOmAJYrFETMtlkQsjgkimU6YChGiNIs1No8TxAeINlQFOJoIKqYCFjeJTpMZiciqybQg5JiZBKsMkJJHF0QQ4Nrx0wT8auxLNIElQ6QMM4ouGkwTceOeIqlKHHUEotRCxqEGpEE5NNMQAcdDFGBR4M-xiHzAk1pM1YcoUB9iM9fYiYOsJkMUSbqMSWHAAqdGwFSjujLitoBSLz7iPiq1bxpENERdVOXRDVKoQM2izBIVrckwUBpBzRUZb1T7EjWunUScxZwMHBAdjdoEedGcvDQniYRVoGXVKCEmnBnldQbzLblzaUpHAJN4HyfaVa_lkluVb6eouKDIbSQvo5nILRWPOEoYdgPylGmKSevr0U1bl7XQ7Qv-JQP5amfxecYp8RKl3p3guPY17k3cju8-MsPgG2JVXfEWQoNDqASXUmDyw-F9hJ_wK9_c4T4IhpNZPNlAVhYrRD2AqTUuFrg4S2DeKVpBLbVT5hRDyW6NyoW5UxaXugtPICKkDXrdIu0uVGLJuTPe6XISOG3cG33WG1tdPOedqqQGPe_J3vu9g71X39e2Bp8_9b9uHb5b72986X1b62-vH77ZG7zYH-x_6G2-7r_dHey8HOxs9Ha3D_Y3L3gPWslcY9YvzzjxLYT-vq1HNswKW2S1QFvJOYypWWA7WmdZKmxYFJbzVOUFjKIqUqlNAZzrIi24igodXPTGu0vd_JI3bUUmYeqX207Eww6PUllLba0ThTIXudR80ps6lr_92GWyaUtM3RWCl5_0rpcaaZfj27P2z2a__EeMKe8kXrv1ySve-PLTlfwqROzL2bWyq_wAhwKvSg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%81%93%E8%B7%AF%E7%BB%93%E6%9E%84%E7%89%B9%E5%BE%81%E7%9A%84%E6%99%BA%E8%83%BD%E8%BD%A6%E5%8D%95%E7%9B%AE%E8%A7%86%E8%A7%89%E5%AE%9A%E4%BD%8D&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E4%BF%9E%E6%AF%93%E9%94%8B&rft.au=%E8%B5%B5%E5%8D%89%E8%8F%81&rft.au=%E5%B4%94%E9%94%A6%E5%AE%9E&rft.au=%E6%9F%BB%E7%BA%A2%E5%BD%AC&rft.date=2017&rft.pub=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E6%9C%BA%E5%99%A8%E6%84%9F%E7%9F%A5%E4%B8%8E%E6%99%BA%E8%83%BD%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8C%97%E4%BA%AC+100871&rft.issn=0254-4156&rft.volume=43&rft.issue=5&rft.spage=725&rft.epage=734&rft_id=info:doi/10.16383%2Fj.aas.2017.c160413&rft.externalDocID=zdhxb201705004 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |