基于道路结构特征的智能车单目视觉定位

高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定位精度.视觉定位技术通过图像特征匹配进行位置估计,被广泛研究.然而传统基于特征点的方法容易受到移动目标的干扰,在高动态交通场景中的应用面临挑战.在结构化道路场景中,车道等线特征普遍存在,为人类驾驶员的视觉理解与决策提供重要线索.受该思路的启发,本文利用场景中的三垂线和点特征构建道路结构特征(Road structural feature,RSF),并在此基础上提出一个基于道路结构特征的单目视觉定位算法....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 43; no. 5; pp. 725 - 734
Main Author 俞毓锋 赵卉菁 崔锦实 查红彬
Format Journal Article
LanguageChinese
Published 北京大学机器感知与智能教育部重点实验室 北京 100871 2017
北京大学信息科学技术学院 北京 100871
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2017.c160413

Cover

Abstract 高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定位精度.视觉定位技术通过图像特征匹配进行位置估计,被广泛研究.然而传统基于特征点的方法容易受到移动目标的干扰,在高动态交通场景中的应用面临挑战.在结构化道路场景中,车道等线特征普遍存在,为人类驾驶员的视觉理解与决策提供重要线索.受该思路的启发,本文利用场景中的三垂线和点特征构建道路结构特征(Road structural feature,RSF),并在此基础上提出一个基于道路结构特征的单目视觉定位算法.本文利用在北京市区的典型路口、路段、街道等场所采集的车载视频数据进行实验验证,以同步采集的高精度GPS惯性导航组合定位系统数据为参照,与传统视觉定位算法进行比较.结果表明,本文算法在朝向估计上明显优于传统算法,对环境中的动态干扰有更高的鲁棒性.在卫星信号易受干扰的区域,可以有效地弥补GPS等定位系统的不足,为满足自动驾驶所需的车道级定位要求提供重要的技术手段.
AbstractList 高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定位精度.视觉定位技术通过图像特征匹配进行位置估计,被广泛研究.然而传统基于特征点的方法容易受到移动目标的干扰,在高动态交通场景中的应用面临挑战.在结构化道路场景中,车道等线特征普遍存在,为人类驾驶员的视觉理解与决策提供重要线索.受该思路的启发,本文利用场景中的三垂线和点特征构建道路结构特征(Road structural feature,RSF),并在此基础上提出一个基于道路结构特征的单目视觉定位算法.本文利用在北京市区的典型路口、路段、街道等场所采集的车载视频数据进行实验验证,以同步采集的高精度GPS惯性导航组合定位系统数据为参照,与传统视觉定位算法进行比较.结果表明,本文算法在朝向估计上明显优于传统算法,对环境中的动态干扰有更高的鲁棒性.在卫星信号易受干扰的区域,可以有效地弥补GPS等定位系统的不足,为满足自动驾驶所需的车道级定位要求提供重要的技术手段.
高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定位精度.视觉定位技术通过图像特征匹配进行位置估计,被广泛研究.然而传统基于特征点的方法容易受到移动目标的干扰,在高动态交通场景中的应用面临挑战.在结构化道路场景中,车道等线特征普遍存在,为人类驾驶员的视觉理解与决策提供重要线索.受该思路的启发,本文利用场景中的三垂线和点特征构建道路结构特征(Road structural feature,RSF),并在此基础上提出一个基于道路结构特征的单目视觉定位算法.本文利用在北京市区的典型路口、路段、街道等场所采集的车载视频数据进行实验验证,以同步采集的高精度GPS惯性导航组合定位系统数据为参照,与传统视觉定位算法进行比较.结果表明,本文算法在朝向估计上明显优于传统算法,对环境中的动态干扰有更高的鲁棒性.在卫星信号易受干扰的区域,可以有效地弥补GPS等定位系统的不足,为满足自动驾驶所需的车道级定位要求提供重要的技术手段.
Abstract_FL Precise localization is an essential issue for autonomous driving applications, while global positioning system (GPS)-based systems are challenged to meet requirements such as lane-level accuracy, especially in crowded urban envi-ronment. This paper introduces a new visual-based localization approach in dynamic traffic environments, focusing on structured roads like straight roads or intersections. Such environments show several line segments on lane markings, curbs, poles, building edges, etc., which demonstrate the road's longitude, latitude and vertical directions. Based on this observation, we define a road structural feature (RSF) as sets of segments along three perpendicular axes together with feature points, and propose an RSF based monocular visual localization method. Extensive experiments are conducted on three typical scenarios, including highway, intersection and downtown streets. Results show better accuracy compared with a state-of-the-art visual localization method using feature points. We demonstrate that the proposed method can help improving localization accuracy in GPS restricted area, and discuss the remained challenges leading to future studies.
Author 俞毓锋 赵卉菁 崔锦实 查红彬
AuthorAffiliation 北京大学信息科学技术学院,北京100871 北京大学机器感知与智能教育部重点实验室,北京100871
AuthorAffiliation_xml – name: 北京大学信息科学技术学院 北京 100871;北京大学机器感知与智能教育部重点实验室 北京 100871
Author_FL CUI Jin-Shi
ZHAO Hui-Jing
YU Yu-Feng
ZHA Hong-Bin
Author_FL_xml – sequence: 1
  fullname: YU Yu-Feng
– sequence: 2
  fullname: ZHAO Hui-Jing
– sequence: 3
  fullname: CUI Jin-Shi
– sequence: 4
  fullname: ZHA Hong-Bin
Author_xml – sequence: 1
  fullname: 俞毓锋 赵卉菁 崔锦实 查红彬
BookMark eNotjztLw0AAxw-pYK39BG4Obon3yl1ulOILCg66h7trrg800QbxsRVLoUNdioMVdLNbHcVI_DRNE7-FkTr94c-P_2MdlIIw8AHYRNBGjLhkp2NLGdkYIm5rxCBFZAWUkcuphSAWJVCG2KEWRQ5bA9UoaquCpFxgAsuApa_xPH746Y3zj_fsa7x46WfDz_S7l036i6c4v0_y5C0dPWbPs3w6yKfDdDaZJ6MNsGrkWeRX_7UCTvb3TmuHVv344Ki2W7e041JLI66pMtooSIRmGPvKV0Q3hFBKOpoaozGWrm8oKea6UsvC9oWRBrvcCFIB28vUaxkYGTS9TnjVDYo-767RulF_j6EDIS3ArSWoW2HQvGwX6EW3fS67tx7jGDEKOSG_ZtVrfA
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2017.c160413
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Road Structural Feature Based Monocular Visual Localization for Intelligent Vehicle
DocumentTitle_FL Road Structural Feature Based Monocular Visual Localization for Intelligent Vehicle
EISSN 1874-1029
EndPage 734
ExternalDocumentID zdhxb201705004
672164073
GrantInformation_xml – fundername: 国家高技术研究发展计划(863 计划); 国家自然科学基金(61573027) 资助 Supported by National High Technology Research and Devel-opment Program of China(863 Program); National Natural Science Foundation of China
  funderid: (2012AA011801); (2012AA011801); (61573027)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c584-c17c4bfcfb039c622ebeb3cd99bba5c4ffc22a8ef431878acaba5e9faf287f93
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:01:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 单目相机
Monocular camera
三垂线
road structural feature (RSF)
视觉定位
perpendicular axes
道路结构特征
visual localization
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c584-c17c4bfcfb039c622ebeb3cd99bba5c4ffc22a8ef431878acaba5e9faf287f93
Notes Monocular camera, visual localization, road structural feature (RSF), perpendicular axes
Precise localization is an essential issue for autonomous driving applications, while global positioning system (GPS)-based systems are challenged to meet requirements such as lane:level accuracy, especially in crowded urban envi- ronment. This paper introduces a new visual-based localization approach in dynamic traffic environments, focusing on structured roads like straight roads or intersections. Such environments show several line segments on lane markings, curbs, poles, building edges, etc., which demonstrate the roadts longitude, latitude and vertical directions. Based on this observation, we define a road structural feature (RSF) as sets of segments along three perpendicular axes together with feature points, and propose an RSF based monocular visual localization method. Extensive experiments are conducted on three typical scenarios, including highway, intersection and downtown streets. Results show better accuracy
PageCount 10
ParticipantIDs wanfang_journals_zdhxb201705004
chongqing_primary_672164073
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2017
Publisher 北京大学机器感知与智能教育部重点实验室 北京 100871
北京大学信息科学技术学院 北京 100871
Publisher_xml – name: 北京大学机器感知与智能教育部重点实验室 北京 100871
– name: 北京大学信息科学技术学院 北京 100871
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.1909893
Snippet 高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所...
高精度定位是实现自动驾驶的关键.在城市密集区域,全球定位系统(Global positioning system,GPS)等卫星定位系统受到遮挡、干扰、多路径反射等影响,无法保障自动驾驶所需的定...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 725
SubjectTerms 三垂线
单目相机
视觉定位
道路结构特征
Title 基于道路结构特征的智能车单目视觉定位
URI http://lib.cqvip.com/qk/90250X/201705/672164073.html
https://d.wanfangdata.com.cn/periodical/zdhxb201705004
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-1029
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059721
  issn: 0254-4156
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMCrtBQ6Ipyjl0QM-VYFdJ3bso7ObpULAhYJ6WyXepD1tebQS6q2iQuqhXCoOFAluVOJQjoii8jXd7vIXzIzTbmCReEgrKxmPJ_NwPGNnPfa8G2EUyHqqAz8HX-fjXmtf29T6dWsFh05ka3QO2b37cvZheGdezI-d-Fj519LKcnbTrv52X8n_WBVgYFfcJfsPlj0mCgC4BvtCCRaG8q9szBLBdIvFhiUhliphiYbYkOmAJYrFETMtlkQsjgkimU6YChGiNIs1No8TxAeINlQFOJoIKqYCFjeJTpMZiciqybQg5JiZBKsMkJJHF0QQ4Nrx0wT8auxLNIElQ6QMM4ouGkwTceOeIqlKHHUEotRCxqEGpEE5NNMQAcdDFGBR4M-xiHzAk1pM1YcoUB9iM9fYiYOsJkMUSbqMSWHAAqdGwFSjujLitoBSLz7iPiq1bxpENERdVOXRDVKoQM2izBIVrckwUBpBzRUZb1T7EjWunUScxZwMHBAdjdoEedGcvDQniYRVoGXVKCEmnBnldQbzLblzaUpHAJN4HyfaVa_lkluVb6eouKDIbSQvo5nILRWPOEoYdgPylGmKSevr0U1bl7XQ7Qv-JQP5amfxecYp8RKl3p3guPY17k3cju8-MsPgG2JVXfEWQoNDqASXUmDyw-F9hJ_wK9_c4T4IhpNZPNlAVhYrRD2AqTUuFrg4S2DeKVpBLbVT5hRDyW6NyoW5UxaXugtPICKkDXrdIu0uVGLJuTPe6XISOG3cG33WG1tdPOedqqQGPe_J3vu9g71X39e2Bp8_9b9uHb5b72986X1b62-vH77ZG7zYH-x_6G2-7r_dHey8HOxs9Ha3D_Y3L3gPWslcY9YvzzjxLYT-vq1HNswKW2S1QFvJOYypWWA7WmdZKmxYFJbzVOUFjKIqUqlNAZzrIi24igodXPTGu0vd_JI3bUUmYeqX207Eww6PUllLba0ThTIXudR80ps6lr_92GWyaUtM3RWCl5_0rpcaaZfj27P2z2a__EeMKe8kXrv1ySve-PLTlfwqROzL2bWyq_wAhwKvSg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%81%93%E8%B7%AF%E7%BB%93%E6%9E%84%E7%89%B9%E5%BE%81%E7%9A%84%E6%99%BA%E8%83%BD%E8%BD%A6%E5%8D%95%E7%9B%AE%E8%A7%86%E8%A7%89%E5%AE%9A%E4%BD%8D&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E4%BF%9E%E6%AF%93%E9%94%8B&rft.au=%E8%B5%B5%E5%8D%89%E8%8F%81&rft.au=%E5%B4%94%E9%94%A6%E5%AE%9E&rft.au=%E6%9F%BB%E7%BA%A2%E5%BD%AC&rft.date=2017&rft.pub=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E6%9C%BA%E5%99%A8%E6%84%9F%E7%9F%A5%E4%B8%8E%E6%99%BA%E8%83%BD%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8C%97%E4%BA%AC+100871&rft.issn=0254-4156&rft.volume=43&rft.issue=5&rft.spage=725&rft.epage=734&rft_id=info:doi/10.16383%2Fj.aas.2017.c160413&rft.externalDocID=zdhxb201705004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg