Research on line loss analysis and intelligent diagnosis of abnormal causes in distribution networks: artificial intelligence based method

The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 9; p. e1753
Main Authors Liao, Yaohua, En, Wang, Li, Bo, Zhu, Mengmeng, Li, Zhengxing, Gu, ZhiMing
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 15.12.2023
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.1753

Cover

Abstract The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing abnormal line losses in DNs has been a widely and challenging research subject. This article investigates a key technology for the line loss analyses of DNs and intelligent diagnosis of abnormal causes by implementing artificial intelligence (AI), resulting in several prominent results. The proposed algorithm optimizes the parameters of the support vector machine (SVM) and suggests an intelligent diagnosis algorithm called the Improved Sparrow Search Algorithm and Support Vector Machine (ISSA-SVM). The ISSA-SVM algorithm is trained to calculate the data anomalies of line losses when changing loads and exhibiting exceptional performance to identify abnormal line losses. The accuracy of abnormality identification employing the ISSA-SVM algorithm reaches an impressive 98%, surpassing the performances of other available algorithms. Moreover, the practical performance of the proposed approach for analyzing large volumes of abnormal line loss data daily in DNs is also noteworthy. The ISSA-SVM accurately identifies the root causes of abnormal line losses and lowers the error in calculating abnormal line loss data. By combining different types of power operation data and creating a multidimensional feature traceability model, the study successfully determines the factors contributing to abnormal line losses. The relationship between transformers and voltage among various lines is determined by using the Pearson correlation, which provides valuable insights into the relationship between these variables and line losses. The algorithm’s reliability and its potential to be applied to real-world scenarios bring an opportunity to improve the efficiency and safety of power supply systems. The ISSA that incorporates advanced techniques such as the Sobol sequence, golden sine algorithm, and Gaussian difference mutation appears to be a promising tool.
AbstractList The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing abnormal line losses in DNs has been a widely and challenging research subject. This article investigates a key technology for the line loss analyses of DNs and intelligent diagnosis of abnormal causes by implementing artificial intelligence (AI), resulting in several prominent results. The proposed algorithm optimizes the parameters of the support vector machine (SVM) and suggests an intelligent diagnosis algorithm called the Improved Sparrow Search Algorithm and Support Vector Machine (ISSA-SVM). The ISSA-SVM algorithm is trained to calculate the data anomalies of line losses when changing loads and exhibiting exceptional performance to identify abnormal line losses. The accuracy of abnormality identification employing the ISSA-SVM algorithm reaches an impressive 98%, surpassing the performances of other available algorithms. Moreover, the practical performance of the proposed approach for analyzing large volumes of abnormal line loss data daily in DNs is also noteworthy. The ISSA-SVM accurately identifies the root causes of abnormal line losses and lowers the error in calculating abnormal line loss data. By combining different types of power operation data and creating a multidimensional feature traceability model, the study successfully determines the factors contributing to abnormal line losses. The relationship between transformers and voltage among various lines is determined by using the Pearson correlation, which provides valuable insights into the relationship between these variables and line losses. The algorithm’s reliability and its potential to be applied to real-world scenarios bring an opportunity to improve the efficiency and safety of power supply systems. The ISSA that incorporates advanced techniques such as the Sobol sequence, golden sine algorithm, and Gaussian difference mutation appears to be a promising tool.
The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing abnormal line losses in DNs has been a widely and challenging research subject. This article investigates a key technology for the line loss analyses of DNs and intelligent diagnosis of abnormal causes by implementing artificial intelligence (AI), resulting in several prominent results. The proposed algorithm optimizes the parameters of the support vector machine (SVM) and suggests an intelligent diagnosis algorithm called the Improved Sparrow Search Algorithm and Support Vector Machine (ISSA-SVM). The ISSA-SVM algorithm is trained to calculate the data anomalies of line losses when changing loads and exhibiting exceptional performance to identify abnormal line losses. The accuracy of abnormality identification employing the ISSA-SVM algorithm reaches an impressive 98%, surpassing the performances of other available algorithms. Moreover, the practical performance of the proposed approach for analyzing large volumes of abnormal line loss data daily in DNs is also noteworthy. The ISSA-SVM accurately identifies the root causes of abnormal line losses and lowers the error in calculating abnormal line loss data. By combining different types of power operation data and creating a multidimensional feature traceability model, the study successfully determines the factors contributing to abnormal line losses. The relationship between transformers and voltage among various lines is determined by using the Pearson correlation, which provides valuable insights into the relationship between these variables and line losses. The algorithm's reliability and its potential to be applied to real-world scenarios bring an opportunity to improve the efficiency and safety of power supply systems. The ISSA that incorporates advanced techniques such as the Sobol sequence, golden sine algorithm, and Gaussian difference mutation appears to be a promising tool.The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination of any unusual sources of line losses to guarantee the power supply in a timely and safe manner. In recent studies, identifying and analyzing abnormal line losses in DNs has been a widely and challenging research subject. This article investigates a key technology for the line loss analyses of DNs and intelligent diagnosis of abnormal causes by implementing artificial intelligence (AI), resulting in several prominent results. The proposed algorithm optimizes the parameters of the support vector machine (SVM) and suggests an intelligent diagnosis algorithm called the Improved Sparrow Search Algorithm and Support Vector Machine (ISSA-SVM). The ISSA-SVM algorithm is trained to calculate the data anomalies of line losses when changing loads and exhibiting exceptional performance to identify abnormal line losses. The accuracy of abnormality identification employing the ISSA-SVM algorithm reaches an impressive 98%, surpassing the performances of other available algorithms. Moreover, the practical performance of the proposed approach for analyzing large volumes of abnormal line loss data daily in DNs is also noteworthy. The ISSA-SVM accurately identifies the root causes of abnormal line losses and lowers the error in calculating abnormal line loss data. By combining different types of power operation data and creating a multidimensional feature traceability model, the study successfully determines the factors contributing to abnormal line losses. The relationship between transformers and voltage among various lines is determined by using the Pearson correlation, which provides valuable insights into the relationship between these variables and line losses. The algorithm's reliability and its potential to be applied to real-world scenarios bring an opportunity to improve the efficiency and safety of power supply systems. The ISSA that incorporates advanced techniques such as the Sobol sequence, golden sine algorithm, and Gaussian difference mutation appears to be a promising tool.
ArticleNumber e1753
Audience Academic
Author Li, Bo
Gu, ZhiMing
Liao, Yaohua
Zhu, Mengmeng
En, Wang
Li, Zhengxing
Author_xml – sequence: 1
  givenname: Yaohua
  surname: Liao
  fullname: Liao, Yaohua
  organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China
– sequence: 2
  givenname: Wang
  surname: En
  fullname: En, Wang
  organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China
– sequence: 3
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China
– sequence: 4
  givenname: Mengmeng
  surname: Zhu
  fullname: Zhu, Mengmeng
  organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China
– sequence: 5
  givenname: Zhengxing
  surname: Li
  fullname: Li, Zhengxing
  organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China
– sequence: 6
  givenname: ZhiMing
  surname: Gu
  fullname: Gu, ZhiMing
  organization: Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China, Yunnan Key Laboratory of Green Energy, Electric Power Measurement Digitalization, Control and Protection, Kunming, Yunnan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38192464$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNUREvpkSuKxAUOWWI7jhMuVVXxsVIlpAJny3EmWS9ee7ETSv8Cv5pJtyybSoj4EMt-5vXMO_M0OXLeQZI8J_lCCCLebAHCOtNxQQRnj5ITykSZ8bqmRwf74-QsxnWe54QT_OonyTGrSE2LsjhJfl1DBBX0KvUutcZBan2MqXLK3kYzbdrUuAGsNT24IW2N6p2fbnyXqsb5sFE21WqMEBHE-zgE04yDQT0Hw40P3-LbVIXBdEYbZP-qaUgbFaFNNzCsfPssedwpG-Hs_n-afH3_7svlx-zq04fl5cVVpnnFhqxUtBKk6rpa5S10ghZFg2YwUgrQTUcq3pS11kxXjSgqEIoxSkVZtpzymnPCTpPlTrf1ai23wWxUuJVeGXl34EMvp3S1BdlqwUjLNFQECl3XlSoJFw3whjLCakCtxU5rdFt1e6Os3QuSXE49knc9kjrKqUcYcL4L2I7NBlqNngZlZ1nMb5xZyd7_QDkhsKMVKry6Vwj--whxkBsTNVqqHPgxSloTyqlgNUf05QN07ceArZ2onJKSF8UB1Sss2bjO48N6EpUXFVZZUIFP7yudUbha2BiNY9kZPJ8FvJ4FIDPAz6HHUYly-fl6zr44dGVvx585RSDbATrgeAbo_msze8BrM6hpKDFrY_8R9RuOyA7J
CitedBy_id crossref_primary_10_2478_amns_2025_0810
crossref_primary_10_1109_ACCESS_2024_3437368
Cites_doi 10.1109/TEMC.2022.3174635
10.1109/TSG.2018.2849845
10.3390/act10030056
10.1109/TIM.2018.2795298
10.1109/TPWRS.2017.2735898
10.1016/j.apenergy.2023.121638
10.1016/j.egyr.2022.09.025
10.1109/ACCESS.2017.2785763
10.1109/ACCESS.2022.3149482
10.1109/ACCESS.2019.2960512
10.1109/LCOMM.2019.2951404
10.1109/TSG.2015.2419080
10.1109/TCYB.2021.3104100
10.1016/j.future.2021.08.014
10.1016/j.solener.2023.111874
10.3390/math7030288
10.1016/j.egyr.2022.09.070
10.1109/POWERCON.2018.8601624
ContentType Journal Article
Copyright 2023 Liao et al.
COPYRIGHT 2023 PeerJ. Ltd.
2023 Liao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Liao et al. 2023 Liao et al.
Copyright_xml – notice: 2023 Liao et al.
– notice: COPYRIGHT 2023 PeerJ. Ltd.
– notice: 2023 Liao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Liao et al. 2023 Liao et al.
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.7717/peerj-cs.1753
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Computing Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_dc731d3ce81e4c998a6157be5b23139e
10.7717/peerj-cs.1753
PMC10773768
A813942777
38192464
10_7717_peerj_cs_1753
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Science and Technology Project of the National Southern Power Grid of China
  grantid: YNKJXM20220166
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RPM
3V.
H13
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c583t-6a28718ff9a0def7244b7713167ecbf185b69cc3c8b748e7a3322766d52595513
IEDL.DBID UNPAY
ISSN 2376-5992
IngestDate Fri Oct 03 12:41:46 EDT 2025
Sun Oct 26 04:09:23 EDT 2025
Tue Sep 30 17:10:47 EDT 2025
Fri Sep 05 10:49:30 EDT 2025
Sat Jul 26 00:10:15 EDT 2025
Mon Oct 20 22:47:43 EDT 2025
Mon Oct 20 16:54:20 EDT 2025
Thu Oct 16 15:50:43 EDT 2025
Thu Jan 02 22:29:51 EST 2025
Wed Oct 01 04:07:43 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Support vector machine
Sparrow search algorithm
Abnormal causes
Distribution network
Line loss
Intelligent diagnosis
Language English
License https://creativecommons.org/licenses/by/4.0
2023 Liao et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-6a28718ff9a0def7244b7713167ecbf185b69cc3c8b748e7a3322766d52595513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.7717/peerj-cs.1753
PMID 38192464
PQID 2902165445
PQPubID 2045934
PageCount e1753
ParticipantIDs doaj_primary_oai_doaj_org_article_dc731d3ce81e4c998a6157be5b23139e
unpaywall_primary_10_7717_peerj_cs_1753
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10773768
proquest_miscellaneous_2912527395
proquest_journals_2902165445
gale_infotracmisc_A813942777
gale_infotracacademiconefile_A813942777
gale_incontextgauss_ISR_A813942777
pubmed_primary_38192464
crossref_primary_10_7717_peerj_cs_1753
crossref_citationtrail_10_7717_peerj_cs_1753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2023
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Weizhou (10.7717/peerj-cs.1753/ref-15) 2019
Zhang (10.7717/peerj-cs.1753/ref-21) 2019
Houran (10.7717/peerj-cs.1753/ref-2) 2023; 349
Sun (10.7717/peerj-cs.1753/ref-12) 2022; 52
Li (10.7717/peerj-cs.1753/ref-5) 2022; 127
Obiedat (10.7717/peerj-cs.1753/ref-8) 2022; 10
Pop (10.7717/peerj-cs.1753/ref-9) 2022; 8
Yang (10.7717/peerj-cs.1753/ref-19) 2020; 24
Qu (10.7717/peerj-cs.1753/ref-10) 2019; 7
Wu (10.7717/peerj-cs.1753/ref-17) 2019; 7
Hu (10.7717/peerj-cs.1753/ref-3) 2021
Lin (10.7717/peerj-cs.1753/ref-6) 2022; 8
Liu (10.7717/peerj-cs.1753/ref-7) 2021
Wu (10.7717/peerj-cs.1753/ref-16) 2021; 10
Xu (10.7717/peerj-cs.1753/ref-18) 2022; 64
Tang (10.7717/peerj-cs.1753/ref-13) 2018; 67
Sicheng (10.7717/peerj-cs.1753/ref-11) 2022
Huang (10.7717/peerj-cs.1753/ref-4) 2016; 7
Wang (10.7717/peerj-cs.1753/ref-14) 2018; 33
Zhang (10.7717/peerj-cs.1753/ref-23) 2018; 6
Zhang (10.7717/peerj-cs.1753/ref-22) 2023; 262
Yao (10.7717/peerj-cs.1753/ref-20) 2021
Zhou (10.7717/peerj-cs.1753/ref-24) 2018
Hosseini (10.7717/peerj-cs.1753/ref-1) 2018; 9
References_xml – volume: 64
  start-page: 1346
  issue: 5
  year: 2022
  ident: 10.7717/peerj-cs.1753/ref-18
  article-title: Prediction on EMS of UAV’s data link based on SSA-optimized dual-channel CNN
  publication-title: IEEE Transactions on Electromagnetic Compatibility
  doi: 10.1109/TEMC.2022.3174635
– volume: 9
  start-page: 5470
  issue: 5
  year: 2018
  ident: 10.7717/peerj-cs.1753/ref-1
  article-title: AMI-enabled distribution network line outage identification via multi-label SVM
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2018.2849845
– volume: 10
  start-page: 56
  issue: 3
  year: 2021
  ident: 10.7717/peerj-cs.1753/ref-16
  article-title: J. operation state identification method for converter transformers based on vibration detection technology and deep belief network optimization algorithm
  publication-title: Actuators
  doi: 10.3390/act10030056
– volume: 67
  start-page: 992
  issue: 5
  year: 2018
  ident: 10.7717/peerj-cs.1753/ref-13
  article-title: A fault-tolerant flow measuring method based on PSO-SVM with transit-time multipath ultrasonic gas flowmeters
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2018.2795298
– start-page: 1840
  year: 2019
  ident: 10.7717/peerj-cs.1753/ref-15
  article-title: Development of synchronous line loss analysis and diagnosis system based on arbitrary segmentation of power grid
– volume: 33
  start-page: 1148
  issue: 1
  year: 2018
  ident: 10.7717/peerj-cs.1753/ref-14
  article-title: A fast sensitivity method for determining line loss and node voltages in active distribution network
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2017.2735898
– start-page: 535
  year: 2019
  ident: 10.7717/peerj-cs.1753/ref-21
  article-title: Investigating method and managing strategy of abnormal line loss in distribution network based on load characteristics
– volume: 349
  start-page: 121638
  issue: 3
  year: 2023
  ident: 10.7717/peerj-cs.1753/ref-2
  article-title: COA-CNN-LSTM: coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2023.121638
– volume: 8
  start-page: 11769
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1753/ref-9
  article-title: Review of bio-inspired optimization applications in renewable-powered smart grids: emerging population-based metaheuristics
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.09.025
– volume: 6
  start-page: 7675
  year: 2018
  ident: 10.7717/peerj-cs.1753/ref-23
  article-title: Data-based line trip fault prediction in power systems using LSTM networks and SVM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2785763
– start-page: 1045
  year: 2021
  ident: 10.7717/peerj-cs.1753/ref-3
  article-title: Real-time line loss calculation method based on equivalent resistance of low voltage distribution network
– volume: 10
  start-page: 22260
  year: 2022
  ident: 10.7717/peerj-cs.1753/ref-8
  article-title: Sentiment analysis of customers’ reviews using a hybrid evolutionary SVM-based approach in an imbalanced data distribution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3149482
– volume: 7
  year: 2019
  ident: 10.7717/peerj-cs.1753/ref-10
  article-title: Series arc fault detection of indoor power distribution system based on LVQ-NN and PSO-SVM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960512
– volume: 24
  start-page: 86
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.1753/ref-19
  article-title: Channel equalization and detection with ELM-based regressors for OFDM systems
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2019.2951404
– volume: 7
  start-page: 1295
  issue: 3
  year: 2016
  ident: 10.7717/peerj-cs.1753/ref-4
  article-title: Optimal reconfiguration-based dynamic tariff for congestion management and line loss reduction in distribution networks
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2015.2419080
– start-page: 371
  year: 2021
  ident: 10.7717/peerj-cs.1753/ref-7
  article-title: Research on diagnosis of abnormal line loss of 10 kv transmission line based on factor analysis
– volume: 52
  start-page: 6158
  issue: 7
  year: 2022
  ident: 10.7717/peerj-cs.1753/ref-12
  article-title: SpaSSA: superpixelwise adaptive SSA for unsupervised spatial–spectral feature extraction in hyperspectral image
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3104100
– volume: 127
  start-page: 142
  year: 2022
  ident: 10.7717/peerj-cs.1753/ref-5
  article-title: Optimal data placement strategy considering capacity limitation and load balancing in geographically distributed cloud
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2021.08.014
– volume: 262
  start-page: 111874
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.1753/ref-22
  article-title: A novel optimal management method for smart grids incorporating cloud-fog layer and honeybee mating optimization algorithm
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2023.111874
– volume: 7
  start-page: 288
  issue: 3
  year: 2019
  ident: 10.7717/peerj-cs.1753/ref-17
  article-title: Novel transformer fault identification optimization method based on mathematical statistics
  publication-title: Mathematics-Basel
  doi: 10.3390/math7030288
– volume: 8
  start-page: 13417
  issue: 2
  year: 2022
  ident: 10.7717/peerj-cs.1753/ref-6
  article-title: Optimization of multi-energy grid for smart stadiums based on improved mixed integer linear algorithm
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2022.09.070
– start-page: 832
  year: 2022
  ident: 10.7717/peerj-cs.1753/ref-11
  article-title: Abnormal line loss data detection and correction method
– start-page: 1
  year: 2021
  ident: 10.7717/peerj-cs.1753/ref-20
  article-title: The diagnosis model of line loss abnormity in low-voltage distribution network based on the visualization technology of situation awareness
– start-page: 4264
  year: 2018
  ident: 10.7717/peerj-cs.1753/ref-24
  article-title: Calculation method of the line loss rate in low-voltage transformer district based on PCA and k-means clustering and support vector machine
  doi: 10.1109/POWERCON.2018.8601624
SSID ssj0001511119
Score 2.2574668
Snippet The primary source of energy losses in distribution networks (DNs) is rooted in line losses, which is crucial to conduct a thorough and reasonable examination...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1753
SubjectTerms Abnormal causes
Accuracy
Adaptive and Self-Organizing Systems
Algorithms
Algorithms and Analysis of Algorithms
Anomalies
Artificial Intelligence
Data Mining and Machine Learning
Diagnosis
Distribution network
Electricity distribution
Energy distribution
Energy sources
Identification
Intelligent diagnosis
Line loss
Load
Methods
Power supply
Search algorithms
Sparrow search algorithm
Support vector machine
Support vector machines
Technology application
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL-XC-5FSkEEILoRu1k5scyuIqiDBAajUm-XYDrSKnFWzK8Rf4Fd3JvZGCQi4cIt2ZiN7ZjwPZfwNIU-dLPFjTJOXovA596WBM9eo3BoOyS2DisLhfecPH6vjE_7-tDydjPrCnrAIDxwFd-CsYIVj1svCcwvFgYEYLGpf1pCZMOXR-y6kmhRT8X4wugIVQTUFlCwHK-8vznPbv0RoylkQGrD6f_fIk5D0a7vk7iaszI_vpm0nsejoBrmWkkh6GBd_k1zx4Ra5vh3QQNN5vU1-bvvqaBco5pO0heVQk4BI4MHRsxGTc01d7LsDStdQUwfMZ1tqzab3PTACvR8HZNEQG8j7VxSFGIEoJm-znmKEdDTOqL5DTo7efnlznKfhC7ktJVvnlcFaSjaNMgvnGwFpQA2CxIvz3tYNhPm6UtYyK2vBpReGgWsQVeVKKKhwasxdshO64O8TKmVhmFvU0nnJoV41QrlCgTVUWFwVLCMvttrQNiGT44CMVkOFgsrTg_K07TUqLyPPRvZVhOT4E-NrVO3IhEjaww9gXzrZl_6XfWXkCRqGRqyMgM04X0HovX73-ZM-lMDAl0KIjDxPTE0HK7cm3W2A_SO81oxzf8YJh9nOyVv708mZ9HqpIBGrEDUpI49HMv4TG-SC7zbIA5nqEr-6ZuReNNdx3wPoHa94RuTMkGeCmVPC2bcBarxYCAEhSMIGR5v_u9D3_ofQH5CrS0gmsW2oKPfJzvpi4x9C8reuHw3n_BKp1Fvp
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gFe-P4IDGQQghfCmk87SAhtaNNAokKDSXuzHNsZQ5VTmlaIf4G_mrvEyRoQe6t61yr2fcfn3wE8NyKjw5gqzHhkw9RmCm2uKkKtUkxuE6woDN13_jTLj07Sj6fZ6RbM-rsw1FbZ-8TWUZta0zvy3bjAaJQTdMy7xY-QpkbR6Wo_QkP50QrmbQsxdgW2Y0LGmsD2_sHs8_HFW5eMXETRgW1yLGV2F9Yuv4e6eU2QlaPg1GL4_-upN0LV322UV9duoX79VPP5Row6vAnXfXLJ9jptuAVb1t2GG_3gBubt-A787vvtWO0Y5Zlsjo_DlAcowQ-GnQ9YnStmun48pNQVU6WjPHfOtFo3tkFGpDfD4Czmusby5g0jrewAKjb-TVtGkdOwbnb1XTg5PPj6_ij0QxlCnYlkFeaKaixRVYWaGltxTA9K3Ei6UG91WWH4L_NC60SLkqfCcpWgy-B5bjIstGiazD2YuNrZB8CEiFRipqUwVqRYxypemKhALcmp6IqSAF710pDaI5bT4Iy5xMqFhCdb4UndSBJeAC8G9kUH1fE_xn0S7cBECNvtF_XyTHqDlUbzJDKJtiKyqcaiVGHux0ublZgRJ4UN4BkphiQMDUdNOme46Y388OVY7glkSGPOeQAvPVNV45Nr5e884PoJdmvEuTPiRCPXY3Kvf9I7mUZemEQATwcy_ZIa55yt18SDGWxMp7EB3O_UdVh3C4aX5mkAYqTIo40ZU9z5txaCPJpyjqFJ4AIHnb980x9evoJHcC3G9JEahaJsByar5do-xnRvVT7xNvwHgdZZvA
  priority: 102
  providerName: ProQuest
Title Research on line loss analysis and intelligent diagnosis of abnormal causes in distribution networks: artificial intelligence based method
URI https://www.ncbi.nlm.nih.gov/pubmed/38192464
https://www.proquest.com/docview/2902165445
https://www.proquest.com/docview/2912527395
https://pubmed.ncbi.nlm.nih.gov/PMC10773768
https://doi.org/10.7717/peerj-cs.1753
https://doaj.org/article/dc731d3ce81e4c998a6157be5b23139e
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: 8FG
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x9gFeNr4XGJVBCF5IaT7t8NahlYFENQ0qjSfLsR0YVGm1tELwJ_BXc5e4UbOJj7eovkS5y539u_r8O4CnRiS0GVP4CQ-sH9tEYcwVma9VjOA2wozC0Hnn99P0eBa_O0vOXBENnYXZ2r_nmGm8XFp78dXX1ZAYJXegnyYIuXvQn01Pxp_qxnE89ZMsCxv-zKv3dNabmpb_6uS7tfpcroy8vi6X6sd3NZ9vLTuTPZhsXripNvk2XK_yof55icvxnxrdhF0HPNm48ZRbcM2Wt2Fv09SBuRi_A782tXhsUTLCoGyOejHlyEvwwrDzlsdzxUxTq4cji4KpvCQMPGdarStboSCOV21TLVY2RefVK0Ye25BXbD1NW0arqmFNX-u7MJscfXx97LuGDb5ORLTyU0X5lyiKTI2MLThChxx1psP2VucFQoM8zbSOtMh5LCxXEU4nPE1NgkkYdZq5B71yUdp9YEIEKjKjXBgrYsxxFc9MkKEHpZSQBZEHLzafVWrHZk5NNeYSsxqys6ztLHUlyc4ePGvFlw2Nx58ED8lHWiFi365_wE8oXTBLo3kUmEhbEdhYY8KqEBfy3CY5ouUosx48IQ-TxK9RUgHPZzR6Jd9-OJVjgQJxyDn34LkTKhb45lq58xCoP1FydSQPOpI4Aeju8MaRpZuAKhlmCN5SYlry4HE7THdSUV1pF2uSQXQb0k6tB_cbv2_1rony4jT2QHQiomOY7kh5_qWmJw9GnGNUClSwDZ6_G_3Bf0s-hBshokyqJwqSA-itLtb2EaLCVT6AHTF5M4D-4dH05HRQ_7cycPPEb_eLaDA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygX3o9AAYN4XAjdPO0gVaiFVru0XaHSSr0Zx3ZKUZQsm11V_Qv8KH4bM4mTbkD01ttqPbFizzsef0PIS80jPIzJ3Ih5xg1NJEHnssRVMoTgNoCMQuN95_1xPDwKPx9Hx0vkd3sXBssqW5tYG2pdKvxGvu4n4I1ihI75MPnpYtcoPF1tW2hI21pBb9QQY_Zix645P4MUrtoYfQJ-v_L9ne3Dj0PXdhlwVcSDmRtLTBp4liVyoE3GwN-lDFI3L2ZGpRn4szROlAoUT1nIDZMB6ACLYx1B5oDtUWDea2QlDMIEkr-Vre3xl4OLrzwRmqSkAfeEWdn6xJjpD1dV7xAis-cM654B_3qGBdf4d9nm6ryYyPMzmecLPnHnFrlhg1m62UjfbbJkijvkZtsoglq7cZf8auv7aFlQjGtpDq9DpQVEgR-annbYoDOqm_o_GCkzKtMC4-qcKjmvTAWEMF51jbpo0RSyV-8pakEDiLEwmzIUPbWmTa_se-ToSthznywXZWEeEsq5JwM9SLk2PIS8WbJEewlIZYxJnhc45G3LDaEsQjo26sgFZErIPFEzT6hKIPMc8rojnzTQIP8j3ELWdkSI6F3_UU5PhDUQQisWeDpQhnsmVJAES4g1WWqiFCLwIDEOeYGCIRCzo8CioBPY9EqMvh6ITQ4Eoc8Yc8gbS5SV8OZK2jsWsH6E-epRrvUowaio_nArf8IatUpcqKBDnnfD-CQW6hWmnCMNRMw-nv465EEjrt26a_C9MA4dwnuC3NuY_khx-r2GPPcGjIEr5LDATuYv3_RHl6_gGVkdHu7vib3RePcxue5D6IpFSl60RpZn07l5AqHmLH1q9ZmSb1dtQv4Abp-VNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgEv3IVAAYM4Xgi7Oe0gIVQoS5dChYBKfXMd2ylFq2TZ7KrqX-An8euYydUNiL71bbUzsWLPeI54_A3AYyMiOozJ3Ih71g1tpHDPZYmrVYjBbYAZhaH7zp924q3d8MNetLcCv9u7MFRW2drEylCbQtM38oGfoDeKCTpmkDVlEZ83R6-nP13qIEUnrW07jVpFtu3xEaZv5avxJsr6ie-P3n17u-U2HQZcHYlg7saKEgaRZYkaGptx9HUpx7TNi7nVaYa-LI0TrQMtUh4Ky1WA-s_j2ESYNVBrFBz3HJznhOJOt9RH70--70RkjJIa1hPH5IOptbMfri5fEDhmzw1W3QL-9QlLTvHvgs2Li3yqjo_UZLLkDUdX4XITxrKNWu-uwYrNr8OVtkUEayzGDfjVVvaxImcU0bIJvg5TDRQK_jDssEMFnTNTV_4hpciYSnOKqCdMq0VpS2REetm16GJ5XcJevmSk_zUUxtJo2jLy0YbVXbJvwu6ZCGcNVvMit7eBCeGpwAxTYawIMWNWPDFegvoYU3rnBQ48b6UhdYONTi06JhJzJBKerIQndSlJeA487dinNSjI_xjfkGg7JsLyrv4oZgeyMQ3SaB54JtBWeDbUmP4qjDJ5aqMUY-8gsQ48IsWQhNaRk94f4KKXcvz1i9wQyBD6nHMHnjVMWYFvrlVzuwLnTwBfPc71HieaE90nt_onG3NWypPN58DDjkxPUolebosF8WCs7NO5rwO3anXt5l3B7oVx6IDoKXJvYfqU_PB7BXbuDTlHJyhwgp3On77od06fwQO4gIZDfhzvbN-FSz7GrFSd5EXrsDqfLew9jDHn6f1qMzPYP2vr8QdrUJLQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gCXljeBggxCcCHbzct2uC2IVUGiQsBK5WQ5tgMtq-yqyQrBT-BXM5N4o00rHrconkSZyYz9jTz-BuCJlRltxpRhJiIXpi7TGHNlHhqdIrhNMKOwdN753RE_nKdvj7NjX0RDZ2G29u8FZhoHK-fOTkNTj4lR8jLs8Awh9wh25kfvp5_bxnGCh1mexx1_5sVnButNS8t_cfLdWn3OV0ZeWVcr_eO7Xiy2lp3ZHsw2H9xVm3wbr5tibH6e43L8p0bXYNcDTzbtPOU6XHLVDdjbNHVgPsZvwq9NLR5bVowwKFugXkx78hK8sOyk5_FsmO1q9XBkWTJdVISBF8zode1qFMTxum-qxaqu6Lx-wchjO_KKrbcZx2hVtazra30L5rPXn14dhr5hQ2gymTQh15R_ybLM9cS6UiB0KFBnOmzvTFEiNCh4bkxiZCFS6YROcDoRnNsMkzDqNHMbRtWycneBSRnpxE4KaZ1MMcfVIrdRjh7EKSGLkgCeb36rMp7NnJpqLBRmNWRn1dpZmVqRnQN42ouvOhqPPwm-JB_phYh9u72Bv1D5YFbWiCSyiXEycqnBhFUjLhSFywpEy0nuAnhMHqaIX6OiAp4vaPRavfn4QU0lCqSxECKAZ16oXOKXG-3PQ6D-RMk1kNwfSOIEYIbDG0dWfgKqVZwjeOPEtBTAo36YnqSiusot1ySD6DamndoA7nR-3-vdEuWlPA1ADiJiYJjhSHXytaUnjyZCYFRKVLAPnr8b_d5_S96HqzGiTKonirJ9GDVna_cAUWFTPPRzwm_-cWS7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+line+loss+analysis+and+intelligent+diagnosis+of+abnormal+causes+in+distribution+networks%3A+artificial+intelligence+based+method&rft.jtitle=PeerJ.+Computer+science&rft.au=Liao%2C+Yaohua&rft.au=En%2C+Wang&rft.au=Li%2C+Bo&rft.au=Zhu%2C+Mengmeng&rft.date=2023-12-15&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=9&rft.spage=e1753&rft_id=info:doi/10.7717%2Fpeerj-cs.1753&rft.externalDocID=A813942777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon