Research on line loss analysis and intelligent diagnosis of abnormal causes in distribution networks: artificial intelligence based method
The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing...
        Saved in:
      
    
          | Published in | PeerJ. Computer science Vol. 9; p. e1753 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          PeerJ. Ltd
    
        15.12.2023
     PeerJ, Inc PeerJ Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2376-5992 2376-5992  | 
| DOI | 10.7717/peerj-cs.1753 | 
Cover
| Abstract | The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing abnormal line losses in DNs has been a widely and challenging research subject. This article investigates a key technology for the line loss analyses of DNs and intelligent diagnosis of abnormal causes by implementing artificial intelligence (AI), resulting in several prominent results. The proposed algorithm optimizes the parameters of the support vector machine (SVM) and suggests an intelligent diagnosis algorithm called the Improved Sparrow Search Algorithm and Support Vector Machine (ISSA-SVM). The ISSA-SVM algorithm is trained to calculate the data anomalies of line losses when changing loads and exhibiting exceptional performance to identify abnormal line losses. The accuracy of abnormality identification employing the ISSA-SVM algorithm reaches an impressive 98%, surpassing the performances of other available algorithms. Moreover, the practical performance of the proposed approach for analyzing large volumes of abnormal line loss data daily in DNs is also noteworthy. The ISSA-SVM accurately identifies the root causes of abnormal line losses and lowers the error in calculating abnormal line loss data. By combining different types of power operation data and creating a multidimensional feature traceability model, the study successfully determines the factors contributing to abnormal line losses. The relationship between transformers and voltage among various lines is determined by using the Pearson correlation, which provides valuable insights into the relationship between these variables and line losses. The algorithm’s reliability and its potential to be applied to real-world scenarios bring an opportunity to improve the efficiency and safety of power supply systems. The ISSA that incorporates advanced techniques such as the Sobol sequence, golden sine algorithm, and Gaussian difference mutation appears to be a promising tool. | 
    
|---|---|
| AbstractList | The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing abnormal line losses in DNs has been a widely and challenging research subject. This article investigates a key technology for the line loss analyses of DNs and intelligent diagnosis of abnormal causes by implementing artificial intelligence (AI), resulting in several prominent results. The proposed algorithm optimizes the parameters of the support vector machine (SVM) and suggests an intelligent diagnosis algorithm called the Improved Sparrow Search Algorithm and Support Vector Machine (ISSA-SVM). The ISSA-SVM algorithm is trained to calculate the data anomalies of line losses when changing loads and exhibiting exceptional performance to identify abnormal line losses. The accuracy of abnormality identification employing the ISSA-SVM algorithm reaches an impressive 98%, surpassing the performances of other available algorithms. Moreover, the practical performance of the proposed approach for analyzing large volumes of abnormal line loss data daily in DNs is also noteworthy. The ISSA-SVM accurately identifies the root causes of abnormal line losses and lowers the error in calculating abnormal line loss data. By combining different types of power operation data and creating a multidimensional feature traceability model, the study successfully determines the factors contributing to abnormal line losses. The relationship between transformers and voltage among various lines is determined by using the Pearson correlation, which provides valuable insights into the relationship between these variables and line losses. The algorithm’s reliability and its potential to be applied to real-world scenarios bring an opportunity to improve the efficiency and safety of power supply systems. The ISSA that incorporates advanced techniques such as the Sobol sequence, golden sine algorithm, and Gaussian difference mutation appears to be a promising tool. The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing abnormal line losses in DNs has been a widely and challenging research subject. This article investigates a key technology for the line loss analyses of DNs and intelligent diagnosis of abnormal causes by implementing artificial intelligence (AI), resulting in several prominent results. The proposed algorithm optimizes the parameters of the support vector machine (SVM) and suggests an intelligent diagnosis algorithm called the Improved Sparrow Search Algorithm and Support Vector Machine (ISSA-SVM). The ISSA-SVM algorithm is trained to calculate the data anomalies of line losses when changing loads and exhibiting exceptional performance to identify abnormal line losses. The accuracy of abnormality identification employing the ISSA-SVM algorithm reaches an impressive 98%, surpassing the performances of other available algorithms. Moreover, the practical performance of the proposed approach for analyzing large volumes of abnormal line loss data daily in DNs is also noteworthy. The ISSA-SVM accurately identifies the root causes of abnormal line losses and lowers the error in calculating abnormal line loss data. By combining different types of power operation data and creating a multidimensional feature traceability model, the study successfully determines the factors contributing to abnormal line losses. The relationship between transformers and voltage among various lines is determined by using the Pearson correlation, which provides valuable insights into the relationship between these variables and line losses. The algorithm's reliability and its potential to be applied to real-world scenarios bring an opportunity to improve the efficiency and safety of power supply systems. The ISSA that incorporates advanced techniques such as the Sobol sequence, golden sine algorithm, and Gaussian difference mutation appears to be a promising tool.The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing abnormal line losses in DNs has been a widely and challenging research subject. This article investigates a key technology for the line loss analyses of DNs and intelligent diagnosis of abnormal causes by implementing artificial intelligence (AI), resulting in several prominent results. The proposed algorithm optimizes the parameters of the support vector machine (SVM) and suggests an intelligent diagnosis algorithm called the Improved Sparrow Search Algorithm and Support Vector Machine (ISSA-SVM). The ISSA-SVM algorithm is trained to calculate the data anomalies of line losses when changing loads and exhibiting exceptional performance to identify abnormal line losses. The accuracy of abnormality identification employing the ISSA-SVM algorithm reaches an impressive 98%, surpassing the performances of other available algorithms. Moreover, the practical performance of the proposed approach for analyzing large volumes of abnormal line loss data daily in DNs is also noteworthy. The ISSA-SVM accurately identifies the root causes of abnormal line losses and lowers the error in calculating abnormal line loss data. By combining different types of power operation data and creating a multidimensional feature traceability model, the study successfully determines the factors contributing to abnormal line losses. The relationship between transformers and voltage among various lines is determined by using the Pearson correlation, which provides valuable insights into the relationship between these variables and line losses. The algorithm's reliability and its potential to be applied to real-world scenarios bring an opportunity to improve the efficiency and safety of power supply systems. The ISSA that incorporates advanced techniques such as the Sobol sequence, golden sine algorithm, and Gaussian difference mutation appears to be a promising tool.  | 
    
| ArticleNumber | e1753 | 
    
| Audience | Academic | 
    
| Author | Li, Bo Gu, ZhiMing Liao, Yaohua Zhu, Mengmeng En, Wang Li, Zhengxing  | 
    
| Author_xml | – sequence: 1 givenname: Yaohua surname: Liao fullname: Liao, Yaohua organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China – sequence: 2 givenname: Wang surname: En fullname: En, Wang organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China – sequence: 3 givenname: Bo surname: Li fullname: Li, Bo organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China – sequence: 4 givenname: Mengmeng surname: Zhu fullname: Zhu, Mengmeng organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China – sequence: 5 givenname: Zhengxing surname: Li fullname: Li, Zhengxing organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China – sequence: 6 givenname: ZhiMing surname: Gu fullname: Gu, ZhiMing organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38192464$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkk1v1DAQhiNUREvpkSuKxAUOWWI7jhMuVVXxsVIlpAJny3EmWS9ee7ETSv8Cv5pJtyybSoj4EMt-5vXMO_M0OXLeQZI8J_lCCCLebAHCOtNxQQRnj5ITykSZ8bqmRwf74-QsxnWe54QT_OonyTGrSE2LsjhJfl1DBBX0KvUutcZBan2MqXLK3kYzbdrUuAGsNT24IW2N6p2fbnyXqsb5sFE21WqMEBHE-zgE04yDQT0Hw40P3-LbVIXBdEYbZP-qaUgbFaFNNzCsfPssedwpG-Hs_n-afH3_7svlx-zq04fl5cVVpnnFhqxUtBKk6rpa5S10ghZFg2YwUgrQTUcq3pS11kxXjSgqEIoxSkVZtpzymnPCTpPlTrf1ai23wWxUuJVeGXl34EMvp3S1BdlqwUjLNFQECl3XlSoJFw3whjLCakCtxU5rdFt1e6Os3QuSXE49knc9kjrKqUcYcL4L2I7NBlqNngZlZ1nMb5xZyd7_QDkhsKMVKry6Vwj--whxkBsTNVqqHPgxSloTyqlgNUf05QN07ceArZ2onJKSF8UB1Sss2bjO48N6EpUXFVZZUIFP7yudUbha2BiNY9kZPJ8FvJ4FIDPAz6HHUYly-fl6zr44dGVvx585RSDbATrgeAbo_msze8BrM6hpKDFrY_8R9RuOyA7J | 
    
| CitedBy_id | crossref_primary_10_2478_amns_2025_0810 crossref_primary_10_1109_ACCESS_2024_3437368  | 
    
| Cites_doi | 10.1109/TEMC.2022.3174635 10.1109/TSG.2018.2849845 10.3390/act10030056 10.1109/TIM.2018.2795298 10.1109/TPWRS.2017.2735898 10.1016/j.apenergy.2023.121638 10.1016/j.egyr.2022.09.025 10.1109/ACCESS.2017.2785763 10.1109/ACCESS.2022.3149482 10.1109/ACCESS.2019.2960512 10.1109/LCOMM.2019.2951404 10.1109/TSG.2015.2419080 10.1109/TCYB.2021.3104100 10.1016/j.future.2021.08.014 10.1016/j.solener.2023.111874 10.3390/math7030288 10.1016/j.egyr.2022.09.070 10.1109/POWERCON.2018.8601624  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Liao et al. COPYRIGHT 2023 PeerJ. Ltd. 2023 Liao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Liao et al. 2023 Liao et al.  | 
    
| Copyright_xml | – notice: 2023 Liao et al. – notice: COPYRIGHT 2023 PeerJ. Ltd. – notice: 2023 Liao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Liao et al. 2023 Liao et al.  | 
    
| DBID | AAYXX CITATION NPM ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.7717/peerj-cs.1753 | 
    
| DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database (Proquest) Computing Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2376-5992 | 
    
| ExternalDocumentID | oai_doaj_org_article_dc731d3ce81e4c998a6157be5b23139e 10.7717/peerj-cs.1753 PMC10773768 A813942777 38192464 10_7717_peerj_cs_1753  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GrantInformation_xml | – fundername: Science and Technology Project of the National Southern Power Grid of China grantid: YNKJXM20220166  | 
    
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RPM 3V. H13 M0N NPM 7XB 8AL 8FK JQ2 PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c583t-6a28718ff9a0def7244b7713167ecbf185b69cc3c8b748e7a3322766d52595513 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2376-5992 | 
    
| IngestDate | Fri Oct 03 12:41:46 EDT 2025 Sun Oct 26 04:09:23 EDT 2025 Tue Sep 30 17:10:47 EDT 2025 Fri Sep 05 10:49:30 EDT 2025 Sat Jul 26 00:10:15 EDT 2025 Mon Oct 20 22:47:43 EDT 2025 Mon Oct 20 16:54:20 EDT 2025 Thu Oct 16 15:50:43 EDT 2025 Thu Jan 02 22:29:51 EST 2025 Wed Oct 01 04:07:43 EDT 2025 Thu Apr 24 22:57:18 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Support vector machine Sparrow search algorithm Abnormal causes Distribution network Line loss Intelligent diagnosis  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 2023 Liao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c583t-6a28718ff9a0def7244b7713167ecbf185b69cc3c8b748e7a3322766d52595513 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.7717/peerj-cs.1753 | 
    
| PMID | 38192464 | 
    
| PQID | 2902165445 | 
    
| PQPubID | 2045934 | 
    
| PageCount | e1753 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dc731d3ce81e4c998a6157be5b23139e unpaywall_primary_10_7717_peerj_cs_1753 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10773768 proquest_miscellaneous_2912527395 proquest_journals_2902165445 gale_infotracmisc_A813942777 gale_infotracacademiconefile_A813942777 gale_incontextgauss_ISR_A813942777 pubmed_primary_38192464 crossref_primary_10_7717_peerj_cs_1753 crossref_citationtrail_10_7717_peerj_cs_1753  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-12-15 | 
    
| PublicationDateYYYYMMDD | 2023-12-15 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA  | 
    
| PublicationTitle | PeerJ. Computer science | 
    
| PublicationTitleAlternate | PeerJ Comput Sci | 
    
| PublicationYear | 2023 | 
    
| Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc  | 
    
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc  | 
    
| References | Weizhou (10.7717/peerj-cs.1753/ref-15) 2019 Zhang (10.7717/peerj-cs.1753/ref-21) 2019 Houran (10.7717/peerj-cs.1753/ref-2) 2023; 349 Sun (10.7717/peerj-cs.1753/ref-12) 2022; 52 Li (10.7717/peerj-cs.1753/ref-5) 2022; 127 Obiedat (10.7717/peerj-cs.1753/ref-8) 2022; 10 Pop (10.7717/peerj-cs.1753/ref-9) 2022; 8 Yang (10.7717/peerj-cs.1753/ref-19) 2020; 24 Qu (10.7717/peerj-cs.1753/ref-10) 2019; 7 Wu (10.7717/peerj-cs.1753/ref-17) 2019; 7 Hu (10.7717/peerj-cs.1753/ref-3) 2021 Lin (10.7717/peerj-cs.1753/ref-6) 2022; 8 Liu (10.7717/peerj-cs.1753/ref-7) 2021 Wu (10.7717/peerj-cs.1753/ref-16) 2021; 10 Xu (10.7717/peerj-cs.1753/ref-18) 2022; 64 Tang (10.7717/peerj-cs.1753/ref-13) 2018; 67 Sicheng (10.7717/peerj-cs.1753/ref-11) 2022 Huang (10.7717/peerj-cs.1753/ref-4) 2016; 7 Wang (10.7717/peerj-cs.1753/ref-14) 2018; 33 Zhang (10.7717/peerj-cs.1753/ref-23) 2018; 6 Zhang (10.7717/peerj-cs.1753/ref-22) 2023; 262 Yao (10.7717/peerj-cs.1753/ref-20) 2021 Zhou (10.7717/peerj-cs.1753/ref-24) 2018 Hosseini (10.7717/peerj-cs.1753/ref-1) 2018; 9  | 
    
| References_xml | – volume: 64 start-page: 1346 issue: 5 year: 2022 ident: 10.7717/peerj-cs.1753/ref-18 article-title: Prediction on EMS of UAV’s data link based on SSA-optimized dual-channel CNN publication-title: IEEE Transactions on Electromagnetic Compatibility doi: 10.1109/TEMC.2022.3174635 – volume: 9 start-page: 5470 issue: 5 year: 2018 ident: 10.7717/peerj-cs.1753/ref-1 article-title: AMI-enabled distribution network line outage identification via multi-label SVM publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2018.2849845 – volume: 10 start-page: 56 issue: 3 year: 2021 ident: 10.7717/peerj-cs.1753/ref-16 article-title: J. operation state identification method for converter transformers based on vibration detection technology and deep belief network optimization algorithm publication-title: Actuators doi: 10.3390/act10030056 – volume: 67 start-page: 992 issue: 5 year: 2018 ident: 10.7717/peerj-cs.1753/ref-13 article-title: A fault-tolerant flow measuring method based on PSO-SVM with transit-time multipath ultrasonic gas flowmeters publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2018.2795298 – start-page: 1840 year: 2019 ident: 10.7717/peerj-cs.1753/ref-15 article-title: Development of synchronous line loss analysis and diagnosis system based on arbitrary segmentation of power grid – volume: 33 start-page: 1148 issue: 1 year: 2018 ident: 10.7717/peerj-cs.1753/ref-14 article-title: A fast sensitivity method for determining line loss and node voltages in active distribution network publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2017.2735898 – start-page: 535 year: 2019 ident: 10.7717/peerj-cs.1753/ref-21 article-title: Investigating method and managing strategy of abnormal line loss in distribution network based on load characteristics – volume: 349 start-page: 121638 issue: 3 year: 2023 ident: 10.7717/peerj-cs.1753/ref-2 article-title: COA-CNN-LSTM: coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications publication-title: Applied Energy doi: 10.1016/j.apenergy.2023.121638 – volume: 8 start-page: 11769 issue: 1 year: 2022 ident: 10.7717/peerj-cs.1753/ref-9 article-title: Review of bio-inspired optimization applications in renewable-powered smart grids: emerging population-based metaheuristics publication-title: Energy Reports doi: 10.1016/j.egyr.2022.09.025 – volume: 6 start-page: 7675 year: 2018 ident: 10.7717/peerj-cs.1753/ref-23 article-title: Data-based line trip fault prediction in power systems using LSTM networks and SVM publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2785763 – start-page: 1045 year: 2021 ident: 10.7717/peerj-cs.1753/ref-3 article-title: Real-time line loss calculation method based on equivalent resistance of low voltage distribution network – volume: 10 start-page: 22260 year: 2022 ident: 10.7717/peerj-cs.1753/ref-8 article-title: Sentiment analysis of customers’ reviews using a hybrid evolutionary SVM-based approach in an imbalanced data distribution publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3149482 – volume: 7 year: 2019 ident: 10.7717/peerj-cs.1753/ref-10 article-title: Series arc fault detection of indoor power distribution system based on LVQ-NN and PSO-SVM publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960512 – volume: 24 start-page: 86 issue: 1 year: 2020 ident: 10.7717/peerj-cs.1753/ref-19 article-title: Channel equalization and detection with ELM-based regressors for OFDM systems publication-title: IEEE Communications Letters doi: 10.1109/LCOMM.2019.2951404 – volume: 7 start-page: 1295 issue: 3 year: 2016 ident: 10.7717/peerj-cs.1753/ref-4 article-title: Optimal reconfiguration-based dynamic tariff for congestion management and line loss reduction in distribution networks publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2015.2419080 – start-page: 371 year: 2021 ident: 10.7717/peerj-cs.1753/ref-7 article-title: Research on diagnosis of abnormal line loss of 10 kv transmission line based on factor analysis – volume: 52 start-page: 6158 issue: 7 year: 2022 ident: 10.7717/peerj-cs.1753/ref-12 article-title: SpaSSA: superpixelwise adaptive SSA for unsupervised spatial–spectral feature extraction in hyperspectral image publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2021.3104100 – volume: 127 start-page: 142 year: 2022 ident: 10.7717/peerj-cs.1753/ref-5 article-title: Optimal data placement strategy considering capacity limitation and load balancing in geographically distributed cloud publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2021.08.014 – volume: 262 start-page: 111874 issue: 2 year: 2023 ident: 10.7717/peerj-cs.1753/ref-22 article-title: A novel optimal management method for smart grids incorporating cloud-fog layer and honeybee mating optimization algorithm publication-title: Solar Energy doi: 10.1016/j.solener.2023.111874 – volume: 7 start-page: 288 issue: 3 year: 2019 ident: 10.7717/peerj-cs.1753/ref-17 article-title: Novel transformer fault identification optimization method based on mathematical statistics publication-title: Mathematics-Basel doi: 10.3390/math7030288 – volume: 8 start-page: 13417 issue: 2 year: 2022 ident: 10.7717/peerj-cs.1753/ref-6 article-title: Optimization of multi-energy grid for smart stadiums based on improved mixed integer linear algorithm publication-title: Energy Reports doi: 10.1016/j.egyr.2022.09.070 – start-page: 832 year: 2022 ident: 10.7717/peerj-cs.1753/ref-11 article-title: Abnormal line loss data detection and correction method – start-page: 1 year: 2021 ident: 10.7717/peerj-cs.1753/ref-20 article-title: The diagnosis model of line loss abnormity in low-voltage distribution network based on the visualization technology of situation awareness – start-page: 4264 year: 2018 ident: 10.7717/peerj-cs.1753/ref-24 article-title: Calculation method of the line loss rate in low-voltage transformer district based on PCA and k-means clustering and support vector machine doi: 10.1109/POWERCON.2018.8601624  | 
    
