Corresponding ctDNA and tumor burden dynamics in metastatic melanoma patients on systemic treatment
•Longitudinal analysis of corresponding measurements of plasma ctDNA and tumor burden of melanoma subjects during therapy.•Evidence to explain the poor correlation between tumor burden measurements and plasma ctDNA concentration is due to differences in disease status.•Work has implications relative...
Saved in:
Published in | Translational oncology Vol. 42; p. 101883 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2024
Neoplasia Press Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1936-5233 1936-5233 |
DOI | 10.1016/j.tranon.2024.101883 |
Cover
Abstract | •Longitudinal analysis of corresponding measurements of plasma ctDNA and tumor burden of melanoma subjects during therapy.•Evidence to explain the poor correlation between tumor burden measurements and plasma ctDNA concentration is due to differences in disease status.•Work has implications relative to the interpretation of ctDNA test results and reconciliation with radiographic standard of care.
Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment. In 9 patients with no radiographic evidence of disease over a total of 15 time points, ctDNA concentrations were undetectable. In 21 patients with radiographic tumor burden, ctDNA was detected in 81 % of 58 time points. Plasma ctDNA concentrations demonstrated a modest positive correlation with total tumor burden (TTB) measurements (R2= 0.49, p < 0.001), with the greatest degree of correlation observed under conditions of progressive disease (PD) (R2 = 0.91, p = 0.032). Plasma ctDNA concentrations were significantly greater at times of RECIST v1.1 progression (PD; 22.1 % ± 5.7 %) when compared to samples collected during stable disease (SD; 4.99 % ± 3.0 %) (p = 0.012); this difference was independent of total tumor burden (p = 0.997). Changes in plasma ctDNA showed a strong correlation with changes in TTB (R2= 0.88, p<0.001). These data suggest that measurements of plasma ctDNA during therapy are a better surrogate for responding versus non-responding disease compared to absolute tumor burden. |
---|---|
AbstractList | Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment. In 9 patients with no radiographic evidence of disease over a total of 15 time points, ctDNA concentrations were undetectable. In 21 patients with radiographic tumor burden, ctDNA was detected in 81 % of 58 time points. Plasma ctDNA concentrations demonstrated a modest positive correlation with total tumor burden (TTB) measurements (R2= 0.49, p < 0.001), with the greatest degree of correlation observed under conditions of progressive disease (PD) (R2 = 0.91, p = 0.032). Plasma ctDNA concentrations were significantly greater at times of RECIST v1.1 progression (PD; 22.1 % ± 5.7 %) when compared to samples collected during stable disease (SD; 4.99 % ± 3.0 %) (p = 0.012); this difference was independent of total tumor burden (p = 0.997). Changes in plasma ctDNA showed a strong correlation with changes in TTB (R2= 0.88, p<0.001). These data suggest that measurements of plasma ctDNA during therapy are a better surrogate for responding versus non-responding disease compared to absolute tumor burden. •Longitudinal analysis of corresponding measurements of plasma ctDNA and tumor burden of melanoma subjects during therapy.•Evidence to explain the poor correlation between tumor burden measurements and plasma ctDNA concentration is due to differences in disease status.•Work has implications relative to the interpretation of ctDNA test results and reconciliation with radiographic standard of care. Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment. In 9 patients with no radiographic evidence of disease over a total of 15 time points, ctDNA concentrations were undetectable. In 21 patients with radiographic tumor burden, ctDNA was detected in 81 % of 58 time points. Plasma ctDNA concentrations demonstrated a modest positive correlation with total tumor burden (TTB) measurements (R2= 0.49, p < 0.001), with the greatest degree of correlation observed under conditions of progressive disease (PD) (R2 = 0.91, p = 0.032). Plasma ctDNA concentrations were significantly greater at times of RECIST v1.1 progression (PD; 22.1 % ± 5.7 %) when compared to samples collected during stable disease (SD; 4.99 % ± 3.0 %) (p = 0.012); this difference was independent of total tumor burden (p = 0.997). Changes in plasma ctDNA showed a strong correlation with changes in TTB (R2= 0.88, p<0.001). These data suggest that measurements of plasma ctDNA during therapy are a better surrogate for responding versus non-responding disease compared to absolute tumor burden. Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment. In 9 patients with no radiographic evidence of disease over a total of 15 time points, ctDNA concentrations were undetectable. In 21 patients with radiographic tumor burden, ctDNA was detected in 81 % of 58 time points. Plasma ctDNA concentrations demonstrated a modest positive correlation with total tumor burden (TTB) measurements (R = 0.49, p < 0.001), with the greatest degree of correlation observed under conditions of progressive disease (PD) (R = 0.91, p = 0.032). Plasma ctDNA concentrations were significantly greater at times of RECIST v1.1 progression (PD; 22.1 % ± 5.7 %) when compared to samples collected during stable disease (SD; 4.99 % ± 3.0 %) (p = 0.012); this difference was independent of total tumor burden (p = 0.997). Changes in plasma ctDNA showed a strong correlation with changes in TTB (R = 0.88, p<0.001). These data suggest that measurements of plasma ctDNA during therapy are a better surrogate for responding versus non-responding disease compared to absolute tumor burden. Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment. In 9 patients with no radiographic evidence of disease over a total of 15 time points, ctDNA concentrations were undetectable. In 21 patients with radiographic tumor burden, ctDNA was detected in 81 % of 58 time points. Plasma ctDNA concentrations demonstrated a modest positive correlation with total tumor burden (TTB) measurements (R2= 0.49, p < 0.001), with the greatest degree of correlation observed under conditions of progressive disease (PD) (R2 = 0.91, p = 0.032). Plasma ctDNA concentrations were significantly greater at times of RECIST v1.1 progression (PD; 22.1 % ± 5.7 %) when compared to samples collected during stable disease (SD; 4.99 % ± 3.0 %) (p = 0.012); this difference was independent of total tumor burden (p = 0.997). Changes in plasma ctDNA showed a strong correlation with changes in TTB (R2= 0.88, p<0.001). These data suggest that measurements of plasma ctDNA during therapy are a better surrogate for responding versus non-responding disease compared to absolute tumor burden.Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment. In 9 patients with no radiographic evidence of disease over a total of 15 time points, ctDNA concentrations were undetectable. In 21 patients with radiographic tumor burden, ctDNA was detected in 81 % of 58 time points. Plasma ctDNA concentrations demonstrated a modest positive correlation with total tumor burden (TTB) measurements (R2= 0.49, p < 0.001), with the greatest degree of correlation observed under conditions of progressive disease (PD) (R2 = 0.91, p = 0.032). Plasma ctDNA concentrations were significantly greater at times of RECIST v1.1 progression (PD; 22.1 % ± 5.7 %) when compared to samples collected during stable disease (SD; 4.99 % ± 3.0 %) (p = 0.012); this difference was independent of total tumor burden (p = 0.997). Changes in plasma ctDNA showed a strong correlation with changes in TTB (R2= 0.88, p<0.001). These data suggest that measurements of plasma ctDNA during therapy are a better surrogate for responding versus non-responding disease compared to absolute tumor burden. • Longitudinal analysis of corresponding measurements of plasma ctDNA and tumor burden of melanoma subjects during therapy. • Evidence to explain the poor correlation between tumor burden measurements and plasma ctDNA concentration is due to differences in disease status. • Work has implications relative to the interpretation of ctDNA test results and reconciliation with radiographic standard of care. Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment. In 9 patients with no radiographic evidence of disease over a total of 15 time points, ctDNA concentrations were undetectable. In 21 patients with radiographic tumor burden, ctDNA was detected in 81 % of 58 time points. Plasma ctDNA concentrations demonstrated a modest positive correlation with total tumor burden (TTB) measurements (R 2 = 0.49, p < 0.001), with the greatest degree of correlation observed under conditions of progressive disease (PD) (R 2 = 0.91, p = 0.032). Plasma ctDNA concentrations were significantly greater at times of RECIST v1.1 progression (PD; 22.1 % ± 5.7 %) when compared to samples collected during stable disease (SD; 4.99 % ± 3.0 %) ( p = 0.012); this difference was independent of total tumor burden ( p = 0.997). Changes in plasma ctDNA showed a strong correlation with changes in TTB (R 2 = 0.88, p <0.001). These data suggest that measurements of plasma ctDNA during therapy are a better surrogate for responding versus non-responding disease compared to absolute tumor burden. |
ArticleNumber | 101883 |
Author | Van Meter, Tracy Valdes, Roland Kong, Maiying Hall, Melissa Barousse Linder, Mark W. Egger, Michael E. Alexander, Evan Maung, Aye Aye |
Author_xml | – sequence: 1 givenname: Michael E. orcidid: 0000-0002-8263-751X surname: Egger fullname: Egger, Michael E. organization: Department of Surgery, Division of Surgical Oncology, University of Louisville School of Medicine, Louisville, KY, USA – sequence: 2 givenname: Evan orcidid: 0000-0002-9713-0260 surname: Alexander fullname: Alexander, Evan organization: Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA – sequence: 3 givenname: Tracy orcidid: 0000-0002-2333-3364 surname: Van Meter fullname: Van Meter, Tracy organization: Department of Radiology, University of Louisville School of Medicine, Louisville, KY, USA – sequence: 4 givenname: Maiying surname: Kong fullname: Kong, Maiying organization: Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, Louisville, KY, USA – sequence: 5 givenname: Aye Aye orcidid: 0009-0006-0668-1304 surname: Maung fullname: Maung, Aye Aye organization: Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, Louisville, KY, USA – sequence: 6 givenname: Roland surname: Valdes fullname: Valdes, Roland organization: Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA – sequence: 7 givenname: Melissa Barousse surname: Hall fullname: Hall, Melissa Barousse organization: UofL Health Brown Cancer Center, Louisville, KY, USA – sequence: 8 givenname: Mark W. surname: Linder fullname: Linder, Mark W. email: mark.linder@louisville.edu organization: Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38306914$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEQx1eoiD7gGyDkI5cEv9axEQJV4VWpggucLa89CQ67drC9lfLt8bKlanvJyePx_H8znpnz5iTEAE3zkuAlwUS82S1LMtW3pJjyySUle9KcEcXEoqWMndyzT5vznHcYC6IofdacMsmwUISfNXYdU4K8j8H5sEW2fPx2iUxwqIxDTKgbk4OA3CGYwduMfEADFJOLKd5Ws68VDAbt6xVCySgGlA-5QA1GJYEpQ3U_b55uTJ_hxe150fz8_OnH-uvi-vuXq_Xl9cK2kpXFijspupVQtmNWWc43ijtMnNq0AIpa0zkuOgKUGClWmLDOdrRVjoOoFhB20VzNXBfNTu-TH0w66Gi8_ueIaatNqnX3oA0xXFTYSkrDqXJKYE6k6VqsVk6AqqwPM2s_dgM4W7-RTP8A-vAl-F96G280wbLFhOBKeH1LSPHPCLnowWcLfW0ZxDFrqihXSkk2JXt1P9ldlv9jqgF8DrAp5pxgcxdCsJ62Qe_0vA162gY9b0OVvX0ks36aXJxK9v0x8ftZDHVkNx6SzrYO2YLzCWypPfXHAO8eAWzvg7em_w2H4_K_nV_pKA |
CitedBy_id | crossref_primary_10_1186_s13046_025_03328_4 crossref_primary_10_1016_j_jmoldx_2024_07_001 crossref_primary_10_1016_j_esmogo_2025_100148 |
Cites_doi | 10.1186/s12885-018-4637-6 10.3390/cancers13153913 10.1007/s40291-021-00528-4 10.18632/oncotarget.25404 10.1016/j.jaad.2016.02.1229 10.1002/ijc.30407 10.1038/s41598-019-53917-5 10.1200/PO.19.00174 10.1016/j.bdq.2019.100087 10.1245/s10434-017-5768-8 10.1126/scitranslmed.3007094 10.1186/s12967-019-2051-8 10.1373/clinchem.2017.281543 10.1002/jso.25324 10.1098/rsif.2017.0213 10.1016/j.ejca.2008.10.026 10.1016/j.ejca.2021.09.019 10.1038/nrc.2017.7 10.1158/2159-8290.CD-15-1483 10.1373/clinchem.2014.230235 10.1097/CMR.0000000000000421 10.1186/s12967-016-0852-6 10.3390/cancers14174158 10.1080/10408363.2020.1750558 10.1158/1078-0432.CCR-15-0321 10.3390/cancers13123101 10.1016/j.ejca.2014.06.009 10.1016/j.suronc.2014.01.002 10.1016/S1470-2045(20)30726-9 10.1001/jamaoncol.2017.5332 10.1002/1878-0261.12373 10.1080/15384047.2019.1598759 10.1002/sim.4368 10.1158/0008-5472.CAN-21-1718 10.1016/j.ejca.2017.10.029 10.3322/caac.21708 10.18632/oncotarget.5788 10.1136/jitc-2020-001504 10.1093/jssam/smv024 10.1038/nrclinonc.2017.43 10.1016/j.annonc.2022.05.520 10.2217/pgs-2018-0174 10.1093/annonc/mdx026 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier Inc. 2024 The Authors. Published by Elsevier Inc. 2024 |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Inc. – notice: 2024 The Authors. Published by Elsevier Inc. 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.tranon.2024.101883 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1936-5233 |
ExternalDocumentID | oai_doaj_org_article_a1a466b1788a429d960418ab5097d6e9 PMC10850110 38306914 10_1016_j_tranon_2024_101883 S1936523324000093 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM135004 |
GroupedDBID | --- .1- .FO 0R~ 1P~ 29Q 2WC 4.4 457 53G 5VS AAEDT AAEDW AAIKJ AAKDD AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK E3Z EBS EJD F5P FDB GROUPED_DOAJ GX1 HYE IPNFZ IXB KQ8 OC~ OK1 OO- RIG ROL RPM SSZ TR2 Z5R 0SF 6I. AACTN AAFTH AFCTW M~E NCXOZ AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c583t-74d86b769cb3c9c44f94d01d9f5ee92cabd46b1e21a867013bcb259d4e6bcbe13 |
IEDL.DBID | DOA |
ISSN | 1936-5233 |
IngestDate | Wed Aug 27 01:28:00 EDT 2025 Thu Aug 21 18:35:18 EDT 2025 Fri Sep 05 14:12:45 EDT 2025 Sat Sep 27 02:51:24 EDT 2025 Tue Jul 01 01:57:02 EDT 2025 Thu Apr 24 22:51:09 EDT 2025 Sat Feb 24 15:49:33 EST 2024 Tue Aug 26 16:32:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tumor burden Treatment monitoring Plasma ctDNA Tumor proliferation Melanoma |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-74d86b769cb3c9c44f94d01d9f5ee92cabd46b1e21a867013bcb259d4e6bcbe13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9713-0260 0000-0002-8263-751X 0000-0002-2333-3364 0009-0006-0668-1304 |
OpenAccessLink | https://doaj.org/article/a1a466b1788a429d960418ab5097d6e9 |
PMID | 38306914 |
PQID | 2924999839 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a1a466b1788a429d960418ab5097d6e9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10850110 proquest_miscellaneous_2924999839 pubmed_primary_38306914 crossref_primary_10_1016_j_tranon_2024_101883 crossref_citationtrail_10_1016_j_tranon_2024_101883 elsevier_sciencedirect_doi_10_1016_j_tranon_2024_101883 elsevier_clinicalkey_doi_10_1016_j_tranon_2024_101883 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Translational oncology |
PublicationTitleAlternate | Transl Oncol |
PublicationYear | 2024 |
Publisher | Elsevier Inc Neoplasia Press Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Neoplasia Press – name: Elsevier |
References | Eisenhauer, Therasse, Bogaerts, Schwartz, Sargent (bib0036) 2009; 45 Rockberg, Amelio, Taylor, Jorgensen, Ragnhammar, Hansson (bib0002) 2016; 139 Ariana, Meghan, Caberry, Vuk, John, Scott (bib0022) 2020; 31 Luke, Flaherty, Ribas, Long (bib0005) 2017; 14 Pascual, Attard, Bidard, Curigliano, De Mattos-Arruda (bib0046) 2022; 33 Syeda, Wiggins, Corless, Long, Flaherty (bib0015) 2021; 22 Muluhngwi, Valdes, Fernandez-Botran, Burton, Williams, Linder (bib0020) 2019; 20 Fitzmaurice, Laird, Ware (bib0038) 2012 Bettegowda, Sausen, Leary, Kinde, Wang (bib0018) 2014; 6 Gracie, Pan, Atenafu, Ward, Teng (bib0032) 2021; 158 Dean NaP (bib0037) 2015; 3 Forthun, Hovland, Schuster, Puntervoll, Brodal (bib0017) 2019; 9 Deschner, Wayne (bib0011) 2019; 119 Bisschop, Ter Elst, Bosman, Platteel, Jalving (bib0026) 2018; 28 Braune, Keller, Schiller, Graf, Rafei-Shamsabadi (bib0043) 2020; 4 Seremet, Jansen, Planken, Njimi, Delaunoy (bib0048) 2019; 17 Varaljai, Wistuba-Hamprecht, Seremet, Diaz, Nsengimana (bib0029) 2019; 3 Linder, Egger, Van Meter, Rai, Valdes (bib0035) 2021; 25 Haselmann, Gebhardt, Brechtel, Duda, Czerwinski (bib0030) 2018; 64 Siegel, Miller, Fuchs, Jemal (bib0001) 2022; 72 Marina, Andrea, Doritt, Nadia, Emina (bib0013) 2021; 13 Tolmeijer, Koornstra, de Groot, Geerlings, van Rens (bib0014) 2021; 13 Schreuer, Meersseman, Van Den Herrewegen, Jansen, Chevolet (bib0025) 2016; 14 McEvoy, Warburton, Al-Ogaili, Celliers, Calapre (bib0033) 2018; 18 Trotter, Sroa, Winkelmann, Olencki, Bechtel (bib0006) 2013; 6 Wan, Massie, Garcia-Corbacho, Mouliere, Brenton (bib0024) 2017; 17 Marsavela (bib0034) 2022; 8 Nakagawa, Johnson, Schielzeth (bib0039) 2017; 14 Gebhardt, Lichtenberger, Utikal (bib0016) 2016; 14 Lee, Long, Boyd, Lo, Menzies (bib0031) 2017; 28 Sanmamed, Fernández-Landázuri, Rodríguez, Zárate, Lozano (bib0027) 2015; 61 Boerlin, Bellini, Turko, Cheng, Levesque (bib0049) 2022; 14 Rodriguez Rivera, Alabbas, Ramjaun, Meguerditchian (bib0009) 2014; 23 Kustanovich, Schwartz, Peretz, Grinshpun (bib0019) 2019 Ricciuti, Jones, Severgnini, Alessi, Recondo (bib0041) 2021; 9 Santiago-Walker, Gagnon, Mazumdar, Casey, Long (bib0012) 2016; 22 Podlipnik, Carrera, Sanchez, Arguis, Olondo (bib0007) 2016; 75 Ungerer, Bronkhorst, Holdenrieder (bib0021) 2020; 57 Stadler, Belloum, Deitert, Sementsov, Heidrich (bib0042) 2022; 82 Valpione, Gremel, Mundra, Middlehurst, Galvani (bib0044) 2018; 88 Herbreteau, Vallée, Knol, Théoleyre, Quéreux (bib0028) 2018; 9 Lorenz, Datta, Harkema (bib0040) 2011; 30 Park, Phan, Yang, Kammula, Hughes (bib0004) 2017; 24 Lee, Long, Menzies, Lo, Guminski (bib0008) 2018; 4 Alix-Panabieres, Pantel (bib0023) 2016; 6 Bronkhorst, Ungerer, Holdenrieder (bib0047) 2019; 17 Gray, Rizos, Reid, Boyd, Pereira (bib0010) 2015; 6 Barbour, Tang, Armour, Dutton-Regester, Krause (bib0003) 2014; 50 Rowe, Luber, Makell, Brothers, Santmyer (bib0045) 2018; 12 Ariana (10.1016/j.tranon.2024.101883_bib0022) 2020; 31 Bronkhorst (10.1016/j.tranon.2024.101883_bib0047) 2019; 17 Syeda (10.1016/j.tranon.2024.101883_bib0015) 2021; 22 Luke (10.1016/j.tranon.2024.101883_bib0005) 2017; 14 Rodriguez Rivera (10.1016/j.tranon.2024.101883_bib0009) 2014; 23 Lee (10.1016/j.tranon.2024.101883_bib0008) 2018; 4 Trotter (10.1016/j.tranon.2024.101883_bib0006) 2013; 6 Santiago-Walker (10.1016/j.tranon.2024.101883_bib0012) 2016; 22 Barbour (10.1016/j.tranon.2024.101883_bib0003) 2014; 50 Rowe (10.1016/j.tranon.2024.101883_bib0045) 2018; 12 Eisenhauer (10.1016/j.tranon.2024.101883_bib0036) 2009; 45 Boerlin (10.1016/j.tranon.2024.101883_bib0049) 2022; 14 Valpione (10.1016/j.tranon.2024.101883_bib0044) 2018; 88 Ricciuti (10.1016/j.tranon.2024.101883_bib0041) 2021; 9 Deschner (10.1016/j.tranon.2024.101883_bib0011) 2019; 119 Haselmann (10.1016/j.tranon.2024.101883_bib0030) 2018; 64 Siegel (10.1016/j.tranon.2024.101883_bib0001) 2022; 72 Ungerer (10.1016/j.tranon.2024.101883_bib0021) 2020; 57 Braune (10.1016/j.tranon.2024.101883_bib0043) 2020; 4 Park (10.1016/j.tranon.2024.101883_bib0004) 2017; 24 Wan (10.1016/j.tranon.2024.101883_bib0024) 2017; 17 Dean NaP (10.1016/j.tranon.2024.101883_bib0037) 2015; 3 Varaljai (10.1016/j.tranon.2024.101883_bib0029) 2019; 3 Stadler (10.1016/j.tranon.2024.101883_bib0042) 2022; 82 Bettegowda (10.1016/j.tranon.2024.101883_bib0018) 2014; 6 Bisschop (10.1016/j.tranon.2024.101883_bib0026) 2018; 28 Herbreteau (10.1016/j.tranon.2024.101883_bib0028) 2018; 9 Nakagawa (10.1016/j.tranon.2024.101883_bib0039) 2017; 14 Podlipnik (10.1016/j.tranon.2024.101883_bib0007) 2016; 75 Fitzmaurice (10.1016/j.tranon.2024.101883_bib0038) 2012 Lorenz (10.1016/j.tranon.2024.101883_bib0040) 2011; 30 Schreuer (10.1016/j.tranon.2024.101883_bib0025) 2016; 14 Tolmeijer (10.1016/j.tranon.2024.101883_bib0014) 2021; 13 Rockberg (10.1016/j.tranon.2024.101883_bib0002) 2016; 139 Seremet (10.1016/j.tranon.2024.101883_bib0048) 2019; 17 Muluhngwi (10.1016/j.tranon.2024.101883_bib0020) 2019; 20 Sanmamed (10.1016/j.tranon.2024.101883_bib0027) 2015; 61 McEvoy (10.1016/j.tranon.2024.101883_bib0033) 2018; 18 Gebhardt (10.1016/j.tranon.2024.101883_bib0016) 2016; 14 Gray (10.1016/j.tranon.2024.101883_bib0010) 2015; 6 Pascual (10.1016/j.tranon.2024.101883_bib0046) 2022; 33 Kustanovich (10.1016/j.tranon.2024.101883_bib0019) 2019 Marsavela (10.1016/j.tranon.2024.101883_bib0034) 2022; 8 Lee (10.1016/j.tranon.2024.101883_bib0031) 2017; 28 Gracie (10.1016/j.tranon.2024.101883_bib0032) 2021; 158 Marina (10.1016/j.tranon.2024.101883_bib0013) 2021; 13 Linder (10.1016/j.tranon.2024.101883_bib0035) 2021; 25 Alix-Panabieres (10.1016/j.tranon.2024.101883_bib0023) 2016; 6 Forthun (10.1016/j.tranon.2024.101883_bib0017) 2019; 9 |
References_xml | – volume: 6 start-page: 224ra24 year: 2014 ident: bib0018 article-title: Detection of circulating tumor DNA in early- and late-stage human malignancies publication-title: Sci. Transl. Med. – volume: 9 year: 2021 ident: bib0041 article-title: Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC) publication-title: J. Immunoth. Cancer – volume: 3 start-page: 484 year: 2015 end-page: 503 ident: bib0037 article-title: Evaluating confidence interval methods for binomial proportions in clustered surveys publication-title: J. Surv. Stat. Methodol. – volume: 9 start-page: 17471 year: 2019 ident: bib0017 article-title: ctDNA detected by ddPCR reveals changes in tumour load in metastatic malignant melanoma treated with bevacizumab publication-title: Sci. Rep. – volume: 50 start-page: 2668 year: 2014 end-page: 2676 ident: bib0003 article-title: BRAF mutation status is an independent prognostic factor for resected stage IIIB and IIIC melanoma: implications for melanoma staging and adjuvant therapy publication-title: Eur. J. Cancer – volume: 24 start-page: 947 year: 2017 end-page: 951 ident: bib0004 article-title: Routine computer tomography imaging for the detection of recurrences in high-risk melanoma patients publication-title: Ann. Surg. Oncol. – volume: 17 start-page: 303 year: 2019 ident: bib0048 article-title: Undetectable circulating tumor DNA (ctDNA) levels correlate with favorable outcome in metastatic melanoma patients treated with anti-PD1 therapy publication-title: J. Transl. Med. – volume: 82 start-page: 349 year: 2022 end-page: 358 ident: bib0042 article-title: Current and future clinical applications of ctDNA in immuno-oncology publication-title: Cancer Res. – volume: 12 start-page: 1661 year: 2018 end-page: 1672 ident: bib0045 article-title: From validity to clinical utility: the influence of circulating tumor DNA on melanoma patient management in a real-world setting publication-title: Mol. Oncol. – volume: 14 start-page: 95 year: 2016 ident: bib0025 article-title: Quantitative assessment of BRAF V600 mutant circulating cell-free tumor DNA as a tool for therapeutic monitoring in metastatic melanoma patients treated with BRAF/MEK inhibitors publication-title: J. Transl. Med. – volume: 22 start-page: 567 year: 2016 end-page: 574 ident: bib0012 article-title: Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials publication-title: Clin. Cancer Res. – volume: 4 start-page: 20 year: 2020 end-page: 31 ident: bib0043 article-title: Circulating tumor DNA allows early treatment monitoring in BRAF- and NRAS-mutant malignant melanoma publication-title: JCo Precis. Oncol. – volume: 119 start-page: 262 year: 2019 end-page: 268 ident: bib0011 article-title: Follow-up of the melanoma patient publication-title: J. Surg. Oncol. – volume: 28 start-page: 96 year: 2018 end-page: 104 ident: bib0026 article-title: Rapid BRAF mutation tests in patients with advanced melanoma: comparison of immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation Platform publication-title: Melanoma Res. – volume: 28 start-page: 1130 year: 2017 end-page: 1136 ident: bib0031 article-title: Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma publication-title: Ann. Oncol. – volume: 8 year: 2022 ident: bib0034 article-title: Detection of clinical progression through plasma ctDNA in metastatic melanoma patients: a comparison to radiological progression publication-title: Br. J. Cancer – volume: 57 start-page: 484 year: 2020 end-page: 507 ident: bib0021 article-title: Preanalytical variables that affect the outcome of cell-free DNA measurements publication-title: Crit. Rev. Clin. Lab. Sci. – volume: 13 start-page: 3913 year: 2021 ident: bib0014 article-title: Plasma BRAF mutation detection for the diagnostic and monitoring trajectory of patients with LDH-high stage IV melanoma publication-title: Cancer. (Basel) – volume: 6 start-page: 18 year: 2013 end-page: 26 ident: bib0006 article-title: A global review of melanoma follow-up guidelines publication-title: J. Clin. Aesthet. Dermatol. – volume: 23 start-page: 11 year: 2014 end-page: 16 ident: bib0009 article-title: Value of positron emission tomography scan in stage III cutaneous melanoma: a systematic review and meta-analysis publication-title: Surg. Oncol. – volume: 22 start-page: 370 year: 2021 end-page: 380 ident: bib0015 article-title: Circulating tumour DNA in patients with advanced melanoma treated with dabrafenib or dabrafenib plus trametinib: a clinical validation study publication-title: Lancet Oncol. – volume: 31 year: 2020 ident: bib0022 article-title: Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics publication-title: Cell Rep. – volume: 88 start-page: 1 year: 2018 end-page: 9 ident: bib0044 article-title: Plasma total cell-free DNA (cfDNA) is a surrogate biomarker for tumour burden and a prognostic biomarker for survival in metastatic melanoma patients publication-title: Eur. J. Cancer – volume: 17 year: 2019 ident: bib0047 article-title: The emerging role of cell-free DNA as a molecular marker for cancer management publication-title: Biomol. Detect. Quantif. – volume: 72 start-page: 7 year: 2022 end-page: 33 ident: bib0001 article-title: Cancer statistics, 2022 publication-title: CA Cancer J. Clin. – volume: 61 start-page: 297 year: 2015 ident: bib0027 article-title: Quantitative cell-free circulating BRAF V600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors publication-title: Clin. Chem. – volume: 9 year: 2018 ident: bib0028 article-title: Quantitative monitoring of circulating tumor DNA predicts response of cutaneous metastatic melanoma to anti-PD1 immunotherapy publication-title: Oncotarget. – volume: 158 start-page: 191 year: 2021 end-page: 207 ident: bib0032 article-title: Circulating tumour DNA (ctDNA) in metastatic melanoma, a systematic review and meta-analysis publication-title: Eur. J. Cancer – year: 2019 ident: bib0019 article-title: Life and death of circulating cell-free DNA publication-title: Cancer Biol. Ther. – volume: 17 start-page: 223 year: 2017 end-page: 238 ident: bib0024 article-title: Liquid biopsies come of age: towards implementation of circulating tumour DNA publication-title: Nat. Rev. Cancer – volume: 18 start-page: 726 year: 2018 ident: bib0033 article-title: Correlation between circulating tumour DNA and metabolic tumour burden in metastatic melanoma patients publication-title: BMC. Cancer – volume: 6 start-page: 479 year: 2016 end-page: 491 ident: bib0023 article-title: Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy publication-title: Cancer Discov. – year: 2012 ident: bib0038 article-title: Applied Longitudinal Analysis – volume: 75 start-page: 516 year: 2016 end-page: 524 ident: bib0007 article-title: Performance of diagnostic tests in an intensive follow-up protocol for patients with American Joint Committee on Cancer (AJCC) stage IIB, IIC, and III localized primary melanoma: a prospective cohort study publication-title: J. Am. Acad. Dermatol. – volume: 14 start-page: 4158 year: 2022 ident: bib0049 article-title: The prognostic value of a single, randomly timed circulating tumor DNA measurement in patients with metastatic melanoma publication-title: Cancer. (Basel) – volume: 30 start-page: 3181 year: 2011 end-page: 3191 ident: bib0040 article-title: Marginal association measures for clustered data publication-title: Stat. Med. – volume: 4 start-page: 717 year: 2018 end-page: 721 ident: bib0008 article-title: Association between circulating tumor dna and pseudoprogression in patients with metastatic melanoma treated with anti–programmed cell death 1 antibodiescirculating tumor DNA and Anti–PD-1 pseudoprogression in melanomacirculating tumor DNA and Anti–PD-1 pseudoprogression in melanoma publication-title: JAMA Oncol. – volume: 45 start-page: 228 year: 2009 end-page: 247 ident: bib0036 article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) publication-title: Eur. J. Cancer – volume: 3 year: 2019 ident: bib0029 article-title: Application of circulating cell-free tumor DNA profiles for therapeutic monitoring and outcome prediction in genetically heterogeneous metastatic melanoma publication-title: JCo Precis. Oncol. – volume: 14 start-page: 158 year: 2016 end-page: 164 ident: bib0016 article-title: Biomarker value and pitfalls of serum S100B in the follow-up of high-risk melanoma patients publication-title: J. Der Deutschen Dermatologischen Gesellschaft – volume: 64 start-page: 830 year: 2018 ident: bib0030 article-title: Liquid profiling of circulating tumor DNA in plasma of melanoma patients for companion diagnostics and monitoring of BRAF inhibitor therapy publication-title: Clin. Chem. – volume: 33 start-page: 750 year: 2022 end-page: 768 ident: bib0046 article-title: ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group publication-title: Ann. Oncol. – volume: 14 year: 2017 ident: bib0039 article-title: The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded publication-title: J. Roy. Soc. Interface. – volume: 14 start-page: 463 year: 2017 end-page: 482 ident: bib0005 article-title: Targeted agents and immunotherapies: optimizing outcomes in melanoma publication-title: Nat. Rev. Clin. Oncol. – volume: 6 start-page: 42008 year: 2015 end-page: 42018 ident: bib0010 article-title: Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma publication-title: Oncotarget. – volume: 13 start-page: 3101 year: 2021 ident: bib0013 article-title: Circulating tumor DNA as a marker for treatment response in metastatic melanoma patients using next-generation sequencing—a prospective feasibility study publication-title: Cancer. (Basel) – volume: 139 start-page: 2722 year: 2016 end-page: 2729 ident: bib0002 article-title: Epidemiology of cutaneous melanoma in Sweden-Stage-specific survival and rate of recurrence publication-title: Int. J. Cancer – volume: 20 start-page: 357 year: 2019 end-page: 380 ident: bib0020 article-title: Cell-free DNA diagnostics: current and emerging applications in oncology publication-title: Pharmacogenomics. – volume: 25 start-page: 361 year: 2021 end-page: 371 ident: bib0035 article-title: Longitudinal relationship between idylla plasma ctBRAF V600 mutation detection and tumor burden in patients with metastatic melanoma publication-title: Mol. Diagn. Ther. – volume: 18 start-page: 726 year: 2018 ident: 10.1016/j.tranon.2024.101883_bib0033 article-title: Correlation between circulating tumour DNA and metabolic tumour burden in metastatic melanoma patients publication-title: BMC. Cancer doi: 10.1186/s12885-018-4637-6 – volume: 13 start-page: 3913 year: 2021 ident: 10.1016/j.tranon.2024.101883_bib0014 article-title: Plasma BRAF mutation detection for the diagnostic and monitoring trajectory of patients with LDH-high stage IV melanoma publication-title: Cancer. (Basel) doi: 10.3390/cancers13153913 – volume: 31 year: 2020 ident: 10.1016/j.tranon.2024.101883_bib0022 article-title: Senescence, necrosis, and apoptosis govern circulating cell-free DNA release kinetics publication-title: Cell Rep. – volume: 25 start-page: 361 year: 2021 ident: 10.1016/j.tranon.2024.101883_bib0035 article-title: Longitudinal relationship between idylla plasma ctBRAF V600 mutation detection and tumor burden in patients with metastatic melanoma publication-title: Mol. Diagn. Ther. doi: 10.1007/s40291-021-00528-4 – volume: 9 year: 2018 ident: 10.1016/j.tranon.2024.101883_bib0028 article-title: Quantitative monitoring of circulating tumor DNA predicts response of cutaneous metastatic melanoma to anti-PD1 immunotherapy publication-title: Oncotarget. doi: 10.18632/oncotarget.25404 – volume: 75 start-page: 516 year: 2016 ident: 10.1016/j.tranon.2024.101883_bib0007 article-title: Performance of diagnostic tests in an intensive follow-up protocol for patients with American Joint Committee on Cancer (AJCC) stage IIB, IIC, and III localized primary melanoma: a prospective cohort study publication-title: J. Am. Acad. Dermatol. doi: 10.1016/j.jaad.2016.02.1229 – volume: 8 year: 2022 ident: 10.1016/j.tranon.2024.101883_bib0034 article-title: Detection of clinical progression through plasma ctDNA in metastatic melanoma patients: a comparison to radiological progression publication-title: Br. J. Cancer – volume: 139 start-page: 2722 year: 2016 ident: 10.1016/j.tranon.2024.101883_bib0002 article-title: Epidemiology of cutaneous melanoma in Sweden-Stage-specific survival and rate of recurrence publication-title: Int. J. Cancer doi: 10.1002/ijc.30407 – volume: 9 start-page: 17471 year: 2019 ident: 10.1016/j.tranon.2024.101883_bib0017 article-title: ctDNA detected by ddPCR reveals changes in tumour load in metastatic malignant melanoma treated with bevacizumab publication-title: Sci. Rep. doi: 10.1038/s41598-019-53917-5 – volume: 4 start-page: 20 year: 2020 ident: 10.1016/j.tranon.2024.101883_bib0043 article-title: Circulating tumor DNA allows early treatment monitoring in BRAF- and NRAS-mutant malignant melanoma publication-title: JCo Precis. Oncol. doi: 10.1200/PO.19.00174 – volume: 17 year: 2019 ident: 10.1016/j.tranon.2024.101883_bib0047 article-title: The emerging role of cell-free DNA as a molecular marker for cancer management publication-title: Biomol. Detect. Quantif. doi: 10.1016/j.bdq.2019.100087 – volume: 24 start-page: 947 year: 2017 ident: 10.1016/j.tranon.2024.101883_bib0004 article-title: Routine computer tomography imaging for the detection of recurrences in high-risk melanoma patients publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-017-5768-8 – volume: 6 start-page: 224ra24 year: 2014 ident: 10.1016/j.tranon.2024.101883_bib0018 article-title: Detection of circulating tumor DNA in early- and late-stage human malignancies publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007094 – volume: 17 start-page: 303 year: 2019 ident: 10.1016/j.tranon.2024.101883_bib0048 article-title: Undetectable circulating tumor DNA (ctDNA) levels correlate with favorable outcome in metastatic melanoma patients treated with anti-PD1 therapy publication-title: J. Transl. Med. doi: 10.1186/s12967-019-2051-8 – volume: 64 start-page: 830 year: 2018 ident: 10.1016/j.tranon.2024.101883_bib0030 article-title: Liquid profiling of circulating tumor DNA in plasma of melanoma patients for companion diagnostics and monitoring of BRAF inhibitor therapy publication-title: Clin. Chem. doi: 10.1373/clinchem.2017.281543 – volume: 119 start-page: 262 year: 2019 ident: 10.1016/j.tranon.2024.101883_bib0011 article-title: Follow-up of the melanoma patient publication-title: J. Surg. Oncol. doi: 10.1002/jso.25324 – volume: 14 year: 2017 ident: 10.1016/j.tranon.2024.101883_bib0039 article-title: The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded publication-title: J. Roy. Soc. Interface. doi: 10.1098/rsif.2017.0213 – volume: 45 start-page: 228 year: 2009 ident: 10.1016/j.tranon.2024.101883_bib0036 article-title: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2008.10.026 – volume: 158 start-page: 191 year: 2021 ident: 10.1016/j.tranon.2024.101883_bib0032 article-title: Circulating tumour DNA (ctDNA) in metastatic melanoma, a systematic review and meta-analysis publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2021.09.019 – volume: 17 start-page: 223 year: 2017 ident: 10.1016/j.tranon.2024.101883_bib0024 article-title: Liquid biopsies come of age: towards implementation of circulating tumour DNA publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.7 – volume: 14 start-page: 158 year: 2016 ident: 10.1016/j.tranon.2024.101883_bib0016 article-title: Biomarker value and pitfalls of serum S100B in the follow-up of high-risk melanoma patients publication-title: J. Der Deutschen Dermatologischen Gesellschaft – volume: 6 start-page: 479 year: 2016 ident: 10.1016/j.tranon.2024.101883_bib0023 article-title: Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-1483 – volume: 61 start-page: 297 year: 2015 ident: 10.1016/j.tranon.2024.101883_bib0027 article-title: Quantitative cell-free circulating BRAF V600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors publication-title: Clin. Chem. doi: 10.1373/clinchem.2014.230235 – volume: 28 start-page: 96 year: 2018 ident: 10.1016/j.tranon.2024.101883_bib0026 article-title: Rapid BRAF mutation tests in patients with advanced melanoma: comparison of immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation Platform publication-title: Melanoma Res. doi: 10.1097/CMR.0000000000000421 – volume: 14 start-page: 95 year: 2016 ident: 10.1016/j.tranon.2024.101883_bib0025 article-title: Quantitative assessment of BRAF V600 mutant circulating cell-free tumor DNA as a tool for therapeutic monitoring in metastatic melanoma patients treated with BRAF/MEK inhibitors publication-title: J. Transl. Med. doi: 10.1186/s12967-016-0852-6 – volume: 3 year: 2019 ident: 10.1016/j.tranon.2024.101883_bib0029 article-title: Application of circulating cell-free tumor DNA profiles for therapeutic monitoring and outcome prediction in genetically heterogeneous metastatic melanoma publication-title: JCo Precis. Oncol. – volume: 14 start-page: 4158 year: 2022 ident: 10.1016/j.tranon.2024.101883_bib0049 article-title: The prognostic value of a single, randomly timed circulating tumor DNA measurement in patients with metastatic melanoma publication-title: Cancer. (Basel) doi: 10.3390/cancers14174158 – volume: 57 start-page: 484 year: 2020 ident: 10.1016/j.tranon.2024.101883_bib0021 article-title: Preanalytical variables that affect the outcome of cell-free DNA measurements publication-title: Crit. Rev. Clin. Lab. Sci. doi: 10.1080/10408363.2020.1750558 – volume: 22 start-page: 567 year: 2016 ident: 10.1016/j.tranon.2024.101883_bib0012 article-title: Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-0321 – volume: 13 start-page: 3101 year: 2021 ident: 10.1016/j.tranon.2024.101883_bib0013 article-title: Circulating tumor DNA as a marker for treatment response in metastatic melanoma patients using next-generation sequencing—a prospective feasibility study publication-title: Cancer. (Basel) doi: 10.3390/cancers13123101 – volume: 50 start-page: 2668 year: 2014 ident: 10.1016/j.tranon.2024.101883_bib0003 article-title: BRAF mutation status is an independent prognostic factor for resected stage IIIB and IIIC melanoma: implications for melanoma staging and adjuvant therapy publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2014.06.009 – volume: 23 start-page: 11 year: 2014 ident: 10.1016/j.tranon.2024.101883_bib0009 article-title: Value of positron emission tomography scan in stage III cutaneous melanoma: a systematic review and meta-analysis publication-title: Surg. Oncol. doi: 10.1016/j.suronc.2014.01.002 – volume: 6 start-page: 18 year: 2013 ident: 10.1016/j.tranon.2024.101883_bib0006 article-title: A global review of melanoma follow-up guidelines publication-title: J. Clin. Aesthet. Dermatol. – volume: 22 start-page: 370 year: 2021 ident: 10.1016/j.tranon.2024.101883_bib0015 article-title: Circulating tumour DNA in patients with advanced melanoma treated with dabrafenib or dabrafenib plus trametinib: a clinical validation study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(20)30726-9 – volume: 4 start-page: 717 year: 2018 ident: 10.1016/j.tranon.2024.101883_bib0008 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2017.5332 – volume: 12 start-page: 1661 year: 2018 ident: 10.1016/j.tranon.2024.101883_bib0045 article-title: From validity to clinical utility: the influence of circulating tumor DNA on melanoma patient management in a real-world setting publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12373 – year: 2019 ident: 10.1016/j.tranon.2024.101883_bib0019 article-title: Life and death of circulating cell-free DNA publication-title: Cancer Biol. Ther. doi: 10.1080/15384047.2019.1598759 – volume: 30 start-page: 3181 year: 2011 ident: 10.1016/j.tranon.2024.101883_bib0040 article-title: Marginal association measures for clustered data publication-title: Stat. Med. doi: 10.1002/sim.4368 – volume: 82 start-page: 349 year: 2022 ident: 10.1016/j.tranon.2024.101883_bib0042 article-title: Current and future clinical applications of ctDNA in immuno-oncology publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-1718 – volume: 88 start-page: 1 year: 2018 ident: 10.1016/j.tranon.2024.101883_bib0044 article-title: Plasma total cell-free DNA (cfDNA) is a surrogate biomarker for tumour burden and a prognostic biomarker for survival in metastatic melanoma patients publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2017.10.029 – volume: 72 start-page: 7 year: 2022 ident: 10.1016/j.tranon.2024.101883_bib0001 article-title: Cancer statistics, 2022 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21708 – volume: 6 start-page: 42008 year: 2015 ident: 10.1016/j.tranon.2024.101883_bib0010 article-title: Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma publication-title: Oncotarget. doi: 10.18632/oncotarget.5788 – volume: 9 year: 2021 ident: 10.1016/j.tranon.2024.101883_bib0041 article-title: Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC) publication-title: J. Immunoth. Cancer doi: 10.1136/jitc-2020-001504 – volume: 3 start-page: 484 year: 2015 ident: 10.1016/j.tranon.2024.101883_bib0037 article-title: Evaluating confidence interval methods for binomial proportions in clustered surveys publication-title: J. Surv. Stat. Methodol. doi: 10.1093/jssam/smv024 – volume: 14 start-page: 463 year: 2017 ident: 10.1016/j.tranon.2024.101883_bib0005 article-title: Targeted agents and immunotherapies: optimizing outcomes in melanoma publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.43 – volume: 33 start-page: 750 year: 2022 ident: 10.1016/j.tranon.2024.101883_bib0046 article-title: ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO Precision Medicine Working Group publication-title: Ann. Oncol. doi: 10.1016/j.annonc.2022.05.520 – volume: 20 start-page: 357 year: 2019 ident: 10.1016/j.tranon.2024.101883_bib0020 article-title: Cell-free DNA diagnostics: current and emerging applications in oncology publication-title: Pharmacogenomics. doi: 10.2217/pgs-2018-0174 – year: 2012 ident: 10.1016/j.tranon.2024.101883_bib0038 – volume: 28 start-page: 1130 year: 2017 ident: 10.1016/j.tranon.2024.101883_bib0031 article-title: Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma publication-title: Ann. Oncol. doi: 10.1093/annonc/mdx026 |
SSID | ssj0061922 |
Score | 2.3773897 |
Snippet | •Longitudinal analysis of corresponding measurements of plasma ctDNA and tumor burden of melanoma subjects during therapy.•Evidence to explain the poor... Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma... • Longitudinal analysis of corresponding measurements of plasma ctDNA and tumor burden of melanoma subjects during therapy. • Evidence to explain the poor... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101883 |
SubjectTerms | Melanoma Original Research Plasma ctDNA Treatment monitoring Tumor burden Tumor proliferation |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXxJuFgozENdpN7Dj2sd1SVUjtBSrtzfIrENRNVrvZ_8-MnUQEDkXcEifO2p7xPNYz3xDyKZeWhZxZLJO6AgelUplxTGSBWZNLYarK4l8DN7fi-o5_2ZSbE7Iec2EwrHKQ_UmmR2k9tCyH1Vzummb5FUwPAW4UIspFxxzkMGaVYhLf5mKUxugfFOlkWaDTxcb0uRjj1YM-6BAFteDYJCWbqaeI4j_TUn9boX8GU_6mna6ekieDWUnP08ifkZPQPiePboaD8xfErWMVjl0Xk1io6y9vz6lpPe2P225PbUxmoD6Vpz_QpqXb0BvMNmocXN7DBLaGDiCsB9q1NEFAw9MpVP0lubv6_G19nQ31FTJXStZnFfdS2EooZ5lTjvNacb_KvarLEFThjPVc2DwUuZGiAlvROgvekudBwBVQ-BU5heULbwgNDuzesrZS1IYrx2Rd1b4QsNlXvjC1WhA2Lqt2A_g41sC412OU2U-diKGRGDoRY0GyqdcugW888P4FUmx6F6GzY0O3_64H3tEmN1zAtMD3N6CMPaLT5NJYsJwqLwIMtRzprcfsVJCn8KHmgR-vpn4zDv6Hnh9HttKwufHExrShOx50gd4xOMQMRvU6sdk0OSbB21M5XxA5Y8DZ7OdP2uZHBBDHjBO0-97-95Dfkcd4l0KYzshpvz-G92Cd9fZD3H6_AGHQOjA priority: 102 providerName: Elsevier |
Title | Corresponding ctDNA and tumor burden dynamics in metastatic melanoma patients on systemic treatment |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1936523324000093 https://dx.doi.org/10.1016/j.tranon.2024.101883 https://www.ncbi.nlm.nih.gov/pubmed/38306914 https://www.proquest.com/docview/2924999839 https://pubmed.ncbi.nlm.nih.gov/PMC10850110 https://doaj.org/article/a1a466b1788a429d960418ab5097d6e9 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqHlAvqECB5SUj9RoRx44fx7ZQFVArIVFpb5ZfEVt1k1U3-_8Z20nUwGE5cImsJE7smbFnJpn5BqFTIi0NhNpYJrUEB0WowjjKi0CtIZIbIWz8NHB9w69u2bdlvXxU6ivGhGV44Ey4T4YYxrkl4KoZ2Dt9BBMh0lhQdMLzkFL3SlWOzlTeg6NXUI2Jcimaq4edv4t4pxWLp6SkM0WU8Ppn-uhve_PPsMlHeujyGD0dDEh8lgf-DB2E9jl6cj38In-B3EWqt7HpUroKdv3nmzNsWo_73bp7wDalLWCfC9Fv8arF69CbmFe0ctC8hwmsDR7gVre4a3EGe4arU1D6Cbq9_PLz4qoYKikUrpa0LwTzklvBlbPUKcdYo5gviVdNHYKqnLGeAY1DRYzkAqxC6yz4RZ4FDi3g5Ut0COQLrxEODizcurGSN4YpR2UjGl9xWNalr0yjFoiOZNVugBmP1S7u9RhPdqczM3Rkhs7MWKBi6rXJMBt77j-PHJvujSDZ6QSIjh5ER-8TnQWqR37rMQ8Vdk540GrPy8XUb7BTsv3xDz0_jmKlYRnHfzOmDd1uq6voB4PrS2FUr7KYTZOjEvw6RdgCyZkAzmY_v9KufiWo8JhbEi28N_-DXm_RUZxLjlt6hw77h114DyZZbz-k1QfHr8tzOH7_IX8DoJ84Og |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQIuiDddXkbiGrWJHcc57hZWXdj2wq7Um-VXIGibVG36_3fGeYjAYRG3yI5b2zOemS-eByGfYmmYj5nBMqkzAChZHmnLROSZ0bEUOssMfhpYrsTimn9dp-sjMu9jYdCtspP9rUwP0rprmXa7Od2W5fQ7mB4CYBRmlAvA_B65D9bADFn7Yn3Wi2MECEl7tSwQdbE-fi44eTWgEGpMg5pwbJKSjfRTSOM_UlN_m6F_elP-pp7On5DHnV1JT9upPyVHvnpGHiy7m_PnxM5DGY5tHaJYqG0-r06prhxtDpt6R02IZqCurU-_p2VFN77RGG5UWni8gQVsNO2ysO5pXdE2BzT0Dr7qL8j1-Zer-SLqCixENpWsiTLupDCZyK1hNrecFzl3s9jlRep9nlhtHBcm9kmspcjAWDTWAFxy3At4AhK_JMewff41od6C4ZsWRopC89wyWWSFSwSc9plLdJFPCOu3Vdku-zgWwbhRvZvZL9USQyExVEuMCYmGUds2-8Yd758hxYZ3MXd2aKh3P1THPErHmgtYFoB_DdrYYXqaWGoDplPmhIeppj29VR-eCgIVfqi848-zYdyIhf9h5MeerRScbryy0ZWvD3uVIDwGRMxgVq9aNhsWxyTAvTzmEyJHDDha_binKn-GDOIYcoKG38l_T_kDebi4Wl6qy4vVtzfkEfa0_kxvyXGzO_h3YKo15n04ircsAz1T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corresponding+ctDNA+and+tumor+burden+dynamics+in+metastatic+melanoma+patients+on+systemic+treatment&rft.jtitle=Translational+oncology&rft.au=Michael+E.+Egger&rft.au=Evan+Alexander&rft.au=Tracy+Van+Meter&rft.au=Maiying+Kong&rft.date=2024-04-01&rft.pub=Elsevier&rft.eissn=1936-5233&rft.volume=42&rft.spage=101883&rft_id=info:doi/10.1016%2Fj.tranon.2024.101883&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a1a466b1788a429d960418ab5097d6e9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-5233&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-5233&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-5233&client=summon |