Topographic Representation of Numerosity in the Human Parietal Cortex

Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organi...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 341; no. 6150; pp. 1123 - 1126
Main Authors Harvey, B. M., Klein, B. P., Petridou, N., Dumoulin, S. O.
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 06.09.2013
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.1239052

Cover

Abstract Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex.
AbstractList Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex.Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex.
Number SenseNumerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized topographically in the cortex, Harvey et al. (p. 1123) tested the hypothesis that numerosity is also organized topographically. Applying ultrahighfield functional brain scanning and using custom-designed analysis, they confirmed that a topographical numerosity map occurs in the human parietal cortex, which displays conventional characteristics, such as a systematic relationship between the cortical location's preferred numerosity and cortical magnification and tuning width.
Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex.
Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized topographically in the cortex, Harvey et al. (p. 1123 ) tested the hypothesis that numerosity is also organized topographically. Applying ultrahighfield functional brain scanning and using custom-designed analysis, they confirmed that a topographical numerosity map occurs in the human parietal cortex, which displays conventional characteristics, such as a systematic relationship between the cortical location's preferred numerosity and cortical magnification and tuning width. There is a map of numerical magnitude in the human brain. Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex.
Number Sense Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized topographically in the cortex, Harvey et al. (p. 1123) tested the hypothesis that numerosity is also organized topographically. Applying ultrahighfield functional brain scanning and using custom-designed analysis, they confirmed that a topographical numerosity map occurs in the human parietal cortex, which displays conventional characteristics, such as a systematic relationship between the cortical location's preferred numerosity and cortical magnification and tuning width.
Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized topographically in the cortex, Harvey et al. (p. 1123) tested the hypothesis that numerosity is also organized topographically. Applying ultrahighfield functional brain scanning and using custom-designed analysis, they confirmed that a topographical numerosity map occurs in the human parietal cortex, which displays conventional characteristics, such as a systematic relationship between the cortical location's preferred numerosity and cortical magnification and tuning width. [PUBLICATION ABSTRACT] Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory cortices contain topographic maps reflecting the structure of sensory organs. Are the cortical representation and processing of numerosity organized topographically, even though no sensory organ has a numerical structure? Using high-field functional magnetic resonance imaging (at a field strength of 7 teslas), we described neural populations tuned to small numerosities in the human parietal cortex. They are organized topographically, forming a numerosity map that is robust to changes in low-level stimulus features. The cortical surface area devoted to specific numerosities decreases with increasing numerosity, and the tuning width increases with preferred numerosity. These organizational properties extend topographic principles to the representation of higher-order abstract features in the association cortex. [PUBLICATION ABSTRACT]
Author Petridou, N.
Harvey, B. M.
Klein, B. P.
Dumoulin, S. O.
Author_xml – sequence: 1
  givenname: B. M.
  surname: Harvey
  fullname: Harvey, B. M.
– sequence: 2
  givenname: B. P.
  surname: Klein
  fullname: Klein, B. P.
– sequence: 3
  givenname: N.
  surname: Petridou
  fullname: Petridou, N.
– sequence: 4
  givenname: S. O.
  surname: Dumoulin
  fullname: Dumoulin, S. O.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27734790$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24009396$$D View this record in MEDLINE/PubMed
BookMark eNqF0s1rFDEUAPAgFbutnj0pAyJ4mTbfmRxlqbZQWpF6HpJsYrPMJGOSAfvfm3XHFnpwDyFh8nuZ5L13Ao5CDBaAtwieIYT5eTbeBmPPECYSMvwCrBCUrJUYkiOwgpDwtoOCHYOTnLcQ1j1JXoFjTOuSSL4CF3dxij-Tmu69ab7bKdlsQ1HFx9BE19zMo00x-_LQ-NCUe9tczqMKzTeVvC1qaNYxFfv7NXjp1JDtm2U-BT--XNytL9vr269X68_XrWEdKe1G6A5xa9iGEi0M0rrTbPcJCc0Rhs4qhhnFjmvEmMbIEeSE4MYpJ6kk5BR82p87pfhrtrn0o8_GDoMKNs65x3D3ZCExO0hRBzvI66CHKeeQ1mzX3B2klMCOoU7ySj88o9s4p1DT81dRwupVq3q_qFmPdtNPyY8qPfT_KlTBxwWobNTgkgrG5ycnBKFCwurO987UeuVk3SNBsN_1Sr_0Sr_0So1gzyKM31e-JOWH_8S928dtc4np8TcUcyQJ5uQPs5vKkQ
CODEN SCIEAS
CitedBy_id crossref_primary_10_1016_j_neuroscience_2024_10_025
crossref_primary_10_1093_cercor_bhad262
crossref_primary_10_1038_srep32810
crossref_primary_10_1146_annurev_vision_091517_033948
crossref_primary_10_1007_s11065_023_09609_z
crossref_primary_10_1016_j_neuroimage_2017_03_060
crossref_primary_10_1016_j_cogpsych_2018_02_001
crossref_primary_10_1111_ejn_13335
crossref_primary_10_1016_j_shpsc_2015_12_011
crossref_primary_10_1016_j_tree_2014_03_007
crossref_primary_10_1177_0301006618775235
crossref_primary_10_1038_s41598_024_56828_2
crossref_primary_10_1016_j_neuroimage_2017_10_011
crossref_primary_10_1017_S0140525X16002090
crossref_primary_10_1038_s41467_022_34457_5
crossref_primary_10_1371_journal_pcbi_1007011
crossref_primary_10_1038_s41467_024_45912_w
crossref_primary_10_1111_bjdp_12032
crossref_primary_10_1098_rstb_2017_0045
crossref_primary_10_1162_jocn_a_00991
crossref_primary_10_1016_j_neuroimage_2017_02_012
crossref_primary_10_5964_jnc_v4i1_101
crossref_primary_10_1371_journal_pone_0272087
crossref_primary_10_1016_j_tics_2020_10_009
crossref_primary_10_1016_j_crbeha_2023_100103
crossref_primary_10_1111_adb_13065
crossref_primary_10_1371_journal_pone_0222027
crossref_primary_10_1016_j_cub_2016_03_052
crossref_primary_10_1016_j_neuroimage_2023_120363
crossref_primary_10_1093_pnasnexus_pgae061
crossref_primary_10_1371_journal_pone_0188820
crossref_primary_10_1038_s41467_021_23785_7
crossref_primary_10_1098_rspb_2016_0118
crossref_primary_10_1016_j_cobeha_2016_02_011
crossref_primary_10_1016_j_cortex_2020_10_008
crossref_primary_10_1073_pnas_1515414112
crossref_primary_10_1016_j_cub_2016_03_059
crossref_primary_10_1038_s41467_021_22524_2
crossref_primary_10_1162_jocn_a_02263
crossref_primary_10_1016_j_neuron_2015_05_025
crossref_primary_10_1002_hbm_26193
crossref_primary_10_1152_jn_00404_2016
crossref_primary_10_1287_isre_2020_0955
crossref_primary_10_1016_j_cub_2021_07_082
crossref_primary_10_1038_s41467_024_44810_5
crossref_primary_10_1177_03010066251326828
crossref_primary_10_3758_s13423_016_1126_2
crossref_primary_10_1126_sciadv_adj2219
crossref_primary_10_1016_j_cortex_2020_05_004
crossref_primary_10_1016_j_neuroimage_2020_117210
crossref_primary_10_1038_ncomms12110
crossref_primary_10_1111_cogs_12342
crossref_primary_10_1016_j_cortex_2015_09_007
crossref_primary_10_1017_S0140525X16002077
crossref_primary_10_1523_JNEUROSCI_3945_16_2017
crossref_primary_10_1016_j_cognition_2016_03_006
crossref_primary_10_1016_j_neuron_2018_07_002
crossref_primary_10_1038_s41467_017_02169_w
crossref_primary_10_1167_jov_22_11_11
crossref_primary_10_1038_s42003_024_06934_8
crossref_primary_10_7554_eLife_84376
crossref_primary_10_1001_jamaneurol_2018_3342
crossref_primary_10_1016_j_jretconser_2021_102896
crossref_primary_10_1016_j_neuroimage_2015_11_070
crossref_primary_10_1038_s41467_022_29030_z
crossref_primary_10_3758_s13414_016_1100_0
crossref_primary_10_1016_j_dib_2017_11_022
crossref_primary_10_1523_ENEURO_0041_16_2016
crossref_primary_10_3389_fpsyg_2014_00743
crossref_primary_10_1002_hbm_23265
crossref_primary_10_1016_j_neuroimage_2022_119536
crossref_primary_10_1017_S1930297500008172
crossref_primary_10_1098_rstb_2016_0517
crossref_primary_10_3758_s13414_021_02378_y
crossref_primary_10_1093_cercor_bhw133
crossref_primary_10_1016_j_tics_2023_01_002
crossref_primary_10_21105_joss_00103
crossref_primary_10_1038_s41467_018_03166_3
crossref_primary_10_1038_s41562_017_0145
crossref_primary_10_1523_JNEUROSCI_1716_17_2017
crossref_primary_10_1016_j_neuroimage_2021_118029
crossref_primary_10_1016_j_cortex_2016_04_013
crossref_primary_10_1007_s00426_020_01458_2
crossref_primary_10_1016_j_cortex_2018_08_030
crossref_primary_10_1016_j_celrep_2022_111005
crossref_primary_10_1016_j_cortex_2020_10_020
crossref_primary_10_1016_j_visres_2021_01_011
crossref_primary_10_1016_j_actpsy_2022_103560
crossref_primary_10_1146_annurev_vision_093019_111124
crossref_primary_10_3389_fnhum_2022_1014703
crossref_primary_10_1098_rstb_2015_0349
crossref_primary_10_1242_jeb_218289
crossref_primary_10_1016_j_cortex_2020_11_013
crossref_primary_10_1016_j_visres_2016_11_003
crossref_primary_10_3389_fnhum_2017_00021
crossref_primary_10_1080_02698595_2017_1370925
crossref_primary_10_1007_s10758_015_9251_y
crossref_primary_10_1162_jocn_a_01367
crossref_primary_10_1038_s41598_023_47954_4
crossref_primary_10_3389_fpsyg_2024_1335857
crossref_primary_10_3390_vision6030041
crossref_primary_10_1016_j_isci_2023_107571
crossref_primary_10_1002_hbm_22593
crossref_primary_10_3389_fpsyg_2015_00352
crossref_primary_10_1152_jn_00291_2019
crossref_primary_10_1016_j_cobeha_2016_04_008
crossref_primary_10_1002_nbm_3275
crossref_primary_10_1016_j_neuroscience_2018_02_033
crossref_primary_10_1016_j_cortex_2018_07_017
crossref_primary_10_1016_j_cortex_2021_01_009
crossref_primary_10_1016_j_cortex_2016_07_016
crossref_primary_10_1016_j_cortex_2018_07_018
crossref_primary_10_1038_s41562_023_01709_3
crossref_primary_10_1073_pnas_1608434113
crossref_primary_10_1016_j_neuroscience_2023_01_035
crossref_primary_10_1038_srep10415
crossref_primary_10_3758_s13423_018_1561_3
crossref_primary_10_1177_1747021819844503
crossref_primary_10_1167_19_6_19
crossref_primary_10_1016_j_cub_2020_01_090
crossref_primary_10_1016_j_tins_2014_09_005
crossref_primary_10_1371_journal_pbio_3000026
crossref_primary_10_1016_j_cognition_2017_12_003
crossref_primary_10_5334_joc_428
crossref_primary_10_1016_j_tics_2014_03_008
crossref_primary_10_1038_s41467_020_14519_2
crossref_primary_10_1016_j_neuron_2017_11_029
crossref_primary_10_1163_22134808_bja10051
crossref_primary_10_3390_e23070857
crossref_primary_10_1007_s00426_024_02052_6
crossref_primary_10_1016_j_cortex_2018_02_013
crossref_primary_10_1111_mbe_12373
crossref_primary_10_1177_0301006615602599
crossref_primary_10_1177_1073858416650153
crossref_primary_10_1002_hbm_25402
crossref_primary_10_1001_jamaneurol_2018_0395
crossref_primary_10_3758_s13414_020_02140_w
crossref_primary_10_1098_rspb_2014_1137
crossref_primary_10_1038_nrn_2016_40
crossref_primary_10_7554_eLife_45160
crossref_primary_10_3390_philosophies3040038
crossref_primary_10_1016_j_neuroimage_2017_01_028
crossref_primary_10_1016_j_dcn_2017_02_011
crossref_primary_10_1016_j_cortex_2021_06_004
crossref_primary_10_1111_ejn_14930
crossref_primary_10_1016_j_actpsy_2016_09_003
crossref_primary_10_1093_cercor_bhx026
crossref_primary_10_1371_journal_pone_0104777
crossref_primary_10_1093_cercor_bhx024
crossref_primary_10_1371_journal_pone_0120439
crossref_primary_10_1371_journal_pone_0195188
crossref_primary_10_1002_hbm_25996
crossref_primary_10_1523_JNEUROSCI_1209_15_2015
crossref_primary_10_1523_JNEUROSCI_2237_22_2023
crossref_primary_10_1016_j_neuroimage_2024_120515
crossref_primary_10_1016_j_visres_2025_108547
crossref_primary_10_1086_683092
crossref_primary_10_1016_j_neuroimage_2022_119366
crossref_primary_10_1287_mnsc_2023_00265
crossref_primary_10_1027_2151_2604_a000205
crossref_primary_10_1093_scan_nsab103
crossref_primary_10_1162_jocn_a_01320
crossref_primary_10_1080_17470218_2015_1095773
crossref_primary_10_1167_jov_24_9_12
crossref_primary_10_1016_j_cognition_2019_04_032
crossref_primary_10_1016_j_neuroimage_2018_03_064
crossref_primary_10_3389_fpsyg_2019_00139
crossref_primary_10_3389_fnhum_2015_00327
crossref_primary_10_3389_fnhum_2017_00070
crossref_primary_10_1162_imag_a_00482
crossref_primary_10_1371_journal_pone_0198335
crossref_primary_10_1080_13803395_2016_1144714
crossref_primary_10_1016_j_tics_2021_10_004
crossref_primary_10_1016_j_cognition_2024_105870
crossref_primary_10_1016_j_neuroimage_2021_118554
crossref_primary_10_1093_texcom_tgab028
crossref_primary_10_1098_rspb_2024_0051
crossref_primary_10_1016_j_neuron_2023_01_014
crossref_primary_10_1162_imag_a_00485
crossref_primary_10_1016_j_neuroimage_2017_05_069
crossref_primary_10_1016_j_neuroimage_2021_117909
crossref_primary_10_1016_j_edurev_2024_100593
crossref_primary_10_1007_s00702_022_02580_8
crossref_primary_10_1146_annurev_neuro_082823_073701
crossref_primary_10_1038_s41562_023_01643_4
crossref_primary_10_1523_JNEUROSCI_3753_15_2016
crossref_primary_10_1098_rsos_170889
crossref_primary_10_3758_s13414_018_01636_w
crossref_primary_10_3233_JAD_215327
crossref_primary_10_1016_j_cortex_2018_03_027
crossref_primary_10_1111_nyas_14225
crossref_primary_10_1038_s41562_016_0036
crossref_primary_10_1111_nyas_14345
crossref_primary_10_1093_cercor_bhy163
crossref_primary_10_1177_09567976231223130
crossref_primary_10_1016_j_neuroimage_2016_09_020
crossref_primary_10_1523_JNEUROSCI_0706_18_2018
crossref_primary_10_1016_j_isci_2022_104104
crossref_primary_10_3389_fpsyg_2021_641994
crossref_primary_10_3389_fnhum_2021_713565
crossref_primary_10_1016_j_visres_2014_12_022
crossref_primary_10_1016_j_cognition_2017_07_010
crossref_primary_10_1073_pnas_1512408112
crossref_primary_10_3389_fpsyg_2023_1197064
crossref_primary_10_1017_S0140525X16000960
crossref_primary_10_1016_j_copsyc_2015_12_010
crossref_primary_10_1126_science_aaa1379
crossref_primary_10_7554_eLife_16161
crossref_primary_10_1016_j_isci_2024_108866
crossref_primary_10_3389_fnhum_2016_00500
crossref_primary_10_1007_s00221_019_05617_9
crossref_primary_10_3389_fnbeh_2021_791289
crossref_primary_10_1016_j_pediatrneurol_2016_02_007
crossref_primary_10_1007_s12559_023_10124_9
crossref_primary_10_1002_hbm_25719
crossref_primary_10_1038_ncomms12536
crossref_primary_10_3389_fpsyg_2021_723492
crossref_primary_10_1038_s41467_022_31675_9
crossref_primary_10_1111_cogs_12523
crossref_primary_10_1523_JNEUROSCI_0687_22_2023
crossref_primary_10_1016_j_neuroimage_2018_10_028
crossref_primary_10_1162_jocn_a_01319
crossref_primary_10_1093_cercor_bhab279
crossref_primary_10_1523_JNEUROSCI_1677_23_2023
crossref_primary_10_1016_j_pneurobio_2021_101998
crossref_primary_10_1016_j_cptl_2015_08_001
crossref_primary_10_1038_s41467_024_55599_8
crossref_primary_10_1371_journal_pone_0161496
crossref_primary_10_1016_j_tics_2017_07_002
crossref_primary_10_1016_j_neuropsychologia_2015_09_025
crossref_primary_10_1016_j_neuropsychologia_2015_07_016
crossref_primary_10_1073_pnas_1506214112
crossref_primary_10_1038_s41467_019_11424_1
crossref_primary_10_1098_rstb_2017_0120
crossref_primary_10_1002_jcpy_1199
crossref_primary_10_1016_j_neubiorev_2018_04_010
crossref_primary_10_1016_j_cortex_2018_03_008
crossref_primary_10_4161_bioa_27462
crossref_primary_10_1007_s00426_015_0739_9
crossref_primary_10_1080_02643294_2016_1147426
crossref_primary_10_1523_JNEUROSCI_4580_13_2014
crossref_primary_10_1007_s00429_023_02747_3
crossref_primary_10_1038_s41467_019_13599_z
crossref_primary_10_1093_cercor_bhv344
crossref_primary_10_1016_j_cortex_2018_05_021
crossref_primary_10_1016_j_cortex_2018_11_019
crossref_primary_10_1073_pnas_2213430120
crossref_primary_10_1162_opmi_a_00033
crossref_primary_10_1523_JNEUROSCI_2415_20_2021
crossref_primary_10_1016_j_isci_2022_105267
crossref_primary_10_1167_18_9_15
crossref_primary_10_1016_j_actpsy_2019_102870
crossref_primary_10_1016_j_neuroimage_2020_117257
crossref_primary_10_1177_1747021817738720
crossref_primary_10_1016_j_neuroimage_2021_117794
crossref_primary_10_1371_journal_pone_0209256
crossref_primary_10_1016_j_neuron_2018_08_036
crossref_primary_10_1016_j_cortex_2025_01_005
crossref_primary_10_1016_j_neubiorev_2020_07_022
crossref_primary_10_1073_pnas_2108713118
crossref_primary_10_1093_cercor_bhv250
crossref_primary_10_1098_rspb_2021_1577
crossref_primary_10_1111_opo_12294
crossref_primary_10_1038_s41467_020_20567_5
crossref_primary_10_1371_journal_pone_0213163
crossref_primary_10_1016_j_biosystems_2023_104999
crossref_primary_10_1080_15427560_2019_1672168
crossref_primary_10_1523_JNEUROSCI_2717_17_2018
crossref_primary_10_1016_j_neuron_2024_04_018
crossref_primary_10_1093_scan_nsac017
crossref_primary_10_3389_fninf_2014_00048
crossref_primary_10_5964_jnc_v4i2_161
crossref_primary_10_2139_ssrn_2963020
crossref_primary_10_1016_j_neuropsychologia_2014_02_022
crossref_primary_10_1038_s41598_018_31279_8
crossref_primary_10_1016_j_neuroimage_2021_118178
crossref_primary_10_1016_j_resconrec_2024_107991
crossref_primary_10_1016_j_isci_2023_107392
crossref_primary_10_1038_s41467_021_26261_4
crossref_primary_10_1016_j_cub_2015_06_003
crossref_primary_10_3389_fpsyg_2019_00160
crossref_primary_10_1016_j_anbehav_2024_123054
crossref_primary_10_1016_j_neubiorev_2016_06_032
crossref_primary_10_1016_j_neuropsychologia_2015_08_016
crossref_primary_10_1111_cogs_13492
crossref_primary_10_1093_jcr_ucy036
crossref_primary_10_1038_s41467_023_39548_5
crossref_primary_10_1162_jocn_a_01199
crossref_primary_10_1152_physrev_00014_2024
crossref_primary_10_3389_fpsyg_2015_01621
crossref_primary_10_1016_j_tics_2013_10_002
crossref_primary_10_1016_j_neuroimage_2021_118868
crossref_primary_10_1016_j_visres_2020_05_004
crossref_primary_10_1162_jocn_a_00787
crossref_primary_10_1162_jocn_a_00541
crossref_primary_10_1098_rstb_2017_0253
crossref_primary_10_1016_j_cortex_2018_10_009
crossref_primary_10_1371_journal_pone_0203019
crossref_primary_10_1162_jocn_a_01758
crossref_primary_10_1016_j_neuroimage_2021_118184
Cites_doi 10.1126/science.1072493
10.1073/pnas.1113195108
10.1111/j.1460-9568.2011.07710.x
10.1162/089892900562561
10.1016/j.neuron.2004.10.014
10.1162/jocn.2008.21159
10.1016/j.cub.2009.08.047
10.1162/jocn.1993.5.4.390
10.1016/j.cub.2008.02.052
10.1016/j.neuroimage.2006.08.045
10.1152/jn.01290.2004
10.1111/1467-9280.00120
10.1167/3.10.1
10.3758/APP.72.7.1839
10.1163/156856897X00366
10.1523/JNEUROSCI.0991-07.2007
10.1073/pnas.0402239101
10.1038/369525a0
10.1006/nimg.2001.0933
10.1016/S0896-6273(02)01144-3
10.1007/978-3-7091-6435-8
10.1163/156856897X00357
10.1038/nn.2706
10.1073/pnas.1308141110
10.1523/JNEUROSCI.1657-06.2006
10.1126/science.1156540
10.1097/00001756-199905140-00015
10.1109/42.650881
10.1152/jn.01316.2004
10.1523/JNEUROSCI.0570-12.2012
10.1523/JNEUROSCI.1760-09.2009
10.1016/0010-0277(92)90034-F
10.1016/S0896-6273(03)00265-4
10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R
10.1016/j.neuron.2012.05.026
10.1016/j.tics.2003.09.002
10.1073/pnas.0705495104
10.1007/BF00250564
10.1002/1522-2594(200102)45:2<184::AID-MRM1024>3.0.CO;2-C
10.1097/00004728-199403000-00005
10.1006/nimg.1998.0419
10.1093/brain/103.2.221
10.1093/cercor/11.12.1182
10.1016/j.neuron.2009.12.006
10.1126/science.282.5389.746
10.1080/00223980.1948.9917373
10.1016/j.neuroimage.2007.09.034
10.1152/jn.00713.2009
10.1016/0028-3932(91)90076-K
10.1371/journal.pbio.0050328
10.1152/jn.00102.2009
10.1126/science.284.5416.970
10.1126/science.7754376
10.1073/pnas.0909180107
10.1006/nimg.1997.0306
10.1177/1073858405276871
10.1167/10.5.1
10.1523/JNEUROSCI.1930-08.2008
10.1167/12.3.10
10.1038/nature07246
10.1073/pnas.0506806103
10.1523/JNEUROSCI.2572-11.2011
10.1016/j.neuroimage.2006.01.015
10.1006/nimg.1998.0395
ContentType Journal Article
Copyright Copyright © 2013 American Association for the Advancement of Science
2015 INIST-CNRS
Copyright © 2013, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2013 American Association for the Advancement of Science
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013, American Association for the Advancement of Science
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1126/science.1239052
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
Technology Research Database

CrossRef
MEDLINE
AGRICOLA
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1126
ExternalDocumentID 3064188001
24009396
27734790
10_1126_science_1239052
42619326
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
AGFXO
ALIPV
ALSLI
CITATION
.GJ
.GO
0-V
186
3EH
41~
42X
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AAYOK
ABDPE
ABJCF
ABTAH
ABUWG
ACQAM
ACTDY
ADBBV
ADZCM
AEUYN
AFKRA
AFQQW
AJUXI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
GX1
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZT
PQEDU
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UIG
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YCJ
YJ6
YXB
ZCG
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~G0
~H1
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c583t-d7b816ec5d43b7c1bb8b5b81617b6120fea52542f6b155b21f31f776cfaf94933
ISSN 0036-8075
1095-9203
IngestDate Fri Sep 05 03:42:39 EDT 2025
Fri Sep 05 11:33:49 EDT 2025
Thu Sep 04 22:57:25 EDT 2025
Thu Sep 04 22:45:49 EDT 2025
Fri Jul 25 10:48:13 EDT 2025
Mon Jul 21 06:01:33 EDT 2025
Wed Apr 02 07:16:09 EDT 2025
Tue Jul 01 04:10:00 EDT 2025
Thu Apr 24 22:55:11 EDT 2025
Sun Sep 21 12:07:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6150
Keywords Human
Stimulus
Central nervous system
Parietal cortex
Nuclear magnetic resonance imaging
Encephalon
Functional imaging
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583t-d7b816ec5d43b7c1bb8b5b81617b6120fea52542f6b155b21f31f776cfaf94933
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dspace.library.uu.nl/handle/1874/380321
PMID 24009396
PQID 1430435036
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2000367925
proquest_miscellaneous_1808060804
proquest_miscellaneous_1660412659
proquest_miscellaneous_1430851896
proquest_journals_1430435036
pubmed_primary_24009396
pascalfrancis_primary_27734790
crossref_primary_10_1126_science_1239052
crossref_citationtrail_10_1126_science_1239052
jstor_primary_42619326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-06
PublicationDateYYYYMMDD 2013-09-06
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-06
  day: 06
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2013
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_16_2
  doi: 10.1126/science.1072493
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.1113195108
– ident: e_1_3_2_37_2
  doi: 10.1111/j.1460-9568.2011.07710.x
– ident: e_1_3_2_43_2
  doi: 10.1162/089892900562561
– ident: e_1_3_2_7_2
  doi: 10.1016/j.neuron.2004.10.014
– ident: e_1_3_2_11_2
  doi: 10.1162/jocn.2008.21159
– ident: e_1_3_2_14_2
  doi: 10.1016/j.cub.2009.08.047
– ident: e_1_3_2_17_2
  doi: 10.1162/jocn.1993.5.4.390
– ident: e_1_3_2_3_2
  doi: 10.1016/j.cub.2008.02.052
– ident: e_1_3_2_45_2
  doi: 10.1016/j.neuroimage.2006.08.045
– ident: e_1_3_2_62_2
  doi: 10.1152/jn.01290.2004
– ident: e_1_3_2_9_2
  doi: 10.1111/1467-9280.00120
– ident: e_1_3_2_59_2
  doi: 10.1167/3.10.1
– ident: e_1_3_2_8_2
  doi: 10.3758/APP.72.7.1839
– ident: e_1_3_2_33_2
  doi: 10.1163/156856897X00366
– ident: e_1_3_2_22_2
  doi: 10.1523/JNEUROSCI.0991-07.2007
– ident: e_1_3_2_6_2
  doi: 10.1073/pnas.0402239101
– ident: e_1_3_2_53_2
  doi: 10.1038/369525a0
– ident: e_1_3_2_51_2
  doi: 10.1006/nimg.2001.0933
– ident: e_1_3_2_5_2
  doi: 10.1016/S0896-6273(02)01144-3
– ident: e_1_3_2_30_2
  doi: 10.1007/978-3-7091-6435-8
– ident: e_1_3_2_32_2
  doi: 10.1163/156856897X00357
– ident: e_1_3_2_60_2
  doi: 10.1038/nn.2706
– ident: e_1_3_2_35_2
  doi: 10.1073/pnas.1308141110
– ident: e_1_3_2_54_2
  doi: 10.1523/JNEUROSCI.1657-06.2006
– ident: e_1_3_2_12_2
  doi: 10.1126/science.1156540
– ident: e_1_3_2_15_2
  doi: 10.1097/00001756-199905140-00015
– ident: e_1_3_2_41_2
  doi: 10.1109/42.650881
– ident: e_1_3_2_63_2
  doi: 10.1152/jn.01316.2004
– ident: e_1_3_2_48_2
  doi: 10.1523/JNEUROSCI.0570-12.2012
– ident: e_1_3_2_34_2
  doi: 10.1523/JNEUROSCI.1760-09.2009
– ident: e_1_3_2_4_2
– ident: e_1_3_2_27_2
  doi: 10.1016/0010-0277(92)90034-F
– ident: e_1_3_2_52_2
  doi: 10.1016/S0896-6273(03)00265-4
– ident: e_1_3_2_44_2
  doi: 10.1002/(SICI)1522-2594(200005)43:5<705::AID-MRM13>3.0.CO;2-R
– ident: e_1_3_2_47_2
  doi: 10.1016/j.neuron.2012.05.026
– ident: e_1_3_2_23_2
  doi: 10.1016/j.tics.2003.09.002
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.0705495104
– ident: e_1_3_2_57_2
  doi: 10.1007/BF00250564
– ident: e_1_3_2_46_2
  doi: 10.1002/1522-2594(200102)45:2<184::AID-MRM1024>3.0.CO;2-C
– ident: e_1_3_2_19_2
  doi: 10.1097/00004728-199403000-00005
– ident: e_1_3_2_50_2
  doi: 10.1006/nimg.1998.0419
– ident: e_1_3_2_58_2
  doi: 10.1093/brain/103.2.221
– ident: e_1_3_2_56_2
  doi: 10.1093/cercor/11.12.1182
– ident: e_1_3_2_64_2
  doi: 10.1016/j.neuron.2009.12.006
– ident: e_1_3_2_2_2
  doi: 10.1126/science.282.5389.746
– ident: e_1_3_2_10_2
  doi: 10.1080/00223980.1948.9917373
– ident: e_1_3_2_18_2
  doi: 10.1016/j.neuroimage.2007.09.034
– ident: e_1_3_2_38_2
  doi: 10.1152/jn.00713.2009
– ident: e_1_3_2_21_2
  doi: 10.1016/0028-3932(91)90076-K
– ident: e_1_3_2_26_2
  doi: 10.1371/journal.pbio.0050328
– ident: e_1_3_2_65_2
  doi: 10.1152/jn.00102.2009
– ident: e_1_3_2_13_2
  doi: 10.1126/science.284.5416.970
– ident: e_1_3_2_55_2
  doi: 10.1126/science.7754376
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.0909180107
– ident: e_1_3_2_49_2
  doi: 10.1006/nimg.1997.0306
– ident: e_1_3_2_36_2
  doi: 10.1177/1073858405276871
– ident: e_1_3_2_31_2
  doi: 10.1167/10.5.1
– ident: e_1_3_2_61_2
  doi: 10.1523/JNEUROSCI.1930-08.2008
– ident: e_1_3_2_66_2
  doi: 10.1167/12.3.10
– ident: e_1_3_2_25_2
  doi: 10.1038/nature07246
– ident: e_1_3_2_29_2
  doi: 10.1073/pnas.0506806103
– ident: e_1_3_2_39_2
  doi: 10.1523/JNEUROSCI.2572-11.2011
– ident: e_1_3_2_42_2
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_3_2_40_2
  doi: 10.1006/nimg.1998.0395
SSID ssj0009593
Score 2.5729616
Snippet Numerosity, the set size of a group of items, is processed by the association cortex, but certain aspects mirror the properties of primary senses. Sensory...
Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized...
Number SenseNumerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized...
Number Sense Numerosity perception resembles primary sensory perception and, indeed, it has been called the number sense. As all primary senses are organized...
SourceID proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1123
SubjectTerms Adult
Biological and medical sciences
Brain
Brain Mapping
cortex
Cortexes
Displays
Female
Fundamental and applied biological sciences. Psychology
Human
Humans
Magnetic resonance imaging
Male
Mathematical Concepts
Mathematical functions
Mental stimulation
Motor ability
Neurons
Neurophysiology
Parietal Lobe - anatomy & histology
Parietal Lobe - physiology
Perception
Photic Stimulation
Representations
Scanning
Scientific Concepts
Sensory perception
Statistical variance
Topographic mapping
Topography
Tuning
Vertebrates: nervous system and sense organs
Young Adult
Title Topographic Representation of Numerosity in the Human Parietal Cortex
URI https://www.jstor.org/stable/42619326
https://www.ncbi.nlm.nih.gov/pubmed/24009396
https://www.proquest.com/docview/1430435036
https://www.proquest.com/docview/1430851896
https://www.proquest.com/docview/1660412659
https://www.proquest.com/docview/1808060804
https://www.proquest.com/docview/2000367925
Volume 341
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagExIviA0GGWMyEg9DKFVix3bz2LJNEwh42aS9VbHjSEhrUrWpBPvrOf9I4qJ1Ah4aVfYlVX1n586--z6E3islEia5igkrizjjSseSZiqWKXjnpaxook2h8Ndv_PI6-3zDboITU1Nd0sqxuru3ruR_tAptoFdTJfsPmu0fCg3wHfQLV9AwXP9Ox83SIU5bHOblUElUu_yMhV41NufCJzM6Qj7DO6hbiwuyavXP0D3tZjq4nf1RTqDAPidx6jIHukQCf1uwq2Aoh9xm-GzYb_1y65k1Z0NVmWX0KpvN1qnQ2WZhiNrd1uzH7-HOhGGJMIAG7sXiVtPEEEGShIbLLXVAV96uDB59sH6C90fvX9gDKko9Bqk8cci3gZqXC6tnkxWb0_wPgG37yu66HqM9IkTKRmhvOjubXWzBNHsAqKC0qvs9gxztn7DlxrhMVpNWW6xhZlWOEmV3zGJ9l6vn6JkPOvDUWdA-eqTrA_TE0ZD-OkD7Xn9rfOpRyD-8QOeBceFt48JNhQfjwj9qDDaBrXHhzriwM66X6Pri_OrTZew5N2LFJrSNSyEnKdeKlRmVQqVSTiQzTamQ4AwnlS4YYRmpuARPVJK0omklBFdVUeVZTukhGtVNrV8jbLgihS75BPykjBElhShpRgolNSdKlxEad0M4Vx6Q3vCi3M5tYEr43A__3A9_hE77G5YOi2W36KHVSS9ndwogVInQyZaSegGwB1NUnUTouNPa3E_1NcTHNIG4Ary9CL3ru2EhNqdrRa2bjZOB8GWSPyTDucG34yx_QMYgvXL4ZLtliMWREjlhEXrlLGv4I95Cj3b2vEFPh-l6jEbtaqPfgmvdyhM_H34D94_Ong
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topographic+representation+of+numerosity+in+the+human+parietal+cortex&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Harvey%2C+B+M&rft.au=Klein%2C+B+P&rft.au=Petridou%2C+N&rft.au=Dumoulin%2C+S+O&rft.date=2013-09-06&rft.eissn=1095-9203&rft.volume=341&rft.issue=6150&rft.spage=1123&rft_id=info:doi/10.1126%2Fscience.1239052&rft_id=info%3Apmid%2F24009396&rft.externalDocID=24009396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon