CS-MRI中评价随机欠采样矩阵的新方法
在压缩感知-磁共振成像(CS-MRI)中,随机欠采样矩阵与重建图像质量密切相关.而选取随机欠采样矩阵一般是通过计算点扩散函数(PSF),以可能产生的伪影的最大值为评价参数,评估欠采样对图像重建的影响,然而最大值只反应了伪影的最坏情况.该文引入了两种新的统计学评价参数平均值(MV)和标准差(SD),其中平均值评估了伪影的平均大小,标准差可以反映伪影的波动情况.该文分别使用这3种参数对小鼠和人体脑部MRI数据以不同的采样比率进行CS图像重建,实验结果表明,当采样比率不低于4倍稀疏度时,使用平均值获得了质量更优的重建图像.因此,通过稀疏度先验知识指导合理选取采样比率,并以平均值为评价参数选取随机欠采...
Saved in:
| Published in | 波谱学杂志 Vol. 32; no. 4; pp. 584 - 595 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
中国科学院大学,北京 100049%波谱与原子分子物理国家重点实验室,中国科学院生物磁共振分析重点实验室,武汉磁共振中心 中国科学院武汉物理与数学研究所,湖北武汉 430071
2015
波谱与原子分子物理国家重点实验室,中国科学院生物磁共振分析重点实验室,武汉磁共振中心 中国科学院武汉物理与数学研究所,湖北武汉 430071 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1000-4556 |
| DOI | 10.11938/cjmr20150404 |
Cover
| Abstract | 在压缩感知-磁共振成像(CS-MRI)中,随机欠采样矩阵与重建图像质量密切相关.而选取随机欠采样矩阵一般是通过计算点扩散函数(PSF),以可能产生的伪影的最大值为评价参数,评估欠采样对图像重建的影响,然而最大值只反应了伪影的最坏情况.该文引入了两种新的统计学评价参数平均值(MV)和标准差(SD),其中平均值评估了伪影的平均大小,标准差可以反映伪影的波动情况.该文分别使用这3种参数对小鼠和人体脑部MRI数据以不同的采样比率进行CS图像重建,实验结果表明,当采样比率不低于4倍稀疏度时,使用平均值获得了质量更优的重建图像.因此,通过稀疏度先验知识指导合理选取采样比率,并以平均值为评价参数选取随机欠采样矩阵,能够获得更优的CS-MRI重建图像. |
|---|---|
| AbstractList | 在压缩感知-磁共振成像(CS-MRI)中,随机欠采样矩阵与重建图像质量密切相关.而选取随机欠采样矩阵一般是通过计算点扩散函数(PSF),以可能产生的伪影的最大值为评价参数,评估欠采样对图像重建的影响,然而最大值只反应了伪影的最坏情况.该文引入了两种新的统计学评价参数平均值(MV)和标准差(SD),其中平均值评估了伪影的平均大小,标准差可以反映伪影的波动情况.该文分别使用这3种参数对小鼠和人体脑部MRI数据以不同的采样比率进行CS图像重建,实验结果表明,当采样比率不低于4倍稀疏度时,使用平均值获得了质量更优的重建图像.因此,通过稀疏度先验知识指导合理选取采样比率,并以平均值为评价参数选取随机欠采样矩阵,能够获得更优的CS-MRI重建图像. O482.53; 在压缩感知-磁共振成像(CS-MRI)中,随机欠采样矩阵与重建图像质量密切相关。而选取随机欠采样矩阵一般是通过计算点扩散函数(PSF),以可能产生的伪影的最大值为评价参数,评估欠采样对图像重建的影响,然而最大值只反应了伪影的最坏情况。该文引入了两种新的统计学评价参数平均值(MV)和标准差(SD),其中平均值评估了伪影的平均大小,标准差可以反映伪影的波动情况。该文分别使用这3种参数对小鼠和人体脑部MRI数据以不同的采样比率进行CS图像重建,实验结果表明,当采样比率不低于4倍稀疏度时,使用平均值获得了质量更优的重建图像。因此,通过稀疏度先验知识指导合理选取采样比率,并以平均值为评价参数选取随机欠采样矩阵,能够获得更优的CS-MRI重建图像。 |
| Abstract_FL | In compressed sensing magnetic resonance imaging (CS-MRI), the quality of reconstructed image is largely determined by the random undersampling matrix. It is a common practice to select the random undersampling matrix though computation of the point spread function (PSF) and the maximal artifacts possible. In this paper, we proposed to use two novel statistical parameters, mean value (MV) and standard deviation (SD), to guide the selection of random undersampling matrix. The two parameters evaluate the average amplitude and fluctuation of the possible artifacts, respectively. Experiments on mice brain and human brain were used to compare image quality of CS reconstructions of MRI data acquired with random undersampling matrices determined by different criteria. It was shown that reconstruction withMV had better performance when the sampling ratio is above four times of sparsity. It is concluded that better CS-MRI reconstruction quality can be achieved with reasonable selection of sampling ratio guided by prior knowledge of sparsity andMV as random undersampling matrix evaluation parameter. |
| Author | 肖洒 吕植成 孙献平 叶朝辉 周欣 |
| AuthorAffiliation | 波谱与原子分子物理国家重点实验室、中国科学院生物磁共振分析重点实验室、武汉磁共振中心(中国科学院武汉物理与数学研究所),湖北武汉430071 中国科学院大学,北京100049 |
| AuthorAffiliation_xml | – name: 波谱与原子分子物理国家重点实验室,中国科学院生物磁共振分析重点实验室,武汉磁共振中心 中国科学院武汉物理与数学研究所,湖北武汉 430071; 中国科学院大学,北京 100049%波谱与原子分子物理国家重点实验室,中国科学院生物磁共振分析重点实验室,武汉磁共振中心 中国科学院武汉物理与数学研究所,湖北武汉 430071 |
| Author_xml | – sequence: 1 fullname: 肖洒 吕植成 孙献平 叶朝辉 周欣 |
| BookMark | eNotj7tKw1Acxs9QwbY6-gIObtH_yblmlOClUBG0ezjJSWqDTWqCqJ0LHTtZpAh2FRQFkXp5nXJq3sJAO3x8y4_vUkOVJE1ChLYw7GLsELkXxN3MBsyAAq2gKgYAizLG11Etz2MA4lCQVQTuuXVy1ph_vf69Dea_s2IyMo8_5mVaDIdmOls8PRcPn4vJwIzfzfjbfNxvoLVIXebh5srrqHV40HKPrebpUcPdb1oBk9QSkS24djSmEjPh-5xgogX3A0IiLLTPVQgYotBR5YxQaO0QQgJNtWK6FCd1tLOMvVFJpJK2F6fXWVIWen7vtt9fPQNagttLMLhIk_ZVp0R7WaersjuPcy5t2xGS_AP9uF-9 |
| ClassificationCodes | O482.53 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.11938/cjmr20150404 |
| DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | A New Method for Evaluation of Random Undersampling Matrix in Compressed Sensing-MRI |
| DocumentTitle_FL | A New Method for Evaluation of Random Undersampling Matrix in Compressed Sensing-MRI |
| EndPage | 595 |
| ExternalDocumentID | bpxzz201504004 666822978 |
| GrantInformation_xml | – fundername: 国家自然科学基金资助项目. funderid: (81227902,11174327). |
| GroupedDBID | -01 2B. 2C. 2RA 5VS 5XA 5XB 92E 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CCVFK CQIGP CW9 GROUPED_DOAJ IPNFZ P2P RIG TCJ TGP U1G U5K U5L ~WA 4A8 93N ABJNI PSX UY8 |
| ID | FETCH-LOGICAL-c584-7f276d9d148157bb6313d76bc33f17db6ae010fe9a940e7dd9333cd4da5dda563 |
| ISSN | 1000-4556 |
| IngestDate | Thu May 29 04:00:58 EDT 2025 Wed Feb 14 10:24:42 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | random undersampling matrix compressed sensing 随机欠采样矩阵 MRI 压缩感知 点扩散函数 磁共振成像(MRI) point spread function |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c584-7f276d9d148157bb6313d76bc33f17db6ae010fe9a940e7dd9333cd4da5dda563 |
| Notes | In compressed sensing magnetic resonance imaging(CS-MRI), the quality of reconstructed image is largely determined by the random undersampling matrix. It is a common practice to select the random undersampling matrix though computation of the point spread function(PSF) and the maximal artifacts possible. In this paper, we proposed to use two novel statistical parameters, mean value(MV) and standard deviation(SD), to guide the selection of random undersampling matrix. The two parameters evaluate the average amplitude and fluctuation of the possible artifacts, respectively. Experiments on mice brain and human brain were used to compare image quality of CS reconstructions of MRI data acquired with random undersampling matrices determined by different criteria. It was shown that reconstruction with MV had better performance when the sampling ratio is above four times of sparsity. It is concluded that better CS-MRI reconstruction quality can be achieved with reasonable selection of sampling ratio guided by prior k |
| PageCount | 12 |
| ParticipantIDs | wanfang_journals_bpxzz201504004 chongqing_primary_666822978 |
| PublicationCentury | 2000 |
| PublicationDate | 2015 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – year: 2015 text: 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | 波谱学杂志 |
| PublicationTitleAlternate | Chinese Journal of Magnetic Resonance |
| PublicationTitle_FL | Chinese Journal of Magnetic Resonance |
| PublicationYear | 2015 |
| Publisher | 中国科学院大学,北京 100049%波谱与原子分子物理国家重点实验室,中国科学院生物磁共振分析重点实验室,武汉磁共振中心 中国科学院武汉物理与数学研究所,湖北武汉 430071 波谱与原子分子物理国家重点实验室,中国科学院生物磁共振分析重点实验室,武汉磁共振中心 中国科学院武汉物理与数学研究所,湖北武汉 430071 |
| Publisher_xml | – name: 中国科学院大学,北京 100049%波谱与原子分子物理国家重点实验室,中国科学院生物磁共振分析重点实验室,武汉磁共振中心 中国科学院武汉物理与数学研究所,湖北武汉 430071 – name: 波谱与原子分子物理国家重点实验室,中国科学院生物磁共振分析重点实验室,武汉磁共振中心 中国科学院武汉物理与数学研究所,湖北武汉 430071 |
| SSID | ssj0039408 ssib002258149 ssib038074664 ssib000862381 ssib051373667 |
| Score | 2.004042 |
| Snippet | 在压缩感知-磁共振成像(CS-MRI)中,随机欠采样矩阵与重建图像质量密切相关.而选取随机欠采样矩阵一般是通过计算点扩散函数(PSF),以可能产生的伪影的最大值为评价参数,... O482.53; 在压缩感知-磁共振成像(CS-MRI)中,随机欠采样矩阵与重建图像质量密切相关。而选取随机欠采样矩阵一般是通过计算点扩散函数(PSF),以可能产生的伪影的最大值为评... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 584 |
| SubjectTerms | 压缩感知 点扩散函数 磁共振成像(MRI) 随机欠采样矩阵 |
| Title | CS-MRI中评价随机欠采样矩阵的新方法 |
| URI | http://lib.cqvip.com/qk/90973X/201504/666822978.html https://d.wanfangdata.com.cn/periodical/bpxzz201504004 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1000-4556 databaseCode: DOA dateStart: 20010101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0039408 providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9Ki-BF_MRaP3owp7KamUy-jpndWapQD1qht2U-WwS3tR8gey706MkiRbBXQVEQqR__Ttna_8L3MrO7aS1qC23Ivpfk_d57mclLmCSed9fXpSwgrIdJTpA1wsTPGjDOQ46rvMxkkegU1yHnHonZp-HDBb4wNtFyvlraWE_vZb0T95WcxatAA7_iLtlTeHbYKBAgD_6FFDwM6X_5uPmkMff4AYlDEiliWiSGtE1UaCkRiSSJNdGGqDaJBdFNEhnMmCYxFFlK4h9SqC0siW4To20tRSJuKcY2CNUFieggozETMVJdXTmIbmuiCRAJFI58EnMEZoSt2CIqQErUJno4_mFZIGtbJAqJDkYcTjQFGRYiBL0tzChFNHWLQPtaI1QFesW2fQ0w3CJggEjUNtDWTlFMqkuFBkse1XZP2z0dgwIAsGMLWzdgC1cfjVKN1QewAXfEAmlNRIOSQaC0DRqw-4xvJ0sk4CeZykpVVgNIwRW1ctRSgCUcCqirra8k_qxYNVaOZojEwMMWPVgYnWZZOkaWMTVEoIACI9CnUh7ooYXq4DEM5icWM7d6CeuZtqOFQAyanhWhGPUpaF_9XaijDvQ7xWZOqeFJwo6bfug5gb01ok47Eh8usBFmdN0LobqiR_QBzbVw-stxoTMhwzDdCSHwrIaQV8fl12_P0AkReHUlYh1t8uo5_TOQ0fbeguzZ81V8AmCoDUcR2_A72nTlZa9X8_FQ5IkAVyWdhaXBogVzDzkMuPJHiy5444R7xwT3mWRCDJetmA5ptaG41mtwUjEgvO_iw9Nplpa7iy8g5rZbILtl0l10ovX5i96Fepo9bap35iVvrLd02TtnP3fP1q54tHpz7n_7-OvT5v7PvcOdV_23P_ofdg-3tvq7ewfv3h---Xqws9nf_tzf_t7_8vqqN9-O55uzjfrumEYGBm7IEiyR69zHs6hkmgrms1yKNGOs9GWeiqSgPi0LnYB2hcxzzRjL8jBPeA7_gl3zxrvL3eK6N534QQpzLJnBXCj0yzLhSpR-LhNfhpJyOulNDdXurFRHBHWEEHiThlST3p3aEJ164FjrHPXajX-WmPLOY75a-L3pja-vbhS3YCq0nt62nv4N-3jrHQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CS-MRI%E4%B8%AD%E8%AF%84%E4%BB%B7%E9%9A%8F%E6%9C%BA%E6%AC%A0%E9%87%87%E6%A0%B7%E7%9F%A9%E9%98%B5%E7%9A%84%E6%96%B0%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B3%A2%E8%B0%B1%E5%AD%A6%E6%9D%82%E5%BF%97&rft.au=%E8%82%96%E6%B4%92&rft.au=%E5%90%95%E6%A4%8D%E6%88%90&rft.au=%E5%AD%99%E7%8C%AE%E5%B9%B3&rft.au=%E5%8F%B6%E6%9C%9D%E8%BE%89&rft.date=2015&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E5%A4%A7%E5%AD%A6%EF%BC%8C%E5%8C%97%E4%BA%AC+100049%25%E6%B3%A2%E8%B0%B1%E4%B8%8E%E5%8E%9F%E5%AD%90%E5%88%86%E5%AD%90%E7%89%A9%E7%90%86%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E7%94%9F%E7%89%A9%E7%A3%81%E5%85%B1%E6%8C%AF%E5%88%86%E6%9E%90%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E6%AD%A6%E6%B1%89%E7%A3%81%E5%85%B1%E6%8C%AF%E4%B8%AD%E5%BF%83+%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E6%AD%A6%E6%B1%89%E7%89%A9%E7%90%86%E4%B8%8E%E6%95%B0%E5%AD%A6%E7%A0%94%E7%A9%B6%E6%89%80%EF%BC%8C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430071&rft.issn=1000-4556&rft.issue=4&rft.spage=584&rft.epage=595&rft_id=info:doi/10.11938%2Fcjmr20150404&rft.externalDocID=bpxzz201504004 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90973X%2F90973X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbpxzz%2Fbpxzz.jpg |