一种基于信息保持的跨数据集图像分类方法

跨数据集图像分类是在图像分类应用中经常面临的问题。由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显下降。为此,根据数据信息提出一种新的跨数据集图像分类方法。将主成分分析中特征信息保留的思想引入到基于L1特征选取的Logistic回归中,从而在选取图像特征时有效保持数据集中的高信息含量特征。实验结果表明,在多个常用跨数据集图像分类中,该方法能获得较好的图像分类效果。...

Full description

Saved in:
Bibliographic Details
Published in计算机工程 Vol. 42; no. 4; pp. 255 - 258
Main Author 朱广堂 周向东
Format Journal Article
LanguageChinese
Published 复旦大学计算机科学技术学院,上海,200433 2016
Subjects
Online AccessGet full text
ISSN1000-3428
DOI10.3969/j.issn.1000-3428.2016.04.044

Cover

Abstract 跨数据集图像分类是在图像分类应用中经常面临的问题。由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显下降。为此,根据数据信息提出一种新的跨数据集图像分类方法。将主成分分析中特征信息保留的思想引入到基于L1特征选取的Logistic回归中,从而在选取图像特征时有效保持数据集中的高信息含量特征。实验结果表明,在多个常用跨数据集图像分类中,该方法能获得较好的图像分类效果。
AbstractList TP391; 跨数据集图像分类是在图像分类应用中经常面临的问题.由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显下降.为此,根据数据信息提出一种新的跨数据集图像分类方法 将主成分分析中特征信息保留的思想引入到基于Ll特征选取的Logistic回归中,从而在选取图像特征时有效保持数据集中的高信息含量特征.实验结果表明,在多个常用跨数据集图像分类中,该方法能获得较好的图像分类效果.
跨数据集图像分类是在图像分类应用中经常面临的问题。由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显下降。为此,根据数据信息提出一种新的跨数据集图像分类方法。将主成分分析中特征信息保留的思想引入到基于L1特征选取的Logistic回归中,从而在选取图像特征时有效保持数据集中的高信息含量特征。实验结果表明,在多个常用跨数据集图像分类中,该方法能获得较好的图像分类效果。
Author 朱广堂 周向东
AuthorAffiliation 复旦大学计算机科学技术学院,上海200433
AuthorAffiliation_xml – name: 复旦大学计算机科学技术学院,上海,200433
Author_FL ZHU Guangtang
ZHOU Xiangdong
Author_FL_xml – sequence: 1
  fullname: ZHU Guangtang
– sequence: 2
  fullname: ZHOU Xiangdong
Author_xml – sequence: 1
  fullname: 朱广堂 周向东
BookMark eNo9j81Kw0AcxPdQwVr7EiLeEv-b3Wx3j1L8goKX3stms6kJutUGEW8WpXho9VQPFhFPevIDD2oF-zJJqm9hpCIMDAw_Zpg5VDAtoxFaxGATwcRyZIdxbGwMABahDrcdwMwGmosWUPE_n0XlOA49cDGpuBXCi0gkb8eTu356M0pG58n4Nus8JuPrrNeZXJ1-vd5ng6es__A97KbDz_TkIj3rTp4_ssv37GUwj2YCuRPr8p-XUH1ttV7dsGpb65vVlZqlXE4t4QVYad_HGjtKBFyQQHNOJPGVjxnBWDFNPeUo6WhwgEtwA8wEFYz6rscoKaGlae2hNIE0zUbUOmibfLARxVFT_R4Fmt_MwYUpqLZbprkf5uheO9yV7aMGY9wFqGBKfgA76mws
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1000-3428.2016.04.044
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate A Cross-dataset Image Classification Method Based on Information-keeping
DocumentTitle_FL A Cross-dataset Image Classification Method Based on Information-keeping
EndPage 258
ExternalDocumentID jsjgc201604044
668500714
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (61370157)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c584-9bf1cedd1e12c9f893fe883a3dcd16311c6e4bc2ca2e0208a05f1694964d5b643
ISSN 1000-3428
IngestDate Thu May 29 04:21:01 EDT 2025
Wed Feb 14 10:20:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 稀疏主成分分析
Logistic regression
转换学习
图像分类
image classification
transformative learning
特征选择
Logistic回归
跨数据集
cross-dataset
sparse Principal Component Analysis(PCA)
feature selection
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c584-9bf1cedd1e12c9f893fe883a3dcd16311c6e4bc2ca2e0208a05f1694964d5b643
Notes Cross-dataset image classification is a common problem in the real applications of image classification. Even though training data and testing data are related in the cross-domain classification, there are some differences between them. And this leads the performance of traditional classifier in cross-dataset classification dramatically reduced. In order to solve this problem,this paper proposes a novel cross-dataset image classification method. The new method introduces the idea of feature information reservation of Principal Component Analysis (PCA) into Logistic return based on L1 logistic regression, so that it can keep high information features in dataset when selecting image features. Experimental results show that in commonly used cross-dataset image classification,the method can obtain good image classification effect.
ZHU Guangtang,ZHOU Xiangdong(School of Computer Science, Fudan University, Shanghai 200433, China)
31-1289/TP
image classification; cross-dataset; feature selection; Logistic regression; s
PageCount 4
ParticipantIDs wanfang_journals_jsjgc201604044
chongqing_primary_668500714
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 计算机工程
PublicationTitleAlternate Computer Engineering
PublicationTitle_FL Computer Engineering
PublicationYear 2016
Publisher 复旦大学计算机科学技术学院,上海,200433
Publisher_xml – name: 复旦大学计算机科学技术学院,上海,200433
SSID ssib051375738
ssib017479294
ssj0042200
ssib001102934
ssib023646288
Score 2.0475416
Snippet 跨数据集图像分类是在图像分类应用中经常面临的问题。由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显...
TP391; 跨数据集图像分类是在图像分类应用中经常面临的问题.由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 255
SubjectTerms Logistic回归
图像分类
特征选择
稀疏主成分分析
跨数据集
转换学习
Title 一种基于信息保持的跨数据集图像分类方法
URI http://lib.cqvip.com/qk/95200X/201604/668500714.html
https://d.wanfangdata.com.cn/periodical/jsjgc201604044
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1000-3428
  databaseCode: DOA
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0042200
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIiE4IJ6ilEcP9XFL7NiOfXR2s6qQ4LRIva02r1Y9bIG2l56oQBUHCqdyoEKIE5x4iANQJPpndrfwLxhPsttQofK4RJPxxJ7MJPEX2zMmZMZwniuRd2o8dtOMnsxqJodDlpgU4Ag3qXKxwzdvqbnb4sa8nB8bb1RWLa2txrPJ-m_jSv7Hq8ADv7oo2X_w7KhSYAAN_oUjeBiOf-VjGgkaardYIQqoDahu0EhS06ShxSJLdYREk1pGIwWwkdpmyTEN5NQdEy43ICxopGkIVWlXZCQNPZRpUAv1GGpCqhU2EdIwcoT2qW4iobEooCGjYYiXKxoaR4Q-LXa4HIJg1wpUaLFdIEyA8nVUW6ICEougztGM0FCEoYhxdwCE9ajmByKgGUPtgfAcXRjI1KuDG0XUJT6IWIVAuymnhlUlB4zpiAZyjtAWzW5YRRjMZdEjKGOblSIwoKGWw1M9dJxF--At87p75op0HWUv4cLxfVFGtZfdiOCV10VU-4QiD3EJL3ixNcbhnss3ymDP5RqYHTXg1h4qzMVbZMk8lBt8aWVpIXEi8CkWYpwc4wHgrcrAAoJiwJDmIAmg2zHA7TE9PJfMDyQm4Svwi-DcK3J4lDocJzOlgtePUs8lJ1lc7i7cBciFEXDdvNNdqIC11mlyqvzLmrbFK3OGjK0vniUnK7k3zxHT-3x___VW_-Vub_dJb-_VYONdb-_F4PHG_vOH3z-9GWy_H2y9_bGz2d_51n_wtP9oc__D18GzL4OP2-dJqxm16nO1ch-RWgLwumbinCVZmrKM8cTkANDzTGu_46dJCn8jjCUqE3HCkw7P3Ja1HU_mTBlhlEhlDIj9ApnoLnezi2Ra-bmX4tx5ngiZS62ZCDrSj30RxNz3J8nUyAbtO0W6mLZSWjokLybJtdIq7fIjstL-1YOX_igxRU44uhgEvEwmVu-tZVcAFq_GV9HrPwEv2IpY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E4%BF%A1%E6%81%AF%E4%BF%9D%E6%8C%81%E7%9A%84%E8%B7%A8%E6%95%B0%E6%8D%AE%E9%9B%86%E5%9B%BE%E5%83%8F%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E6%9C%B1%E5%B9%BF%E5%A0%82&rft.au=%E5%91%A8%E5%90%91%E4%B8%9C&rft.date=2016&rft.pub=%E5%A4%8D%E6%97%A6%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7%2C200433&rft.issn=1000-3428&rft.volume=42&rft.issue=4&rft.spage=255&rft.epage=265&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2016.04.044&rft.externalDocID=jsjgc201604044
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg