Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis
Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal m...
Saved in:
Published in | Matrix biology Vol. 78-79; pp. 236 - 254 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0945-053X 1569-1802 1569-1802 |
DOI | 10.1016/j.matbio.2018.08.008 |
Cover
Abstract | Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle.
•CD44, RHAMM and HA expression temporally varied during forelimb development.•shRNA-mediated depletion of CD44 and RHAMM inhibited proliferation and migration.•Antibody blocking of CD44 and RHAMM had a differential effect than shRNA depletion. |
---|---|
AbstractList | Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 hrs, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle. Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle. Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle.Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle. Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair and regeneration. For instance, ECM remodeling after muscle injury involves an upregulation in HA expression that is coupled with skeletal muscle precursor cell recruitment. However, little is known about the role of HA during skeletal muscle development. To gain insight into the way in which HA mediates embryonic myogenesis, we first determined the spatial distribution and gene expression of CD44, RHAMM and other HA related proteins in embryonic day (E)10.5 to E12.5 murine forelimbs. While HA and CD44 expression remained high, RHAMM decreased at both the protein (via immunohistochemistry) and RNA (via qPCR) levels. Next, we determined that 4-methylumbelliferone-mediated knockdown of HA synthesis inhibited the migration and proliferation of E11.5/E12.5 forelimb-derived cells. Then, the influence of CD44 and RHAMM on myoblast and connective tissue cell behavior was investigated using antibodies against these receptors. Anti-RHAMM, but not anti-CD44, significantly decreased the total distance myogenic progenitors migrated over 24 h, whereas both inhibited connective tissue cell migration. In contrast, anti-CD44 inhibited the proliferation of connective tissue cells and muscle progenitors, but anti-RHAMM had no effect. However, when myoblasts and connective tissue cells were depleted of CD44 and RHAMM by shRNA, motility and proliferation were significantly inhibited in both cells indicating that blocking cell surface-localized CD44 and RHAMM does not have as pronounced effect as global shRNA-mediated depletion of these receptors. These results show, for the first time, the distribution and activity of RHAMM in the context of skeletal muscle. Furthermore, our data indicate that HA, through interactions with CD44 and RHAMM, promotes myogenic progenitor migration and proliferation. Confirmation of the role of HA and its receptors in directing myogenesis will be useful for the design of regenerative therapies that aim to promote the restoration of damaged or diseased muscle. •CD44, RHAMM and HA expression temporally varied during forelimb development.•shRNA-mediated depletion of CD44 and RHAMM inhibited proliferation and migration.•Antibody blocking of CD44 and RHAMM had a differential effect than shRNA depletion. |
Author | Abdullah, Ammara Calve, Sarah Wendt, Michael K. Leng, Yue |
AuthorAffiliation | 1 Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907 2 Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907 |
AuthorAffiliation_xml | – name: 1 Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907 – name: 2 Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907 |
Author_xml | – sequence: 1 givenname: Yue surname: Leng fullname: Leng, Yue organization: Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States of America – sequence: 2 givenname: Ammara orcidid: 0000-0003-4035-9790 surname: Abdullah fullname: Abdullah, Ammara organization: Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907, United States of America – sequence: 3 givenname: Michael K. surname: Wendt fullname: Wendt, Michael K. organization: Medicinal Chemistry and Molecular Pharmacology, Hansen Life Sciences Research Building, Purdue University, 201 S University St, West Lafayette, IN 47907, United States of America – sequence: 4 givenname: Sarah orcidid: 0000-0002-7887-6307 surname: Calve fullname: Calve, Sarah email: scalve@purdue.edu organization: Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30130585$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUVtrFDEYDVKx29V_IDLgiw_O-iWTzMUHoayXFVoKouBbyCTfbLPMJG0ys7D_3gy7Fu2Dwgd5yDmHc7kgZ847JOQlhRUFWr7brQY1ttavGNB6BemgfkIWVJRNTmtgZ2QBDRc5iOLnObmIcQcAnFf1M3JeAC1A1GJBbjYH1U_BO6szpa15m60_cp4pZ7Jvm8vr6yzgdurViNlw8G2v4pi1eKv21ofMTMG6bYZDGw5-iw6jjc_J0071EV-c3iX58fnT9_Umv7r58nV9eZVrURdjrkBXileKNabDooFKVQZNXXbJoQIUZasEcs0KzjXt5rwGGaea665sRCWKJflw1L2b2gGNRjcG1cu7YAcVDtIrK__-cfZWbv1elkXVUD4LvDkJBH8_YRzlYKPGvlcO_RQlg4bWjDYVT9DXj6A7PwWX4knGeMmEgNTnkrz609GDld9dJwA_AnTwMQbsHiAU5BxR7uRxUjlPKiEd1In2_hFN21GN1s-5bP8_8qkmTFvsLQYZtUWn0diAepTG238L_AK8Pb6i |
CitedBy_id | crossref_primary_10_3390_jfb14100491 crossref_primary_10_1186_s40824_023_00460_0 crossref_primary_10_3389_fcell_2022_862423 crossref_primary_10_1371_journal_pone_0281350 crossref_primary_10_1016_j_carbpol_2024_123138 crossref_primary_10_1016_j_ijbiomac_2025_140904 crossref_primary_10_1016_j_nantod_2024_102407 crossref_primary_10_3390_gels9070588 crossref_primary_10_1016_j_mtbio_2025_101596 crossref_primary_10_1016_j_ijbiomac_2024_136840 crossref_primary_10_1016_j_matbio_2021_04_001 crossref_primary_10_1021_acsbiomaterials_0c01751 crossref_primary_10_3390_cells8101211 crossref_primary_10_1016_j_carbpol_2022_119662 crossref_primary_10_1016_j_nic_2025_01_001 crossref_primary_10_3390_gels9100833 crossref_primary_10_1038_s42003_023_05614_3 crossref_primary_10_1016_j_ijbiomac_2025_142486 crossref_primary_10_1016_j_jddst_2022_103865 crossref_primary_10_3389_fchem_2024_1469183 crossref_primary_10_1016_j_bioactmat_2020_10_012 crossref_primary_10_3390_ijms22137058 crossref_primary_10_23868_202004015 crossref_primary_10_3390_ijms231911061 crossref_primary_10_3389_fphys_2024_1370570 crossref_primary_10_1002_pgr2_4 crossref_primary_10_1016_j_wneu_2025_123818 crossref_primary_10_34922_AE_2024_37_3_012 crossref_primary_10_1016_j_carbpol_2023_121257 crossref_primary_10_1016_j_ejcb_2023_151360 crossref_primary_10_3389_fphar_2023_1131001 crossref_primary_10_1016_j_agrcom_2024_100026 crossref_primary_10_1016_j_cej_2024_155139 crossref_primary_10_1039_D3SM00560G crossref_primary_10_3390_genes15010052 crossref_primary_10_59324_ejtas_2024_2_2__65 crossref_primary_10_1007_s12221_023_00215_7 crossref_primary_10_1038_s41556_023_01271_0 crossref_primary_10_1016_j_engreg_2020_10_001 crossref_primary_10_20538_1682_0363_2022_2_137_144 crossref_primary_10_3390_ani13193030 crossref_primary_10_1016_j_ijbiomac_2023_127607 crossref_primary_10_3390_pharmaceutics15092247 crossref_primary_10_1038_s41390_020_0873_y crossref_primary_10_1016_j_enzmictec_2021_109889 crossref_primary_10_3389_fbioe_2024_1309541 crossref_primary_10_3390_ijms24086880 crossref_primary_10_1111_febs_15776 crossref_primary_10_3390_ijms25168945 crossref_primary_10_1007_s12026_021_09228_x crossref_primary_10_1016_j_matbio_2022_06_001 crossref_primary_10_1080_03008207_2020_1814263 crossref_primary_10_1016_j_yexcr_2022_113263 |
Cites_doi | 10.1002/bdrc.20006 10.1002/path.1437 10.1074/jbc.274.27.18957 10.1016/j.matbio.2011.01.002 10.1016/j.ydbio.2007.06.006 10.3389/fncel.2015.00175 10.1074/jbc.M114.578377 10.1242/jcs.022038 10.1182/blood.V87.5.1891.1891 10.1002/bdrc.10013 10.1007/s00774-011-0318-0 10.1136/mp.50.2.57 10.1074/jbc.M405918200 10.1371/journal.pone.0035822 10.2174/1568006053005056 10.1155/2015/834893 10.1016/j.ajpath.2010.10.001 10.1101/gad.1769009 10.1074/jbc.M113.453209 10.1006/excr.1999.4645 10.1074/jbc.273.18.11342 10.1074/jbc.M112.353375 10.1016/0092-8674(90)90694-A 10.1083/jcb.116.2.521 10.1016/j.ydbio.2010.05.007 10.1002/jcp.20724 10.1016/S0945-053X(01)00186-X 10.1152/physrev.00019.2003 10.1042/bj3480029 10.1046/j.1469-7580.2003.00139.x 10.1073/pnas.0712168105 10.1016/j.actbio.2013.12.019 10.1016/j.matbio.2017.02.003 10.1242/dev.057463 10.1038/s41467-017-01120-3 10.1074/jbc.273.4.1923 10.1084/jem.183.4.1663 10.1006/scdb.2000.0244 10.1242/dev.038505 10.1186/1476-4598-10-30 10.1074/jbc.M102273200 10.1111/j.1365-2990.1994.tb00986.x 10.1093/jb/mvn046 10.1074/jbc.M610054200 10.1074/jbc.R100038200 10.1083/jcb.116.3.817 10.1083/jcb.200511027 10.1074/jbc.R200027200 10.1016/j.ydbio.2005.02.002 10.1155/2012/346972 10.1155/2014/103923 10.1073/pnas.0407378102 10.3109/10428199409049691 10.1083/jcb.117.6.1343 10.1101/gad.12.7.1058 10.3389/fimmu.2015.00201 10.1182/blood.V90.6.2217 10.1136/mp.52.4.189 10.1023/B:JURE.0000035851.12800.39 10.1038/sj.onc.1206811 10.1002/hep.25959 10.1016/j.cardiores.2006.07.017 10.1016/S0065-2776(08)60537-4 10.1006/excr.1996.0156 10.1038/nrc1391 10.1046/j.1365-2796.1997.00170.x 10.1093/glycob/cwp022 10.1074/jbc.M702078200 10.1038/5007 10.1038/nrm1004 10.1074/jbc.M411913200 10.1038/labinvest.2010.176 10.1101/gad.11.8.996 10.1002/dvdy.20328 10.1242/jcs.021683 10.1172/JCI10272 10.1002/j.1460-2075.1994.tb06261.x 10.1002/ijc.26014 10.1158/0008-5472.CAN-05-0314 10.1242/jcs.112.22.3943 10.1074/jbc.M110.121491 10.1016/S1357-2725(01)00166-2 10.1074/jbc.M113.451336 10.1158/0008-5472.CAN-09-3185 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. Copyright Elsevier Science Ltd. May 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier Science Ltd. May 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.matbio.2018.08.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1569-1802 |
EndPage | 254 |
ExternalDocumentID | PMC6379145 30130585 10_1016_j_matbio_2018_08_008 S0945053X18301021 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCCIH NIH HHS grantid: DP2 AT009833 – fundername: NIAMS NIH HHS grantid: R01 AR071359 – fundername: NIAMS NIH HHS grantid: R03 AR065201 |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K UNMZH WUQ ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGRNS AIGII AIIUN AKBMS AKYEP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT EFLBG ~HD 5PM |
ID | FETCH-LOGICAL-c583t-a0c7a47a29dfe3907a7ded86f044a0e56ba5e4c2344c1f1016de241c4cf695753 |
IEDL.DBID | AIKHN |
ISSN | 0945-053X 1569-1802 |
IngestDate | Thu Aug 21 18:15:43 EDT 2025 Sun Sep 28 10:48:55 EDT 2025 Wed Aug 13 06:11:44 EDT 2025 Mon Jul 21 06:07:28 EDT 2025 Tue Jul 01 05:03:27 EDT 2025 Thu Apr 24 23:05:12 EDT 2025 Sat Apr 26 15:42:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | RHAMM Myogenesis GFP Connective tissue ERK1/2 EdU HA HAS 4MU Hyaluronic acid CD44 HYAL Limb development |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-a0c7a47a29dfe3907a7ded86f044a0e56ba5e4c2344c1f1016de241c4cf695753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Y.L. and S.C. designed the experiments. Y.L., A.A., and S.C. performed the experiments and analyzed and interpreted the data. Y.L. and S.C. wrote the manuscript. All authors critically reviewed the manuscript. Author contributions |
ORCID | 0000-0003-4035-9790 0000-0002-7887-6307 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6379145 |
PMID | 30130585 |
PQID | 2246255001 |
PQPubID | 2047553 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6379145 proquest_miscellaneous_2091821974 proquest_journals_2246255001 pubmed_primary_30130585 crossref_primary_10_1016_j_matbio_2018_08_008 crossref_citationtrail_10_1016_j_matbio_2018_08_008 elsevier_sciencedirect_doi_10_1016_j_matbio_2018_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Matrix biology |
PublicationTitleAlternate | Matrix Biol |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Nedvetzki (10.1016/j.matbio.2018.08.008_bb0195) 2004; 101 Tolg (10.1016/j.matbio.2018.08.008_bb0200) 2003; 22 Silverman-Gavrila (10.1016/j.matbio.2018.08.008_bb0185) 2011; 178 Hibino (10.1016/j.matbio.2018.08.008_bb0400) 2005; 65 Isacke (10.1016/j.matbio.2018.08.008_bb0135) 2002; 34 Camenisch (10.1016/j.matbio.2018.08.008_bb0075) 2000; 106 Jacobson (10.1016/j.matbio.2018.08.008_bb0300) 2000; 348 Bosman (10.1016/j.matbio.2018.08.008_bb0035) 2003; 200 Twarock (10.1016/j.matbio.2018.08.008_bb0345) 2011; 10 Yang (10.1016/j.matbio.2018.08.008_bb0170) 1994; 13 Huang (10.1016/j.matbio.2018.08.008_bb0380) 2013; 57 Masellis-Smith (10.1016/j.matbio.2018.08.008_bb0420) 1996; 87 Vallecillo-García (10.1016/j.matbio.2018.08.008_bb0020) 2017; 8 Pilarski (10.1016/j.matbio.2018.08.008_bb0245) 1994; 14 Hunt (10.1016/j.matbio.2018.08.008_bb0220) 2013; 288 Faassen (10.1016/j.matbio.2018.08.008_bb0385) 1992; 116 Bourguignon (10.1016/j.matbio.2018.08.008_bb0265) 2007; 282 Urakawa (10.1016/j.matbio.2018.08.008_bb0350) 2012; 130 Radotra (10.1016/j.matbio.2018.08.008_bb0390) 1994; 20 Spicer (10.1016/j.matbio.2018.08.008_bb0065) 2004; 72 Hatano (10.1016/j.matbio.2018.08.008_bb0255) 2011; 91 Takahashi (10.1016/j.matbio.2018.08.008_bb0260) 2005; 280 Tien (10.1016/j.matbio.2018.08.008_bb0310) 2005; 233 Brinck (10.1016/j.matbio.2018.08.008_bb0320) 1999; 252 Savani (10.1016/j.matbio.2018.08.008_bb0415) 2001; 276 Calve (10.1016/j.matbio.2018.08.008_bb0045) 2010; 344 Maleski (10.1016/j.matbio.2018.08.008_bb0150) 1996; 225 Rudzki (10.1016/j.matbio.2018.08.008_bb0370) 1997; 50 Itano (10.1016/j.matbio.2018.08.008_bb0095) 2008; 144 Misra (10.1016/j.matbio.2018.08.008_bb0145) 2015; 6 Chargé (10.1016/j.matbio.2018.08.008_bb0015) 2004; 84 Jong (10.1016/j.matbio.2018.08.008_bb0355) 2012; 287 Toole (10.1016/j.matbio.2018.08.008_bb0105) 2001; 12 Schmits (10.1016/j.matbio.2018.08.008_bb0190) 1997; 90 Jalkanen (10.1016/j.matbio.2018.08.008_bb0395) 1992; 116 Tolg (10.1016/j.matbio.2018.08.008_bb0365) 2010; 285 Fraser (10.1016/j.matbio.2018.08.008_bb0325) 1997; 242 Lokeshwar (10.1016/j.matbio.2018.08.008_bb0340) 2010; 70 Buckingham (10.1016/j.matbio.2018.08.008_bb0005) 2003; 202 Knudson (10.1016/j.matbio.2018.08.008_bb0080) 2003; 69 Biressi (10.1016/j.matbio.2018.08.008_bb0010) 2007; 308 Sanes (10.1016/j.matbio.2018.08.008_bb0040) 2003; 278 Lesley (10.1016/j.matbio.2018.08.008_bb0140) 1993; 54 Gouëffic (10.1016/j.matbio.2018.08.008_bb0210) 2006; 72 Engleka (10.1016/j.matbio.2018.08.008_bb0430) 2005; 280 Dicker (10.1016/j.matbio.2018.08.008_bb0085) 2014; 10 Turley (10.1016/j.matbio.2018.08.008_bb0115) 2002; 277 Campbell (10.1016/j.matbio.2018.08.008_bb0275) 2012; 7 Sherman (10.1016/j.matbio.2018.08.008_bb0290) 1998; 12 Mylona (10.1016/j.matbio.2018.08.008_bb0205) 2006; 209 Salic (10.1016/j.matbio.2018.08.008_bb0250) 2008; 105 Kakizaki (10.1016/j.matbio.2018.08.008_bb0235) 2004; 279 Zhang (10.1016/j.matbio.2018.08.008_bb0360) 1998; 273 Grounds (10.1016/j.matbio.2018.08.008_bb0030) 2008 Acharya (10.1016/j.matbio.2018.08.008_bb0270) 2008; 121 Okita (10.1016/j.matbio.2018.08.008_bb0050) 2004; 25 Tolg (10.1016/j.matbio.2018.08.008_bb0100) 2017; 63 Maxwell (10.1016/j.matbio.2018.08.008_bb0165) 2008; 121 Goodison (10.1016/j.matbio.2018.08.008_bb0375) 1999; 52 Spicer (10.1016/j.matbio.2018.08.008_bb0230) 1998; 273 Adamia (10.1016/j.matbio.2018.08.008_bb0315) 2005; 5 Tolg (10.1016/j.matbio.2018.08.008_bb0215) 2006; 175 Hamilton (10.1016/j.matbio.2018.08.008_bb0425) 2007; 282 Matsumoto (10.1016/j.matbio.2018.08.008_bb0070) 2009; 136 Solis (10.1016/j.matbio.2018.08.008_bb0060) 2012; 2012 Ghatak (10.1016/j.matbio.2018.08.008_bb0330) 2015; 2015 Subhra Mohapatra (10.1016/j.matbio.2018.08.008_bb0410) 1996; 183 Tolg (10.1016/j.matbio.2018.08.008_bb0175) 2014; 2014 Dzwonek (10.1016/j.matbio.2018.08.008_bb0125) 2015; 9 Kaya (10.1016/j.matbio.2018.08.008_bb0155) 1997; 11 Assmann (10.1016/j.matbio.2018.08.008_bb0180) 1999 Knudson (10.1016/j.matbio.2018.08.008_bb0160) 2002; 21 Hutcheson (10.1016/j.matbio.2018.08.008_bb0225) 2009; 23 Mathew (10.1016/j.matbio.2018.08.008_bb0025) 2011; 138 Toole (10.1016/j.matbio.2018.08.008_bb0090) 2004; 4 Hatano (10.1016/j.matbio.2018.08.008_bb0280) 2012; 30 Hurt-Camejo (10.1016/j.matbio.2018.08.008_bb0405) 1999; 274 Wang (10.1016/j.matbio.2018.08.008_bb0305) 2014; 289 Hardwick (10.1016/j.matbio.2018.08.008_bb0120) 1992; 117 Clarkin (10.1016/j.matbio.2018.08.008_bb0335) 2011; 30 Ponta (10.1016/j.matbio.2018.08.008_bb0130) 2003; 4 Midgley (10.1016/j.matbio.2018.08.008_bb0295) 2013; 288 Calve (10.1016/j.matbio.2018.08.008_bb0055) 2012; 303 Aruffo (10.1016/j.matbio.2018.08.008_bb0110) 1990; 61 Vigetti (10.1016/j.matbio.2018.08.008_bb0240) 2009; 19 Hilberg (10.1016/j.matbio.2018.08.008_bb0285) 2018; 4917 Soriano (10.1016/j.matbio.2018.08.008_bb0435) 1999; 21 |
References_xml | – volume: 72 start-page: 89 year: 2004 ident: 10.1016/j.matbio.2018.08.008_bb0065 article-title: Hyaluronan and morphogenesis publication-title: Birth Defects Res. C Embryo Today doi: 10.1002/bdrc.20006 – volume: 200 start-page: 423 year: 2003 ident: 10.1016/j.matbio.2018.08.008_bb0035 article-title: Functional structure and composition of the extracellular matrix publication-title: J. Pathol. doi: 10.1002/path.1437 – volume: 274 start-page: 18957 year: 1999 ident: 10.1016/j.matbio.2018.08.008_bb0405 article-title: CD44, a cell surface chondroitin sulfate proteoglycan, mediates binding of interferon-gamma and some of its biological effects on human vascular smooth muscle cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.27.18957 – volume: 30 start-page: 163 year: 2011 ident: 10.1016/j.matbio.2018.08.008_bb0335 article-title: Reduced chondrogenic matrix accumulation by 4-methylumbelliferone reveals the potential for selective targeting of UDP-glucose dehydrogenase publication-title: Matrix Biol. doi: 10.1016/j.matbio.2011.01.002 – volume: 308 start-page: 281 year: 2007 ident: 10.1016/j.matbio.2018.08.008_bb0010 article-title: Cellular heterogeneity during vertebrate skeletal muscle development publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2007.06.006 – volume: 9 year: 2015 ident: 10.1016/j.matbio.2018.08.008_bb0125 article-title: CD44: molecular interactions, signaling and functions in the nervous system publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2015.00175 – volume: 289 start-page: 32253 year: 2014 ident: 10.1016/j.matbio.2018.08.008_bb0305 article-title: Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.578377 – volume: 121 start-page: 925 year: 2008 ident: 10.1016/j.matbio.2018.08.008_bb0165 article-title: Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? publication-title: J. Cell Sci. doi: 10.1242/jcs.022038 – volume: 87 year: 1996 ident: 10.1016/j.matbio.2018.08.008_bb0420 article-title: Hyaluronan-dependent motility of B cells and leukemic plasma cells in blood, but not of bone marrow plasma cells, in multiple myeloma: alternate use of receptor for hyaluronan-mediated motility (RHAMM) and CD44 publication-title: Blood doi: 10.1182/blood.V87.5.1891.1891 – volume: 69 start-page: 174 year: 2003 ident: 10.1016/j.matbio.2018.08.008_bb0080 article-title: Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly publication-title: Birth Defects Res. Part C Embryo Today doi: 10.1002/bdrc.10013 – volume: 30 start-page: 293 year: 2012 ident: 10.1016/j.matbio.2018.08.008_bb0280 article-title: Overexpression of receptor for hyaluronan-mediated motility (RHAMM) in MC3T3-E1 cells induces proliferation and differentiation through phosphorylation of ERK1/2 publication-title: J. Bone Miner. Metab. doi: 10.1007/s00774-011-0318-0 – volume: 50 start-page: 57 year: 1997 ident: 10.1016/j.matbio.2018.08.008_bb0370 article-title: CD44 and the adhesion of neoplastic cells publication-title: Mol. Pathol. doi: 10.1136/mp.50.2.57 – volume: 279 start-page: 33281 year: 2004 ident: 10.1016/j.matbio.2018.08.008_bb0235 article-title: A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone publication-title: J. Biol. Chem. doi: 10.1074/jbc.M405918200 – volume: 7 year: 2012 ident: 10.1016/j.matbio.2018.08.008_bb0275 article-title: Regulation of motility of myogenic cells in filling limb muscle anlagen by Pitx2 publication-title: PLoS One doi: 10.1371/journal.pone.0035822 – volume: 5 start-page: 3 year: 2005 ident: 10.1016/j.matbio.2018.08.008_bb0315 article-title: Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer publication-title: Curr. Drug Targets Cardiovasc. Haematol. Disord. doi: 10.2174/1568006053005056 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.matbio.2018.08.008_bb0330 article-title: Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis publication-title: Int. J. Cell Biol. doi: 10.1155/2015/834893 – volume: 178 start-page: 895 year: 2011 ident: 10.1016/j.matbio.2018.08.008_bb0185 article-title: Rear polarization of the microtubule-organizing center in neointimal smooth muscle cells depends on PKCα, ARPC5, and RHAMM publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2010.10.001 – volume: 23 start-page: 997 year: 2009 ident: 10.1016/j.matbio.2018.08.008_bb0225 article-title: Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin publication-title: Genes Dev. doi: 10.1101/gad.1769009 – volume: 288 start-page: 13006 year: 2013 ident: 10.1016/j.matbio.2018.08.008_bb0220 article-title: Hyaluronan synthesis and myogenesis: a requirement for hyaluronan synthesis during myogenic differentiation independent of pericellular matrix formation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.453209 – volume: 252 start-page: 342 year: 1999 ident: 10.1016/j.matbio.2018.08.008_bb0320 article-title: Expression of recombinant hyaluronan synthase (HAS) isoforms in CHO cells reduces cell migration and cell surface CD44 publication-title: Exp. Cell Res. doi: 10.1006/excr.1999.4645 – volume: 273 start-page: 11342 year: 1998 ident: 10.1016/j.matbio.2018.08.008_bb0360 article-title: The hyaluronan receptor RHAMM regulates extracellular-regulated kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.18.11342 – volume: 287 start-page: 15298 year: 2012 ident: 10.1016/j.matbio.2018.08.008_bb0355 article-title: Hyaluronic acid receptor CD44 deficiency is associated with decreased Cryptococcus neoformans brain infection publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.353375 – volume: 61 start-page: 1303 year: 1990 ident: 10.1016/j.matbio.2018.08.008_bb0110 article-title: CD44 is the principal cell surface receptor for hyaluronate publication-title: Cell doi: 10.1016/0092-8674(90)90694-A – volume: 116 start-page: 521 year: 1992 ident: 10.1016/j.matbio.2018.08.008_bb0385 article-title: A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion publication-title: J. Cell Biol. doi: 10.1083/jcb.116.2.521 – volume: 344 start-page: 259 year: 2010 ident: 10.1016/j.matbio.2018.08.008_bb0045 article-title: A transitional extracellular matrix instructs cell behavior during muscle regeneration publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2010.05.007 – volume: 209 start-page: 314 year: 2006 ident: 10.1016/j.matbio.2018.08.008_bb0205 article-title: CD44 regulates myoblast migration and differentiation publication-title: J. Cell. Physiol. doi: 10.1002/jcp.20724 – volume: 21 start-page: 15 year: 2002 ident: 10.1016/j.matbio.2018.08.008_bb0160 article-title: CD44-mediated uptake and degradation of hyaluronan publication-title: Matrix Biol. doi: 10.1016/S0945-053X(01)00186-X – volume: 84 start-page: 209 year: 2004 ident: 10.1016/j.matbio.2018.08.008_bb0015 article-title: Cellular and molecular regulation of muscle regeneration publication-title: Physiol. Rev. doi: 10.1152/physrev.00019.2003 – volume: 348 start-page: 29 issue: Pt 1 year: 2000 ident: 10.1016/j.matbio.2018.08.008_bb0300 article-title: Expression of human hyaluronan synthases in response to external stimuli publication-title: Biochem. J. doi: 10.1042/bj3480029 – volume: 202 start-page: 59 year: 2003 ident: 10.1016/j.matbio.2018.08.008_bb0005 article-title: The formation of skeletal muscle: from somite to limb publication-title: J. Anat. doi: 10.1046/j.1469-7580.2003.00139.x – volume: 105 start-page: 2415 year: 2008 ident: 10.1016/j.matbio.2018.08.008_bb0250 article-title: A chemical method for fast and sensitive detection of DNA synthesis in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0712168105 – volume: 10 start-page: 1558 year: 2014 ident: 10.1016/j.matbio.2018.08.008_bb0085 article-title: Hyaluronan: a simple polysaccharide with diverse biological functions publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.12.019 – volume: 63 start-page: 117 year: 2017 ident: 10.1016/j.matbio.2018.08.008_bb0100 article-title: Hyaluronan modulates growth factor induced mammary gland branching in a size dependent manner publication-title: Matrix Biol. doi: 10.1016/j.matbio.2017.02.003 – volume: 138 start-page: 371 year: 2011 ident: 10.1016/j.matbio.2018.08.008_bb0025 article-title: Connective tissue fibroblasts and Tcf4 regulate myogenesis publication-title: Development doi: 10.1242/dev.057463 – volume: 8 year: 2017 ident: 10.1016/j.matbio.2018.08.008_bb0020 article-title: Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development publication-title: Nat. Commun. doi: 10.1038/s41467-017-01120-3 – volume: 273 start-page: 1923 year: 1998 ident: 10.1016/j.matbio.2018.08.008_bb0230 article-title: Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.4.1923 – volume: 183 start-page: 1663 year: 1996 ident: 10.1016/j.matbio.2018.08.008_bb0410 article-title: Soluble hyaluronan receptor RHAMM induces mitotic arrest by suppressing Cdc2 and cyclin B1 expression publication-title: J. Exp. Med. doi: 10.1084/jem.183.4.1663 – volume: 12 start-page: 79 year: 2001 ident: 10.1016/j.matbio.2018.08.008_bb0105 article-title: Hyaluronan in morphogenesis publication-title: Semin. Cell Dev. Biol. doi: 10.1006/scdb.2000.0244 – volume: 136 start-page: 2825 year: 2009 ident: 10.1016/j.matbio.2018.08.008_bb0070 article-title: Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb publication-title: Development doi: 10.1242/dev.038505 – volume: 10 start-page: 30 year: 2011 ident: 10.1016/j.matbio.2018.08.008_bb0345 article-title: Inhibition of oesophageal squamous cell carcinoma progression by in vivo targeting of hyaluronan synthesis publication-title: Mol. Cancer doi: 10.1186/1476-4598-10-30 – volume: 276 start-page: 36770 year: 2001 ident: 10.1016/j.matbio.2018.08.008_bb0415 article-title: Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M102273200 – volume: 20 start-page: 399 year: 1994 ident: 10.1016/j.matbio.2018.08.008_bb0390 article-title: CD44 plays a role in adhesive interactions between glioma cells and extracellular matrix components publication-title: Neuropathol. Appl. Neurobiol. doi: 10.1111/j.1365-2990.1994.tb00986.x – volume: 144 start-page: 131 year: 2008 ident: 10.1016/j.matbio.2018.08.008_bb0095 article-title: Simple primary structure, complex turnover regulation and multiple roles of hyaluronan publication-title: J. Biochem. doi: 10.1093/jb/mvn046 – volume: 282 start-page: 19426 year: 2007 ident: 10.1016/j.matbio.2018.08.008_bb0265 article-title: Heregulin-mediated ErbB2-ERK signaling activates hyaluronan synthases leading to CD44-dependent ovarian tumor cell growth and migration publication-title: J. Biol. Chem. doi: 10.1074/jbc.M610054200 – volume: 277 start-page: 4589 year: 2002 ident: 10.1016/j.matbio.2018.08.008_bb0115 article-title: Signaling properties of hyaluronan receptors publication-title: J. Biol. Chem. doi: 10.1074/jbc.R100038200 – volume: 4917 start-page: 4917 year: 2018 ident: 10.1016/j.matbio.2018.08.008_bb0285 article-title: CD44-deficient mice develop normally with changes in subpopulations and recirculation of lymphocyte subsets publication-title: J. Immunol. Ref. – volume: 116 start-page: 817 year: 1992 ident: 10.1016/j.matbio.2018.08.008_bb0395 article-title: Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin publication-title: J. Cell Biol. doi: 10.1083/jcb.116.3.817 – volume: 175 start-page: 1017 year: 2006 ident: 10.1016/j.matbio.2018.08.008_bb0215 article-title: Rhamm−/− fibroblasts are defective in CD44-mediated ERK1,2 motogenic signaling, leading to defective skin wound repair publication-title: J. Cell Biol. doi: 10.1083/jcb.200511027 – volume: 278 start-page: 12601 year: 2003 ident: 10.1016/j.matbio.2018.08.008_bb0040 article-title: The basement membrane/basal lamina of skeletal muscle publication-title: J. Biol. Chem. doi: 10.1074/jbc.R200027200 – volume: 280 start-page: 396 year: 2005 ident: 10.1016/j.matbio.2018.08.008_bb0430 article-title: Insertion of Cre into the Pax3 locus creates a new allele of splotch and identifies unexpected Pax3 derivatives publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.02.002 – volume: 2012 year: 2012 ident: 10.1016/j.matbio.2018.08.008_bb0060 article-title: Hyaluronan regulates cell behavior: a potential niche matrix for stem cells publication-title: Biochem. Res. Int. doi: 10.1155/2012/346972 – volume: 2014 start-page: 103923 year: 2014 ident: 10.1016/j.matbio.2018.08.008_bb0175 article-title: Hyaluronan and RHAMM in wound repair and the “cancerization” of stromal tissues publication-title: Biomed. Res. Int. doi: 10.1155/2014/103923 – volume: 101 start-page: 18081 year: 2004 ident: 10.1016/j.matbio.2018.08.008_bb0195 article-title: RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in inflamed CD44-knockout mice: a different interpretation of redundancy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0407378102 – volume: 14 start-page: 363 year: 1994 ident: 10.1016/j.matbio.2018.08.008_bb0245 article-title: RHAMM, a receptor for hyaluronan-mediated motility, on normal human lymphocytes, thymocytes and malignant B cells: a mediator in B cell malignancy? publication-title: Leuk. Lymphoma doi: 10.3109/10428199409049691 – volume: 117 start-page: 1343 year: 1992 ident: 10.1016/j.matbio.2018.08.008_bb0120 article-title: Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility publication-title: J. Cell Biol. doi: 10.1083/jcb.117.6.1343 – volume: 12 start-page: 1058 year: 1998 ident: 10.1016/j.matbio.2018.08.008_bb0290 article-title: A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchyme and is required for limb outgrowth publication-title: Genes Dev. doi: 10.1101/gad.12.7.1058 – volume: 6 year: 2015 ident: 10.1016/j.matbio.2018.08.008_bb0145 article-title: Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00201 – volume: 303 start-page: C577 year: 2012 ident: 10.1016/j.matbio.2018.08.008_bb0055 article-title: Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy publication-title: Am. J. Phys. Cell Phys. – volume: 90 start-page: 2217 year: 1997 ident: 10.1016/j.matbio.2018.08.008_bb0190 article-title: CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity publication-title: Blood doi: 10.1182/blood.V90.6.2217 – volume: 52 start-page: 189 year: 1999 ident: 10.1016/j.matbio.2018.08.008_bb0375 article-title: CD44 cell adhesion molecules publication-title: Mol. Pathol. doi: 10.1136/mp.52.4.189 – volume: 25 start-page: 159 year: 2004 ident: 10.1016/j.matbio.2018.08.008_bb0050 article-title: Effects of reduced joint mobility on sarcomere length, collagen fibril arrangement in the endomysium, and hyaluronan in rat soleus muscle publication-title: J. Muscle Res. Cell Motil. doi: 10.1023/B:JURE.0000035851.12800.39 – volume: 22 start-page: 6873 year: 2003 ident: 10.1016/j.matbio.2018.08.008_bb0200 article-title: Genetic deletion of receptor for hyaluronan-mediated motility (Rhamm) attenuates the formation of aggressive fibromatosis (desmoid tumor) publication-title: Oncogene doi: 10.1038/sj.onc.1206811 – volume: 57 start-page: 277 year: 2013 ident: 10.1016/j.matbio.2018.08.008_bb0380 article-title: Simultaneous knockdown of multiple ligands of innate receptor NKG2D prevents natural killer cell–mediated fulminant hepatitis in mice publication-title: Hepatology doi: 10.1002/hep.25959 – volume: 72 start-page: 339 year: 2006 ident: 10.1016/j.matbio.2018.08.008_bb0210 article-title: Hyaluronan induces vascular smooth muscle cell migration through RHAMM-mediated PI3K-dependent Rac activation publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2006.07.017 – volume: 54 start-page: 271 year: 1993 ident: 10.1016/j.matbio.2018.08.008_bb0140 article-title: CD44 and its interaction with extracellular matrix publication-title: Adv. Immunol. doi: 10.1016/S0065-2776(08)60537-4 – volume: 225 start-page: 55 year: 1996 ident: 10.1016/j.matbio.2018.08.008_bb0150 article-title: Hyaluronan-mediated aggregation of limb bud mesenchyme and mesenchymal condensation during chondrogenesis publication-title: Exp. Cell Res. doi: 10.1006/excr.1996.0156 – volume: 4 start-page: 528 year: 2004 ident: 10.1016/j.matbio.2018.08.008_bb0090 article-title: Hyaluronan: from extracellular glue to pericellular cue publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1391 – volume: 242 start-page: 27 year: 1997 ident: 10.1016/j.matbio.2018.08.008_bb0325 article-title: Hyaluronan: its nature, distribution, functions and turnover publication-title: J. Intern. Med. doi: 10.1046/j.1365-2796.1997.00170.x – start-page: 269 year: 2008 ident: 10.1016/j.matbio.2018.08.008_bb0030 article-title: Complexity of extracellular matrix and skeletal muscle regeneration – volume: 19 start-page: 537 year: 2009 ident: 10.1016/j.matbio.2018.08.008_bb0240 article-title: The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells publication-title: Glycobiology doi: 10.1093/glycob/cwp022 – volume: 282 start-page: 16667 year: 2007 ident: 10.1016/j.matbio.2018.08.008_bb0425 article-title: The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702078200 – volume: 21 start-page: 70 year: 1999 ident: 10.1016/j.matbio.2018.08.008_bb0435 article-title: Generalized lacZ expression with the ROSA26 Cre reporter strain publication-title: Nat. Genet. doi: 10.1038/5007 – volume: 4 start-page: 33 year: 2003 ident: 10.1016/j.matbio.2018.08.008_bb0130 article-title: CD44: from adhesion molecules to signalling regulators publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1004 – volume: 280 start-page: 24195 year: 2005 ident: 10.1016/j.matbio.2018.08.008_bb0260 article-title: Hyaluronan fragments induce endothelial cell differentiation in a CD44- and CXCL1/GRO1-dependent manner publication-title: J. Biol. Chem. doi: 10.1074/jbc.M411913200 – volume: 91 start-page: 379 year: 2011 ident: 10.1016/j.matbio.2018.08.008_bb0255 article-title: RHAMM/ERK interaction induces proliferative activities of cementifying fibroma cells through a mechanism based on the CD44-EGFR publication-title: Lab. Investig. doi: 10.1038/labinvest.2010.176 – volume: 11 start-page: 996 year: 1997 ident: 10.1016/j.matbio.2018.08.008_bb0155 article-title: Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation publication-title: Genes Dev. doi: 10.1101/gad.11.8.996 – volume: 233 start-page: 130 year: 2005 ident: 10.1016/j.matbio.2018.08.008_bb0310 article-title: Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns publication-title: Dev. Dyn. doi: 10.1002/dvdy.20328 – volume: 121 start-page: 1393 year: 2008 ident: 10.1016/j.matbio.2018.08.008_bb0270 article-title: Fibroblast migration is mediated by CD44-dependent TGF beta activation publication-title: J. Cell Sci. doi: 10.1242/jcs.021683 – volume: 106 start-page: 349 year: 2000 ident: 10.1016/j.matbio.2018.08.008_bb0075 article-title: Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme publication-title: J. Clin. Invest. doi: 10.1172/JCI10272 – volume: 13 start-page: 286 year: 1994 ident: 10.1016/j.matbio.2018.08.008_bb0170 article-title: Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06261.x – volume: 130 start-page: 454 year: 2012 ident: 10.1016/j.matbio.2018.08.008_bb0350 article-title: Inhibition of hyaluronan synthesis in breast cancer cells by 4-methylumbelliferone suppresses tumorigenicity in vitro and metastatic lesions of bone in vivo publication-title: Int. J. Cancer doi: 10.1002/ijc.26014 – volume: 65 start-page: 10494 year: 2005 ident: 10.1016/j.matbio.2018.08.008_bb0400 article-title: Laminin α5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-0314 – start-page: 3943 year: 1999 ident: 10.1016/j.matbio.2018.08.008_bb0180 article-title: The intracellular hyaluronan receptor RHAMM/IHABP interacts with microtubules and actin filaments publication-title: J. Cell Sci. doi: 10.1242/jcs.112.22.3943 – volume: 285 start-page: 26461 year: 2010 ident: 10.1016/j.matbio.2018.08.008_bb0365 article-title: RHAMM promotes interphase microtubule instability and mitotic spindle integrity through MEK1/ERK1/2 activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.121491 – volume: 34 start-page: 718 year: 2002 ident: 10.1016/j.matbio.2018.08.008_bb0135 article-title: The hyaluronan receptor, CD44 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(01)00166-2 – volume: 288 start-page: 14824 year: 2013 ident: 10.1016/j.matbio.2018.08.008_bb0295 article-title: Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.451336 – volume: 70 start-page: 2613 year: 2010 ident: 10.1016/j.matbio.2018.08.008_bb0340 article-title: Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-3185 |
SSID | ssj0004478 |
Score | 2.489567 |
Snippet | Hyaluronic acid (HA) is an extracellular matrix (ECM) component that has been shown to play a significant role in regulating muscle cell behavior during repair... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 236 |
SubjectTerms | Animals CD44 CD44 antigen Cell adhesion & migration Cell migration Cell Movement - drug effects Cell proliferation Cell Proliferation - drug effects Cell surface Cells, Cultured Connective tissue Connective Tissue Cells - cytology Connective Tissue Cells - metabolism Connective tissues Embryogenesis Embryonic Development Extracellular matrix Extracellular Matrix Proteins - genetics Extracellular Matrix Proteins - metabolism Female Forelimb - cytology Forelimb - embryology Forelimb - metabolism Gene expression Gene Expression Regulation, Developmental - drug effects Hyaluronan Receptors - genetics Hyaluronan Receptors - metabolism Hyaluronic acid Hyaluronic Acid - metabolism Hymecromone - pharmacology Immunohistochemistry Limb development Male Mice Muscle, Skeletal - embryology Muscle, Skeletal - metabolism Musculoskeletal system Myoblasts Myoblasts - cytology Myoblasts - drug effects Myoblasts - metabolism Myogenesis RHAMM Ribonucleic acid RNA Skeletal muscle Spatial distribution Stem cells |
Title | Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis |
URI | https://dx.doi.org/10.1016/j.matbio.2018.08.008 https://www.ncbi.nlm.nih.gov/pubmed/30130585 https://www.proquest.com/docview/2246255001 https://www.proquest.com/docview/2091821974 https://pubmed.ncbi.nlm.nih.gov/PMC6379145 |
Volume | 78-79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tnYR4QbDx0TEmIyGeCE1iJ7Yfq8IUQB0SMKlvluM4I2hNp6596Mv-ds6xUyggTeIxyVlyfOe739n3AfDKxFzbTLo7dZlHDCF_JIXkUcZjxoxgKa_dgf70PC8u2MdZNtuDSZ8L48Iqg-73Or3T1uHNKKzm6LppRl_RMUHzTWcolF2D6n04SNHaiwEcjD98Ks5_pUcyr5CRPnID-gy6LswLcWHZuCzARHS1PF2fyX9bqL8R6J-BlL9ZprOH8CBASjL2s34Ee7Y9hKNxi-70fENeky7Iszs9P4R703CXfgSfi42-WnelcYk2TfWGTN4xRnRbkS_FeDolS9-m3pL5ZlEiyF6RPqef-ORGYuflcrO4dOqyuXkMF2fvv02KKLRXiEwm6CrSseGacZ3KqrYUnWTNK1uJvMYF07HN8lJnlpmUItOS2i1XZdHeG2bqXCLKo09g0C5a-wwIRdSGzBA6raRLwSrjOq2SMqulZLpm5RBov6TKhNrjrgXGleqDzH4ozwjlGKFcZ8xYDCHajrr2tTfuoOc9t9SODCk0D3eMPOmZq8IevlGu1B46XGjHh_By-xl3n7tS0a1drJEG4ZZApc_ZEJ56WdhOlbpLYfTGcFo7UrIlcJW9d7-0zfeuwndOuUxYdvzfP_Qc7uOT9JGZJzBYLdf2BaKnVXkK-29vk9OwR34C41oYMw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NToK9INiAFTYwEuKJqGnsxPFjVTZlbCkSbFLfLMdxWKY1nbr2of8959gpFJAm8RqfJefOvvudfR8AH3TIlYmFfVMXScAQ8gciFTyIeciYTlnEK3uhn0-S7Ip9mcbTHRh3uTA2rNLrfqfTW23tvww8Nwd3dT34jo4Jmm86xU3ZNqh-BLvMNrXuwe7o7Dyb_EqPZE4hI31gJ3QZdG2YF-LCorZZgMO0reVp-0z-20L9jUD_DKT8zTKdPoOnHlKSkVv1c9gxzT4cjBp0p2dr8pG0QZ7t7fk-PM79W_oBfM3W6nbVlsYlStflJzL-zBhRTUm-ZaM8JwvXpt6Q2XpeIMheki6nn7jkRmJmxWI9_2HVZX3_Aq5OTy7HWeDbKwQ6TukyUKHminEVibIyFJ1kxUtTpkmFDFOhiZNCxYbpiKLQhpVlV2nQ3mumq0QgyqMvodfMG3MIhCJqQ2GkKiqFTcEqwioqh0VcCcFUxYo-0I6lUvva47YFxq3sgsxupBOEtIKQtjNmmPYh2My6c7U3HqDnnbTk1h6SaB4emHnUCVf6M3wvbak9dLjQjvfh_WYYT599UlGNma-QBuFWikqfsz68cnths1RqH4XRG8Nlbe2SDYGt7L090tTXbYXvhHIxZPHr__6hd_Aku8wv5MXZ5PwN7OGIcFGaR9BbLlbmGJHUsnjrT8pPeicaGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyaluronic+acid%2C+CD44+and+RHAMM+regulate+myoblast+behavior+during+embryogenesis&rft.jtitle=Matrix+biology&rft.au=Leng%2C+Yue&rft.au=Abdullah%2C+Ammara&rft.au=Wendt%2C+Michael+K&rft.au=Calve%2C+Sarah&rft.date=2019-05-01&rft.eissn=1569-1802&rft.volume=78-79&rft.spage=236&rft_id=info:doi/10.1016%2Fj.matbio.2018.08.008&rft_id=info%3Apmid%2F30130585&rft.externalDocID=30130585 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0945-053X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0945-053X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0945-053X&client=summon |