Topographic Representation of Numerosity in the Human Parietal Cortex
Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organi...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 341; no. 6150; pp. 1123 - 1126 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
06.09.2013
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.1239052 |
Cover
Abstract | Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex. |
---|---|
AbstractList | Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex.Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex. Number SenseNumerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized topographically in the cortex, Harvey et al. (p. 1123) tested the hypothesis that numerosity is also organized topographically. Applying ultrahighfield functional brain scanning and using custom-designed analysis, they confirmed that a topographical numerosity map occurs in the human parietal cortex, which displays conventional characteristics, such as a systematic relationship between the cortical location's preferred numerosity and cortical magnification and tuning width. Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex. Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized topographically in the cortex, Harvey et al. (p. 1123 ) tested the hypothesis that numerosity is also organized topographically. Applying ultrahighfield functional brain scanning and using custom-designed analysis, they confirmed that a topographical numerosity map occurs in the human parietal cortex, which displays conventional characteristics, such as a systematic relationship between the cortical location's preferred numerosity and cortical magnification and tuning width. There is a map of numerical magnitude in the human brain. Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex. Number Sense Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized topographically in the cortex, Harvey et al. (p. 1123) tested the hypothesis that numerosity is also organized topographically. Applying ultrahighfield functional brain scanning and using custom-designed analysis, they confirmed that a topographical numerosity map occurs in the human parietal cortex, which displays conventional characteristics, such as a systematic relationship between the cortical location's preferred numerosity and cortical magnification and tuning width. Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized topographically in the cortex, Harvey et al. (p. 1123) tested the hypothesis that numerosity is also organized topographically. Applying ultrahighfield functional brain scanning and using custom-designed analysis, they confirmed that a topographical numerosity map occurs in the human parietal cortex, which displays conventional characteristics, such as a systematic relationship between the cortical location's preferred numerosity and cortical magnification and tuning width. [PUBLICATION ABSTRACT] Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex. [PUBLICATION ABSTRACT] |
Author | Petridou, N. Harvey, B. M. Klein, B. P. Dumoulin, S. O. |
Author_xml | – sequence: 1 givenname: B. M. surname: Harvey fullname: Harvey, B. M. – sequence: 2 givenname: B. P. surname: Klein fullname: Klein, B. P. – sequence: 3 givenname: N. surname: Petridou fullname: Petridou, N. – sequence: 4 givenname: S. O. surname: Dumoulin fullname: Dumoulin, S. O. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27734790$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24009396$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0s1rFDEUAPAgFbutnj0pAyJ4mTbfmRxlqbZQWpF6HpJsYrPMJGOSAfvfm3XHFnpwDyFh8nuZ5L13Ao5CDBaAtwieIYT5eTbeBmPPECYSMvwCrBCUrJUYkiOwgpDwtoOCHYOTnLcQ1j1JXoFjTOuSSL4CF3dxij-Tmu69ab7bKdlsQ1HFx9BE19zMo00x-_LQ-NCUe9tczqMKzTeVvC1qaNYxFfv7NXjp1JDtm2U-BT--XNytL9vr269X68_XrWEdKe1G6A5xa9iGEi0M0rrTbPcJCc0Rhs4qhhnFjmvEmMbIEeSE4MYpJ6kk5BR82p87pfhrtrn0o8_GDoMKNs65x3D3ZCExO0hRBzvI66CHKeeQ1mzX3B2klMCOoU7ySj88o9s4p1DT81dRwupVq3q_qFmPdtNPyY8qPfT_KlTBxwWobNTgkgrG5ycnBKFCwurO987UeuVk3SNBsN_1Sr_0Sr_0So1gzyKM31e-JOWH_8S928dtc4np8TcUcyQJ5uQPs5vKkQ |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2024_10_025 crossref_primary_10_1093_cercor_bhad262 crossref_primary_10_1038_srep32810 crossref_primary_10_1146_annurev_vision_091517_033948 crossref_primary_10_1007_s11065_023_09609_z crossref_primary_10_1016_j_neuroimage_2017_03_060 crossref_primary_10_1016_j_cogpsych_2018_02_001 crossref_primary_10_1111_ejn_13335 crossref_primary_10_1016_j_shpsc_2015_12_011 crossref_primary_10_1016_j_tree_2014_03_007 crossref_primary_10_1177_0301006618775235 crossref_primary_10_1038_s41598_024_56828_2 crossref_primary_10_1016_j_neuroimage_2017_10_011 crossref_primary_10_1017_S0140525X16002090 crossref_primary_10_1038_s41467_022_34457_5 crossref_primary_10_1371_journal_pcbi_1007011 crossref_primary_10_1038_s41467_024_45912_w crossref_primary_10_1111_bjdp_12032 crossref_primary_10_1098_rstb_2017_0045 crossref_primary_10_1162_jocn_a_00991 crossref_primary_10_1016_j_neuroimage_2017_02_012 crossref_primary_10_5964_jnc_v4i1_101 crossref_primary_10_1371_journal_pone_0272087 crossref_primary_10_1016_j_tics_2020_10_009 crossref_primary_10_1016_j_crbeha_2023_100103 crossref_primary_10_1111_adb_13065 crossref_primary_10_1371_journal_pone_0222027 crossref_primary_10_1016_j_cub_2016_03_052 crossref_primary_10_1016_j_neuroimage_2023_120363 crossref_primary_10_1093_pnasnexus_pgae061 crossref_primary_10_1371_journal_pone_0188820 crossref_primary_10_1038_s41467_021_23785_7 crossref_primary_10_1098_rspb_2016_0118 crossref_primary_10_1016_j_cobeha_2016_02_011 crossref_primary_10_1016_j_cortex_2020_10_008 crossref_primary_10_1073_pnas_1515414112 crossref_primary_10_1016_j_cub_2016_03_059 crossref_primary_10_1038_s41467_021_22524_2 crossref_primary_10_1162_jocn_a_02263 crossref_primary_10_1016_j_neuron_2015_05_025 crossref_primary_10_1002_hbm_26193 crossref_primary_10_1152_jn_00404_2016 crossref_primary_10_1287_isre_2020_0955 crossref_primary_10_1016_j_cub_2021_07_082 crossref_primary_10_1038_s41467_024_44810_5 crossref_primary_10_1177_03010066251326828 crossref_primary_10_3758_s13423_016_1126_2 crossref_primary_10_1126_sciadv_adj2219 crossref_primary_10_1016_j_cortex_2020_05_004 crossref_primary_10_1016_j_neuroimage_2020_117210 crossref_primary_10_1038_ncomms12110 crossref_primary_10_1111_cogs_12342 crossref_primary_10_1016_j_cortex_2015_09_007 crossref_primary_10_1017_S0140525X16002077 crossref_primary_10_1523_JNEUROSCI_3945_16_2017 crossref_primary_10_1016_j_cognition_2016_03_006 crossref_primary_10_1016_j_neuron_2018_07_002 crossref_primary_10_1038_s41467_017_02169_w crossref_primary_10_1167_jov_22_11_11 crossref_primary_10_1038_s42003_024_06934_8 crossref_primary_10_7554_eLife_84376 crossref_primary_10_1001_jamaneurol_2018_3342 crossref_primary_10_1016_j_jretconser_2021_102896 crossref_primary_10_1016_j_neuroimage_2015_11_070 crossref_primary_10_1038_s41467_022_29030_z crossref_primary_10_3758_s13414_016_1100_0 crossref_primary_10_1016_j_dib_2017_11_022 crossref_primary_10_1523_ENEURO_0041_16_2016 crossref_primary_10_3389_fpsyg_2014_00743 crossref_primary_10_1002_hbm_23265 crossref_primary_10_1016_j_neuroimage_2022_119536 crossref_primary_10_1017_S1930297500008172 crossref_primary_10_1098_rstb_2016_0517 crossref_primary_10_3758_s13414_021_02378_y crossref_primary_10_1093_cercor_bhw133 crossref_primary_10_1016_j_tics_2023_01_002 crossref_primary_10_21105_joss_00103 crossref_primary_10_1038_s41467_018_03166_3 crossref_primary_10_1038_s41562_017_0145 crossref_primary_10_1523_JNEUROSCI_1716_17_2017 crossref_primary_10_1016_j_neuroimage_2021_118029 crossref_primary_10_1016_j_cortex_2016_04_013 crossref_primary_10_1007_s00426_020_01458_2 crossref_primary_10_1016_j_cortex_2018_08_030 crossref_primary_10_1016_j_celrep_2022_111005 crossref_primary_10_1016_j_cortex_2020_10_020 crossref_primary_10_1016_j_visres_2021_01_011 crossref_primary_10_1016_j_actpsy_2022_103560 crossref_primary_10_1146_annurev_vision_093019_111124 crossref_primary_10_3389_fnhum_2022_1014703 crossref_primary_10_1098_rstb_2015_0349 crossref_primary_10_1242_jeb_218289 crossref_primary_10_1016_j_cortex_2020_11_013 crossref_primary_10_1016_j_visres_2016_11_003 crossref_primary_10_3389_fnhum_2017_00021 crossref_primary_10_1080_02698595_2017_1370925 crossref_primary_10_1007_s10758_015_9251_y crossref_primary_10_1162_jocn_a_01367 crossref_primary_10_1038_s41598_023_47954_4 crossref_primary_10_3389_fpsyg_2024_1335857 crossref_primary_10_3390_vision6030041 crossref_primary_10_1016_j_isci_2023_107571 crossref_primary_10_1002_hbm_22593 crossref_primary_10_3389_fpsyg_2015_00352 crossref_primary_10_1152_jn_00291_2019 crossref_primary_10_1016_j_cobeha_2016_04_008 crossref_primary_10_1002_nbm_3275 crossref_primary_10_1016_j_neuroscience_2018_02_033 crossref_primary_10_1016_j_cortex_2018_07_017 crossref_primary_10_1016_j_cortex_2021_01_009 crossref_primary_10_1016_j_cortex_2016_07_016 crossref_primary_10_1016_j_cortex_2018_07_018 crossref_primary_10_1038_s41562_023_01709_3 crossref_primary_10_1073_pnas_1608434113 crossref_primary_10_1016_j_neuroscience_2023_01_035 crossref_primary_10_1038_srep10415 crossref_primary_10_3758_s13423_018_1561_3 crossref_primary_10_1177_1747021819844503 crossref_primary_10_1167_19_6_19 crossref_primary_10_1016_j_cub_2020_01_090 crossref_primary_10_1016_j_tins_2014_09_005 crossref_primary_10_1371_journal_pbio_3000026 crossref_primary_10_1016_j_cognition_2017_12_003 crossref_primary_10_5334_joc_428 crossref_primary_10_1016_j_tics_2014_03_008 crossref_primary_10_1038_s41467_020_14519_2 crossref_primary_10_1016_j_neuron_2017_11_029 crossref_primary_10_1163_22134808_bja10051 crossref_primary_10_3390_e23070857 crossref_primary_10_1007_s00426_024_02052_6 crossref_primary_10_1016_j_cortex_2018_02_013 crossref_primary_10_1111_mbe_12373 crossref_primary_10_1177_0301006615602599 crossref_primary_10_1177_1073858416650153 crossref_primary_10_1002_hbm_25402 crossref_primary_10_1001_jamaneurol_2018_0395 crossref_primary_10_3758_s13414_020_02140_w crossref_primary_10_1098_rspb_2014_1137 crossref_primary_10_1038_nrn_2016_40 crossref_primary_10_7554_eLife_45160 crossref_primary_10_3390_philosophies3040038 crossref_primary_10_1016_j_neuroimage_2017_01_028 crossref_primary_10_1016_j_dcn_2017_02_011 crossref_primary_10_1016_j_cortex_2021_06_004 crossref_primary_10_1111_ejn_14930 crossref_primary_10_1016_j_actpsy_2016_09_003 crossref_primary_10_1093_cercor_bhx026 crossref_primary_10_1371_journal_pone_0104777 crossref_primary_10_1093_cercor_bhx024 crossref_primary_10_1371_journal_pone_0120439 crossref_primary_10_1371_journal_pone_0195188 crossref_primary_10_1002_hbm_25996 crossref_primary_10_1523_JNEUROSCI_1209_15_2015 crossref_primary_10_1523_JNEUROSCI_2237_22_2023 crossref_primary_10_1016_j_neuroimage_2024_120515 crossref_primary_10_1016_j_visres_2025_108547 crossref_primary_10_1086_683092 crossref_primary_10_1016_j_neuroimage_2022_119366 crossref_primary_10_1287_mnsc_2023_00265 crossref_primary_10_1027_2151_2604_a000205 crossref_primary_10_1093_scan_nsab103 crossref_primary_10_1162_jocn_a_01320 crossref_primary_10_1080_17470218_2015_1095773 crossref_primary_10_1167_jov_24_9_12 crossref_primary_10_1016_j_cognition_2019_04_032 crossref_primary_10_1016_j_neuroimage_2018_03_064 crossref_primary_10_3389_fpsyg_2019_00139 crossref_primary_10_3389_fnhum_2015_00327 crossref_primary_10_3389_fnhum_2017_00070 crossref_primary_10_1162_imag_a_00482 crossref_primary_10_1371_journal_pone_0198335 crossref_primary_10_1080_13803395_2016_1144714 crossref_primary_10_1016_j_tics_2021_10_004 crossref_primary_10_1016_j_cognition_2024_105870 crossref_primary_10_1016_j_neuroimage_2021_118554 crossref_primary_10_1093_texcom_tgab028 crossref_primary_10_1098_rspb_2024_0051 crossref_primary_10_1016_j_neuron_2023_01_014 crossref_primary_10_1162_imag_a_00485 crossref_primary_10_1016_j_neuroimage_2017_05_069 crossref_primary_10_1016_j_neuroimage_2021_117909 crossref_primary_10_1016_j_edurev_2024_100593 crossref_primary_10_1007_s00702_022_02580_8 crossref_primary_10_1146_annurev_neuro_082823_073701 crossref_primary_10_1038_s41562_023_01643_4 crossref_primary_10_1523_JNEUROSCI_3753_15_2016 crossref_primary_10_1098_rsos_170889 crossref_primary_10_3758_s13414_018_01636_w crossref_primary_10_3233_JAD_215327 crossref_primary_10_1016_j_cortex_2018_03_027 crossref_primary_10_1111_nyas_14225 crossref_primary_10_1038_s41562_016_0036 crossref_primary_10_1111_nyas_14345 crossref_primary_10_1093_cercor_bhy163 crossref_primary_10_1177_09567976231223130 crossref_primary_10_1016_j_neuroimage_2016_09_020 crossref_primary_10_1523_JNEUROSCI_0706_18_2018 crossref_primary_10_1016_j_isci_2022_104104 crossref_primary_10_3389_fpsyg_2021_641994 crossref_primary_10_3389_fnhum_2021_713565 crossref_primary_10_1016_j_visres_2014_12_022 crossref_primary_10_1016_j_cognition_2017_07_010 crossref_primary_10_1073_pnas_1512408112 crossref_primary_10_3389_fpsyg_2023_1197064 crossref_primary_10_1017_S0140525X16000960 crossref_primary_10_1016_j_copsyc_2015_12_010 crossref_primary_10_1126_science_aaa1379 crossref_primary_10_7554_eLife_16161 crossref_primary_10_1016_j_isci_2024_108866 crossref_primary_10_3389_fnhum_2016_00500 crossref_primary_10_1007_s00221_019_05617_9 crossref_primary_10_3389_fnbeh_2021_791289 crossref_primary_10_1016_j_pediatrneurol_2016_02_007 crossref_primary_10_1007_s12559_023_10124_9 crossref_primary_10_1002_hbm_25719 crossref_primary_10_1038_ncomms12536 crossref_primary_10_3389_fpsyg_2021_723492 crossref_primary_10_1038_s41467_022_31675_9 crossref_primary_10_1111_cogs_12523 crossref_primary_10_1523_JNEUROSCI_0687_22_2023 crossref_primary_10_1016_j_neuroimage_2018_10_028 crossref_primary_10_1162_jocn_a_01319 crossref_primary_10_1093_cercor_bhab279 crossref_primary_10_1523_JNEUROSCI_1677_23_2023 crossref_primary_10_1016_j_pneurobio_2021_101998 crossref_primary_10_1016_j_cptl_2015_08_001 crossref_primary_10_1038_s41467_024_55599_8 crossref_primary_10_1371_journal_pone_0161496 crossref_primary_10_1016_j_tics_2017_07_002 crossref_primary_10_1016_j_neuropsychologia_2015_09_025 crossref_primary_10_1016_j_neuropsychologia_2015_07_016 crossref_primary_10_1073_pnas_1506214112 crossref_primary_10_1038_s41467_019_11424_1 crossref_primary_10_1098_rstb_2017_0120 crossref_primary_10_1002_jcpy_1199 crossref_primary_10_1016_j_neubiorev_2018_04_010 crossref_primary_10_1016_j_cortex_2018_03_008 crossref_primary_10_4161_bioa_27462 crossref_primary_10_1007_s00426_015_0739_9 crossref_primary_10_1080_02643294_2016_1147426 crossref_primary_10_1523_JNEUROSCI_4580_13_2014 crossref_primary_10_1007_s00429_023_02747_3 crossref_primary_10_1038_s41467_019_13599_z crossref_primary_10_1093_cercor_bhv344 crossref_primary_10_1016_j_cortex_2018_05_021 crossref_primary_10_1016_j_cortex_2018_11_019 crossref_primary_10_1073_pnas_2213430120 crossref_primary_10_1162_opmi_a_00033 crossref_primary_10_1523_JNEUROSCI_2415_20_2021 crossref_primary_10_1016_j_isci_2022_105267 crossref_primary_10_1167_18_9_15 crossref_primary_10_1016_j_actpsy_2019_102870 crossref_primary_10_1016_j_neuroimage_2020_117257 crossref_primary_10_1177_1747021817738720 crossref_primary_10_1016_j_neuroimage_2021_117794 crossref_primary_10_1371_journal_pone_0209256 crossref_primary_10_1016_j_neuron_2018_08_036 crossref_primary_10_1016_j_cortex_2025_01_005 crossref_primary_10_1016_j_neubiorev_2020_07_022 crossref_primary_10_1073_pnas_2108713118 crossref_primary_10_1093_cercor_bhv250 crossref_primary_10_1098_rspb_2021_1577 crossref_primary_10_1111_opo_12294 crossref_primary_10_1038_s41467_020_20567_5 crossref_primary_10_1371_journal_pone_0213163 crossref_primary_10_1016_j_biosystems_2023_104999 crossref_primary_10_1080_15427560_2019_1672168 crossref_primary_10_1523_JNEUROSCI_2717_17_2018 crossref_primary_10_1016_j_neuron_2024_04_018 crossref_primary_10_1093_scan_nsac017 crossref_primary_10_3389_fninf_2014_00048 crossref_primary_10_5964_jnc_v4i2_161 crossref_primary_10_2139_ssrn_2963020 crossref_primary_10_1016_j_neuropsychologia_2014_02_022 crossref_primary_10_1038_s41598_018_31279_8 crossref_primary_10_1016_j_neuroimage_2021_118178 crossref_primary_10_1016_j_resconrec_2024_107991 crossref_primary_10_1016_j_isci_2023_107392 crossref_primary_10_1038_s41467_021_26261_4 crossref_primary_10_1016_j_cub_2015_06_003 crossref_primary_10_3389_fpsyg_2019_00160 crossref_primary_10_1016_j_anbehav_2024_123054 crossref_primary_10_1016_j_neubiorev_2016_06_032 crossref_primary_10_1016_j_neuropsychologia_2015_08_016 crossref_primary_10_1111_cogs_13492 crossref_primary_10_1093_jcr_ucy036 crossref_primary_10_1038_s41467_023_39548_5 crossref_primary_10_1162_jocn_a_01199 crossref_primary_10_1152_physrev_00014_2024 crossref_primary_10_3389_fpsyg_2015_01621 crossref_primary_10_1016_j_tics_2013_10_002 crossref_primary_10_1016_j_neuroimage_2021_118868 crossref_primary_10_1016_j_visres_2020_05_004 crossref_primary_10_1162_jocn_a_00787 crossref_primary_10_1162_jocn_a_00541 crossref_primary_10_1098_rstb_2017_0253 crossref_primary_10_1016_j_cortex_2018_10_009 crossref_primary_10_1371_journal_pone_0203019 crossref_primary_10_1162_jocn_a_01758 crossref_primary_10_1016_j_neuroimage_2021_118184 |
Cites_doi | 10.1126/science.1072493 10.1073/pnas.1113195108 10.1111/j.1460-9568.2011.07710.x 10.1162/089892900562561 10.1016/j.neuron.2004.10.014 10.1162/jocn.2008.21159 10.1016/j.cub.2009.08.047 10.1162/jocn.1993.5.4.390 10.1016/j.cub.2008.02.052 10.1016/j.neuroimage.2006.08.045 10.1152/jn.01290.2004 10.1111/1467-9280.00120 10.1167/3.10.1 10.3758/APP.72.7.1839 10.1163/156856897X00366 10.1523/JNEUROSCI.0991-07.2007 10.1073/pnas.0402239101 10.1038/369525a0 10.1006/nimg.2001.0933 10.1016/S0896-6273(02)01144-3 10.1007/978-3-7091-6435-8 10.1163/156856897X00357 10.1038/nn.2706 10.1073/pnas.1308141110 10.1523/JNEUROSCI.1657-06.2006 10.1126/science.1156540 10.1097/00001756-199905140-00015 10.1109/42.650881 10.1152/jn.01316.2004 10.1523/JNEUROSCI.0570-12.2012 10.1523/JNEUROSCI.1760-09.2009 10.1016/0010-0277(92)90034-F 10.1016/S0896-6273(03)00265-4 10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R 10.1016/j.neuron.2012.05.026 10.1016/j.tics.2003.09.002 10.1073/pnas.0705495104 10.1007/BF00250564 10.1002/1522-2594(200102)45:2<184::AID-MRM1024>3.0.CO;2-C 10.1097/00004728-199403000-00005 10.1006/nimg.1998.0419 10.1093/brain/103.2.221 10.1093/cercor/11.12.1182 10.1016/j.neuron.2009.12.006 10.1126/science.282.5389.746 10.1080/00223980.1948.9917373 10.1016/j.neuroimage.2007.09.034 10.1152/jn.00713.2009 10.1016/0028-3932(91)90076-K 10.1371/journal.pbio.0050328 10.1152/jn.00102.2009 10.1126/science.284.5416.970 10.1126/science.7754376 10.1073/pnas.0909180107 10.1006/nimg.1997.0306 10.1177/1073858405276871 10.1167/10.5.1 10.1523/JNEUROSCI.1930-08.2008 10.1167/12.3.10 10.1038/nature07246 10.1073/pnas.0506806103 10.1523/JNEUROSCI.2572-11.2011 10.1016/j.neuroimage.2006.01.015 10.1006/nimg.1998.0395 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Association for the Advancement of Science 2015 INIST-CNRS Copyright © 2013, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2013 American Association for the Advancement of Science – notice: 2015 INIST-CNRS – notice: Copyright © 2013, American Association for the Advancement of Science |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1126/science.1239052 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts Technology Research Database CrossRef MEDLINE AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1126 |
ExternalDocumentID | 3064188001 24009396 27734790 10_1126_science_1239052 42619326 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX AGFXO ALIPV ALSLI CITATION .GJ .GO 0-V 186 3EH 41~ 42X 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS AAYOK ABDPE ABJCF ABTAH ABUWG ACQAM ACTDY ADBBV ADZCM AEUYN AFKRA AFQQW AJUXI ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- CCPQU CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH GX1 HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IQODW ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZT PQEDU PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UIG UKHRP VOH WOQ WOW X7L XIH XKJ XOL YCJ YJ6 YXB ZCG ZGI ZKG ZVL ZVM ZXP ZY4 ~G0 ~H1 CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c583t-d7b816ec5d43b7c1bb8b5b81617b6120fea52542f6b155b21f31f776cfaf94933 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Sep 05 03:42:39 EDT 2025 Fri Sep 05 11:33:49 EDT 2025 Thu Sep 04 22:57:25 EDT 2025 Thu Sep 04 22:45:49 EDT 2025 Fri Jul 25 10:48:13 EDT 2025 Mon Jul 21 06:01:33 EDT 2025 Wed Apr 02 07:16:09 EDT 2025 Tue Jul 01 04:10:00 EDT 2025 Thu Apr 24 22:55:11 EDT 2025 Sun Sep 21 12:07:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6150 |
Keywords | Human Stimulus Central nervous system Parietal cortex Nuclear magnetic resonance imaging Encephalon Functional imaging |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583t-d7b816ec5d43b7c1bb8b5b81617b6120fea52542f6b155b21f31f776cfaf94933 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dspace.library.uu.nl/handle/1874/380321 |
PMID | 24009396 |
PQID | 1430435036 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2000367925 proquest_miscellaneous_1808060804 proquest_miscellaneous_1660412659 proquest_miscellaneous_1430851896 proquest_journals_1430435036 pubmed_primary_24009396 pascalfrancis_primary_27734790 crossref_primary_10_1126_science_1239052 crossref_citationtrail_10_1126_science_1239052 jstor_primary_42619326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-06 |
PublicationDateYYYYMMDD | 2013-09-06 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2013 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_16_2 doi: 10.1126/science.1072493 – ident: e_1_3_2_24_2 doi: 10.1073/pnas.1113195108 – ident: e_1_3_2_37_2 doi: 10.1111/j.1460-9568.2011.07710.x – ident: e_1_3_2_43_2 doi: 10.1162/089892900562561 – ident: e_1_3_2_7_2 doi: 10.1016/j.neuron.2004.10.014 – ident: e_1_3_2_11_2 doi: 10.1162/jocn.2008.21159 – ident: e_1_3_2_14_2 doi: 10.1016/j.cub.2009.08.047 – ident: e_1_3_2_17_2 doi: 10.1162/jocn.1993.5.4.390 – ident: e_1_3_2_3_2 doi: 10.1016/j.cub.2008.02.052 – ident: e_1_3_2_45_2 doi: 10.1016/j.neuroimage.2006.08.045 – ident: e_1_3_2_62_2 doi: 10.1152/jn.01290.2004 – ident: e_1_3_2_9_2 doi: 10.1111/1467-9280.00120 – ident: e_1_3_2_59_2 doi: 10.1167/3.10.1 – ident: e_1_3_2_8_2 doi: 10.3758/APP.72.7.1839 – ident: e_1_3_2_33_2 doi: 10.1163/156856897X00366 – ident: e_1_3_2_22_2 doi: 10.1523/JNEUROSCI.0991-07.2007 – ident: e_1_3_2_6_2 doi: 10.1073/pnas.0402239101 – ident: e_1_3_2_53_2 doi: 10.1038/369525a0 – ident: e_1_3_2_51_2 doi: 10.1006/nimg.2001.0933 – ident: e_1_3_2_5_2 doi: 10.1016/S0896-6273(02)01144-3 – ident: e_1_3_2_30_2 doi: 10.1007/978-3-7091-6435-8 – ident: e_1_3_2_32_2 doi: 10.1163/156856897X00357 – ident: e_1_3_2_60_2 doi: 10.1038/nn.2706 – ident: e_1_3_2_35_2 doi: 10.1073/pnas.1308141110 – ident: e_1_3_2_54_2 doi: 10.1523/JNEUROSCI.1657-06.2006 – ident: e_1_3_2_12_2 doi: 10.1126/science.1156540 – ident: e_1_3_2_15_2 doi: 10.1097/00001756-199905140-00015 – ident: e_1_3_2_41_2 doi: 10.1109/42.650881 – ident: e_1_3_2_63_2 doi: 10.1152/jn.01316.2004 – ident: e_1_3_2_48_2 doi: 10.1523/JNEUROSCI.0570-12.2012 – ident: e_1_3_2_34_2 doi: 10.1523/JNEUROSCI.1760-09.2009 – ident: e_1_3_2_4_2 – ident: e_1_3_2_27_2 doi: 10.1016/0010-0277(92)90034-F – ident: e_1_3_2_52_2 doi: 10.1016/S0896-6273(03)00265-4 – ident: e_1_3_2_44_2 doi: 10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R – ident: e_1_3_2_47_2 doi: 10.1016/j.neuron.2012.05.026 – ident: e_1_3_2_23_2 doi: 10.1016/j.tics.2003.09.002 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.0705495104 – ident: e_1_3_2_57_2 doi: 10.1007/BF00250564 – ident: e_1_3_2_46_2 doi: 10.1002/1522-2594(200102)45:2<184::AID-MRM1024>3.0.CO;2-C – ident: e_1_3_2_19_2 doi: 10.1097/00004728-199403000-00005 – ident: e_1_3_2_50_2 doi: 10.1006/nimg.1998.0419 – ident: e_1_3_2_58_2 doi: 10.1093/brain/103.2.221 – ident: e_1_3_2_56_2 doi: 10.1093/cercor/11.12.1182 – ident: e_1_3_2_64_2 doi: 10.1016/j.neuron.2009.12.006 – ident: e_1_3_2_2_2 doi: 10.1126/science.282.5389.746 – ident: e_1_3_2_10_2 doi: 10.1080/00223980.1948.9917373 – ident: e_1_3_2_18_2 doi: 10.1016/j.neuroimage.2007.09.034 – ident: e_1_3_2_38_2 doi: 10.1152/jn.00713.2009 – ident: e_1_3_2_21_2 doi: 10.1016/0028-3932(91)90076-K – ident: e_1_3_2_26_2 doi: 10.1371/journal.pbio.0050328 – ident: e_1_3_2_65_2 doi: 10.1152/jn.00102.2009 – ident: e_1_3_2_13_2 doi: 10.1126/science.284.5416.970 – ident: e_1_3_2_55_2 doi: 10.1126/science.7754376 – ident: e_1_3_2_28_2 doi: 10.1073/pnas.0909180107 – ident: e_1_3_2_49_2 doi: 10.1006/nimg.1997.0306 – ident: e_1_3_2_36_2 doi: 10.1177/1073858405276871 – ident: e_1_3_2_31_2 doi: 10.1167/10.5.1 – ident: e_1_3_2_61_2 doi: 10.1523/JNEUROSCI.1930-08.2008 – ident: e_1_3_2_66_2 doi: 10.1167/12.3.10 – ident: e_1_3_2_25_2 doi: 10.1038/nature07246 – ident: e_1_3_2_29_2 doi: 10.1073/pnas.0506806103 – ident: e_1_3_2_39_2 doi: 10.1523/JNEUROSCI.2572-11.2011 – ident: e_1_3_2_42_2 doi: 10.1016/j.neuroimage.2006.01.015 – ident: e_1_3_2_40_2 doi: 10.1006/nimg.1998.0395 |
SSID | ssj0009593 |
Score | 2.5729616 |
Snippet | Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory... Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized... Number SenseNumerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized... Number Sense Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized... |
SourceID | proquest pubmed pascalfrancis crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1123 |
SubjectTerms | Adult Biological and medical sciences Brain Brain Mapping cortex Cortexes Displays Female Fundamental and applied biological sciences. Psychology Human Humans Magnetic resonance imaging Male Mathematical Concepts Mathematical functions Mental stimulation Motor ability Neurons Neurophysiology Parietal Lobe - anatomy & histology Parietal Lobe - physiology Perception Photic Stimulation Representations Scanning Scientific Concepts Sensory perception Statistical variance Topographic mapping Topography Tuning Vertebrates: nervous system and sense organs Young Adult |
Title | Topographic Representation of Numerosity in the Human Parietal Cortex |
URI | https://www.jstor.org/stable/42619326 https://www.ncbi.nlm.nih.gov/pubmed/24009396 https://www.proquest.com/docview/1430435036 https://www.proquest.com/docview/1430851896 https://www.proquest.com/docview/1660412659 https://www.proquest.com/docview/1808060804 https://www.proquest.com/docview/2000367925 |
Volume | 341 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagExIviA0GGWMyEg9DKFVix3bz2LJNEwh42aS9VbHjSEhrUrWpBPvrOf9I4qJ1Ah4aVfYlVX1n586--z6E3islEia5igkrizjjSseSZiqWKXjnpaxook2h8Ndv_PI6-3zDboITU1Nd0sqxuru3ruR_tAptoFdTJfsPmu0fCg3wHfQLV9AwXP9Ox83SIU5bHOblUElUu_yMhV41NufCJzM6Qj7DO6hbiwuyavXP0D3tZjq4nf1RTqDAPidx6jIHukQCf1uwq2Aoh9xm-GzYb_1y65k1Z0NVmWX0KpvN1qnQ2WZhiNrd1uzH7-HOhGGJMIAG7sXiVtPEEEGShIbLLXVAV96uDB59sH6C90fvX9gDKko9Bqk8cci3gZqXC6tnkxWb0_wPgG37yu66HqM9IkTKRmhvOjubXWzBNHsAqKC0qvs9gxztn7DlxrhMVpNWW6xhZlWOEmV3zGJ9l6vn6JkPOvDUWdA-eqTrA_TE0ZD-OkD7Xn9rfOpRyD-8QOeBceFt48JNhQfjwj9qDDaBrXHhzriwM66X6Pri_OrTZew5N2LFJrSNSyEnKdeKlRmVQqVSTiQzTamQ4AwnlS4YYRmpuARPVJK0omklBFdVUeVZTukhGtVNrV8jbLgihS75BPykjBElhShpRgolNSdKlxEad0M4Vx6Q3vCi3M5tYEr43A__3A9_hE77G5YOi2W36KHVSS9ndwogVInQyZaSegGwB1NUnUTouNPa3E_1NcTHNIG4Ary9CL3ru2EhNqdrRa2bjZOB8GWSPyTDucG34yx_QMYgvXL4ZLtliMWREjlhEXrlLGv4I95Cj3b2vEFPh-l6jEbtaqPfgmvdyhM_H34D94_Ong |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topographic+representation+of+numerosity+in+the+human+parietal+cortex&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Harvey%2C+B+M&rft.au=Klein%2C+B+P&rft.au=Petridou%2C+N&rft.au=Dumoulin%2C+S+O&rft.date=2013-09-06&rft.eissn=1095-9203&rft.volume=341&rft.issue=6150&rft.spage=1123&rft_id=info:doi/10.1126%2Fscience.1239052&rft_id=info%3Apmid%2F24009396&rft.externalDocID=24009396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |