一种基于信息保持的跨数据集图像分类方法
跨数据集图像分类是在图像分类应用中经常面临的问题。由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显下降。为此,根据数据信息提出一种新的跨数据集图像分类方法。将主成分分析中特征信息保留的思想引入到基于L1特征选取的Logistic回归中,从而在选取图像特征时有效保持数据集中的高信息含量特征。实验结果表明,在多个常用跨数据集图像分类中,该方法能获得较好的图像分类效果。...
Saved in:
Published in | 计算机工程 Vol. 42; no. 4; pp. 255 - 258 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
复旦大学计算机科学技术学院,上海,200433
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-3428 |
DOI | 10.3969/j.issn.1000-3428.2016.04.044 |
Cover
Abstract | 跨数据集图像分类是在图像分类应用中经常面临的问题。由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显下降。为此,根据数据信息提出一种新的跨数据集图像分类方法。将主成分分析中特征信息保留的思想引入到基于L1特征选取的Logistic回归中,从而在选取图像特征时有效保持数据集中的高信息含量特征。实验结果表明,在多个常用跨数据集图像分类中,该方法能获得较好的图像分类效果。 |
---|---|
AbstractList | TP391; 跨数据集图像分类是在图像分类应用中经常面临的问题.由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显下降.为此,根据数据信息提出一种新的跨数据集图像分类方法 将主成分分析中特征信息保留的思想引入到基于Ll特征选取的Logistic回归中,从而在选取图像特征时有效保持数据集中的高信息含量特征.实验结果表明,在多个常用跨数据集图像分类中,该方法能获得较好的图像分类效果. 跨数据集图像分类是在图像分类应用中经常面临的问题。由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显下降。为此,根据数据信息提出一种新的跨数据集图像分类方法。将主成分分析中特征信息保留的思想引入到基于L1特征选取的Logistic回归中,从而在选取图像特征时有效保持数据集中的高信息含量特征。实验结果表明,在多个常用跨数据集图像分类中,该方法能获得较好的图像分类效果。 |
Author | 朱广堂 周向东 |
AuthorAffiliation | 复旦大学计算机科学技术学院,上海200433 |
AuthorAffiliation_xml | – name: 复旦大学计算机科学技术学院,上海,200433 |
Author_FL | ZHU Guangtang ZHOU Xiangdong |
Author_FL_xml | – sequence: 1 fullname: ZHU Guangtang – sequence: 2 fullname: ZHOU Xiangdong |
Author_xml | – sequence: 1 fullname: 朱广堂 周向东 |
BookMark | eNo9j81Kw0AcxPdQwVr7EiLeEv-b3Wx3j1L8goKX3stms6kJutUGEW8WpXho9VQPFhFPevIDD2oF-zJJqm9hpCIMDAw_Zpg5VDAtoxFaxGATwcRyZIdxbGwMABahDrcdwMwGmosWUPE_n0XlOA49cDGpuBXCi0gkb8eTu356M0pG58n4Nus8JuPrrNeZXJ1-vd5ng6es__A97KbDz_TkIj3rTp4_ssv37GUwj2YCuRPr8p-XUH1ttV7dsGpb65vVlZqlXE4t4QVYad_HGjtKBFyQQHNOJPGVjxnBWDFNPeUo6WhwgEtwA8wEFYz6rscoKaGlae2hNIE0zUbUOmibfLARxVFT_R4Fmt_MwYUpqLZbprkf5uheO9yV7aMGY9wFqGBKfgA76mws |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1000-3428.2016.04.044 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | A Cross-dataset Image Classification Method Based on Information-keeping |
DocumentTitle_FL | A Cross-dataset Image Classification Method Based on Information-keeping |
EndPage | 258 |
ExternalDocumentID | jsjgc201604044 668500714 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目 funderid: (61370157) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c584-9bf1cedd1e12c9f893fe883a3dcd16311c6e4bc2ca2e0208a05f1694964d5b643 |
ISSN | 1000-3428 |
IngestDate | Thu May 29 04:21:01 EDT 2025 Wed Feb 14 10:20:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 稀疏主成分分析 Logistic regression 转换学习 图像分类 image classification transformative learning 特征选择 Logistic回归 跨数据集 cross-dataset sparse Principal Component Analysis(PCA) feature selection |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c584-9bf1cedd1e12c9f893fe883a3dcd16311c6e4bc2ca2e0208a05f1694964d5b643 |
Notes | Cross-dataset image classification is a common problem in the real applications of image classification. Even though training data and testing data are related in the cross-domain classification, there are some differences between them. And this leads the performance of traditional classifier in cross-dataset classification dramatically reduced. In order to solve this problem,this paper proposes a novel cross-dataset image classification method. The new method introduces the idea of feature information reservation of Principal Component Analysis (PCA) into Logistic return based on L1 logistic regression, so that it can keep high information features in dataset when selecting image features. Experimental results show that in commonly used cross-dataset image classification,the method can obtain good image classification effect. ZHU Guangtang,ZHOU Xiangdong(School of Computer Science, Fudan University, Shanghai 200433, China) 31-1289/TP image classification; cross-dataset; feature selection; Logistic regression; s |
PageCount | 4 |
ParticipantIDs | wanfang_journals_jsjgc201604044 chongqing_primary_668500714 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 计算机工程 |
PublicationTitleAlternate | Computer Engineering |
PublicationTitle_FL | Computer Engineering |
PublicationYear | 2016 |
Publisher | 复旦大学计算机科学技术学院,上海,200433 |
Publisher_xml | – name: 复旦大学计算机科学技术学院,上海,200433 |
SSID | ssib051375738 ssib017479294 ssj0042200 ssib001102934 ssib023646288 |
Score | 2.0475416 |
Snippet | 跨数据集图像分类是在图像分类应用中经常面临的问题。由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能明显... TP391; 跨数据集图像分类是在图像分类应用中经常面临的问题.由于训练集数据与实际待分类(或测试)数据既有内在联系,又具有较大差异,导致常见分类器在跨数据集分类中的性能... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 255 |
SubjectTerms | Logistic回归 图像分类 特征选择 稀疏主成分分析 跨数据集 转换学习 |
Title | 一种基于信息保持的跨数据集图像分类方法 |
URI | http://lib.cqvip.com/qk/95200X/201604/668500714.html https://d.wanfangdata.com.cn/periodical/jsjgc201604044 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1000-3428 databaseCode: DOA dateStart: 20160101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0042200 providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIiE4IJ6ilEcP9XFL7NiOfXR2s6qQ4LRIva02r1Y9bIG2l56oQBUHCqdyoEKIE5x4iANQJPpndrfwLxhPsttQofK4RJPxxJ7MJPEX2zMmZMZwniuRd2o8dtOMnsxqJodDlpgU4Ag3qXKxwzdvqbnb4sa8nB8bb1RWLa2txrPJ-m_jSv7Hq8ADv7oo2X_w7KhSYAAN_oUjeBiOf-VjGgkaardYIQqoDahu0EhS06ShxSJLdYREk1pGIwWwkdpmyTEN5NQdEy43ICxopGkIVWlXZCQNPZRpUAv1GGpCqhU2EdIwcoT2qW4iobEooCGjYYiXKxoaR4Q-LXa4HIJg1wpUaLFdIEyA8nVUW6ICEougztGM0FCEoYhxdwCE9ajmByKgGUPtgfAcXRjI1KuDG0XUJT6IWIVAuymnhlUlB4zpiAZyjtAWzW5YRRjMZdEjKGOblSIwoKGWw1M9dJxF--At87p75op0HWUv4cLxfVFGtZfdiOCV10VU-4QiD3EJL3ixNcbhnss3ymDP5RqYHTXg1h4qzMVbZMk8lBt8aWVpIXEi8CkWYpwc4wHgrcrAAoJiwJDmIAmg2zHA7TE9PJfMDyQm4Svwi-DcK3J4lDocJzOlgtePUs8lJ1lc7i7cBciFEXDdvNNdqIC11mlyqvzLmrbFK3OGjK0vniUnK7k3zxHT-3x___VW_-Vub_dJb-_VYONdb-_F4PHG_vOH3z-9GWy_H2y9_bGz2d_51n_wtP9oc__D18GzL4OP2-dJqxm16nO1ch-RWgLwumbinCVZmrKM8cTkANDzTGu_46dJCn8jjCUqE3HCkw7P3Ja1HU_mTBlhlEhlDIj9ApnoLnezi2Ra-bmX4tx5ngiZS62ZCDrSj30RxNz3J8nUyAbtO0W6mLZSWjokLybJtdIq7fIjstL-1YOX_igxRU44uhgEvEwmVu-tZVcAFq_GV9HrPwEv2IpY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E4%BF%A1%E6%81%AF%E4%BF%9D%E6%8C%81%E7%9A%84%E8%B7%A8%E6%95%B0%E6%8D%AE%E9%9B%86%E5%9B%BE%E5%83%8F%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E6%9C%B1%E5%B9%BF%E5%A0%82&rft.au=%E5%91%A8%E5%90%91%E4%B8%9C&rft.date=2016&rft.pub=%E5%A4%8D%E6%97%A6%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7%2C200433&rft.issn=1000-3428&rft.volume=42&rft.issue=4&rft.spage=255&rft.epage=265&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2016.04.044&rft.externalDocID=jsjgc201604044 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg |