Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis

Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal m...

Full description

Saved in:
Bibliographic Details
Published inMatrix biology Vol. 78-79; pp. 236 - 254
Main Authors Leng, Yue, Abdullah, Ammara, Wendt, Michael K., Calve, Sarah
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0945-053X
1569-1802
1569-1802
DOI10.1016/j.matbio.2018.08.008

Cover

Abstract Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle. •CD44, RHAMM and HA expression temporally varied during forelimb development.•shRNA-mediated depletion of CD44 and RHAMM inhibited proliferation and migration.•Antibody blocking of CD44 and RHAMM had a differential effect than shRNA depletion.
AbstractList Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 hrs, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle.
Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle.
Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle.Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle.
Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle. •CD44, RHAMM and HA expression temporally varied during forelimb development.•shRNA-mediated depletion of CD44 and RHAMM inhibited proliferation and migration.•Antibody blocking of CD44 and RHAMM had a differential effect than shRNA depletion.
Author Abdullah, Ammara
Calve, Sarah
Wendt, Michael K.
Leng, Yue
AuthorAffiliation 1 Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907
2 Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907
AuthorAffiliation_xml – name: 1 Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907
– name: 2 Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907
Author_xml – sequence: 1
  givenname: Yue
  surname: Leng
  fullname: Leng, Yue
  organization: Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States of America
– sequence: 2
  givenname: Ammara
  orcidid: 0000-0003-4035-9790
  surname: Abdullah
  fullname: Abdullah, Ammara
  organization: Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907, United States of America
– sequence: 3
  givenname: Michael K.
  surname: Wendt
  fullname: Wendt, Michael K.
  organization: Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907, United States of America
– sequence: 4
  givenname: Sarah
  orcidid: 0000-0002-7887-6307
  surname: Calve
  fullname: Calve, Sarah
  email: scalve@purdue.edu
  organization: Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30130585$$D View this record in MEDLINE/PubMed
BookMark eNqFUVtrFDEYDVKx29V_IDLgiw_O-iWTzMUHoayXFVoKouBbyCTfbLPMJG0ys7D_3gy7Fu2Dwgd5yDmHc7kgZ847JOQlhRUFWr7brQY1ttavGNB6BemgfkIWVJRNTmtgZ2QBDRc5iOLnObmIcQcAnFf1M3JeAC1A1GJBbjYH1U_BO6szpa15m60_cp4pZ7Jvm8vr6yzgdurViNlw8G2v4pi1eKv21ofMTMG6bYZDGw5-iw6jjc_J0071EV-c3iX58fnT9_Umv7r58nV9eZVrURdjrkBXileKNabDooFKVQZNXXbJoQIUZasEcs0KzjXt5rwGGaea665sRCWKJflw1L2b2gGNRjcG1cu7YAcVDtIrK__-cfZWbv1elkXVUD4LvDkJBH8_YRzlYKPGvlcO_RQlg4bWjDYVT9DXj6A7PwWX4knGeMmEgNTnkrz609GDld9dJwA_AnTwMQbsHiAU5BxR7uRxUjlPKiEd1In2_hFN21GN1s-5bP8_8qkmTFvsLQYZtUWn0diAepTG238L_AK8Pb6i
CitedBy_id crossref_primary_10_3390_jfb14100491
crossref_primary_10_1186_s40824_023_00460_0
crossref_primary_10_3389_fcell_2022_862423
crossref_primary_10_1371_journal_pone_0281350
crossref_primary_10_1016_j_carbpol_2024_123138
crossref_primary_10_1016_j_ijbiomac_2025_140904
crossref_primary_10_1016_j_nantod_2024_102407
crossref_primary_10_3390_gels9070588
crossref_primary_10_1016_j_mtbio_2025_101596
crossref_primary_10_1016_j_ijbiomac_2024_136840
crossref_primary_10_1016_j_matbio_2021_04_001
crossref_primary_10_1021_acsbiomaterials_0c01751
crossref_primary_10_3390_cells8101211
crossref_primary_10_1016_j_carbpol_2022_119662
crossref_primary_10_1016_j_nic_2025_01_001
crossref_primary_10_3390_gels9100833
crossref_primary_10_1038_s42003_023_05614_3
crossref_primary_10_1016_j_ijbiomac_2025_142486
crossref_primary_10_1016_j_jddst_2022_103865
crossref_primary_10_3389_fchem_2024_1469183
crossref_primary_10_1016_j_bioactmat_2020_10_012
crossref_primary_10_3390_ijms22137058
crossref_primary_10_23868_202004015
crossref_primary_10_3390_ijms231911061
crossref_primary_10_3389_fphys_2024_1370570
crossref_primary_10_1002_pgr2_4
crossref_primary_10_1016_j_wneu_2025_123818
crossref_primary_10_34922_AE_2024_37_3_012
crossref_primary_10_1016_j_carbpol_2023_121257
crossref_primary_10_1016_j_ejcb_2023_151360
crossref_primary_10_3389_fphar_2023_1131001
crossref_primary_10_1016_j_agrcom_2024_100026
crossref_primary_10_1016_j_cej_2024_155139
crossref_primary_10_1039_D3SM00560G
crossref_primary_10_3390_genes15010052
crossref_primary_10_59324_ejtas_2024_2_2__65
crossref_primary_10_1007_s12221_023_00215_7
crossref_primary_10_1038_s41556_023_01271_0
crossref_primary_10_1016_j_engreg_2020_10_001
crossref_primary_10_20538_1682_0363_2022_2_137_144
crossref_primary_10_3390_ani13193030
crossref_primary_10_1016_j_ijbiomac_2023_127607
crossref_primary_10_3390_pharmaceutics15092247
crossref_primary_10_1038_s41390_020_0873_y
crossref_primary_10_1016_j_enzmictec_2021_109889
crossref_primary_10_3389_fbioe_2024_1309541
crossref_primary_10_3390_ijms24086880
crossref_primary_10_1111_febs_15776
crossref_primary_10_3390_ijms25168945
crossref_primary_10_1007_s12026_021_09228_x
crossref_primary_10_1016_j_matbio_2022_06_001
crossref_primary_10_1080_03008207_2020_1814263
crossref_primary_10_1016_j_yexcr_2022_113263
Cites_doi 10.1002/bdrc.20006
10.1002/path.1437
10.1074/jbc.274.27.18957
10.1016/j.matbio.2011.01.002
10.1016/j.ydbio.2007.06.006
10.3389/fncel.2015.00175
10.1074/jbc.M114.578377
10.1242/jcs.022038
10.1182/blood.V87.5.1891.1891
10.1002/bdrc.10013
10.1007/s00774-011-0318-0
10.1136/mp.50.2.57
10.1074/jbc.M405918200
10.1371/journal.pone.0035822
10.2174/1568006053005056
10.1155/2015/834893
10.1016/j.ajpath.2010.10.001
10.1101/gad.1769009
10.1074/jbc.M113.453209
10.1006/excr.1999.4645
10.1074/jbc.273.18.11342
10.1074/jbc.M112.353375
10.1016/0092-8674(90)90694-A
10.1083/jcb.116.2.521
10.1016/j.ydbio.2010.05.007
10.1002/jcp.20724
10.1016/S0945-053X(01)00186-X
10.1152/physrev.00019.2003
10.1042/bj3480029
10.1046/j.1469-7580.2003.00139.x
10.1073/pnas.0712168105
10.1016/j.actbio.2013.12.019
10.1016/j.matbio.2017.02.003
10.1242/dev.057463
10.1038/s41467-017-01120-3
10.1074/jbc.273.4.1923
10.1084/jem.183.4.1663
10.1006/scdb.2000.0244
10.1242/dev.038505
10.1186/1476-4598-10-30
10.1074/jbc.M102273200
10.1111/j.1365-2990.1994.tb00986.x
10.1093/jb/mvn046
10.1074/jbc.M610054200
10.1074/jbc.R100038200
10.1083/jcb.116.3.817
10.1083/jcb.200511027
10.1074/jbc.R200027200
10.1016/j.ydbio.2005.02.002
10.1155/2012/346972
10.1155/2014/103923
10.1073/pnas.0407378102
10.3109/10428199409049691
10.1083/jcb.117.6.1343
10.1101/gad.12.7.1058
10.3389/fimmu.2015.00201
10.1182/blood.V90.6.2217
10.1136/mp.52.4.189
10.1023/B:JURE.0000035851.12800.39
10.1038/sj.onc.1206811
10.1002/hep.25959
10.1016/j.cardiores.2006.07.017
10.1016/S0065-2776(08)60537-4
10.1006/excr.1996.0156
10.1038/nrc1391
10.1046/j.1365-2796.1997.00170.x
10.1093/glycob/cwp022
10.1074/jbc.M702078200
10.1038/5007
10.1038/nrm1004
10.1074/jbc.M411913200
10.1038/labinvest.2010.176
10.1101/gad.11.8.996
10.1002/dvdy.20328
10.1242/jcs.021683
10.1172/JCI10272
10.1002/j.1460-2075.1994.tb06261.x
10.1002/ijc.26014
10.1158/0008-5472.CAN-05-0314
10.1242/jcs.112.22.3943
10.1074/jbc.M110.121491
10.1016/S1357-2725(01)00166-2
10.1074/jbc.M113.451336
10.1158/0008-5472.CAN-09-3185
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright Elsevier Science Ltd. May 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier Science Ltd. May 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.matbio.2018.08.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1569-1802
EndPage 254
ExternalDocumentID PMC6379145
30130585
10_1016_j_matbio_2018_08_008
S0945053X18301021
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCCIH NIH HHS
  grantid: DP2 AT009833
– fundername: NIAMS NIH HHS
  grantid: R01 AR071359
– fundername: NIAMS NIH HHS
  grantid: R03 AR065201
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UNMZH
WUQ
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ACLOT
EFLBG
~HD
5PM
ID FETCH-LOGICAL-c583t-a0c7a47a29dfe3907a7ded86f044a0e56ba5e4c2344c1f1016de241c4cf695753
IEDL.DBID AIKHN
ISSN 0945-053X
1569-1802
IngestDate Thu Aug 21 18:15:43 EDT 2025
Sun Sep 28 10:48:55 EDT 2025
Wed Aug 13 06:11:44 EDT 2025
Mon Jul 21 06:07:28 EDT 2025
Tue Jul 01 05:03:27 EDT 2025
Thu Apr 24 23:05:12 EDT 2025
Sat Apr 26 15:42:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RHAMM
Myogenesis
GFP
Connective tissue
ERK1/2
EdU
HA
HAS
4MU
Hyaluronic acid
CD44
HYAL
Limb development
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-a0c7a47a29dfe3907a7ded86f044a0e56ba5e4c2344c1f1016de241c4cf695753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Y.L. and S.C. designed the experiments. Y.L., A.A., and S.C. performed the experiments and analyzed and interpreted the data. Y.L. and S.C. wrote the manuscript. All authors critically reviewed the manuscript.
