Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology
Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most c...
        Saved in:
      
    
          | Published in | European journal of medical research Vol. 29; no. 1; pp. 176 - 17 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        16.03.2024
     BioMed Central Ltd Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2047-783X 0949-2321 2047-783X  | 
| DOI | 10.1186/s40001-024-01763-1 | 
Cover
| Abstract | Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs—ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT—that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis. | 
    
|---|---|
| AbstractList | Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis. Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis. Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs--ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT--that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis. Keywords: Clear cell renal cell carcinoma, Prognostic risk model, Machine learning algorithm, Cuproptosis, Disulfidptosis, Long non-coding RNA, Targeted drugs, Immune inhibitors Abstract Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs—ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT—that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.  | 
    
| ArticleNumber | 176 | 
    
| Audience | Academic | 
    
| Author | Wu, Jun Chen, Pingping Che, Yinwei Zhao, Tao Zhao, Yinuo Chen, Ronghui Sun, Huashan Meng, Lingxin Jiao, Yuzhuo  | 
    
| Author_xml | – sequence: 1 givenname: Ronghui surname: Chen fullname: Chen, Ronghui organization: School of Clinical Medicine, Shandong Second Medical University, Department of Oncology, People’s Hospital of Rizhao – sequence: 2 givenname: Jun surname: Wu fullname: Wu, Jun organization: Department of Oncology, People’s Hospital of Rizhao – sequence: 3 givenname: Yinwei surname: Che fullname: Che, Yinwei organization: Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao – sequence: 4 givenname: Yuzhuo surname: Jiao fullname: Jiao, Yuzhuo organization: Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao – sequence: 5 givenname: Huashan surname: Sun fullname: Sun, Huashan organization: Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao – sequence: 6 givenname: Yinuo surname: Zhao fullname: Zhao, Yinuo organization: Department of Pathology, People’s Hospital of Rizhao – sequence: 7 givenname: Pingping surname: Chen fullname: Chen, Pingping organization: Department of Pathology, People’s Hospital of Rizhao – sequence: 8 givenname: Lingxin surname: Meng fullname: Meng, Lingxin email: menglx001623@163.com organization: Department of Oncology, People’s Hospital of Rizhao – sequence: 9 givenname: Tao surname: Zhao fullname: Zhao, Tao organization: Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38491523$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUl1rFDEUHaRia-0f8EECgvgyNZNkJhnfSvGjUBVEwbdwJx-7WbLJmsxY9vf4R812ar-QInlI7s05J5dz8rTaCzGYqnre4OOmEd2bzDDGTY0Jq3HDO1o3j6oDghmvuaA_9m6d96ujnFcFjTvS8b5_Uu1TwfqmJfSg-v0J1NIFg7yBFFxY1Dq5XyagTYqLEPPoFIIAfptdRtEiNZWLzRh3JQSNtMuTt07PrToZD6PRyAf19fNJRi4gtVNGyniPkilK81FBUi7ENbxFgPJoNmiMF5B0Lg8b5bKLAcWgoo-L7bPqsQWfzdHVflh9f__u2-nH-vzLh7PTk_NatYKO9QCakmFQBndMdIRAp0XLCeasNcyAaHVrCO4VtkJTMWAMTJWa9da22HZAD6uzWVdHWMlNcmtIWxnByctGTAsJqRjijTRa9YxyahUHJrgYSG8bSihpbTcwZYoWnbWmsIHtBXh_LdhguUtQzgnKkqC8TFA2hfV6ZhWTf04mj3Lt8s4vCCZOWZK-FaQ8zHCBvrwHXcUpFX-zpJhywdu2YzeoBZSpXbBxTKB2ovKEi66jRY8X1PE_UGVps3aq_DvrSv8O4dUtwtKAH5c5-mksseW7wBdXU07D2uhrD_5-wAIQM0ClmHMyVio3wk6njOD8w2aRe9T_cvgql1zAYWHSjW0PsP4AfzQPkw | 
    
| CitedBy_id | crossref_primary_10_1177_15330338241307686 crossref_primary_10_1016_j_cpt_2024_07_005 crossref_primary_10_1007_s10495_024_01993_y  | 
    
| Cites_doi | 10.3322/caac.21763 10.1056/NEJMra1814259 10.1177/17562872231164803 10.1056/NEJMoa2103425 10.1126/science.abf0529 10.3389/fendo.2023.1180404 10.18637/jss.v050.i11 10.3389/fimmu.2022.971142 10.1001/jamapsychiatry.2019.3671 10.1093/bib/bbab260 10.1101/gr.239244.118 10.1126/science.abo3959 10.1016/j.tcb.2014.11.006 10.1056/NEJMra1601333 10.1016/j.celrep.2018.03.075 10.1056/NEJMoa1816047 10.1093/bioinformatics/btu684 10.1007/s10278-019-00230-2 10.1002/iub.2341 10.1016/j.ejca.2021.03.042 10.1016/j.annonc.2020.05.001 10.1200/JCO.2018.79.2549 10.1073/pnas.1319196111 10.1038/nchembio.72 10.1038/s41467-023-39401-9 10.1038/ki.1995.125 10.1186/s13046-023-02675-4 10.3389/fimmu.2022.1029092 10.1007/s00432-023-05211-1 10.3389/fendo.2023.1120216 10.1186/1471-2105-11-311 10.1016/S1470-2045(19)30413-9 10.1093/bioinformatics/btu393 10.3390/cancers13235981 10.1038/s41416-020-0890-y 10.1007/s00432-023-04877-x 10.1016/j.eururo.2018.08.036 10.1016/S1470-2045(23)00097-9 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 10.18632/oncotarget.15346 10.1158/0008-5472.CAN-15-2328 10.1007/s00432-023-05201-3 10.1096/fj.202300474R 10.1016/S0140-6736(21)00580-8 10.1007/s00432-023-05378-7 10.1038/s41556-023-01091-2 10.1016/j.cell.2017.01.017 10.1016/j.canlet.2017.01.010 10.1002/cncr.23776 10.3390/ijms24054615 10.1158/1078-0432.CCR-040031 10.1016/j.eururo.2018.10.010 10.3390/biom12121890 10.3390/ijms24021464 10.3389/fimmu.2019.00774 10.1016/S0140-6736(09)60229-4 10.3390/cancers12082214 10.1097/CJI.0b013e318167b023 10.1158/0008-5472.CAN-14-1703 10.3389/fimmu.2023.1097075 10.3390/biomedicines9080852 10.1007/s10495-023-01900-x 10.3389/fimmu.2022.954440 10.3390/pharmaceutics14102101 10.2196/27633 10.1016/j.cell.2019.10.007 10.18632/aging.103169 10.1007/s00330-018-5872-6 10.1093/nar/gkv007 10.1186/s43556-023-00132-4 10.1136/esmoopen-2020-000798 10.1056/NEJMoa1816714 10.1038/s41422-022-00653-7 10.3390/genes13050851 10.3390/cells12010173 10.5858/arpa.2012-0085-RA 10.1155/2019/4602371 10.1038/s41551-020-0524-y 10.1186/s12943-023-01732-y 10.3390/foods9101486 10.1038/s41573-023-00749-8 10.1016/j.celrep.2016.12.019 10.1016/j.cell.2018.01.011 10.1093/bioinformatics/btac409 10.1038/ncomms3612 10.1186/s13059-016-1092-z 10.1186/s12935-021-02284-1 10.1158/2159-8290.CD-17-1246 10.1158/0008-5472.CAN-08-4323  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s40001-024-01763-1 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2047-783X | 
    
| EndPage | 17 | 
    
| ExternalDocumentID | oai_doaj_org_article_edc94373fc7a4878b29f132325f6b4ce 10.1186/s40001-024-01763-1 A786635827 38491523 10_1186_s40001_024_01763_1  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GrantInformation_xml | – fundername: Young experts of Taishan Scholars grantid: tsqn202211380 – fundername: National Natural Science Foundation of China grantid: 82002083  | 
    
| GroupedDBID | --- 0R~ 4.4 53G 5GY 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU DIK EBD EBLON EBS EMOBN F5P FYUFA GROUPED_DOAJ HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M1P M48 OK1 P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 UKHRP AAYXX CITATION ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 2VQ ADTOC AHSBF EJD H13 IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c583t-bad32bbce0648622a6d85720745e4ea85d5e209c0f8d38b00a4c20949ff50f6a3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2047-783X 0949-2321  | 
    
| IngestDate | Fri Oct 03 12:53:48 EDT 2025 Sun Oct 26 03:39:43 EDT 2025 Thu Sep 04 18:35:46 EDT 2025 Tue Oct 14 12:41:11 EDT 2025 Mon Oct 20 22:57:09 EDT 2025 Mon Oct 20 17:04:12 EDT 2025 Thu May 22 21:24:06 EDT 2025 Thu Apr 03 07:05:17 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Wed Oct 01 03:05:56 EDT 2025 Sat Sep 06 07:33:35 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Immune inhibitors Disulfidptosis Cuproptosis Machine learning algorithm Prognostic risk model Clear cell renal cell carcinoma Targeted drugs Long non-coding RNA  | 
    
| Language | English | 
    
| License | 2024. The Author(s). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c583t-bad32bbce0648622a6d85720745e4ea85d5e209c0f8d38b00a4c20949ff50f6a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://www.proquest.com/docview/3037875564?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 38491523 | 
    
| PQID | 3037875564 | 
    
| PQPubID | 2040181 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_edc94373fc7a4878b29f132325f6b4ce unpaywall_primary_10_1186_s40001_024_01763_1 proquest_miscellaneous_2958294340 proquest_journals_3037875564 gale_infotracmisc_A786635827 gale_infotracacademiconefile_A786635827 gale_healthsolutions_A786635827 pubmed_primary_38491523 crossref_citationtrail_10_1186_s40001_024_01763_1 crossref_primary_10_1186_s40001_024_01763_1 springer_journals_10_1186_s40001_024_01763_1  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-03-16 | 
    
| PublicationDateYYYYMMDD | 2024-03-16 | 
    
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-16 day: 16  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | European journal of medical research | 
    
| PublicationTitleAbbrev | Eur J Med Res | 
    
| PublicationTitleAlternate | Eur J Med Res | 
    
| PublicationYear | 2024 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC  | 
    
| References | D Tang (1763_CR10) 2022; 32 ZC Li (1763_CR61) 2019; 29 A Rajkomar (1763_CR23) 2019; 380 T Choueiri (1763_CR80) 2023; 24 G Zhang (1763_CR74) 2022; 13 E Jonasch (1763_CR79) 2021; 385 H Xin (1763_CR78) 2009; 69 C Sweeney (1763_CR91) 2021; 398 L Au (1763_CR81) 2021; 23 PÁ Ballesteros (1763_CR45) 2021; 13 X Wang (1763_CR56) 2023; 37 G Outeiro-Pinho (1763_CR21) 2020; 12 Y Yan (1763_CR75) 2023; 14 CJ Ricketts (1763_CR70) 2018; 23 Y Şenbabaoğlu (1763_CR47) 2016; 17 DS Sutaria (1763_CR90) 2022; 14 H Yuan (1763_CR16) 2022; 13 EK Gustavsson (1763_CR33) 2022; 38 Y Zou (1763_CR92) 2017; 8 J Xie (1763_CR13) 2023; 22 D Maeser (1763_CR38) 2021; 22 Y-Q Li (1763_CR68) 2020; 72 Y Pang (1763_CR34) 2023; 24 M Gigante (1763_CR49) 2008; 31 G Curigliano (1763_CR89) 2021; 151 M Xie (1763_CR55) 2022; 12 R Tibshirani (1763_CR24) 1997; 16 K Peng (1763_CR17) 2023; 149 F Gatto (1763_CR71) 2014; 111 UB Mogensen (1763_CR35) 2012; 50 Y Nie (1763_CR83) 2019; 2019 T Wu (1763_CR36) 2021; 2 L Xu (1763_CR65) 2023; 149 MV Babak (1763_CR67) 2021; 9 RJ Motzer (1763_CR6) 2019; 380 A Mayakonda (1763_CR30) 2018; 28 P Tsvetkov (1763_CR31) 2022; 375 TK Choueiri (1763_CR5) 2017; 376 K Hadian (1763_CR9) 2023; 22 A-KA Lalani (1763_CR2) 2019; 75 P Charoentong (1763_CR39) 2017; 18 S Zhao (1763_CR63) 2023; 14 D Lu (1763_CR27) 2023; 14 ME Ritchie (1763_CR28) 2015; 43 BI Rini (1763_CR44) 2009; 373 S Han (1763_CR60) 2019; 32 N Mendhiratta (1763_CR3) 2021; 39 Z Bian (1763_CR15) 2022; 13 XL Xing (1763_CR62) 2021; 21 J Hu (1763_CR82) 2023; 14 Z Gu (1763_CR37) 2014; 30 HI Wettersten (1763_CR69) 2015; 75 RJ Motzer (1763_CR42) 2008; 113 P Sharma (1763_CR53) 2017; 168 B-E Kim (1763_CR66) 2008; 4 HS Rugo (1763_CR88) 2020; 31 F Kopp (1763_CR20) 2018; 172 V Nanni (1763_CR73) 2020; 9 X Liu (1763_CR11) 2023; 25 M Rausch (1763_CR93) 2020; 123 Y Meng (1763_CR14) 2023; 4 Y Tang (1763_CR22) 2017; 391 X Tang (1763_CR77) 2016; 76 M Ferro (1763_CR59) 2023; 24 V Montinaro (1763_CR50) 1995; 47 R Pio (1763_CR48) 2019; 10 RA Poldrack (1763_CR25) 2020; 77 R Goyal (1763_CR43) 2013; 137 M Ferro (1763_CR58) 2023; 15 JJ Hsieh (1763_CR76) 2018; 36 RJ Motzer (1763_CR4) 2004; 10 Z Bai (1763_CR26) 2022; 12 R Weissleder (1763_CR54) 2020; 4 SJ Goodswen (1763_CR29) 2010; 11 1763_CR86 R Siegel (1763_CR1) 2023; 73 RJ Motzer (1763_CR87) 2019; 20 G Yu (1763_CR32) 2015; 31 F Klemm (1763_CR52) 2015; 25 T Wang (1763_CR85) 2018; 8 1763_CR40 D Clark (1763_CR84) 2019; 179 L Yang (1763_CR18) 2023; 149 Y Li (1763_CR57) 2023; 149 U Capitanio (1763_CR41) 2019; 75 C Zhang (1763_CR64) 2023; 29 P Zheng (1763_CR12) 2023; 42 BI Rini (1763_CR7) 2019; 380 1763_CR8 GS Netti (1763_CR51) 2020; 12 MA Kahlson (1763_CR72) 2022; 375 Y Shen (1763_CR19) 2023; 13 K Yoshihara (1763_CR46) 2013; 4  | 
    
| References_xml | – volume: 73 start-page: 17 year: 2023 ident: 1763_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21763 – volume: 380 start-page: 1347 year: 2019 ident: 1763_CR23 publication-title: N Engl J Med doi: 10.1056/NEJMra1814259 – volume: 15 start-page: 175628722311648 year: 2023 ident: 1763_CR58 publication-title: Therap Adv Urol. doi: 10.1177/17562872231164803 – volume: 385 start-page: 2036 year: 2021 ident: 1763_CR79 publication-title: N Engl J Med doi: 10.1056/NEJMoa2103425 – volume: 375 start-page: 1254 year: 2022 ident: 1763_CR31 publication-title: Science doi: 10.1126/science.abf0529 – volume: 14 start-page: 1180404 year: 2023 ident: 1763_CR63 publication-title: Front Endocrinol doi: 10.3389/fendo.2023.1180404 – volume: 50 start-page: 1 year: 2012 ident: 1763_CR35 publication-title: J Stat Softw doi: 10.18637/jss.v050.i11 – volume: 13 start-page: 971142 year: 2022 ident: 1763_CR16 publication-title: Front Immunol doi: 10.3389/fimmu.2022.971142 – volume: 77 start-page: 534 year: 2020 ident: 1763_CR25 publication-title: JAMA Psychiat doi: 10.1001/jamapsychiatry.2019.3671 – volume: 22 start-page: bbab260 year: 2021 ident: 1763_CR38 publication-title: Brief Bioinform doi: 10.1093/bib/bbab260 – volume: 28 start-page: 1747 year: 2018 ident: 1763_CR30 publication-title: Genome Res doi: 10.1101/gr.239244.118 – volume: 375 start-page: 1231 year: 2022 ident: 1763_CR72 publication-title: Science doi: 10.1126/science.abo3959 – volume: 25 start-page: 198 year: 2015 ident: 1763_CR52 publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2014.11.006 – volume: 376 start-page: 354 year: 2017 ident: 1763_CR5 publication-title: N Engl J Med doi: 10.1056/NEJMra1601333 – volume: 23 start-page: 313 year: 2018 ident: 1763_CR70 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.03.075 – volume: 380 start-page: 1103 year: 2019 ident: 1763_CR6 publication-title: N Engl J Med doi: 10.1056/NEJMoa1816047 – volume: 31 start-page: 608 year: 2015 ident: 1763_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu684 – volume: 23 start-page: 313 year: 2021 ident: 1763_CR81 publication-title: Cancer Cell – volume: 32 start-page: 638 year: 2019 ident: 1763_CR60 publication-title: J Digit Imaging doi: 10.1007/s10278-019-00230-2 – volume: 72 start-page: 1900 year: 2020 ident: 1763_CR68 publication-title: IUBMB Life doi: 10.1002/iub.2341 – volume: 151 start-page: 49 year: 2021 ident: 1763_CR89 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2021.03.042 – volume: 31 start-page: 1001 year: 2020 ident: 1763_CR88 publication-title: Ann Oncol doi: 10.1016/j.annonc.2020.05.001 – volume: 36 start-page: 3533 year: 2018 ident: 1763_CR76 publication-title: J Clin Oncol doi: 10.1200/JCO.2018.79.2549 – volume: 111 start-page: 201319196 year: 2014 ident: 1763_CR71 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1319196111 – volume: 4 start-page: 176 year: 2008 ident: 1763_CR66 publication-title: Nat Chem Biol doi: 10.1038/nchembio.72 – volume: 14 start-page: 3673 year: 2023 ident: 1763_CR75 publication-title: Nat Commun doi: 10.1038/s41467-023-39401-9 – volume: 47 start-page: 829 year: 1995 ident: 1763_CR50 publication-title: Kidney Int doi: 10.1038/ki.1995.125 – volume: 42 start-page: 103 year: 2023 ident: 1763_CR12 publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-023-02675-4 – volume: 13 start-page: 1029092 year: 2023 ident: 1763_CR19 publication-title: Front Immunol doi: 10.3389/fimmu.2022.1029092 – volume: 149 start-page: 13995 year: 2023 ident: 1763_CR57 publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-023-05211-1 – volume: 14 start-page: 1120216 year: 2023 ident: 1763_CR82 publication-title: Front Endocrinol doi: 10.3389/fendo.2023.1120216 – volume: 11 start-page: 311 year: 2010 ident: 1763_CR29 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-311 – volume: 2 start-page: 100141 year: 2021 ident: 1763_CR36 publication-title: Innovation – volume: 20 start-page: 1370 year: 2019 ident: 1763_CR87 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30413-9 – volume: 30 start-page: 2811 year: 2014 ident: 1763_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu393 – volume: 13 start-page: 5981 year: 2021 ident: 1763_CR45 publication-title: Cancers doi: 10.3390/cancers13235981 – volume: 123 start-page: 556 year: 2020 ident: 1763_CR93 publication-title: Br J Cancer doi: 10.1038/s41416-020-0890-y – volume: 149 start-page: 9787 year: 2023 ident: 1763_CR18 publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-023-04877-x – volume: 75 start-page: 74 year: 2019 ident: 1763_CR41 publication-title: Eur Urol doi: 10.1016/j.eururo.2018.08.036 – volume: 24 start-page: 553 year: 2023 ident: 1763_CR80 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(23)00097-9 – volume: 16 start-page: 385 year: 1997 ident: 1763_CR24 publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3 – volume: 8 start-page: 20825 year: 2017 ident: 1763_CR92 publication-title: Oncotarget doi: 10.18632/oncotarget.15346 – volume: 76 start-page: 1892 year: 2016 ident: 1763_CR77 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-15-2328 – volume: 149 start-page: 13793 year: 2023 ident: 1763_CR17 publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-023-05201-3 – volume: 37 start-page: e23143 year: 2023 ident: 1763_CR56 publication-title: FASEB J doi: 10.1096/fj.202300474R – volume: 398 start-page: 131 year: 2021 ident: 1763_CR91 publication-title: Lancet doi: 10.1016/S0140-6736(21)00580-8 – volume: 149 start-page: 16511 year: 2023 ident: 1763_CR65 publication-title: J Cancer Res Clin Oncol doi: 10.1007/s00432-023-05378-7 – volume: 25 start-page: 404 year: 2023 ident: 1763_CR11 publication-title: Nat Cell Biol doi: 10.1038/s41556-023-01091-2 – volume: 168 start-page: 707 year: 2017 ident: 1763_CR53 publication-title: Cell doi: 10.1016/j.cell.2017.01.017 – volume: 39 start-page: 327 year: 2021 ident: 1763_CR3 publication-title: Urol Oncol Semin Orig Investig – volume: 391 start-page: 12 year: 2017 ident: 1763_CR22 publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.01.010 – volume: 113 start-page: 1552 year: 2008 ident: 1763_CR42 publication-title: Cancer doi: 10.1002/cncr.23776 – volume: 24 start-page: 4615 year: 2023 ident: 1763_CR59 publication-title: Int J Mol Sci doi: 10.3390/ijms24054615 – ident: 1763_CR8 – volume: 10 start-page: 6302S year: 2004 ident: 1763_CR4 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-040031 – volume: 75 start-page: 100 year: 2019 ident: 1763_CR2 publication-title: Eur Urol doi: 10.1016/j.eururo.2018.10.010 – volume: 12 start-page: 1890 year: 2022 ident: 1763_CR26 publication-title: Biomolecules doi: 10.3390/biom12121890 – volume: 24 start-page: 1464 year: 2023 ident: 1763_CR34 publication-title: Int J Mol Sci doi: 10.3390/ijms24021464 – volume: 10 start-page: 774 year: 2019 ident: 1763_CR48 publication-title: Front Immunol doi: 10.3389/fimmu.2019.00774 – volume: 373 start-page: 1119 year: 2009 ident: 1763_CR44 publication-title: Lancet doi: 10.1016/S0140-6736(09)60229-4 – volume: 12 start-page: 2214 year: 2020 ident: 1763_CR21 publication-title: Cancers doi: 10.3390/cancers12082214 – volume: 31 start-page: 254 year: 2008 ident: 1763_CR49 publication-title: J Immunother doi: 10.1097/CJI.0b013e318167b023 – volume: 75 start-page: 2541 year: 2015 ident: 1763_CR69 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-1703 – volume: 14 start-page: 1097075 year: 2023 ident: 1763_CR27 publication-title: Front Immunol doi: 10.3389/fimmu.2023.1097075 – volume: 9 start-page: 852 year: 2021 ident: 1763_CR67 publication-title: Biomedicines. doi: 10.3390/biomedicines9080852 – volume: 29 start-page: 103 year: 2023 ident: 1763_CR64 publication-title: Apoptosis doi: 10.1007/s10495-023-01900-x – volume: 13 start-page: 954440 year: 2022 ident: 1763_CR74 publication-title: Front Immunol doi: 10.3389/fimmu.2022.954440 – volume: 14 start-page: 2101 year: 2022 ident: 1763_CR90 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14102101 – ident: 1763_CR40 doi: 10.2196/27633 – volume: 179 start-page: 207 year: 2019 ident: 1763_CR84 publication-title: Cell doi: 10.1016/j.cell.2019.10.007 – volume: 12 start-page: 7585 year: 2020 ident: 1763_CR51 publication-title: Aging doi: 10.18632/aging.103169 – volume: 29 start-page: 3996 year: 2019 ident: 1763_CR61 publication-title: Eur Radiol doi: 10.1007/s00330-018-5872-6 – volume: 43 start-page: e47 year: 2015 ident: 1763_CR28 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 4 start-page: 18 year: 2023 ident: 1763_CR14 publication-title: Mol Biomed. doi: 10.1186/s43556-023-00132-4 – ident: 1763_CR86 doi: 10.1136/esmoopen-2020-000798 – volume: 380 start-page: 1116 year: 2019 ident: 1763_CR7 publication-title: N Engl J Med doi: 10.1056/NEJMoa1816714 – volume: 32 start-page: 417 year: 2022 ident: 1763_CR10 publication-title: Cell Res doi: 10.1038/s41422-022-00653-7 – volume: 13 start-page: 851 year: 2022 ident: 1763_CR15 publication-title: Genes doi: 10.3390/genes13050851 – volume: 12 start-page: 173 year: 2022 ident: 1763_CR55 publication-title: Cells doi: 10.3390/cells12010173 – volume: 137 start-page: 467 year: 2013 ident: 1763_CR43 publication-title: Arch Pathol Lab Med doi: 10.5858/arpa.2012-0085-RA – volume: 2019 start-page: 4602371 year: 2019 ident: 1763_CR83 publication-title: Biomed Res Int doi: 10.1155/2019/4602371 – volume: 4 start-page: 489 year: 2020 ident: 1763_CR54 publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-0524-y – volume: 22 start-page: 46 year: 2023 ident: 1763_CR13 publication-title: Mol Cancer doi: 10.1186/s12943-023-01732-y – volume: 9 start-page: 1486 year: 2020 ident: 1763_CR73 publication-title: Foods doi: 10.3390/foods9101486 – volume: 22 start-page: 723 year: 2023 ident: 1763_CR9 publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-023-00749-8 – volume: 18 start-page: 248 year: 2017 ident: 1763_CR39 publication-title: Cell Rep doi: 10.1016/j.celrep.2016.12.019 – volume: 172 start-page: 393 year: 2018 ident: 1763_CR20 publication-title: Cell doi: 10.1016/j.cell.2018.01.011 – volume: 38 start-page: 3844 year: 2022 ident: 1763_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac409 – volume: 4 start-page: 2612 year: 2013 ident: 1763_CR46 publication-title: Nat Commun doi: 10.1038/ncomms3612 – volume: 17 start-page: 231 year: 2016 ident: 1763_CR47 publication-title: Genome Biol doi: 10.1186/s13059-016-1092-z – volume: 21 start-page: 591 year: 2021 ident: 1763_CR62 publication-title: Cancer Cell Int doi: 10.1186/s12935-021-02284-1 – volume: 8 start-page: 1142 year: 2018 ident: 1763_CR85 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-1246 – volume: 69 start-page: 2506 year: 2009 ident: 1763_CR78 publication-title: Can Res doi: 10.1158/0008-5472.CAN-08-4323  | 
    
| SSID | ssj0000626799 | 
    
| Score | 2.3828313 | 
    
| Snippet | Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding... Abstract Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long...  | 
    
| SourceID | doaj unpaywall proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 176 | 
    
| SubjectTerms | Accuracy Algorithms Analysis Artificial intelligence Biomedicine Cancer Cancer therapies Carcinoma, Renal cell Cell death Clear cell renal cell carcinoma Copper Cuproptosis Data mining Development and progression Disulfidptosis Drug therapy Ferroptosis Genes Genetic aspects Genomes Immunotherapy Infectious Diseases Internal Medicine Kidney cancer Kinases Long non-coding RNA Machine learning Machine learning algorithm Medical prognosis Medicine Medicine & Public Health Metabolism Mutation Nomograms Oncology Patients Precision medicine Prognosis Prognostic risk model Proteins RNA Surgery Survival analysis  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiDeBAkZC4kCjJo6T2NwWRFUhtQdEpd4sxw-0UnBWm41Qfw9_lBknG3aFVDhw28R2Hp6Hv9mMvyHkjW4K7mxTpYXJZQr4X6caxJ7q3HJrIRaDNsy2OK9OL_jny_Jyp9QX5oSN9MDjxB07ayTS73hTawDXomHSQwRVsNJXDTcOvW8m5E4wNfpgVtVSbnfJiOq451nMHmKYdAFGleZ7K1Ek7P_TLe-sS_OH0jvk1hBW-uqHbtudtejkHrk7gUi6GB_-PrnhwgNy82z6TP6Q_DyLKZKOTjUhvqV2jV6NYjZW6JCameqJjYR2npoBGlabDg91sNQu-6H1SzueSuN-F2dpG8yX80VPl4EavDLFf_3p2uGzxJ8GCxOF7rt-TzUF9VnRTczK7eHGUy0f2oXIk331iFycfPr68TSdqjGkphTFJm20LVjTGAcgBsIgpisrypoBBCkdd1qUtnQskybzwhYCrFlzA8dcel9mvtLFY3IQuuCeEpp5nlnuZe61AADDZCOkdbBOMkRwniUk30pGmYmqHCtmtCqGLKJSozQVSFNFaao8Ie_mMauRqOPa3h9Q4HNPJNmOJ0D11KR66m-ql5BXqC5q3LE6uwq1qAXiOMHqhLyNPdBZwAsYPe15gGlA2q29nod7PcHIzX7zViXV5GR6BegD3G1ZVjwhr-dmHImJc8F1Q6-YhOHIAZgl5MmoyvNLF4JLgG9FQo62uv374tfN3dGs__8w1c_-x1Q_J7dZNF2w2-qQHGzWg3sBaHDTvIyG_wvvVFgb priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBZdCrs8jN26ees2DQZ7WEVtWXbkwRjpaCmDhlFW6JuQdSmBzM7ihNHfsz-6c-RLGwZhb7Yl-aJz0Sfr6DuEvNdlKpwtc5aapGCA_zXTIHamEyushbkYlGG0xTQ_vRDfLrPLHTLt98JgWGXvE4OjtrXBf-SH4GpBt7IsF18WvxhmjcLV1T6Fhu5SK9jPgWLsDtnlyIw1IrtHx9Pv58Nflxjw-7hoCfhEwQBOJP1OGpkfNiIOEUYcAzPA8FiyMVoFUv9_XfetsWtYTH1A7q2rhb7-refzW-PVySPysAOadNJqxmOy46on5O5Zt5T-lPw5C2GUjnZ5I66YXaLnoxixVdVI30x1x1hCa0_NGgoWqxpPdWWpnTXruZ_Z9hILe2KcpfPKnE8nDZ1V1OCdKa4M0KXDdwmHBpMXVfVP_YlqCiq2oKsQudvAg7t8P7SuApf29TNycXL84-sp6zI2MJPJdMVKbVNelsYB0IGpEte5ldmYA0zJnHBaZjZzPC5M7KVNJVi8FoajJLzPYp_rdI-MqrpyLwiNvYit8EXitQSQw4tSFtbBWMoR5XkekaSXjDIdnTlm1ZirMK2RuWqlqUCaKkhTJRH5OLRZtGQeW2sfocCHmkjEHS7UyyvV2bVy1hTIDuXNWMPcT5a88DDBT3nm81IYF5G3qC6q3dU6uBM1GUvEepKPI_Ih1ECHAh9gdLcvAroBqbk2au5v1ARHYDaLe5VUnSNq1I3ZROTdUIwtMbiucvW6UbyA5sgTGEfkeavKw0enUhQA8dKIHPS6fXPzbX13MOj_f3T1y-2v_orc58EowSLzfTJaLdfuNWDBVfmmM_C_V1lX0A priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQkIA9IO4EBhgJiQcWkTiOa_NWJqYJaXtATNqb5fgyVSpJ1bSa9nv4o5zjuKEVaIK3Jr6k8bn4O_HxZ0Lemabi3jUir2ypcsD_Jjcg9tyUjjsHsRiUYbbFmTg5518v6otEk4N7YbbX70spPva8iEk_DHMlwBZyiHRuwyQl4sKsOBq_pxSAzCdKbfbF_LXpztwTKfr_dMRbM9G4NLpP7q7bhbm-MvP51uxz_IDcT7CRTgc5PyS3fPuI3DlNC-OPyc_TmBTpaToF4jJ3S_RjFPOv2g7JmKlJ_CO0C9SuoWCx6vDStI66Wb-eh5kbbuVxh4t3dN7ab2fTns5aarFnit_56dLjf4k_LR5F1HY_zCdqKCjMgq5iHm4PD06n99CujczY10_I-fGX70cneTp_Ibe1rFZ5Y1zFmsZ6gC0Q-DAjnKwnDEBH7bk3sna1Z4WyRZCukmC_hlu45iqEugjCVE_JXtu1_jmhReCF40GVwUiALEw1UjkPMyNDzBZYRsqNZLRN5OR4RsZcxyBFCj1IU4M0dZSmLjPyYWyzGKg5bqz9GQU-1kRa7XgDtE0nK9XeWYVcT8FODERysmEqQLhesTqIhlufkTeoLnrYozo6Bz2dSERukk0y8j7WQPcAL2BN2uUAw4BEWzs1D3Zqglnb3eKNSurkVnoNeAMcbF0LnpG3YzG2xFS51nfrXjMFzZH1r8jIs0GVx5euJFcA2KqMHG50-3fnN43d4aj__zDUL_6v95fkHotGChYqDsjearn2rwDprZrX0cR_AZwzSBo priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF-kB348-H0aPXUFwQcvvWTz0Y1vVTwO4YqIhfq0bPbjqMakpAly_jv-o85s0tiqHAq-tdnZTXc6MzvDzvyGkGcyj2Kj89SPVJj54P9LX8Lf7stQx1pDLAZjmG0xS0_m8dtFsujbAWEtjGnrT3AMQKg53q4_L7ryBmyfYOqjlbadtvP0aB0HLiuIYTIFKIsPodBemoBjPiJ789m76UeHthdnPvgOGH4xxCaY8GixKaH54yI7x5RD8__dZm8dWsMt6jVypS1X8vyrLIqtg-r4Bik2W-zyUz6P2yYfq2-_oD_-Jx7cJNd7h5ZOOwm8RS6Z8ja5fNpf2d8h309duqahfX-KM1_XaGEpZoaVFcJEU9kjo9DKUtXCwKqp8KssNdXLdVvYpe4e-a72xmhalOr9bLqmy5IqXJniDQStDf4W91Fhk6Sy-iJfUklBlFe0cRnCa3hx31eIVqXD7D6_S-bHbz68PvH7zhC-SnjU-LnUEctzZcChgpCMyVTzZMLAHUpMbCRPdGJYkKnAch1xsCwyVgyFwNoksKmM9smorEpzn9DAxoGObRZaycGZYlnOM23gzGboTVrmkXAjCEL1sOnYvaMQLnziqei4L4D7wnFfhB55McxZdaAhF1K_QvkaKBHw2z2o6jPR2w8BQpAhCpVVEwkxJs9ZZsMIRDqxaR4r45EnKJ2iq54dzJaYTjj6lJxNPPLcUaDhgg0o2ddfABsQAmyH8mCHEgyO2h3eaIDoDd5agCcEpj9J0tgjT4dhnIlJfKWp2rVgGUxHPMLAI_c6zRk2HfE4A1cy8sjhRpV-Ln4R7w4HdfsLVj_4N_KH5CpzSgUalR6QUVO35hH4oE3-uLctPwD45Xw1 priority: 102 providerName: Unpaywall  | 
    
| Title | Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology | 
    
| URI | https://link.springer.com/article/10.1186/s40001-024-01763-1 https://www.ncbi.nlm.nih.gov/pubmed/38491523 https://www.proquest.com/docview/3037875564 https://www.proquest.com/docview/2958294340 https://eurjmedres.biomedcentral.com/counter/pdf/10.1186/s40001-024-01763-1 https://doaj.org/article/edc94373fc7a4878b29f132325f6b4ce  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: RBZ dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2047-783X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: M48 dateStart: 20090601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: AAJSJ dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2047-783X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000626799 issn: 0949-2321 databaseCode: C6C dateStart: 20090112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9tAEF5yQI-H0rtqU3cLpX1o1Eqra1UoxQkJwWAT0hqcp2W1RzC4kuOD1r-nf7QzK1mNaQh5krSXpZ1jZ7yz3xDyThZRbHSR-pEKcx_sf-lLILsvQx1rDb4Y1GG0xSA9Gca9UTLaIutw22YC59e6dphPajibfPp9ufoGAv_VCTxPP8_jwAUGMYynAHnxw_fTSx8TS-EGbJNlY5vswuKVY3aHfuMB1MqapZnLMskQsyDj0Wh9tObakTeWL4fy_78uv7KYtbur98ndZTmVq19yMrmygB0_JA8ay5N2a1Z5RLZM-Zjc6Td760_In76LqzS0SSRx4esZqkKKIVxlhXjOVDYQJrSyVC2hYrqo8FGWmurxfDmxY10X-e6QjNF0UqqzQXdOxyVVODLFrQI6M_gu7lZhNqOy-im_UEmB56Z04UJ55_DDTQIgWpUOXHv1lAyPj34cnvhNCgdfJTxa-IXUESsKZcDyAd-JyVTzJGNgtyQmNpInOjEsyFVguY44qAAZK3iOc2uTwKYyekZ2yqo0LwgNbBzo2OahlRysHpYXPNcGFleGZp9lHgnXlBGqwTfHNBsT4fwcnoqamgKoKRw1ReiRj22faY3ucWPrAyR42xKRuV1BNbsQjaALo1WOcFFWZRKcQV6w3ILHH7HEpkWsjEfeILuI-phrq19EN-No_HGWeeSDa4E8Dx-gZHNQAqYBsbo2Wu5ttATNoDar1ywp1oIlwGQBHZ0kaeyRt2019sRou9JUy7lgOXRH4MDAI89rVm4_OuJxDjZf5JH9NW__G_ymudtv-f8WU_3yFu_2itxjTjJBLNM9srOYLc1rsBAXRYdsZ6OsQ3a73d73HlwPjganZ1B6mB523L8uHacFoGY4OO2e_wU7tGWm | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJKIPxrtVlDHR-CAN7XTanTEhBhQCAhtDIOFtnM6FkKztut0N4ff4P_xtnplOCxsT4gtv285l2zlnzqVzzncQeifLjBpdFnGmUh6D_S9jCWSPZaqp1uCLQZuLthgWuyf022l-uoD-dLkwLqyyk4leUOtauW_k6yBqgbfyvKCfx79iVzXKna52JTRkKK2gNzzEWEjs2DeXF-DCNRt7X4He7wnZ2T7-shuHKgOxylk2jUupM1KWyoByBvOeyEKzfEBAteaGGslynRuScJVYpjMGXCqpgmvKrc0TW8gM5r2DlmhGOTh_S1vbw-9H_VeeBPyFAW8B_yiPwXxJu8wdVqw3NPERTcQFgsBGj9M57eiLCPyrKq7pyv7w9j5anlVjeXkhR6Nr-nHnIXoQDFu82XLiI7Rgqsfo7mE4un-Cfh_6sE2DQ52Ks1hPnKTFLkKsqh1cNJYBIQXXFqsZNIyntbuUlcb6vJmN7Llub8U-B8doPKrU0XCzwecVVm5m7E4i8MS4Z_E_lSuWVNU_5ScsMbD0GE99pHADfxzqC-G68tjdl0_Rya3Q7hlarOrKvEA4sTTR1PLUSgZGFeEl49qA7ibOqrQkQmlHGaECfLqr4jES3o1ihWipKYCawlNTpBH62I8Zt-AhN_becgTvezrgb3-jnpyJIEeE0Yo7NCqrBhJ8TVYSbtMM-Cq3RUmVidCqYxfRZtH24ktsDpizLRkZROiD7-EEGLyAkiEPA5bBQYHN9VyZ6wmCR803dywpguBrxNU2jdDbvtmNdMF8lalnjSAchjtcwiRCz1tW7l86Y5SDSZlFaK3j7avJb1q7tZ7__2OpX9786Ktoeff48EAc7A33X6F7xG9Q2J3FClqcTmbmNdih0_JN2OwY_bht-fIX_oyUgA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQkAY8IO4EBjMSEg8sWuo4qc1bKVTjsgohJu3NcnyZKhWnalOh_R7-KOc4aWgFmuCtiS9pfC7-TnwuhLzUVc6drco0NwOZAv7XqQayp3pgubVgi0EbeltMy5Mz_vG8ON-K4o_e7psjyTamAbM0heZ4YX0r4qI8XvEsugIx9KAACUnB_rnOYXfDGgbjctx_ZckArw-l3ETL_HXozo4UE_f_qZ639qf-wPQWubEOC335Q8_nW3vS5A653YFJOmqpf5dcc-Ee2T_tjsvvk5-n0VXS0a42xEVql6jdKHplhRpTNFPdZSWhtadmDQ2LpsZLHSy1s9V67me2vZXGuBdn6TyYr9PRis4CNTgzxa__dOnwv8SfBgsUhfq7fkM1BTZa0CZ6567gwV1NH1qHmC_78gE5m7z_Nj5Ju6oMqSlE3qSVtjmrKuMAzIA5xHRpRTFkAEUKx50WhS0cy6TJvLC5AKnW3MA1l94XmS91_pDshTq4x4RmnmeWeznwWgCQYbIS0jrYLxkiOc8SMthQRpkuZTlWzpiraLqIUrXUVEBNFampBgl53Y9ZtAk7ruz9Fgne98Rk2_FGvbxQnewqZ43EDFDeDDXYd6Ji0oMRn7PClxU3LiGHyC6qjVztVYYaDQXiOcGGCXkVe6DSgBcwuot9gGXA9Fs7PQ92eoKwm93mDUuqTtmsFKAQULtFUfKEvOibcSQ60AVXr1eKSRiOuQCzhDxqWbl_6VxwCTAuT8jRhrd_T37V2h31_P8PS_3k_2Y_JPtf3k3U5w_TT0_JTRblFYS1PCB7zXLtngEUbKrnUdp_ATbKU1A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF-kB348-H0aPXUFwQcvvWTz0Y1vVTwO4YqIhfq0bPbjqMakpAly_jv-o85s0tiqHAq-tdnZTXc6MzvDzvyGkGcyj2Kj89SPVJj54P9LX8Lf7stQx1pDLAZjmG0xS0_m8dtFsujbAWEtjGnrT3AMQKg53q4_L7ryBmyfYOqjlbadtvP0aB0HLiuIYTIFKIsPodBemoBjPiJ789m76UeHthdnPvgOGH4xxCaY8GixKaH54yI7x5RD8__dZm8dWsMt6jVypS1X8vyrLIqtg-r4Bik2W-zyUz6P2yYfq2-_oD_-Jx7cJNd7h5ZOOwm8RS6Z8ja5fNpf2d8h309duqahfX-KM1_XaGEpZoaVFcJEU9kjo9DKUtXCwKqp8KssNdXLdVvYpe4e-a72xmhalOr9bLqmy5IqXJniDQStDf4W91Fhk6Sy-iJfUklBlFe0cRnCa3hx31eIVqXD7D6_S-bHbz68PvH7zhC-SnjU-LnUEctzZcChgpCMyVTzZMLAHUpMbCRPdGJYkKnAch1xsCwyVgyFwNoksKmM9smorEpzn9DAxoGObRZaycGZYlnOM23gzGboTVrmkXAjCEL1sOnYvaMQLnziqei4L4D7wnFfhB55McxZdaAhF1K_QvkaKBHw2z2o6jPR2w8BQpAhCpVVEwkxJs9ZZsMIRDqxaR4r45EnKJ2iq54dzJaYTjj6lJxNPPLcUaDhgg0o2ddfABsQAmyH8mCHEgyO2h3eaIDoDd5agCcEpj9J0tgjT4dhnIlJfKWp2rVgGUxHPMLAI_c6zRk2HfE4A1cy8sjhRpV-Ln4R7w4HdfsLVj_4N_KH5CpzSgUalR6QUVO35hH4oE3-uLctPwD45Xw1 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-driven+prognostic+analysis+of+cuproptosis+and+disulfidptosis-related+lncRNAs+in+clear+cell+renal+cell+carcinoma%3A+a+step+towards+precision+oncology&rft.jtitle=European+journal+of+medical+research&rft.au=Chen%2C+Ronghui&rft.au=Wu%2C+Jun&rft.au=Che%2C+Yinwei&rft.au=Jiao%2C+Yuzhuo&rft.date=2024-03-16&rft.issn=2047-783X&rft.eissn=2047-783X&rft.volume=29&rft.issue=1&rft.spage=176&rft_id=info:doi/10.1186%2Fs40001-024-01763-1&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-783X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-783X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-783X&client=summon |