| SSID | ssj0001511119 | 
    
| Score | 2.2574668 | 
    
| Snippet | The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e1753 | 
    
| SubjectTerms | Abnormal causes Accuracy Adaptive and Self-Organizing Systems Algorithms Algorithms and Analysis of Algorithms Anomalies Artificial Intelligence Data Mining and Machine Learning Diagnosis Distribution network Electricity distribution Energy distribution Energy sources Identification Intelligent diagnosis Line loss Load Methods Power supply Search algorithms Sparrow search algorithm Support vector machine Support vector machines Technology application  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL-XC-5FSkEEILoRu1k5scyuIqiDBAajUm-XYDrSKnFWzK8Rf4Fd3JvZGCQi4cIt2ZiN7ZjwPZfwNIU-dLPFjTJOXovA596WBM9eo3BoOyS2DisLhfecPH6vjE_7-tDydjPrCnrAIDxwFd-CsYIVj1svCcwvFgYEYLGpf1pCZMOXR-y6kmhRT8X4wugIVQTUFlCwHK-8vznPbv0RoylkQGrD6f_fIk5D0a7vk7iaszI_vpm0nsejoBrmWkkh6GBd_k1zx4Ra5vh3QQNN5vU1-bvvqaBco5pO0heVQk4BI4MHRsxGTc01d7LsDStdQUwfMZ1tqzab3PTACvR8HZNEQG8j7VxSFGIEoJm-znmKEdDTOqL5DTo7efnlznKfhC7ktJVvnlcFaSjaNMgvnGwFpQA2CxIvz3tYNhPm6UtYyK2vBpReGgWsQVeVKKKhwasxdshO64O8TKmVhmFvU0nnJoV41QrlCgTVUWFwVLCMvttrQNiGT44CMVkOFgsrTg_K07TUqLyPPRvZVhOT4E-NrVO3IhEjaww9gXzrZl_6XfWXkCRqGRqyMgM04X0HovX73-ZM-lMDAl0KIjDxPTE0HK7cm3W2A_SO81oxzf8YJh9nOyVv708mZ9HqpIBGrEDUpI49HMv4TG-SC7zbIA5nqEr-6ZuReNNdx3wPoHa94RuTMkGeCmVPC2bcBarxYCAEhSMIGR5v_u9D3_ofQH5CrS0gmsW2oKPfJzvpi4x9C8reuHw3n_BKp1Fvp priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gFe-P4IDGQQghfCmk87SAhtaNNAokKDSXuzHNsZQ5VTmlaIf4G_mrvEyRoQe6t61yr2fcfn3wE8NyKjw5gqzHhkw9RmCm2uKkKtUkxuE6woDN13_jTLj07Sj6fZ6RbM-rsw1FbZ-8TWUZta0zvy3bjAaJQTdMy7xY-QpkbR6Wo_QkP50QrmbQsxdgW2Y0LGmsD2_sHs8_HFW5eMXETRgW1yLGV2F9Yuv4e6eU2QlaPg1GL4_-upN0LV322UV9duoX79VPP5Row6vAnXfXLJ9jptuAVb1t2GG_3gBubt-A787vvtWO0Y5Zlsjo_DlAcowQ-GnQ9YnStmun48pNQVU6WjPHfOtFo3tkFGpDfD4Czmusby5g0jrewAKjb-TVtGkdOwbnb1XTg5PPj6_ij0QxlCnYlkFeaKaixRVYWaGltxTA9K3Ei6UG91WWH4L_NC60SLkqfCcpWgy-B5bjIstGiazD2YuNrZB8CEiFRipqUwVqRYxypemKhALcmp6IqSAF710pDaI5bT4Iy5xMqFhCdb4UndSBJeAC8G9kUH1fE_xn0S7cBECNvtF_XyTHqDlUbzJDKJtiKyqcaiVGHux0ublZgRJ4UN4BkphiQMDUdNOme46Y388OVY7glkSGPOeQAvPVNV45Nr5e884PoJdmvEuTPiRCPXY3Kvf9I7mUZemEQATwcy_ZIa55yt18SDGWxMp7EB3O_UdVh3C4aX5mkAYqTIo40ZU9z5txaCPJpyjqFJ4AIHnb980x9evoJHcC3G9JEahaJsByar5do-xnRvVT7xNvwHgdZZvA priority: 102 providerName: ProQuest  | 
    
| Title | Research on line loss analysis and intelligent diagnosis of abnormal causes in distribution networks: artificial intelligence based method | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38192464 https://www.proquest.com/docview/2902165445 https://www.proquest.com/docview/2912527395 https://pubmed.ncbi.nlm.nih.gov/PMC10773768 https://doi.org/10.7717/peerj-cs.1753 https://doaj.org/article/dc731d3ce81e4c998a6157be5b23139e  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: 8FG dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x9gFeNr4XGJVBCF5IaT7t8NahlYFENQ0qjSfLsR0YVGm1tELwJ_BXc5e4UbOJj7eovkS5y539u_r8O4CnRiS0GVP4CQ-sH9tEYcwVma9VjOA2wozC0Hnn99P0eBa_O0vOXBENnYXZ2r_nmGm8XFp78dXX1ZAYJXegnyYIuXvQn01Pxp_qxnE89ZMsCxv-zKv3dNabmpb_6uS7tfpcroy8vi6X6sd3NZ9vLTuTPZhsXripNvk2XK_yof55icvxnxrdhF0HPNm48ZRbcM2Wt2Fv09SBuRi_A782tXhsUTLCoGyOejHlyEvwwrDzlsdzxUxTq4cji4KpvCQMPGdarStboSCOV21TLVY2RefVK0Ye25BXbD1NW0arqmFNX-u7MJscfXx97LuGDb5ORLTyU0X5lyiKTI2MLThChxx1psP2VucFQoM8zbSOtMh5LCxXEU4nPE1NgkkYdZq5B71yUdp9YEIEKjKjXBgrYsxxFc9MkKEHpZSQBZEHLzafVWrHZk5NNeYSsxqys6ztLHUlyc4ePGvFlw2Nx58ED8lHWiFi365_wE8oXTBLo3kUmEhbEdhYY8KqEBfy3CY5ouUosx48IQ-TxK9RUgHPZzR6Jd9-OJVjgQJxyDn34LkTKhb45lq58xCoP1FydSQPOpI4Aeju8MaRpZuAKhlmCN5SYlry4HE7THdSUV1pF2uSQXQb0k6tB_cbv2_1rony4jT2QHQiomOY7kh5_qWmJw9GnGNUClSwDZ6_G_3Bf0s-hBshokyqJwqSA-itLtb2EaLCVT6AHTF5M4D-4dH05HRQ_7cycPPEb_eLaDA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygX3o9AAYN4XAjdPO0gVaiFVru0XaHSSr0Zx3ZKUZQsm11V_Qv8KH4bM4mTbkD01ttqPbFizzsef0PIS80jPIzJ3Ih5xg1NJEHnssRVMoTgNoCMQuN95_1xPDwKPx9Hx0vkd3sXBssqW5tYG2pdKvxGvu4n4I1ihI75MPnpYtcoPF1tW2hI21pBb9QQY_Zix645P4MUrtoYfQJ-v_L9ne3Dj0PXdhlwVcSDmRtLTBp4liVyoE3GwN-lDFI3L2ZGpRn4szROlAoUT1nIDZMB6ACLYx1B5oDtUWDea2QlDMIEkr-Vre3xl4OLrzwRmqSkAfeEWdn6xJjpD1dV7xAis-cM654B_3qGBdf4d9nm6ryYyPMzmecLPnHnFrlhg1m62UjfbbJkijvkZtsoglq7cZf8auv7aFlQjGtpDq9DpQVEgR-annbYoDOqm_o_GCkzKtMC4-qcKjmvTAWEMF51jbpo0RSyV-8pakEDiLEwmzIUPbWmTa_se-ToSthznywXZWEeEsq5JwM9SLk2PIS8WbJEewlIZYxJnhc45G3LDaEsQjo26sgFZErIPFEzT6hKIPMc8rojnzTQIP8j3ELWdkSI6F3_UU5PhDUQQisWeDpQhnsmVJAES4g1WWqiFCLwIDEOeYGCIRCzo8CioBPY9EqMvh6ITQ4Eoc8Yc8gbS5SV8OZK2jsWsH6E-epRrvUowaio_nArf8IatUpcqKBDnnfD-CQW6hWmnCMNRMw-nv465EEjrt26a_C9MA4dwnuC3NuY_khx-r2GPPcGjIEr5LDATuYv3_RHl6_gGVkdHu7vib3RePcxue5D6IpFSl60RpZn07l5AqHmLH1q9ZmSb1dtQv4Abp-VNg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgEv3IVAAYM4Xgi7Oe0gIVQoS5dChYBKfXMd2ylFq2TZ7KrqX-An8euYydUNiL71bbUzsWLPeI54_A3AYyMiOozJ3Ih71g1tpHDPZYmrVYjBbYAZhaH7zp924q3d8MNetLcCv9u7MFRW2drEylCbQtM38oGfoDeKCTpmkDVlEZ83R6-nP13qIEUnrW07jVpFtu3xEaZv5avxJsr6ie-P3n17u-U2HQZcHYlg7saKEgaRZYkaGptx9HUpx7TNi7nVaYa-LI0TrQMtUh4Ky1WA-s_j2ESYNVBrFBz3HJznhOJOt9RH70--70RkjJIa1hPH5IOptbMfri5fEDhmzw1W3QL-9QlLTvHvgs2Li3yqjo_UZLLkDUdX4XITxrKNWu-uwYrNr8OVtkUEayzGDfjVVvaxImcU0bIJvg5TDRQK_jDssEMFnTNTV_4hpciYSnOKqCdMq0VpS2REetm16GJ5XcJevmSk_zUUxtJo2jLy0YbVXbJvwu6ZCGcNVvMit7eBCeGpwAxTYawIMWNWPDFegvoYU3rnBQ48b6UhdYONTi06JhJzJBKerIQndSlJeA487dinNSjI_xjfkGg7JsLyrv4oZgeyMQ3SaB54JtBWeDbUmP4qjDJ5aqMUY-8gsQ48IsWQhNaRk94f4KKXcvz1i9wQyBD6nHMHnjVMWYFvrlVzuwLnTwBfPc71HieaE90nt_onG3NWypPN58DDjkxPUolebosF8WCs7NO5rwO3anXt5l3B7oVx6IDoKXJvYfqU_PB7BXbuDTlHJyhwgp3On77od06fwQO4gIZDfhzvbN-FSz7GrFSd5EXrsDqfLew9jDHn6f1qMzPYP2vr8QdrUJLQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gCXljeBggxCcCHbzct2uC2IVUGiQsBK5WQ5tgMtq-yqyQrBT-BXM5N4o00rHrconkSZyYz9jTz-BuCJlRltxpRhJiIXpi7TGHNlHhqdIrhNMKOwdN753RE_nKdvj7NjX0RDZ2G29u8FZhoHK-fOTkNTj4lR8jLs8Awh9wh25kfvp5_bxnGCh1mexx1_5sVnButNS8t_cfLdWn3OV0ZeWVcr_eO7Xiy2lp3ZHsw2H9xVm3wbr5tibH6e43L8p0bXYNcDTzbtPOU6XHLVDdjbNHVgPsZvwq9NLR5bVowwKFugXkx78hK8sOyk5_FsmO1q9XBkWTJdVISBF8zode1qFMTxum-qxaqu6Lx-wchjO_KKrbcZx2hVtazra30L5rPXn14dhr5hQ2gymTQh15R_ybLM9cS6UiB0KFBnOmzvTFEiNCh4bkxiZCFS6YROcDoRnNsMkzDqNHMbRtWycneBSRnpxE4KaZ1MMcfVIrdRjh7EKSGLkgCeb36rMp7NnJpqLBRmNWRn1dpZmVqRnQN42ouvOhqPPwm-JB_phYh9u72Bv1D5YFbWiCSyiXEycqnBhFUjLhSFywpEy0nuAnhMHqaIX6OiAp4vaPRavfn4QU0lCqSxECKAZ16oXOKXG-3PQ6D-RMk1kNwfSOIEYIbDG0dWfgKqVZwjeOPEtBTAo36YnqSiusot1ySD6DamndoA7nR-3-vdEuWlPA1ADiJiYJjhSHXytaUnjyZCYFRKVLAPnr8b_d5_S96HqzGiTKonirJ9GDVna_cAUWFTPPRzwm_-cWS7 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+line+loss+analysis+and+intelligent+diagnosis+of+abnormal+causes+in+distribution+networks%3A+artificial+intelligence+based+method&rft.jtitle=PeerJ.+Computer+science&rft.au=Liao%2C+Yaohua&rft.au=En%2C+Wang&rft.au=Li%2C+Bo&rft.au=Zhu%2C+Mengmeng&rft.date=2023-12-15&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=9&rft.spage=e1753&rft_id=info:doi/10.7717%2Fpeerj-cs.1753&rft.externalDocID=A813942777 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |