基于历史与当前短时特征的异常流量检测

将移动运营商核心网络中的故障点定位到设备和端口需要分析大量数据样本,耗时较长。针对该问题,提出一种以历史数据为参照的异常流量检测方法。构建历史流量数据库,在此基础上利用短时的面积特征与梯度特征刻画网络的流量行为,及时发现异常流量,并设计分级多粒度方法定位造成异常流量的故障点。实验结果表明,与自适应阈值法、K-means聚类法和多维熵法相比,该方法能取得较好的在线异常流量检测效果,准确定位出现故障及异常流量的设备及端口。...

Full description

Saved in:
Bibliographic Details
Published in计算机工程 Vol. 43; no. 12; pp. 73 - 77
Main Author 李轶璋;王冼;段平;刘晓亚;陈阳;陈加忠
Format Journal Article
LanguageChinese
Published 中国移动通信集团湖北有限公司,武汉,430023%湖北城市建设职业技术学院信息工程系,武汉,430205%信阳职业技术学院,河南信阳,464000%华中科技大学计算机科学与技术学院,武汉,430074 2017
Subjects
Online AccessGet full text
ISSN1000-3428
DOI10.3969/j.issn.1000-3428.2017.12.014

Cover

Abstract 将移动运营商核心网络中的故障点定位到设备和端口需要分析大量数据样本,耗时较长。针对该问题,提出一种以历史数据为参照的异常流量检测方法。构建历史流量数据库,在此基础上利用短时的面积特征与梯度特征刻画网络的流量行为,及时发现异常流量,并设计分级多粒度方法定位造成异常流量的故障点。实验结果表明,与自适应阈值法、K-means聚类法和多维熵法相比,该方法能取得较好的在线异常流量检测效果,准确定位出现故障及异常流量的设备及端口。
AbstractList 将移动运营商核心网络中的故障点定位到设备和端口需要分析大量数据样本,耗时较长。针对该问题,提出一种以历史数据为参照的异常流量检测方法。构建历史流量数据库,在此基础上利用短时的面积特征与梯度特征刻画网络的流量行为,及时发现异常流量,并设计分级多粒度方法定位造成异常流量的故障点。实验结果表明,与自适应阈值法、K-means聚类法和多维熵法相比,该方法能取得较好的在线异常流量检测效果,准确定位出现故障及异常流量的设备及端口。
TN929.5; 将移动运营商核心网络中的故障点定位到设备和端口需要分析大量数据样本,耗时较长.针对该问题,提出一种以历史数据为参照的异常流量检测方法.构建历史流量数据库,在此基础上利用短时的面积特征与梯度特征刻画网络的流量行为,及时发现异常流量,并设计分级多粒度方法定位造成异常流量的故障点.实验结果表明,与自适应阈值法、K-means聚类法和多维熵法相比,该方法能取得较好的在线异常流量检测效果,准确定位出现故障及异常流量的设备及端口.
Abstract_FL To locate the fault points in the core network of mobile operators,previous methods require too many data samples which need long time to find the fault points.Aiming at this problem,this paper proposes an abnormal traffic detection method using the historical data as reference.It establishes a database containing historical traffic data.On this basis,it uses the surface feature and gradient features in short term to describe traffic behaviors of network,so as to detect the abnormal traffic in time.Meanwhile,it proposes a hierarchical and multi-granularity method to find the fault points that lead to the anomalous traffic.Experimental results demonstrate that,compared with adaptive threshold method,Kmeans clustering method and multidimensional entropy method,the proposed method can not only perform better in online abnormal traffic detection,but also locate the equipments and points that have faluts and abnormal traffic more accurately.
Author 李轶璋;王冼;段平;刘晓亚;陈阳;陈加忠
AuthorAffiliation 中国移动通信集团湖北有限公司,武汉430023;湖北城市建设职业技术学院信息工程系,武汉430205;信阳职业技术学院,河南信阳464000;华中科技大学计算机科学与技术学院,武汉430074
AuthorAffiliation_xml – name: 中国移动通信集团湖北有限公司,武汉,430023%湖北城市建设职业技术学院信息工程系,武汉,430205%信阳职业技术学院,河南信阳,464000%华中科技大学计算机科学与技术学院,武汉,430074
Author_FL CHEN Yang
WANG Xian
LIU Xiaoya
DUAN Ping
CHEN Jiazhong
LI Yizhang
Author_FL_xml – sequence: 1
  fullname: LI Yizhang
– sequence: 2
  fullname: WANG Xian
– sequence: 3
  fullname: DUAN Ping
– sequence: 4
  fullname: LIU Xiaoya
– sequence: 5
  fullname: CHEN Yang
– sequence: 6
  fullname: CHEN Jiazhong
Author_xml – sequence: 1
  fullname: 李轶璋;王冼;段平;刘晓亚;陈阳;陈加忠
BookMark eNo9j81Kw0AcxPdQwVr7EiLeEve_u9nNHqX4BQUvvZdk82GCbrRBxJsVUYqYHjwIXnrw7EWo1KI-TTfFtzBS8TIDw48ZZgXVdKZDhNYB21RyuZnaSZ5rGzDGFmXEtQkGYQOxMbAaqv_ny6iZ54mPHaDCEdStI25G09m0MMWNGb7OJoX5fDCD-_nopXx8mw_ezVd__nRtPq7MZFKO-9-3w_L5shzfraKlyDvKw-afN1BnZ7vT2rPaB7v7ra22pRyXWQoHHDyQmEAUSRUw3wfJBQjKXRVSrrgjozByOSdB6CvwpQi4cGRAmPQI4bSBNha1556OPB130-ysp6vBbpqnsfp9CZWwClxbgOow0_FpUqEnveTY6110uWAYE-Fw-gOiamlf
ClassificationCodes TN929.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1000-3428.2017.12.014
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Abnormal Traffic Detection Based on Historical and Current Short-term Features
DocumentTitle_FL Abnormal Traffic Detection Based on Historical and Current Short-term Features
EndPage 77
ExternalDocumentID jsjgc201712014
674002756
GrantInformation_xml – fundername: 中国移动通信集团湖北有限公司TD-SCDMA联合创新实验室项目“基于大数据流量建模的分组域核心网运维方法研究”
  funderid: (HBMC-3510-JS-JSZX-2015-1197)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c584-c0d61a19021ff9cd4bb196717368ce36c659fef8662debc1b97d6759d249a2263
ISSN 1000-3428
IngestDate Thu May 29 04:21:02 EDT 2025
Wed Feb 14 10:02:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 网络流量
network traffic
短时特征
traffic behavior
异常流量检测
流量行为
历史特征
short-term feature
abnormal traffic detection
historical feature
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c584-c0d61a19021ff9cd4bb196717368ce36c659fef8662debc1b97d6759d249a2263
Notes LI Yizhang1 , WANG Xian1 , DUAN Ping2 , LIU Xiaoya3 , CHEN Yang4 , CHEN Jiazhong4 (1. China Mobile Communications Group Hubei Co. , Ltd. ,Wuhan 430023, China; 2. Department of Information Engineering, Hubei Urban Construction Vocational and Technological College, Wuhan 430205, China ; 3. Xinyang Vocational and Technological College, Xinyang, Henan 464000, China; 4. School of Computer Science and Technology ,Huazhong University of Science and Technology ,Wuhan 430074 ,China)
31-1289/TP
To locate the fault points in the core network of mobile operators, previous methods require too many data samples which need long time to find the fault points. Aiming at this problem, this paper proposes an abnormal traffic detection method using the historical data as reference. It establishes a database containing historical traffic data. On this basis, it uses the surface feature and gradient features in short term to describe traffic behaviors of network, so as to detect the abnormal traffic in time. Meanwhile,it proposes a
PageCount 5
ParticipantIDs wanfang_journals_jsjgc201712014
chongqing_primary_674002756
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机工程
PublicationTitleAlternate Computer Engineering
PublicationTitle_FL Computer Engineering
PublicationYear 2017
Publisher 中国移动通信集团湖北有限公司,武汉,430023%湖北城市建设职业技术学院信息工程系,武汉,430205%信阳职业技术学院,河南信阳,464000%华中科技大学计算机科学与技术学院,武汉,430074
Publisher_xml – name: 中国移动通信集团湖北有限公司,武汉,430023%湖北城市建设职业技术学院信息工程系,武汉,430205%信阳职业技术学院,河南信阳,464000%华中科技大学计算机科学与技术学院,武汉,430074
SSID ssib051375738
ssib017479294
ssj0042200
ssib001102934
ssib023646288
Score 2.0887108
Snippet 将移动运营商核心网络中的故障点定位到设备和端口需要分析大量数据样本,耗时较长。针对该问题,提出一种以历史数据为参照的异常流量检测方法。构建历史流量数据库,在此基础上...
TN929.5; 将移动运营商核心网络中的故障点定位到设备和端口需要分析大量数据样本,耗时较长.针对该问题,提出一种以历史数据为参照的异常流量检测方法.构建历史流量数据库,...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 73
SubjectTerms 历史特征
异常流量检测
流量行为
短时特征
网络流量
Title 基于历史与当前短时特征的异常流量检测
URI http://lib.cqvip.com/qk/95200X/201712/674002756.html
https://d.wanfangdata.com.cn/periodical/jsjgc201712014
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1000-3428
  databaseCode: DOA
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0042200
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFJ8gJEYPxs-I-MGBHhdnOp1Oe5zZjxATPWHCxWx2PhbCYVGBCycxRkOMcPBg4oWDZy8mGCTqX8Ms8b_wvdfu7ICISLJpuu3r-_p1d1-701fHmdIeDzuad2oBlDWRq7SWiATvIw4St9sVnU6G-x0PH8mZx-LBXDA3Mvak8tTS6koyna4de67kLKhCG-CKp2T_A9mSKTRAHfCFEhCG8lQYs2bAdIvFEWsKLFUTW6BUkirQxalL2a64wbRPXZqpBmuGODyCimQ6ZLHEFuiKNREDH49ogLOgljpTnCoKXzAqDogGuIUoDloiHx-esF1xNfZlTcWiJouIJ1RAIsqtk_7AExoD6lKDgTARiKRB6itU3-io-SGSkGyOyTAQXK8OBkGgCfIHu_xhD5AqpskIrckr5EIdVfdBzIFPmrPWj-gscHqMuqCu4DUjN0K90REu-guJW2SqRmKDB1QiTq6BRoNQfegF8DsSw8ulroBF9QGKCj4JZEyDRZI4eEjP68J3KSlGcBxbmhwWeDVALiZ3ExIxORXwA3pjHWou0RYDIWgVtXCUlUvqRbxincThhuYwfliJfRT3d825G5DmVV8pHHU2rYwgmPGxmeINcsIfzEG0hJ8Ul0QTGbqoBJcw1V5FIggS2DiUeMI8LoeXxOXH79QmHIuyuWXKxg-YqMEXNt-BDTBMHrLBFymvhAvmFh8beJrrjI6GNL6WmkIa5D9d8seHUkP6I8OcwT6SNH5xeXE-RRIPCnHOGeMhBOKVHSdaLcHiQg-zQ-JVEnj5-OB94PlhQNkZTWArOHdNcherw3lnyip4_yT1MGvNwlJv_hnE4nQ0stft9OYrUfzsZeeSXX5PRua79IozsrZw1blYScp6zZHF9t7-3max-brY-rK_u1n8eF9svDvY_tz_8PVg41vxc_3g46vi-8tid7e_s_7rzVb_04v-ztvrzmyrOVufqdnbZWopLLpqqZtJrwPLIe51uzrNRJJAMILPJEmV5r5MZaC7eVdJybM8Sb1Eh5kMA51xoTuwZvVvOKO9pV5-05nMdKo5D1NXCS2yLNUpF7kMIVrCHPAqH3cmSge0n5okQm0ZCtwSDOS4c8-6pG1_Wpbbh-G79U-KCecC1s3W8G1ndOX5an4HFksryV2C_DdqePiG
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8E%86%E5%8F%B2%E4%B8%8E%E5%BD%93%E5%89%8D%E7%9F%AD%E6%97%B6%E7%89%B9%E5%BE%81%E7%9A%84%E5%BC%82%E5%B8%B8%E6%B5%81%E9%87%8F%E6%A3%80%E6%B5%8B&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E6%9D%8E%E8%BD%B6%E7%92%8B&rft.au=%E7%8E%8B%E5%86%BC&rft.au=%E6%AE%B5%E5%B9%B3&rft.au=%E5%88%98%E6%99%93%E4%BA%9A&rft.date=2017&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%BB%E5%8A%A8%E9%80%9A%E4%BF%A1%E9%9B%86%E5%9B%A2%E6%B9%96%E5%8C%97%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%AD%A6%E6%B1%89%2C430023%25%E6%B9%96%E5%8C%97%E5%9F%8E%E5%B8%82%E5%BB%BA%E8%AE%BE%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E6%AD%A6%E6%B1%89%2C430205%25%E4%BF%A1%E9%98%B3%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97%E4%BF%A1%E9%98%B3%2C464000%25%E5%8D%8E%E4%B8%AD%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%AD%A6%E6%B1%89%2C430074&rft.issn=1000-3428&rft.volume=43&rft.issue=12&rft.spage=73&rft.epage=77&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2017.12.014&rft.externalDocID=jsjgc201712014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg