Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology

Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most c...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of medical research Vol. 29; no. 1; pp. 176 - 17
Main Authors Chen, Ronghui, Wu, Jun, Che, Yinwei, Jiao, Yuzhuo, Sun, Huashan, Zhao, Yinuo, Chen, Pingping, Meng, Lingxin, Zhao, Tao
Format Journal Article
LanguageEnglish
Published London BioMed Central 16.03.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN2047-783X
0949-2321
2047-783X
DOI10.1186/s40001-024-01763-1

Cover

Abstract Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs—ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT—that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.
AbstractList Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.
Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs-ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT-that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.
Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs--ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT--that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis. Keywords: Clear cell renal cell carcinoma, Prognostic risk model, Machine learning algorithm, Cuproptosis, Disulfidptosis, Long non-coding RNA, Targeted drugs, Immune inhibitors
Abstract Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding RNAs (lncRNAs) profoundly influences tumor development and affects their drug sensitivity. Clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, presently lacks research utilizing cuproptosis and disulfidptosis-related lncRNAs (CDRLRs) as prognostic markers. In this study, we analyzed RNA-seq data, clinical information, and mutation data from The Cancer Genome Atlas (TCGA) on ccRCC and cross-referenced it with known cuproptosis and disulfidptosis-related genes (CDRGs). Using the LASSO machine learning algorithm, we identified four CDRLRs—ACVR2B-AS1, AC095055.1, AL161782.1, and MANEA-DT—that are strongly associated with prognosis and used them to construct a prognostic risk model. To verify the model's reliability and validate these four CDRLRs as significant prognostic factors, we performed dataset grouping validation, followed by RT-qPCR and external database validation for differential expression and prognosis of CDRLRs in ccRCC. Gene function and pathway analysis were conducted using Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) for high- and low-risk groups. Additionally, we have analyzed the tumor mutation burden (TMB) and the immune microenvironment (TME), employing the oncoPredict and Immunophenoscore (IPS) algorithms to assess the sensitivity of diverse risk categories to targeted therapeutics and immunosuppressants. Our predominant objective is to refine prognostic predictions for patients with ccRCC and inform treatment decisions by conducting an exhaustive study on cuproptosis and disulfidptosis.
ArticleNumber 176
Audience Academic
Author Wu, Jun
Chen, Pingping
Che, Yinwei
Zhao, Tao
Zhao, Yinuo
Chen, Ronghui
Sun, Huashan
Meng, Lingxin
Jiao, Yuzhuo
Author_xml – sequence: 1
  givenname: Ronghui
  surname: Chen
  fullname: Chen, Ronghui
  organization: School of Clinical Medicine, Shandong Second Medical University, Department of Oncology, People’s Hospital of Rizhao
– sequence: 2
  givenname: Jun
  surname: Wu
  fullname: Wu, Jun
  organization: Department of Oncology, People’s Hospital of Rizhao
– sequence: 3
  givenname: Yinwei
  surname: Che
  fullname: Che, Yinwei
  organization: Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao
– sequence: 4
  givenname: Yuzhuo
  surname: Jiao
  fullname: Jiao, Yuzhuo
  organization: Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao
– sequence: 5
  givenname: Huashan
  surname: Sun
  fullname: Sun, Huashan
  organization: Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao
– sequence: 6
  givenname: Yinuo
  surname: Zhao
  fullname: Zhao, Yinuo
  organization: Department of Pathology, People’s Hospital of Rizhao
– sequence: 7
  givenname: Pingping
  surname: Chen
  fullname: Chen, Pingping
  organization: Department of Pathology, People’s Hospital of Rizhao
– sequence: 8
  givenname: Lingxin
  surname: Meng
  fullname: Meng, Lingxin
  email: menglx001623@163.com
  organization: Department of Oncology, People’s Hospital of Rizhao
– sequence: 9
  givenname: Tao
  surname: Zhao
  fullname: Zhao, Tao
  organization: Department of Central Laboratory, Shandong Provincial Key Medical and Health Laboratory, Rizhao Key Laboratory of Basic Research on Anesthesia and Respiratory Intensive Care, The People’s Hospital of Rizhao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38491523$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1rFDEUHaRia-0f8EECgvgyNZNkJhnfSvGjUBVEwbdwJx-7WbLJmsxY9vf4R812ar-QInlI7s05J5dz8rTaCzGYqnre4OOmEd2bzDDGTY0Jq3HDO1o3j6oDghmvuaA_9m6d96ujnFcFjTvS8b5_Uu1TwfqmJfSg-v0J1NIFg7yBFFxY1Dq5XyagTYqLEPPoFIIAfptdRtEiNZWLzRh3JQSNtMuTt07PrToZD6PRyAf19fNJRi4gtVNGyniPkilK81FBUi7ENbxFgPJoNmiMF5B0Lg8b5bKLAcWgoo-L7bPqsQWfzdHVflh9f__u2-nH-vzLh7PTk_NatYKO9QCakmFQBndMdIRAp0XLCeasNcyAaHVrCO4VtkJTMWAMTJWa9da22HZAD6uzWVdHWMlNcmtIWxnByctGTAsJqRjijTRa9YxyahUHJrgYSG8bSihpbTcwZYoWnbWmsIHtBXh_LdhguUtQzgnKkqC8TFA2hfV6ZhWTf04mj3Lt8s4vCCZOWZK-FaQ8zHCBvrwHXcUpFX-zpJhywdu2YzeoBZSpXbBxTKB2ovKEi66jRY8X1PE_UGVps3aq_DvrSv8O4dUtwtKAH5c5-mksseW7wBdXU07D2uhrD_5-wAIQM0ClmHMyVio3wk6njOD8w2aRe9T_cvgql1zAYWHSjW0PsP4AfzQPkw
CitedBy_id crossref_primary_10_1177_15330338241307686
crossref_primary_10_1016_j_cpt_2024_07_005
crossref_primary_10_1007_s10495_024_01993_y
Cites_doi 10.3322/caac.21763
10.1056/NEJMra1814259
10.1177/17562872231164803
10.1056/NEJMoa2103425
10.1126/science.abf0529
10.3389/fendo.2023.1180404
10.18637/jss.v050.i11
10.3389/fimmu.2022.971142
10.1001/jamapsychiatry.2019.3671
10.1093/bib/bbab260
10.1101/gr.239244.118
10.1126/science.abo3959
10.1016/j.tcb.2014.11.006
10.1056/NEJMra1601333
10.1016/j.celrep.2018.03.075
10.1056/NEJMoa1816047
10.1093/bioinformatics/btu684
10.1007/s10278-019-00230-2
10.1002/iub.2341
10.1016/j.ejca.2021.03.042
10.1016/j.annonc.2020.05.001
10.1200/JCO.2018.79.2549
10.1073/pnas.1319196111
10.1038/nchembio.72
10.1038/s41467-023-39401-9
10.1038/ki.1995.125
10.1186/s13046-023-02675-4
10.3389/fimmu.2022.1029092
10.1007/s00432-023-05211-1
10.3389/fendo.2023.1120216
10.1186/1471-2105-11-311
10.1016/S1470-2045(19)30413-9
10.1093/bioinformatics/btu393
10.3390/cancers13235981
10.1038/s41416-020-0890-y
10.1007/s00432-023-04877-x
10.1016/j.eururo.2018.08.036
10.1016/S1470-2045(23)00097-9
10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
10.18632/oncotarget.15346
10.1158/0008-5472.CAN-15-2328
10.1007/s00432-023-05201-3
10.1096/fj.202300474R
10.1016/S0140-6736(21)00580-8
10.1007/s00432-023-05378-7
10.1038/s41556-023-01091-2
10.1016/j.cell.2017.01.017
10.1016/j.canlet.2017.01.010
10.1002/cncr.23776
10.3390/ijms24054615
10.1158/1078-0432.CCR-040031
10.1016/j.eururo.2018.10.010
10.3390/biom12121890
10.3390/ijms24021464
10.3389/fimmu.2019.00774
10.1016/S0140-6736(09)60229-4
10.3390/cancers12082214
10.1097/CJI.0b013e318167b023
10.1158/0008-5472.CAN-14-1703
10.3389/fimmu.2023.1097075
10.3390/biomedicines9080852
10.1007/s10495-023-01900-x
10.3389/fimmu.2022.954440
10.3390/pharmaceutics14102101
10.2196/27633
10.1016/j.cell.2019.10.007
10.18632/aging.103169
10.1007/s00330-018-5872-6
10.1093/nar/gkv007
10.1186/s43556-023-00132-4
10.1136/esmoopen-2020-000798
10.1056/NEJMoa1816714
10.1038/s41422-022-00653-7
10.3390/genes13050851
10.3390/cells12010173
10.5858/arpa.2012-0085-RA
10.1155/2019/4602371
10.1038/s41551-020-0524-y
10.1186/s12943-023-01732-y
10.3390/foods9101486
10.1038/s41573-023-00749-8
10.1016/j.celrep.2016.12.019
10.1016/j.cell.2018.01.011
10.1093/bioinformatics/btac409
10.1038/ncomms3612
10.1186/s13059-016-1092-z
10.1186/s12935-021-02284-1
10.1158/2159-8290.CD-17-1246
10.1158/0008-5472.CAN-08-4323
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOA
DOI 10.1186/s40001-024-01763-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic




CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2047-783X
EndPage 17
ExternalDocumentID oai_doaj_org_article_edc94373fc7a4878b29f132325f6b4ce
10.1186/s40001-024-01763-1
A786635827
38491523
10_1186_s40001_024_01763_1
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Young experts of Taishan Scholars
  grantid: tsqn202211380
– fundername: National Natural Science Foundation of China
  grantid: 82002083
GroupedDBID ---
0R~
4.4
53G
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBD
EBLON
EBS
EMOBN
F5P
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
UKHRP
AAYXX
CITATION
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
2VQ
ADTOC
AHSBF
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c583t-bad32bbce0648622a6d85720745e4ea85d5e209c0f8d38b00a4c20949ff50f6a3
IEDL.DBID M48
ISSN 2047-783X
0949-2321
IngestDate Fri Oct 03 12:53:48 EDT 2025
Sun Oct 26 03:39:43 EDT 2025
Thu Sep 04 18:35:46 EDT 2025
Tue Oct 14 12:41:11 EDT 2025
Mon Oct 20 22:57:09 EDT 2025
Mon Oct 20 17:04:12 EDT 2025
Thu May 22 21:24:06 EDT 2025
Thu Apr 03 07:05:17 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Wed Oct 01 03:05:56 EDT 2025
Sat Sep 06 07:33:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Immune inhibitors
Disulfidptosis
Cuproptosis
Machine learning algorithm
Prognostic risk model
Clear cell renal cell carcinoma
Targeted drugs
Long non-coding RNA
Language English
License 2024. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-bad32bbce0648622a6d85720745e4ea85d5e209c0f8d38b00a4c20949ff50f6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3037875564?pq-origsite=%requestingapplication%&accountid=15518
PMID 38491523
PQID 3037875564
PQPubID 2040181
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_edc94373fc7a4878b29f132325f6b4ce
unpaywall_primary_10_1186_s40001_024_01763_1
proquest_miscellaneous_2958294340
proquest_journals_3037875564
gale_infotracmisc_A786635827
gale_infotracacademiconefile_A786635827
gale_healthsolutions_A786635827
pubmed_primary_38491523
crossref_citationtrail_10_1186_s40001_024_01763_1
crossref_primary_10_1186_s40001_024_01763_1
springer_journals_10_1186_s40001_024_01763_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-16
PublicationDateYYYYMMDD 2024-03-16
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle European journal of medical research
PublicationTitleAbbrev Eur J Med Res
PublicationTitleAlternate Eur J Med Res
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References D Tang (1763_CR10) 2022; 32
ZC Li (1763_CR61) 2019; 29
A Rajkomar (1763_CR23) 2019; 380
T Choueiri (1763_CR80) 2023; 24
G Zhang (1763_CR74) 2022; 13
E Jonasch (1763_CR79) 2021; 385
H Xin (1763_CR78) 2009; 69
C Sweeney (1763_CR91) 2021; 398
L Au (1763_CR81) 2021; 23
PÁ Ballesteros (1763_CR45) 2021; 13
X Wang (1763_CR56) 2023; 37
G Outeiro-Pinho (1763_CR21) 2020; 12
Y Yan (1763_CR75) 2023; 14
CJ Ricketts (1763_CR70) 2018; 23
Y Şenbabaoğlu (1763_CR47) 2016; 17
DS Sutaria (1763_CR90) 2022; 14
H Yuan (1763_CR16) 2022; 13
EK Gustavsson (1763_CR33) 2022; 38
Y Zou (1763_CR92) 2017; 8
J Xie (1763_CR13) 2023; 22
D Maeser (1763_CR38) 2021; 22
Y-Q Li (1763_CR68) 2020; 72
Y Pang (1763_CR34) 2023; 24
M Gigante (1763_CR49) 2008; 31
G Curigliano (1763_CR89) 2021; 151
M Xie (1763_CR55) 2022; 12
R Tibshirani (1763_CR24) 1997; 16
K Peng (1763_CR17) 2023; 149
F Gatto (1763_CR71) 2014; 111
UB Mogensen (1763_CR35) 2012; 50
Y Nie (1763_CR83) 2019; 2019
T Wu (1763_CR36) 2021; 2
L Xu (1763_CR65) 2023; 149
MV Babak (1763_CR67) 2021; 9
RJ Motzer (1763_CR6) 2019; 380
A Mayakonda (1763_CR30) 2018; 28
P Tsvetkov (1763_CR31) 2022; 375
TK Choueiri (1763_CR5) 2017; 376
K Hadian (1763_CR9) 2023; 22
A-KA Lalani (1763_CR2) 2019; 75
P Charoentong (1763_CR39) 2017; 18
S Zhao (1763_CR63) 2023; 14
D Lu (1763_CR27) 2023; 14
ME Ritchie (1763_CR28) 2015; 43
BI Rini (1763_CR44) 2009; 373
S Han (1763_CR60) 2019; 32
N Mendhiratta (1763_CR3) 2021; 39
Z Bian (1763_CR15) 2022; 13
XL Xing (1763_CR62) 2021; 21
J Hu (1763_CR82) 2023; 14
Z Gu (1763_CR37) 2014; 30
HI Wettersten (1763_CR69) 2015; 75
RJ Motzer (1763_CR42) 2008; 113
P Sharma (1763_CR53) 2017; 168
B-E Kim (1763_CR66) 2008; 4
HS Rugo (1763_CR88) 2020; 31
F Kopp (1763_CR20) 2018; 172
V Nanni (1763_CR73) 2020; 9
X Liu (1763_CR11) 2023; 25
M Rausch (1763_CR93) 2020; 123
Y Meng (1763_CR14) 2023; 4
Y Tang (1763_CR22) 2017; 391
X Tang (1763_CR77) 2016; 76
M Ferro (1763_CR59) 2023; 24
V Montinaro (1763_CR50) 1995; 47
R Pio (1763_CR48) 2019; 10
RA Poldrack (1763_CR25) 2020; 77
R Goyal (1763_CR43) 2013; 137
M Ferro (1763_CR58) 2023; 15
JJ Hsieh (1763_CR76) 2018; 36
RJ Motzer (1763_CR4) 2004; 10
Z Bai (1763_CR26) 2022; 12
R Weissleder (1763_CR54) 2020; 4
SJ Goodswen (1763_CR29) 2010; 11
1763_CR86
R Siegel (1763_CR1) 2023; 73
RJ Motzer (1763_CR87) 2019; 20
G Yu (1763_CR32) 2015; 31
F Klemm (1763_CR52) 2015; 25
T Wang (1763_CR85) 2018; 8
1763_CR40
D Clark (1763_CR84) 2019; 179
L Yang (1763_CR18) 2023; 149
Y Li (1763_CR57) 2023; 149
U Capitanio (1763_CR41) 2019; 75
C Zhang (1763_CR64) 2023; 29
P Zheng (1763_CR12) 2023; 42
BI Rini (1763_CR7) 2019; 380
1763_CR8
GS Netti (1763_CR51) 2020; 12
MA Kahlson (1763_CR72) 2022; 375
Y Shen (1763_CR19) 2023; 13
K Yoshihara (1763_CR46) 2013; 4
References_xml – volume: 73
  start-page: 17
  year: 2023
  ident: 1763_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21763
– volume: 380
  start-page: 1347
  year: 2019
  ident: 1763_CR23
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– volume: 15
  start-page: 175628722311648
  year: 2023
  ident: 1763_CR58
  publication-title: Therap Adv Urol.
  doi: 10.1177/17562872231164803
– volume: 385
  start-page: 2036
  year: 2021
  ident: 1763_CR79
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2103425
– volume: 375
  start-page: 1254
  year: 2022
  ident: 1763_CR31
  publication-title: Science
  doi: 10.1126/science.abf0529
– volume: 14
  start-page: 1180404
  year: 2023
  ident: 1763_CR63
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2023.1180404
– volume: 50
  start-page: 1
  year: 2012
  ident: 1763_CR35
  publication-title: J Stat Softw
  doi: 10.18637/jss.v050.i11
– volume: 13
  start-page: 971142
  year: 2022
  ident: 1763_CR16
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.971142
– volume: 77
  start-page: 534
  year: 2020
  ident: 1763_CR25
  publication-title: JAMA Psychiat
  doi: 10.1001/jamapsychiatry.2019.3671
– volume: 22
  start-page: bbab260
  year: 2021
  ident: 1763_CR38
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab260
– volume: 28
  start-page: 1747
  year: 2018
  ident: 1763_CR30
  publication-title: Genome Res
  doi: 10.1101/gr.239244.118
– volume: 375
  start-page: 1231
  year: 2022
  ident: 1763_CR72
  publication-title: Science
  doi: 10.1126/science.abo3959
– volume: 25
  start-page: 198
  year: 2015
  ident: 1763_CR52
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2014.11.006
– volume: 376
  start-page: 354
  year: 2017
  ident: 1763_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1601333
– volume: 23
  start-page: 313
  year: 2018
  ident: 1763_CR70
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.03.075
– volume: 380
  start-page: 1103
  year: 2019
  ident: 1763_CR6
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1816047
– volume: 31
  start-page: 608
  year: 2015
  ident: 1763_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu684
– volume: 23
  start-page: 313
  year: 2021
  ident: 1763_CR81
  publication-title: Cancer Cell
– volume: 32
  start-page: 638
  year: 2019
  ident: 1763_CR60
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00230-2
– volume: 72
  start-page: 1900
  year: 2020
  ident: 1763_CR68
  publication-title: IUBMB Life
  doi: 10.1002/iub.2341
– volume: 151
  start-page: 49
  year: 2021
  ident: 1763_CR89
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2021.03.042
– volume: 31
  start-page: 1001
  year: 2020
  ident: 1763_CR88
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2020.05.001
– volume: 36
  start-page: 3533
  year: 2018
  ident: 1763_CR76
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2018.79.2549
– volume: 111
  start-page: 201319196
  year: 2014
  ident: 1763_CR71
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1319196111
– volume: 4
  start-page: 176
  year: 2008
  ident: 1763_CR66
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.72
– volume: 14
  start-page: 3673
  year: 2023
  ident: 1763_CR75
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-39401-9
– volume: 47
  start-page: 829
  year: 1995
  ident: 1763_CR50
  publication-title: Kidney Int
  doi: 10.1038/ki.1995.125
– volume: 42
  start-page: 103
  year: 2023
  ident: 1763_CR12
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-023-02675-4
– volume: 13
  start-page: 1029092
  year: 2023
  ident: 1763_CR19
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.1029092
– volume: 149
  start-page: 13995
  year: 2023
  ident: 1763_CR57
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-023-05211-1
– volume: 14
  start-page: 1120216
  year: 2023
  ident: 1763_CR82
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2023.1120216
– volume: 11
  start-page: 311
  year: 2010
  ident: 1763_CR29
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-311
– volume: 2
  start-page: 100141
  year: 2021
  ident: 1763_CR36
  publication-title: Innovation
– volume: 20
  start-page: 1370
  year: 2019
  ident: 1763_CR87
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30413-9
– volume: 30
  start-page: 2811
  year: 2014
  ident: 1763_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu393
– volume: 13
  start-page: 5981
  year: 2021
  ident: 1763_CR45
  publication-title: Cancers
  doi: 10.3390/cancers13235981
– volume: 123
  start-page: 556
  year: 2020
  ident: 1763_CR93
  publication-title: Br J Cancer
  doi: 10.1038/s41416-020-0890-y
– volume: 149
  start-page: 9787
  year: 2023
  ident: 1763_CR18
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-023-04877-x
– volume: 75
  start-page: 74
  year: 2019
  ident: 1763_CR41
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2018.08.036
– volume: 24
  start-page: 553
  year: 2023
  ident: 1763_CR80
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(23)00097-9
– volume: 16
  start-page: 385
  year: 1997
  ident: 1763_CR24
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3
– volume: 8
  start-page: 20825
  year: 2017
  ident: 1763_CR92
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15346
– volume: 76
  start-page: 1892
  year: 2016
  ident: 1763_CR77
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-2328
– volume: 149
  start-page: 13793
  year: 2023
  ident: 1763_CR17
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-023-05201-3
– volume: 37
  start-page: e23143
  year: 2023
  ident: 1763_CR56
  publication-title: FASEB J
  doi: 10.1096/fj.202300474R
– volume: 398
  start-page: 131
  year: 2021
  ident: 1763_CR91
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)00580-8
– volume: 149
  start-page: 16511
  year: 2023
  ident: 1763_CR65
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-023-05378-7
– volume: 25
  start-page: 404
  year: 2023
  ident: 1763_CR11
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-023-01091-2
– volume: 168
  start-page: 707
  year: 2017
  ident: 1763_CR53
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.017
– volume: 39
  start-page: 327
  year: 2021
  ident: 1763_CR3
  publication-title: Urol Oncol Semin Orig Investig
– volume: 391
  start-page: 12
  year: 2017
  ident: 1763_CR22
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.01.010
– volume: 113
  start-page: 1552
  year: 2008
  ident: 1763_CR42
  publication-title: Cancer
  doi: 10.1002/cncr.23776
– volume: 24
  start-page: 4615
  year: 2023
  ident: 1763_CR59
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms24054615
– ident: 1763_CR8
– volume: 10
  start-page: 6302S
  year: 2004
  ident: 1763_CR4
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-040031
– volume: 75
  start-page: 100
  year: 2019
  ident: 1763_CR2
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2018.10.010
– volume: 12
  start-page: 1890
  year: 2022
  ident: 1763_CR26
  publication-title: Biomolecules
  doi: 10.3390/biom12121890
– volume: 24
  start-page: 1464
  year: 2023
  ident: 1763_CR34
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms24021464
– volume: 10
  start-page: 774
  year: 2019
  ident: 1763_CR48
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.00774
– volume: 373
  start-page: 1119
  year: 2009
  ident: 1763_CR44
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)60229-4
– volume: 12
  start-page: 2214
  year: 2020
  ident: 1763_CR21
  publication-title: Cancers
  doi: 10.3390/cancers12082214
– volume: 31
  start-page: 254
  year: 2008
  ident: 1763_CR49
  publication-title: J Immunother
  doi: 10.1097/CJI.0b013e318167b023
– volume: 75
  start-page: 2541
  year: 2015
  ident: 1763_CR69
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-1703
– volume: 14
  start-page: 1097075
  year: 2023
  ident: 1763_CR27
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2023.1097075
– volume: 9
  start-page: 852
  year: 2021
  ident: 1763_CR67
  publication-title: Biomedicines.
  doi: 10.3390/biomedicines9080852
– volume: 29
  start-page: 103
  year: 2023
  ident: 1763_CR64
  publication-title: Apoptosis
  doi: 10.1007/s10495-023-01900-x
– volume: 13
  start-page: 954440
  year: 2022
  ident: 1763_CR74
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2022.954440
– volume: 14
  start-page: 2101
  year: 2022
  ident: 1763_CR90
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14102101
– ident: 1763_CR40
  doi: 10.2196/27633
– volume: 179
  start-page: 207
  year: 2019
  ident: 1763_CR84
  publication-title: Cell
  doi: 10.1016/j.cell.2019.10.007
– volume: 12
  start-page: 7585
  year: 2020
  ident: 1763_CR51
  publication-title: Aging
  doi: 10.18632/aging.103169
– volume: 29
  start-page: 3996
  year: 2019
  ident: 1763_CR61
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5872-6
– volume: 43
  start-page: e47
  year: 2015
  ident: 1763_CR28
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 4
  start-page: 18
  year: 2023
  ident: 1763_CR14
  publication-title: Mol Biomed.
  doi: 10.1186/s43556-023-00132-4
– ident: 1763_CR86
  doi: 10.1136/esmoopen-2020-000798
– volume: 380
  start-page: 1116
  year: 2019
  ident: 1763_CR7
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1816714
– volume: 32
  start-page: 417
  year: 2022
  ident: 1763_CR10
  publication-title: Cell Res
  doi: 10.1038/s41422-022-00653-7
– volume: 13
  start-page: 851
  year: 2022
  ident: 1763_CR15
  publication-title: Genes
  doi: 10.3390/genes13050851
– volume: 12
  start-page: 173
  year: 2022
  ident: 1763_CR55
  publication-title: Cells
  doi: 10.3390/cells12010173
– volume: 137
  start-page: 467
  year: 2013
  ident: 1763_CR43
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/arpa.2012-0085-RA
– volume: 2019
  start-page: 4602371
  year: 2019
  ident: 1763_CR83
  publication-title: Biomed Res Int
  doi: 10.1155/2019/4602371
– volume: 4
  start-page: 489
  year: 2020
  ident: 1763_CR54
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-0524-y
– volume: 22
  start-page: 46
  year: 2023
  ident: 1763_CR13
  publication-title: Mol Cancer
  doi: 10.1186/s12943-023-01732-y
– volume: 9
  start-page: 1486
  year: 2020
  ident: 1763_CR73
  publication-title: Foods
  doi: 10.3390/foods9101486
– volume: 22
  start-page: 723
  year: 2023
  ident: 1763_CR9
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-023-00749-8
– volume: 18
  start-page: 248
  year: 2017
  ident: 1763_CR39
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.12.019
– volume: 172
  start-page: 393
  year: 2018
  ident: 1763_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.011
– volume: 38
  start-page: 3844
  year: 2022
  ident: 1763_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac409
– volume: 4
  start-page: 2612
  year: 2013
  ident: 1763_CR46
  publication-title: Nat Commun
  doi: 10.1038/ncomms3612
– volume: 17
  start-page: 231
  year: 2016
  ident: 1763_CR47
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1092-z
– volume: 21
  start-page: 591
  year: 2021
  ident: 1763_CR62
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-021-02284-1
– volume: 8
  start-page: 1142
  year: 2018
  ident: 1763_CR85
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-1246
– volume: 69
  start-page: 2506
  year: 2009
  ident: 1763_CR78
  publication-title: Can Res
  doi: 10.1158/0008-5472.CAN-08-4323
SSID ssj0000626799
Score 2.3828313
Snippet Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long non-coding...
Abstract Cuproptosis and disulfidptosis, recently discovered mechanisms of cell death, have demonstrated that differential expression of key genes and long...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 176
SubjectTerms Accuracy
Algorithms
Analysis
Artificial intelligence
Biomedicine
Cancer
Cancer therapies
Carcinoma, Renal cell
Cell death
Clear cell renal cell carcinoma
Copper
Cuproptosis
Data mining
Development and progression
Disulfidptosis
Drug therapy
Ferroptosis
Genes
Genetic aspects
Genomes
Immunotherapy
Infectious Diseases
Internal Medicine
Kidney cancer
Kinases
Long non-coding RNA
Machine learning
Machine learning algorithm
Medical prognosis
Medicine
Medicine & Public Health
Metabolism
Mutation
Nomograms
Oncology
Patients
Precision medicine
Prognosis
Prognostic risk model
Proteins
RNA
Surgery
Survival analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOiDeBAkZC4kCjJo6T2NwWRFUhtQdEpd4sxw-0UnBWm41Qfw9_lBknG3aFVDhw28R2Hp6Hv9mMvyHkjW4K7mxTpYXJZQr4X6caxJ7q3HJrIRaDNsy2OK9OL_jny_Jyp9QX5oSN9MDjxB07ayTS73hTawDXomHSQwRVsNJXDTcOvW8m5E4wNfpgVtVSbnfJiOq451nMHmKYdAFGleZ7K1Ek7P_TLe-sS_OH0jvk1hBW-uqHbtudtejkHrk7gUi6GB_-PrnhwgNy82z6TP6Q_DyLKZKOTjUhvqV2jV6NYjZW6JCameqJjYR2npoBGlabDg91sNQu-6H1SzueSuN-F2dpG8yX80VPl4EavDLFf_3p2uGzxJ8GCxOF7rt-TzUF9VnRTczK7eHGUy0f2oXIk331iFycfPr68TSdqjGkphTFJm20LVjTGAcgBsIgpisrypoBBCkdd1qUtnQskybzwhYCrFlzA8dcel9mvtLFY3IQuuCeEpp5nlnuZe61AADDZCOkdbBOMkRwniUk30pGmYmqHCtmtCqGLKJSozQVSFNFaao8Ie_mMauRqOPa3h9Q4HNPJNmOJ0D11KR66m-ql5BXqC5q3LE6uwq1qAXiOMHqhLyNPdBZwAsYPe15gGlA2q29nod7PcHIzX7zViXV5GR6BegD3G1ZVjwhr-dmHImJc8F1Q6-YhOHIAZgl5MmoyvNLF4JLgG9FQo62uv374tfN3dGs__8w1c_-x1Q_J7dZNF2w2-qQHGzWg3sBaHDTvIyG_wvvVFgb
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBZdCrs8jN26ees2DQZ7WEVtWXbkwRjpaCmDhlFW6JuQdSmBzM7ihNHfsz-6c-RLGwZhb7Yl-aJz0Sfr6DuEvNdlKpwtc5aapGCA_zXTIHamEyushbkYlGG0xTQ_vRDfLrPLHTLt98JgWGXvE4OjtrXBf-SH4GpBt7IsF18WvxhmjcLV1T6Fhu5SK9jPgWLsDtnlyIw1IrtHx9Pv58Nflxjw-7hoCfhEwQBOJP1OGpkfNiIOEUYcAzPA8FiyMVoFUv9_XfetsWtYTH1A7q2rhb7-refzW-PVySPysAOadNJqxmOy46on5O5Zt5T-lPw5C2GUjnZ5I66YXaLnoxixVdVI30x1x1hCa0_NGgoWqxpPdWWpnTXruZ_Z9hILe2KcpfPKnE8nDZ1V1OCdKa4M0KXDdwmHBpMXVfVP_YlqCiq2oKsQudvAg7t8P7SuApf29TNycXL84-sp6zI2MJPJdMVKbVNelsYB0IGpEte5ldmYA0zJnHBaZjZzPC5M7KVNJVi8FoajJLzPYp_rdI-MqrpyLwiNvYit8EXitQSQw4tSFtbBWMoR5XkekaSXjDIdnTlm1ZirMK2RuWqlqUCaKkhTJRH5OLRZtGQeW2sfocCHmkjEHS7UyyvV2bVy1hTIDuXNWMPcT5a88DDBT3nm81IYF5G3qC6q3dU6uBM1GUvEepKPI_Ih1ECHAh9gdLcvAroBqbk2au5v1ARHYDaLe5VUnSNq1I3ZROTdUIwtMbiucvW6UbyA5sgTGEfkeavKw0enUhQA8dKIHPS6fXPzbX13MOj_f3T1y-2v_orc58EowSLzfTJaLdfuNWDBVfmmM_C_V1lX0A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQkIA9IO4EBhgJiQcWkTiOa_NWJqYJaXtATNqb5fgyVSpJ1bSa9nv4o5zjuKEVaIK3Jr6k8bn4O_HxZ0Lemabi3jUir2ypcsD_Jjcg9tyUjjsHsRiUYbbFmTg5518v6otEk4N7YbbX70spPva8iEk_DHMlwBZyiHRuwyQl4sKsOBq_pxSAzCdKbfbF_LXpztwTKfr_dMRbM9G4NLpP7q7bhbm-MvP51uxz_IDcT7CRTgc5PyS3fPuI3DlNC-OPyc_TmBTpaToF4jJ3S_RjFPOv2g7JmKlJ_CO0C9SuoWCx6vDStI66Wb-eh5kbbuVxh4t3dN7ab2fTns5aarFnit_56dLjf4k_LR5F1HY_zCdqKCjMgq5iHm4PD06n99CujczY10_I-fGX70cneTp_Ibe1rFZ5Y1zFmsZ6gC0Q-DAjnKwnDEBH7bk3sna1Z4WyRZCukmC_hlu45iqEugjCVE_JXtu1_jmhReCF40GVwUiALEw1UjkPMyNDzBZYRsqNZLRN5OR4RsZcxyBFCj1IU4M0dZSmLjPyYWyzGKg5bqz9GQU-1kRa7XgDtE0nK9XeWYVcT8FODERysmEqQLhesTqIhlufkTeoLnrYozo6Bz2dSERukk0y8j7WQPcAL2BN2uUAw4BEWzs1D3Zqglnb3eKNSurkVnoNeAMcbF0LnpG3YzG2xFS51nfrXjMFzZH1r8jIs0GVx5euJFcA2KqMHG50-3fnN43d4aj__zDUL_6v95fkHotGChYqDsjearn2rwDprZrX0cR_AZwzSBo
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF-kB348-H0aPXUFwQcvvWTz0Y1vVTwO4YqIhfq0bPbjqMakpAly_jv-o85s0tiqHAq-tdnZTXc6MzvDzvyGkGcyj2Kj89SPVJj54P9LX8Lf7stQx1pDLAZjmG0xS0_m8dtFsujbAWEtjGnrT3AMQKg53q4_L7ryBmyfYOqjlbadtvP0aB0HLiuIYTIFKIsPodBemoBjPiJ789m76UeHthdnPvgOGH4xxCaY8GixKaH54yI7x5RD8__dZm8dWsMt6jVypS1X8vyrLIqtg-r4Bik2W-zyUz6P2yYfq2-_oD_-Jx7cJNd7h5ZOOwm8RS6Z8ja5fNpf2d8h309duqahfX-KM1_XaGEpZoaVFcJEU9kjo9DKUtXCwKqp8KssNdXLdVvYpe4e-a72xmhalOr9bLqmy5IqXJniDQStDf4W91Fhk6Sy-iJfUklBlFe0cRnCa3hx31eIVqXD7D6_S-bHbz68PvH7zhC-SnjU-LnUEctzZcChgpCMyVTzZMLAHUpMbCRPdGJYkKnAch1xsCwyVgyFwNoksKmM9smorEpzn9DAxoGObRZaycGZYlnOM23gzGboTVrmkXAjCEL1sOnYvaMQLnziqei4L4D7wnFfhB55McxZdaAhF1K_QvkaKBHw2z2o6jPR2w8BQpAhCpVVEwkxJs9ZZsMIRDqxaR4r45EnKJ2iq54dzJaYTjj6lJxNPPLcUaDhgg0o2ddfABsQAmyH8mCHEgyO2h3eaIDoDd5agCcEpj9J0tgjT4dhnIlJfKWp2rVgGUxHPMLAI_c6zRk2HfE4A1cy8sjhRpV-Ln4R7w4HdfsLVj_4N_KH5CpzSgUalR6QUVO35hH4oE3-uLctPwD45Xw1
  priority: 102
  providerName: Unpaywall
Title Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology
URI https://link.springer.com/article/10.1186/s40001-024-01763-1
https://www.ncbi.nlm.nih.gov/pubmed/38491523
https://www.proquest.com/docview/3037875564
https://www.proquest.com/docview/2958294340
https://eurjmedres.biomedcentral.com/counter/pdf/10.1186/s40001-024-01763-1
https://doaj.org/article/edc94373fc7a4878b29f132325f6b4ce
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: M48
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: AAJSJ
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2047-783X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000626799
  issn: 0949-2321
  databaseCode: C6C
  dateStart: 20090112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9tAEF5yQI-H0rtqU3cLpX1o1Eqra1UoxQkJwWAT0hqcp2W1RzC4kuOD1r-nf7QzK1mNaQh5krSXpZ1jZ7yz3xDyThZRbHSR-pEKcx_sf-lLILsvQx1rDb4Y1GG0xSA9Gca9UTLaIutw22YC59e6dphPajibfPp9ufoGAv_VCTxPP8_jwAUGMYynAHnxw_fTSx8TS-EGbJNlY5vswuKVY3aHfuMB1MqapZnLMskQsyDj0Wh9tObakTeWL4fy_78uv7KYtbur98ndZTmVq19yMrmygB0_JA8ay5N2a1Z5RLZM-Zjc6Td760_In76LqzS0SSRx4esZqkKKIVxlhXjOVDYQJrSyVC2hYrqo8FGWmurxfDmxY10X-e6QjNF0UqqzQXdOxyVVODLFrQI6M_gu7lZhNqOy-im_UEmB56Z04UJ55_DDTQIgWpUOXHv1lAyPj34cnvhNCgdfJTxa-IXUESsKZcDyAd-JyVTzJGNgtyQmNpInOjEsyFVguY44qAAZK3iOc2uTwKYyekZ2yqo0LwgNbBzo2OahlRysHpYXPNcGFleGZp9lHgnXlBGqwTfHNBsT4fwcnoqamgKoKRw1ReiRj22faY3ucWPrAyR42xKRuV1BNbsQjaALo1WOcFFWZRKcQV6w3ILHH7HEpkWsjEfeILuI-phrq19EN-No_HGWeeSDa4E8Dx-gZHNQAqYBsbo2Wu5ttATNoDar1ywp1oIlwGQBHZ0kaeyRt2019sRou9JUy7lgOXRH4MDAI89rVm4_OuJxDjZf5JH9NW__G_ymudtv-f8WU_3yFu_2itxjTjJBLNM9srOYLc1rsBAXRYdsZ6OsQ3a73d73HlwPjganZ1B6mB523L8uHacFoGY4OO2e_wU7tGWm
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJKIPxrtVlDHR-CAN7XTanTEhBhQCAhtDIOFtnM6FkKztut0N4ff4P_xtnplOCxsT4gtv285l2zlnzqVzzncQeifLjBpdFnGmUh6D_S9jCWSPZaqp1uCLQZuLthgWuyf022l-uoD-dLkwLqyyk4leUOtauW_k6yBqgbfyvKCfx79iVzXKna52JTRkKK2gNzzEWEjs2DeXF-DCNRt7X4He7wnZ2T7-shuHKgOxylk2jUupM1KWyoByBvOeyEKzfEBAteaGGslynRuScJVYpjMGXCqpgmvKrc0TW8gM5r2DlmhGOTh_S1vbw-9H_VeeBPyFAW8B_yiPwXxJu8wdVqw3NPERTcQFgsBGj9M57eiLCPyrKq7pyv7w9j5anlVjeXkhR6Nr-nHnIXoQDFu82XLiI7Rgqsfo7mE4un-Cfh_6sE2DQ52Ks1hPnKTFLkKsqh1cNJYBIQXXFqsZNIyntbuUlcb6vJmN7Llub8U-B8doPKrU0XCzwecVVm5m7E4i8MS4Z_E_lSuWVNU_5ScsMbD0GE99pHADfxzqC-G68tjdl0_Rya3Q7hlarOrKvEA4sTTR1PLUSgZGFeEl49qA7ibOqrQkQmlHGaECfLqr4jES3o1ihWipKYCawlNTpBH62I8Zt-AhN_becgTvezrgb3-jnpyJIEeE0Yo7NCqrBhJ8TVYSbtMM-Cq3RUmVidCqYxfRZtH24ktsDpizLRkZROiD7-EEGLyAkiEPA5bBQYHN9VyZ6wmCR803dywpguBrxNU2jdDbvtmNdMF8lalnjSAchjtcwiRCz1tW7l86Y5SDSZlFaK3j7avJb1q7tZ7__2OpX9786Ktoeff48EAc7A33X6F7xG9Q2J3FClqcTmbmNdih0_JN2OwY_bht-fIX_oyUgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQkAY8IO4EBjMSEg8sWuo4qc1bKVTjsgohJu3NcnyZKhWnalOh_R7-KOc4aWgFmuCtiS9pfC7-TnwuhLzUVc6drco0NwOZAv7XqQayp3pgubVgi0EbeltMy5Mz_vG8ON-K4o_e7psjyTamAbM0heZ4YX0r4qI8XvEsugIx9KAACUnB_rnOYXfDGgbjctx_ZckArw-l3ETL_HXozo4UE_f_qZ639qf-wPQWubEOC335Q8_nW3vS5A653YFJOmqpf5dcc-Ee2T_tjsvvk5-n0VXS0a42xEVql6jdKHplhRpTNFPdZSWhtadmDQ2LpsZLHSy1s9V67me2vZXGuBdn6TyYr9PRis4CNTgzxa__dOnwv8SfBgsUhfq7fkM1BTZa0CZ6567gwV1NH1qHmC_78gE5m7z_Nj5Ju6oMqSlE3qSVtjmrKuMAzIA5xHRpRTFkAEUKx50WhS0cy6TJvLC5AKnW3MA1l94XmS91_pDshTq4x4RmnmeWeznwWgCQYbIS0jrYLxkiOc8SMthQRpkuZTlWzpiraLqIUrXUVEBNFampBgl53Y9ZtAk7ruz9Fgne98Rk2_FGvbxQnewqZ43EDFDeDDXYd6Ji0oMRn7PClxU3LiGHyC6qjVztVYYaDQXiOcGGCXkVe6DSgBcwuot9gGXA9Fs7PQ92eoKwm93mDUuqTtmsFKAQULtFUfKEvOibcSQ60AVXr1eKSRiOuQCzhDxqWbl_6VxwCTAuT8jRhrd_T37V2h31_P8PS_3k_2Y_JPtf3k3U5w_TT0_JTRblFYS1PCB7zXLtngEUbKrnUdp_ATbKU1A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF-kB348-H0aPXUFwQcvvWTz0Y1vVTwO4YqIhfq0bPbjqMakpAly_jv-o85s0tiqHAq-tdnZTXc6MzvDzvyGkGcyj2Kj89SPVJj54P9LX8Lf7stQx1pDLAZjmG0xS0_m8dtFsujbAWEtjGnrT3AMQKg53q4_L7ryBmyfYOqjlbadtvP0aB0HLiuIYTIFKIsPodBemoBjPiJ789m76UeHthdnPvgOGH4xxCaY8GixKaH54yI7x5RD8__dZm8dWsMt6jVypS1X8vyrLIqtg-r4Bik2W-zyUz6P2yYfq2-_oD_-Jx7cJNd7h5ZOOwm8RS6Z8ja5fNpf2d8h309duqahfX-KM1_XaGEpZoaVFcJEU9kjo9DKUtXCwKqp8KssNdXLdVvYpe4e-a72xmhalOr9bLqmy5IqXJniDQStDf4W91Fhk6Sy-iJfUklBlFe0cRnCa3hx31eIVqXD7D6_S-bHbz68PvH7zhC-SnjU-LnUEctzZcChgpCMyVTzZMLAHUpMbCRPdGJYkKnAch1xsCwyVgyFwNoksKmM9smorEpzn9DAxoGObRZaycGZYlnOM23gzGboTVrmkXAjCEL1sOnYvaMQLnziqei4L4D7wnFfhB55McxZdaAhF1K_QvkaKBHw2z2o6jPR2w8BQpAhCpVVEwkxJs9ZZsMIRDqxaR4r45EnKJ2iq54dzJaYTjj6lJxNPPLcUaDhgg0o2ddfABsQAmyH8mCHEgyO2h3eaIDoDd5agCcEpj9J0tgjT4dhnIlJfKWp2rVgGUxHPMLAI_c6zRk2HfE4A1cy8sjhRpV-Ln4R7w4HdfsLVj_4N_KH5CpzSgUalR6QUVO35hH4oE3-uLctPwD45Xw1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-driven+prognostic+analysis+of+cuproptosis+and+disulfidptosis-related+lncRNAs+in+clear+cell+renal+cell+carcinoma%3A+a+step+towards+precision+oncology&rft.jtitle=European+journal+of+medical+research&rft.au=Chen%2C+Ronghui&rft.au=Wu%2C+Jun&rft.au=Che%2C+Yinwei&rft.au=Jiao%2C+Yuzhuo&rft.date=2024-03-16&rft.issn=2047-783X&rft.eissn=2047-783X&rft.volume=29&rft.issue=1&rft.spage=176&rft_id=info:doi/10.1186%2Fs40001-024-01763-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-783X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-783X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-783X&client=summon