Author contributions
ORCID 0000-0003-4035-9790
0000-0002-7887-6307
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6379145
PMID 30130585
PQID 2246255001
PQPubID 2047553
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6379145
proquest_miscellaneous_2091821974
proquest_journals_2246255001
pubmed_primary_30130585
crossref_primary_10_1016_j_matbio_2018_08_008
crossref_citationtrail_10_1016_j_matbio_2018_08_008
elsevier_sciencedirect_doi_10_1016_j_matbio_2018_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Matrix biology
PublicationTitleAlternate Matrix Biol
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Nedvetzki (10.1016/j.matbio.2018.08.008_bb0195) 2004; 101
Tolg (10.1016/j.matbio.2018.08.008_bb0200) 2003; 22
Silverman-Gavrila (10.1016/j.matbio.2018.08.008_bb0185) 2011; 178
Hibino (10.1016/j.matbio.2018.08.008_bb0400) 2005; 65
Isacke (10.1016/j.matbio.2018.08.008_bb0135) 2002; 34
Camenisch (10.1016/j.matbio.2018.08.008_bb0075) 2000; 106
Jacobson (10.1016/j.matbio.2018.08.008_bb0300) 2000; 348
Bosman (10.1016/j.matbio.2018.08.008_bb0035) 2003; 200
Twarock (10.1016/j.matbio.2018.08.008_bb0345) 2011; 10
Yang (10.1016/j.matbio.2018.08.008_bb0170) 1994; 13
Huang (10.1016/j.matbio.2018.08.008_bb0380) 2013; 57
Masellis-Smith (10.1016/j.matbio.2018.08.008_bb0420) 1996; 87
Vallecillo-García (10.1016/j.matbio.2018.08.008_bb0020) 2017; 8
Pilarski (10.1016/j.matbio.2018.08.008_bb0245) 1994; 14
Hunt (10.1016/j.matbio.2018.08.008_bb0220) 2013; 288
Faassen (10.1016/j.matbio.2018.08.008_bb0385) 1992; 116
Bourguignon (10.1016/j.matbio.2018.08.008_bb0265) 2007; 282
Urakawa (10.1016/j.matbio.2018.08.008_bb0350) 2012; 130
Radotra (10.1016/j.matbio.2018.08.008_bb0390) 1994; 20
Spicer (10.1016/j.matbio.2018.08.008_bb0065) 2004; 72
Hatano (10.1016/j.matbio.2018.08.008_bb0255) 2011; 91
Takahashi (10.1016/j.matbio.2018.08.008_bb0260) 2005; 280
Tien (10.1016/j.matbio.2018.08.008_bb0310) 2005; 233
Brinck (10.1016/j.matbio.2018.08.008_bb0320) 1999; 252
Savani (10.1016/j.matbio.2018.08.008_bb0415) 2001; 276
Calve (10.1016/j.matbio.2018.08.008_bb0045) 2010; 344
Maleski (10.1016/j.matbio.2018.08.008_bb0150) 1996; 225
Rudzki (10.1016/j.matbio.2018.08.008_bb0370) 1997; 50
Itano (10.1016/j.matbio.2018.08.008_bb0095) 2008; 144
Misra (10.1016/j.matbio.2018.08.008_bb0145) 2015; 6
Chargé (10.1016/j.matbio.2018.08.008_bb0015) 2004; 84
Jong (10.1016/j.matbio.2018.08.008_bb0355) 2012; 287
Toole (10.1016/j.matbio.2018.08.008_bb0105) 2001; 12
Schmits (10.1016/j.matbio.2018.08.008_bb0190) 1997; 90
Jalkanen (10.1016/j.matbio.2018.08.008_bb0395) 1992; 116
Tolg (10.1016/j.matbio.2018.08.008_bb0365) 2010; 285
Fraser (10.1016/j.matbio.2018.08.008_bb0325) 1997; 242
Lokeshwar (10.1016/j.matbio.2018.08.008_bb0340) 2010; 70
Buckingham (10.1016/j.matbio.2018.08.008_bb0005) 2003; 202
Knudson (10.1016/j.matbio.2018.08.008_bb0080) 2003; 69
Biressi (10.1016/j.matbio.2018.08.008_bb0010) 2007; 308
Sanes (10.1016/j.matbio.2018.08.008_bb0040) 2003; 278
Lesley (10.1016/j.matbio.2018.08.008_bb0140) 1993; 54
Gouëffic (10.1016/j.matbio.2018.08.008_bb0210) 2006; 72
Engleka (10.1016/j.matbio.2018.08.008_bb0430) 2005; 280
Dicker (10.1016/j.matbio.2018.08.008_bb0085) 2014; 10
Turley (10.1016/j.matbio.2018.08.008_bb0115) 2002; 277
Campbell (10.1016/j.matbio.2018.08.008_bb0275) 2012; 7
Sherman (10.1016/j.matbio.2018.08.008_bb0290) 1998; 12
Mylona (10.1016/j.matbio.2018.08.008_bb0205) 2006; 209
Salic (10.1016/j.matbio.2018.08.008_bb0250) 2008; 105
Kakizaki (10.1016/j.matbio.2018.08.008_bb0235) 2004; 279
Zhang (10.1016/j.matbio.2018.08.008_bb0360) 1998; 273
Grounds (10.1016/j.matbio.2018.08.008_bb0030) 2008
Acharya (10.1016/j.matbio.2018.08.008_bb0270) 2008; 121
Okita (10.1016/j.matbio.2018.08.008_bb0050) 2004; 25
Tolg (10.1016/j.matbio.2018.08.008_bb0100) 2017; 63
Maxwell (10.1016/j.matbio.2018.08.008_bb0165) 2008; 121
Goodison (10.1016/j.matbio.2018.08.008_bb0375) 1999; 52
Spicer (10.1016/j.matbio.2018.08.008_bb0230) 1998; 273
Adamia (10.1016/j.matbio.2018.08.008_bb0315) 2005; 5
Tolg (10.1016/j.matbio.2018.08.008_bb0215) 2006; 175
Hamilton (10.1016/j.matbio.2018.08.008_bb0425) 2007; 282
Matsumoto (10.1016/j.matbio.2018.08.008_bb0070) 2009; 136
Solis (10.1016/j.matbio.2018.08.008_bb0060) 2012; 2012
Ghatak (10.1016/j.matbio.2018.08.008_bb0330) 2015; 2015
Subhra Mohapatra (10.1016/j.matbio.2018.08.008_bb0410) 1996; 183
Tolg (10.1016/j.matbio.2018.08.008_bb0175) 2014; 2014
Dzwonek (10.1016/j.matbio.2018.08.008_bb0125) 2015; 9
Kaya (10.1016/j.matbio.2018.08.008_bb0155) 1997; 11
Assmann (10.1016/j.matbio.2018.08.008_bb0180) 1999
Knudson (10.1016/j.matbio.2018.08.008_bb0160) 2002; 21
Hutcheson (10.1016/j.matbio.2018.08.008_bb0225) 2009; 23
Mathew (10.1016/j.matbio.2018.08.008_bb0025) 2011; 138
Toole (10.1016/j.matbio.2018.08.008_bb0090) 2004; 4
Hatano (10.1016/j.matbio.2018.08.008_bb0280) 2012; 30
Hurt-Camejo (10.1016/j.matbio.2018.08.008_bb0405) 1999; 274
Wang (10.1016/j.matbio.2018.08.008_bb0305) 2014; 289
Hardwick (10.1016/j.matbio.2018.08.008_bb0120) 1992; 117
Clarkin (10.1016/j.matbio.2018.08.008_bb0335) 2011; 30
Ponta (10.1016/j.matbio.2018.08.008_bb0130) 2003; 4
Midgley (10.1016/j.matbio.2018.08.008_bb0295) 2013; 288
Calve (10.1016/j.matbio.2018.08.008_bb0055) 2012; 303
Aruffo (10.1016/j.matbio.2018.08.008_bb0110) 1990; 61
Vigetti (10.1016/j.matbio.2018.08.008_bb0240) 2009; 19
Hilberg (10.1016/j.matbio.2018.08.008_bb0285) 2018; 4917
Soriano (10.1016/j.matbio.2018.08.008_bb0435) 1999; 21
References_xml – volume: 72
  start-page: 89
  year: 2004
  ident: 10.1016/j.matbio.2018.08.008_bb0065
  article-title: Hyaluronan and morphogenesis
  publication-title: Birth Defects Res. C Embryo Today
  doi: 10.1002/bdrc.20006
– volume: 200
  start-page: 423
  year: 2003
  ident: 10.1016/j.matbio.2018.08.008_bb0035
  article-title: Functional structure and composition of the extracellular matrix
  publication-title: J. Pathol.
  doi: 10.1002/path.1437
– volume: 274
  start-page: 18957
  year: 1999
  ident: 10.1016/j.matbio.2018.08.008_bb0405
  article-title: CD44, a cell surface chondroitin sulfate proteoglycan, mediates binding of interferon-gamma and some of its biological effects on human vascular smooth muscle cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.27.18957
– volume: 30
  start-page: 163
  year: 2011
  ident: 10.1016/j.matbio.2018.08.008_bb0335
  article-title: Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2011.01.002
– volume: 308
  start-page: 281
  year: 2007
  ident: 10.1016/j.matbio.2018.08.008_bb0010
  article-title: Cellular heterogeneity during vertebrate skeletal muscle development
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2007.06.006
– volume: 9
  year: 2015
  ident: 10.1016/j.matbio.2018.08.008_bb0125
  article-title: CD44: molecular interactions, signaling and functions in the nervous system
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2015.00175
– volume: 289
  start-page: 32253
  year: 2014
  ident: 10.1016/j.matbio.2018.08.008_bb0305
  article-title: Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.578377
– volume: 121
  start-page: 925
  year: 2008
  ident: 10.1016/j.matbio.2018.08.008_bb0165
  article-title: Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions?
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.022038
– volume: 87
  year: 1996
  ident: 10.1016/j.matbio.2018.08.008_bb0420
  article-title: Hyaluronan-dependent motility of B cells and leukemic plasma cells in blood, but not of bone marrow plasma cells, in multiple myeloma: alternate use of receptor for hyaluronan-mediated motility (RHAMM) and CD44
  publication-title: Blood
  doi: 10.1182/blood.V87.5.1891.1891
– volume: 69
  start-page: 174
  year: 2003
  ident: 10.1016/j.matbio.2018.08.008_bb0080
  article-title: Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly
  publication-title: Birth Defects Res. Part C Embryo Today
  doi: 10.1002/bdrc.10013
– volume: 30
  start-page: 293
  year: 2012
  ident: 10.1016/j.matbio.2018.08.008_bb0280
  article-title: Overexpression of receptor for hyaluronan-mediated motility (RHAMM) in MC3T3-E1 cells induces proliferation and differentiation through phosphorylation of ERK1/2
  publication-title: J. Bone Miner. Metab.
  doi: 10.1007/s00774-011-0318-0
– volume: 50
  start-page: 57
  year: 1997
  ident: 10.1016/j.matbio.2018.08.008_bb0370
  article-title: CD44 and the adhesion of neoplastic cells
  publication-title: Mol. Pathol.
  doi: 10.1136/mp.50.2.57
– volume: 279
  start-page: 33281
  year: 2004
  ident: 10.1016/j.matbio.2018.08.008_bb0235
  article-title: A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M405918200
– volume: 7
  year: 2012
  ident: 10.1016/j.matbio.2018.08.008_bb0275
  article-title: Regulation of motility of myogenic cells in filling limb muscle anlagen by Pitx2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035822
– volume: 5
  start-page: 3
  year: 2005
  ident: 10.1016/j.matbio.2018.08.008_bb0315
  article-title: Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer
  publication-title: Curr. Drug Targets Cardiovasc. Haematol. Disord.
  doi: 10.2174/1568006053005056
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.matbio.2018.08.008_bb0330
  article-title: Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis
  publication-title: Int. J. Cell Biol.
  doi: 10.1155/2015/834893
– volume: 178
  start-page: 895
  year: 2011
  ident: 10.1016/j.matbio.2018.08.008_bb0185
  article-title: Rear polarization of the microtubule-organizing center in neointimal smooth muscle cells depends on PKCα, ARPC5, and RHAMM
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2010.10.001
– volume: 23
  start-page: 997
  year: 2009
  ident: 10.1016/j.matbio.2018.08.008_bb0225
  article-title: Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin
  publication-title: Genes Dev.
  doi: 10.1101/gad.1769009
– volume: 288
  start-page: 13006
  year: 2013
  ident: 10.1016/j.matbio.2018.08.008_bb0220
  article-title: Hyaluronan synthesis and myogenesis: a requirement for hyaluronan synthesis during myogenic differentiation independent of pericellular matrix formation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.453209
– volume: 252
  start-page: 342
  year: 1999
  ident: 10.1016/j.matbio.2018.08.008_bb0320
  article-title: Expression of recombinant hyaluronan synthase (HAS) isoforms in CHO cells reduces cell migration and cell surface CD44
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1999.4645
– volume: 273
  start-page: 11342
  year: 1998
  ident: 10.1016/j.matbio.2018.08.008_bb0360
  article-title: The hyaluronan receptor RHAMM regulates extracellular-regulated kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.18.11342
– volume: 287
  start-page: 15298
  year: 2012
  ident: 10.1016/j.matbio.2018.08.008_bb0355
  article-title: Hyaluronic acid receptor CD44 deficiency is associated with decreased Cryptococcus neoformans brain infection
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.353375
– volume: 61
  start-page: 1303
  year: 1990
  ident: 10.1016/j.matbio.2018.08.008_bb0110
  article-title: CD44 is the principal cell surface receptor for hyaluronate
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90694-A
– volume: 116
  start-page: 521
  year: 1992
  ident: 10.1016/j.matbio.2018.08.008_bb0385
  article-title: A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.116.2.521
– volume: 344
  start-page: 259
  year: 2010
  ident: 10.1016/j.matbio.2018.08.008_bb0045
  article-title: A transitional extracellular matrix instructs cell behavior during muscle regeneration
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2010.05.007
– volume: 209
  start-page: 314
  year: 2006
  ident: 10.1016/j.matbio.2018.08.008_bb0205
  article-title: CD44 regulates myoblast migration and differentiation
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.20724
– volume: 21
  start-page: 15
  year: 2002
  ident: 10.1016/j.matbio.2018.08.008_bb0160
  article-title: CD44-mediated uptake and degradation of hyaluronan
  publication-title: Matrix Biol.
  doi: 10.1016/S0945-053X(01)00186-X
– volume: 84
  start-page: 209
  year: 2004
  ident: 10.1016/j.matbio.2018.08.008_bb0015
  article-title: Cellular and molecular regulation of muscle regeneration
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00019.2003
– volume: 348
  start-page: 29
  issue: Pt 1
  year: 2000
  ident: 10.1016/j.matbio.2018.08.008_bb0300
  article-title: Expression of human hyaluronan synthases in response to external stimuli
  publication-title: Biochem. J.
  doi: 10.1042/bj3480029
– volume: 202
  start-page: 59
  year: 2003
  ident: 10.1016/j.matbio.2018.08.008_bb0005
  article-title: The formation of skeletal muscle: from somite to limb
  publication-title: J. Anat.
  doi: 10.1046/j.1469-7580.2003.00139.x
– volume: 105
  start-page: 2415
  year: 2008
  ident: 10.1016/j.matbio.2018.08.008_bb0250
  article-title: A chemical method for fast and sensitive detection of DNA synthesis in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0712168105
– volume: 10
  start-page: 1558
  year: 2014
  ident: 10.1016/j.matbio.2018.08.008_bb0085
  article-title: Hyaluronan: a simple polysaccharide with diverse biological functions
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.12.019
– volume: 63
  start-page: 117
  year: 2017
  ident: 10.1016/j.matbio.2018.08.008_bb0100
  article-title: Hyaluronan modulates growth factor induced mammary gland branching in a size dependent manner
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2017.02.003
– volume: 138
  start-page: 371
  year: 2011
  ident: 10.1016/j.matbio.2018.08.008_bb0025
  article-title: Connective tissue fibroblasts and Tcf4 regulate myogenesis
  publication-title: Development
  doi: 10.1242/dev.057463
– volume: 8
  year: 2017
  ident: 10.1016/j.matbio.2018.08.008_bb0020
  article-title: Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01120-3
– volume: 273
  start-page: 1923
  year: 1998
  ident: 10.1016/j.matbio.2018.08.008_bb0230
  article-title: Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.4.1923
– volume: 183
  start-page: 1663
  year: 1996
  ident: 10.1016/j.matbio.2018.08.008_bb0410
  article-title: Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.183.4.1663
– volume: 12
  start-page: 79
  year: 2001
  ident: 10.1016/j.matbio.2018.08.008_bb0105
  article-title: Hyaluronan in morphogenesis
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1006/scdb.2000.0244
– volume: 136
  start-page: 2825
  year: 2009
  ident: 10.1016/j.matbio.2018.08.008_bb0070
  article-title: Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb
  publication-title: Development
  doi: 10.1242/dev.038505
– volume: 10
  start-page: 30
  year: 2011
  ident: 10.1016/j.matbio.2018.08.008_bb0345
  article-title: Inhibition of oesophageal squamous cell carcinoma progression by in vivo targeting of hyaluronan synthesis
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-10-30
– volume: 276
  start-page: 36770
  year: 2001
  ident: 10.1016/j.matbio.2018.08.008_bb0415
  article-title: Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M102273200
– volume: 20
  start-page: 399
  year: 1994
  ident: 10.1016/j.matbio.2018.08.008_bb0390
  article-title: CD44 plays a role in adhesive interactions between glioma cells and extracellular matrix components
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/j.1365-2990.1994.tb00986.x
– volume: 144
  start-page: 131
  year: 2008
  ident: 10.1016/j.matbio.2018.08.008_bb0095
  article-title: Simple primary structure, complex turnover regulation and multiple roles of hyaluronan
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvn046
– volume: 282
  start-page: 19426
  year: 2007
  ident: 10.1016/j.matbio.2018.08.008_bb0265
  article-title: Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M610054200
– volume: 277
  start-page: 4589
  year: 2002
  ident: 10.1016/j.matbio.2018.08.008_bb0115
  article-title: Signaling properties of hyaluronan receptors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R100038200
– volume: 4917
  start-page: 4917
  year: 2018
  ident: 10.1016/j.matbio.2018.08.008_bb0285
  article-title: CD44-deficient mice develop normally with changes in subpopulations and recirculation of lymphocyte subsets
  publication-title: J. Immunol. Ref.
– volume: 116
  start-page: 817
  year: 1992
  ident: 10.1016/j.matbio.2018.08.008_bb0395
  article-title: Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.116.3.817
– volume: 175
  start-page: 1017
  year: 2006
  ident: 10.1016/j.matbio.2018.08.008_bb0215
  article-title: Rhamm−/− fibroblasts are defective in CD44-mediated ERK1,2 motogenic signaling, leading to defective skin wound repair
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200511027
– volume: 278
  start-page: 12601
  year: 2003
  ident: 10.1016/j.matbio.2018.08.008_bb0040
  article-title: The basement membrane/basal lamina of skeletal muscle
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R200027200
– volume: 280
  start-page: 396
  year: 2005
  ident: 10.1016/j.matbio.2018.08.008_bb0430
  article-title: Insertion of Cre into the Pax3 locus creates a new allele of splotch and identifies unexpected Pax3 derivatives
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2005.02.002
– volume: 2012
  year: 2012
  ident: 10.1016/j.matbio.2018.08.008_bb0060
  article-title: Hyaluronan regulates cell behavior: a potential niche matrix for stem cells
  publication-title: Biochem. Res. Int.
  doi: 10.1155/2012/346972
– volume: 2014
  start-page: 103923
  year: 2014
  ident: 10.1016/j.matbio.2018.08.008_bb0175
  article-title: Hyaluronan and RHAMM in wound repair and the “cancerization” of stromal tissues
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2014/103923
– volume: 101
  start-page: 18081
  year: 2004
  ident: 10.1016/j.matbio.2018.08.008_bb0195
  article-title: RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in inflamed CD44-knockout mice: a different interpretation of redundancy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0407378102
– volume: 14
  start-page: 363
  year: 1994
  ident: 10.1016/j.matbio.2018.08.008_bb0245
  article-title: RHAMM, a receptor for hyaluronan-mediated motility, on normal human lymphocytes, thymocytes and malignant B cells: a mediator in B cell malignancy?
  publication-title: Leuk. Lymphoma
  doi: 10.3109/10428199409049691
– volume: 117
  start-page: 1343
  year: 1992
  ident: 10.1016/j.matbio.2018.08.008_bb0120
  article-title: Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.117.6.1343
– volume: 12
  start-page: 1058
  year: 1998
  ident: 10.1016/j.matbio.2018.08.008_bb0290
  article-title: A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchyme and is required for limb outgrowth
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.7.1058
– volume: 6
  year: 2015
  ident: 10.1016/j.matbio.2018.08.008_bb0145
  article-title: Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2015.00201
– volume: 303
  start-page: C577
  year: 2012
  ident: 10.1016/j.matbio.2018.08.008_bb0055
  article-title: Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy
  publication-title: Am. J. Phys. Cell Phys.
– volume: 90
  start-page: 2217
  year: 1997
  ident: 10.1016/j.matbio.2018.08.008_bb0190
  article-title: CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity
  publication-title: Blood
  doi: 10.1182/blood.V90.6.2217
– volume: 52
  start-page: 189
  year: 1999
  ident: 10.1016/j.matbio.2018.08.008_bb0375
  article-title: CD44 cell adhesion molecules
  publication-title: Mol. Pathol.
  doi: 10.1136/mp.52.4.189
– volume: 25
  start-page: 159
  year: 2004
  ident: 10.1016/j.matbio.2018.08.008_bb0050
  article-title: Effects of reduced joint mobility on sarcomere length, collagen fibril arrangement in the endomysium, and hyaluronan in rat soleus muscle
  publication-title: J. Muscle Res. Cell Motil.
  doi: 10.1023/B:JURE.0000035851.12800.39
– volume: 22
  start-page: 6873
  year: 2003
  ident: 10.1016/j.matbio.2018.08.008_bb0200
  article-title: Genetic deletion of receptor for hyaluronan-mediated motility (Rhamm) attenuates the formation of aggressive fibromatosis (desmoid tumor)
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206811
– volume: 57
  start-page: 277
  year: 2013
  ident: 10.1016/j.matbio.2018.08.008_bb0380
  article-title: Simultaneous knockdown of multiple ligands of innate receptor NKG2D prevents natural killer cell–mediated fulminant hepatitis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.25959
– volume: 72
  start-page: 339
  year: 2006
  ident: 10.1016/j.matbio.2018.08.008_bb0210
  article-title: Hyaluronan induces vascular smooth muscle cell migration through RHAMM-mediated PI3K-dependent Rac activation
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2006.07.017
– volume: 54
  start-page: 271
  year: 1993
  ident: 10.1016/j.matbio.2018.08.008_bb0140
  article-title: CD44 and its interaction with extracellular matrix
  publication-title: Adv. Immunol.
  doi: 10.1016/S0065-2776(08)60537-4
– volume: 225
  start-page: 55
  year: 1996
  ident: 10.1016/j.matbio.2018.08.008_bb0150
  article-title: Hyaluronan-mediated aggregation of limb bud mesenchyme and mesenchymal condensation during chondrogenesis
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1996.0156
– volume: 4
  start-page: 528
  year: 2004
  ident: 10.1016/j.matbio.2018.08.008_bb0090
  article-title: Hyaluronan: from extracellular glue to pericellular cue
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1391
– volume: 242
  start-page: 27
  year: 1997
  ident: 10.1016/j.matbio.2018.08.008_bb0325
  article-title: Hyaluronan: its nature, distribution, functions and turnover
  publication-title: J. Intern. Med.
  doi: 10.1046/j.1365-2796.1997.00170.x
– start-page: 269
  year: 2008
  ident: 10.1016/j.matbio.2018.08.008_bb0030
  article-title: Complexity of extracellular matrix and skeletal muscle regeneration
– volume: 19
  start-page: 537
  year: 2009
  ident: 10.1016/j.matbio.2018.08.008_bb0240
  article-title: The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwp022
– volume: 282
  start-page: 16667
  year: 2007
  ident: 10.1016/j.matbio.2018.08.008_bb0425
  article-title: The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702078200
– volume: 21
  start-page: 70
  year: 1999
  ident: 10.1016/j.matbio.2018.08.008_bb0435
  article-title: Generalized lacZ expression with the ROSA26 Cre reporter strain
  publication-title: Nat. Genet.
  doi: 10.1038/5007
– volume: 4
  start-page: 33
  year: 2003
  ident: 10.1016/j.matbio.2018.08.008_bb0130
  article-title: CD44: from adhesion molecules to signalling regulators
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1004
– volume: 280
  start-page: 24195
  year: 2005
  ident: 10.1016/j.matbio.2018.08.008_bb0260
  article-title: Hyaluronan fragments induce endothelial cell differentiation in a CD44- and CXCL1/GRO1-dependent manner
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M411913200
– volume: 91
  start-page: 379
  year: 2011
  ident: 10.1016/j.matbio.2018.08.008_bb0255
  article-title: RHAMM/ERK interaction induces proliferative activities of cementifying fibroma cells through a mechanism based on the CD44-EGFR
  publication-title: Lab. Investig.
  doi: 10.1038/labinvest.2010.176
– volume: 11
  start-page: 996
  year: 1997
  ident: 10.1016/j.matbio.2018.08.008_bb0155
  article-title: Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation
  publication-title: Genes Dev.
  doi: 10.1101/gad.11.8.996
– volume: 233
  start-page: 130
  year: 2005
  ident: 10.1016/j.matbio.2018.08.008_bb0310
  article-title: Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.20328
– volume: 121
  start-page: 1393
  year: 2008
  ident: 10.1016/j.matbio.2018.08.008_bb0270
  article-title: Fibroblast migration is mediated by CD44-dependent TGF beta activation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.021683
– volume: 106
  start-page: 349
  year: 2000
  ident: 10.1016/j.matbio.2018.08.008_bb0075
  article-title: Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI10272
– volume: 13
  start-page: 286
  year: 1994
  ident: 10.1016/j.matbio.2018.08.008_bb0170
  article-title: Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06261.x
– volume: 130
  start-page: 454
  year: 2012
  ident: 10.1016/j.matbio.2018.08.008_bb0350
  article-title: Inhibition of hyaluronan synthesis in breast cancer cells by 4-methylumbelliferone suppresses tumorigenicity in vitro and metastatic lesions of bone in vivo
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.26014
– volume: 65
  start-page: 10494
  year: 2005
  ident: 10.1016/j.matbio.2018.08.008_bb0400
  article-title: Laminin α5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-0314
– start-page: 3943
  year: 1999
  ident: 10.1016/j.matbio.2018.08.008_bb0180
  article-title: The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.112.22.3943
– volume: 285
  start-page: 26461
  year: 2010
  ident: 10.1016/j.matbio.2018.08.008_bb0365
  article-title: RHAMM promotes interphase microtubule instability and mitotic spindle integrity through MEK1/ERK1/2 activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.121491
– volume: 34
  start-page: 718
  year: 2002
  ident: 10.1016/j.matbio.2018.08.008_bb0135
  article-title: The hyaluronan receptor, CD44
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(01)00166-2
– volume: 288
  start-page: 14824
  year: 2013
  ident: 10.1016/j.matbio.2018.08.008_bb0295
  article-title: Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.451336
– volume: 70
  start-page: 2613
  year: 2010
  ident: 10.1016/j.matbio.2018.08.008_bb0340
  article-title: Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-3185
SSID ssj0004478
Score 2.489567
Snippet Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 236
SubjectTerms Animals
CD44
CD44 antigen
Cell adhesion & migration
Cell migration
Cell Movement - drug effects
Cell proliferation
Cell Proliferation - drug effects
Cell surface
Cells, Cultured
Connective tissue
Connective Tissue Cells - cytology
Connective Tissue Cells - metabolism
Connective tissues
Embryogenesis
Embryonic Development
Extracellular matrix
Extracellular Matrix Proteins - genetics
Extracellular Matrix Proteins - metabolism
Female
Forelimb - cytology
Forelimb - embryology
Forelimb - metabolism
Gene expression
Gene Expression Regulation, Developmental - drug effects
Hyaluronan Receptors - genetics
Hyaluronan Receptors - metabolism
Hyaluronic acid
Hyaluronic Acid - metabolism
Hymecromone - pharmacology
Immunohistochemistry
Limb development
Male
Mice
Muscle, Skeletal - embryology
Muscle, Skeletal - metabolism
Musculoskeletal system
Myoblasts
Myoblasts - cytology
Myoblasts - drug effects
Myoblasts - metabolism
Myogenesis
RHAMM
Ribonucleic acid
RNA
Skeletal muscle
Spatial distribution
Stem cells
Title Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis
URI https://dx.doi.org/10.1016/j.matbio.2018.08.008
https://www.ncbi.nlm.nih.gov/pubmed/30130585
https://www.proquest.com/docview/2246255001
https://www.proquest.com/docview/2091821974
https://pubmed.ncbi.nlm.nih.gov/PMC6379145
Volume 78-79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tnYR4QbDx0TEmIyGeCE1iJ7Yfq8IUQB0SMKlvluM4I2hNp6596Mv-ds6xUyggTeIxyVlyfOe739n3AfDKxFzbTLo7dZlHDCF_JIXkUcZjxoxgKa_dgf70PC8u2MdZNtuDSZ8L48Iqg-73Or3T1uHNKKzm6LppRl_RMUHzTWcolF2D6n04SNHaiwEcjD98Ks5_pUcyr5CRPnID-gy6LswLcWHZuCzARHS1PF2fyX9bqL8R6J-BlL9ZprOH8CBASjL2s34Ee7Y9hKNxi-70fENeky7Iszs9P4R703CXfgSfi42-WnelcYk2TfWGTN4xRnRbkS_FeDolS9-m3pL5ZlEiyF6RPqef-ORGYuflcrO4dOqyuXkMF2fvv02KKLRXiEwm6CrSseGacZ3KqrYUnWTNK1uJvMYF07HN8lJnlpmUItOS2i1XZdHeG2bqXCLKo09g0C5a-wwIRdSGzBA6raRLwSrjOq2SMqulZLpm5RBov6TKhNrjrgXGleqDzH4ozwjlGKFcZ8xYDCHajrr2tTfuoOc9t9SODCk0D3eMPOmZq8IevlGu1B46XGjHh_By-xl3n7tS0a1drJEG4ZZApc_ZEJ56WdhOlbpLYfTGcFo7UrIlcJW9d7-0zfeuwndOuUxYdvzfP_Qc7uOT9JGZJzBYLdf2BaKnVXkK-29vk9OwR34C41oYMw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToK9INiAFTYwEuKJqGnsxPFjVTZlbCkSbFLfLMdxWKY1nbr2of8959gpFJAm8RqfJefOvvudfR8AH3TIlYmFfVMXScAQ8gciFTyIeciYTlnEK3uhn0-S7Ip9mcbTHRh3uTA2rNLrfqfTW23tvww8Nwd3dT34jo4Jmm86xU3ZNqh-BLvMNrXuwe7o7Dyb_EqPZE4hI31gJ3QZdG2YF-LCorZZgMO0reVp-0z-20L9jUD_DKT8zTKdPoOnHlKSkVv1c9gxzT4cjBp0p2dr8pG0QZ7t7fk-PM79W_oBfM3W6nbVlsYlStflJzL-zBhRTUm-ZaM8JwvXpt6Q2XpeIMheki6nn7jkRmJmxWI9_2HVZX3_Aq5OTy7HWeDbKwQ6TukyUKHminEVibIyFJ1kxUtTpkmFDFOhiZNCxYbpiKLQhpVlV2nQ3mumq0QgyqMvodfMG3MIhCJqQ2GkKiqFTcEqwioqh0VcCcFUxYo-0I6lUvva47YFxq3sgsxupBOEtIKQtjNmmPYh2My6c7U3HqDnnbTk1h6SaB4emHnUCVf6M3wvbak9dLjQjvfh_WYYT599UlGNma-QBuFWikqfsz68cnths1RqH4XRG8Nlbe2SDYGt7L090tTXbYXvhHIxZPHr__6hd_Aku8wv5MXZ5PwN7OGIcFGaR9BbLlbmGJHUsnjrT8pPeicaGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyaluronic+acid%2C+CD44+and+RHAMM+regulate+myoblast+behavior+during+embryogenesis&rft.jtitle=Matrix+biology&rft.au=Leng%2C+Yue&rft.au=Abdullah%2C+Ammara&rft.au=Wendt%2C+Michael+K&rft.au=Calve%2C+Sarah&rft.date=2019-05-01&rft.eissn=1569-1802&rft.volume=78-79&rft.spage=236&rft_id=info:doi/10.1016%2Fj.matbio.2018.08.008&rft_id=info%3Apmid%2F30130585&rft.externalDocID=30130585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0945-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0945-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0945-053X&client=summon