近红外光谱快速检测马铃薯全粉还原糖

还原糖含量是评价马铃薯全粉品质的重要指标之一,该文研究基于近红外光谱技术结合最小二乘支持向量机(least squares support vector machine,LSSVM)算法的马铃薯全粉还原糖含量非线性数学模型。采用移动窗口偏最小二乘法(moving windows partial least square,MWPLS)和连续投影算法(successive projections algorithm,SPA)组合方法筛选出20个特征变量,作为LSSVM的输入向量。优化径向基函数(radial basis function,RBF)的惩罚因子和核参数,训练LSSVM校正模型。经比较,...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 14; pp. 262 - 268
Main Author 孙旭东 董小玲
Format Journal Article
LanguageChinese
Published 华东交通大学机电工程学院,南昌,330013%华东交通大学外国语学院,南昌,330013 2013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.14.033

Cover

Abstract 还原糖含量是评价马铃薯全粉品质的重要指标之一,该文研究基于近红外光谱技术结合最小二乘支持向量机(least squares support vector machine,LSSVM)算法的马铃薯全粉还原糖含量非线性数学模型。采用移动窗口偏最小二乘法(moving windows partial least square,MWPLS)和连续投影算法(successive projections algorithm,SPA)组合方法筛选出20个特征变量,作为LSSVM的输入向量。优化径向基函数(radial basis function,RBF)的惩罚因子和核参数,训练LSSVM校正模型。经比较,LSSVM校正模型预测结果最优,预测相关系数为0.984,预测标准差为0.223%,相对分析误差(standard deviation ratio,SDR)为5.62。结果表明:近红外光谱结合LSSVM算法提高了马铃薯全粉还原糖含量的预测精度。
AbstractList 还原糖含量是评价马铃薯全粉品质的重要指标之一,该文研究基于近红外光谱技术结合最小二乘支持向量机(least squares support vector machine,LSSVM)算法的马铃薯全粉还原糖含量非线性数学模型。采用移动窗口偏最小二乘法(moving windows partial least square,MWPLS)和连续投影算法(successive projections algorithm,SPA)组合方法筛选出20个特征变量,作为LSSVM的输入向量。优化径向基函数(radial basis function,RBF)的惩罚因子和核参数,训练LSSVM校正模型。经比较,LSSVM校正模型预测结果最优,预测相关系数为0.984,预测标准差为0.223%,相对分析误差(standard deviation ratio,SDR)为5.62。结果表明:近红外光谱结合LSSVM算法提高了马铃薯全粉还原糖含量的预测精度。
TP374+.52%TS235.2; 还原糖含量是评价马铃薯全粉品质的重要指标之一,该文研究基于近红外光谱技术结合最小二乘支持向量机(least squares support vector machine,LSSVM)算法的马铃薯全粉还原糖含量非线性数学模型。采用移动窗口偏最小二乘法(moving windows partial least square,MWPLS)和连续投影算法(successive projections algorithm, SPA)组合方法筛选出20个特征变量,作为LSSVM的输入向量。优化径向基函数(radial basis function,RBF)的惩罚因子和核参数,训练LSSVM校正模型。经比较,LSSVM校正模型预测结果最优,预测相关系数为0.984,预测标准差为0.223%,相对分析误差(standard deviation ratio,SDR)为5.62。结果表明:近红外光谱结合LSSVM算法提高了马铃薯全粉还原糖含量的预测精度。
Abstract_FL Reducing sugar content is one of the important indicators for evaluating the quality of potato granules. Near-infrared (NIR) spectroscopy has been attempted to determine reducing sugar content in potato granules using near-infrared (NIR) spectroscopy combined with least squares support vector machine (LSSVM) algorithm. NIR spectra were recorded in the wavenumber range of 10 000~4 000 cm-1 at a 4 cm-1 interval. The 110 samples were divided into calibration and prediction sets in terms of their respective actual value for avoiding bias in subset division. One of every four samples was divided into the prediction set according the range of actual value in calibration set covering the range in the prediction set. The calibration set contained 83 samples, and the remaining 27 samples constituted the prediction set. Three different variable selection methods, namely the moving windows partial least square (MWPLS), MWPLS-genetic algorithm (MWPLS-GA), and MWPLS-successive projection algorithm (MWPLS-SPA), were performed comparatively to choose spectral variables associated with reducing sugar content distributions. The partial least square (PLS) models were developed with these selection spectral variables with the number of PLS components optimized according to root mean square error of cross validation (RMSECV) in the calibration set. The results derived by variable selection techniques were then compared with the performance of PLS models with new samples in the prediction set. The PLS calibration model exhibited a higher correlation coefficient of prediction (Rp) of 0.976, lower standard error of prediction (SEP) of 0.273%, and ratio of SEP and standard deviation (SDR) of 4.593, which was built using 20 spectral variables selected by the MWPLS-SPA method. Nonlinear models of the least squares support vector machine (LSSVM) were developed using different spectral variables selected by MWPLS, MWPLS-GA, and MWPLS-SPA. The main parameters of penalty factor (γ) and nuclear parameters (σ2) of the nuclear function for the radial basis function (RBF) were optimized by a two-step search method. Through comparison the performance of LSSVM models with new samples, the optimal LSSVM models for reducing sugar content were obtained with Rp of 0.984, SEP of 0.223%, and SDR of 5.62, which were developed with 20 spectral variables selected by the MWPLS-SPA method. The results indicated that: 1) the accuracy of the quantitative analysis conducted by NIR spectroscopy can be improved through appropriate wavelength selection with the MWPLS-SPA method;and 2) the implementation of LSSVM nonlinear models could predict reducing sugar content in potato granules more accurately than a linear model of PLS. It was concluded that NIR spectroscopy combined with MWPLS-SPA and LSSVM methods has significant potential to quantitatively analyze reducing sugar content in potato granules, and this real time, in situ measurement will significantly improve the efficiency of quality control and assurance.
Author 孙旭东 董小玲
AuthorAffiliation 华东交通大学机电工程学院,南昌330013 华东交通大学外国语学院,南昌330013
AuthorAffiliation_xml – name: 华东交通大学机电工程学院,南昌,330013%华东交通大学外国语学院,南昌,330013
Author_FL Sun Xudong
Dong Xiaoling
Author_FL_xml – sequence: 1
  fullname: Sun Xudong
– sequence: 2
  fullname: Dong Xiaoling
Author_xml – sequence: 1
  fullname: 孙旭东 董小玲
BookMark eNo9jz1LA0EYhLeIYIz5EYJgdee-997e7pYS_IKATfqwt9mLF3SjOUTTBSRFEAIiBLuAWigKfmFjk19zyeVfeBKxGAaGhxlmhRRs2xpC1oG6KAO52XLjJLEuUOo5gQDpehTQBd-liAVS_M-XSTlJ4pAyQE6pD0WC2eR69n2XPozS_iB7e08nz_PeeHrfm35dzZ9e5jeX2eg17T_OPgbZ5DYdjmefo1WyFKmjxJT_vERqO9u1yp5TPdjdr2xVHc0EOppDAJ5Bo7gUyEXoiQbnTITgAxPS5KKRCVgD_ShCT6EEzXWkQ0OpQsGwRDYWtefKRso26632Wcfmg3XbbeqL8Pcj-PnDnFxbkPqwbZuncc6edOJj1enW_YABCBngD30fZ2U
ClassificationCodes TP374+.52%TS235.2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2013.14.033
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Rapid detection of reducing sugar for potato granules by near infrared spectroscopy
DocumentTitle_FL Rapid detection of reducing sugar for potato granules by near infrared spectroscopy
EndPage 268
ExternalDocumentID nygcxb201314033
46511896
GrantInformation_xml – fundername: 国家自然科学基金; 江西省科技支撑计划; 江西省教育厅青年基金项目
  funderid: (61240018); (20121BBF60054); (GJJ12317)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c583-c71612e3ea798378b28d7758b141589e5890fe65d34ff32a391c7cfcbe00a3853
ISSN 1002-6819
IngestDate Thu May 29 04:04:17 EDT 2025
Wed Feb 14 10:42:25 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 14
Keywords 算法
nondestructive examination
变量选择
近红外光谱
potato
reducing sugar
还原糖
near infrared spectroscopy
无损检测
variable selection
马铃薯
algorithm
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583-c71612e3ea798378b28d7758b141589e5890fe65d34ff32a391c7cfcbe00a3853
Notes Sun Xudong, Dong Xiaoling (1. School of Mechatronics Engineering, East China Jiaotong University, Nanchang 330013, China; 2. School of Foreign Language, East China Jiaotong University, Nanchang 330013, China)
11-2047/S
Reducing sugar content is one of the important indicators for evaluating the quality of potato granules. Near-infrared (NIR) spectroscopy has been attempted to determine reducing sugar content in potato granules using near-infrared (NIR) spectroscopy combined with least squares support vector machine (LSSVM) algorithm. NIR spectra were recorded in the wavenumber range of 10 000-4 000 cm-1 at a 4 cm-1 interval. The 110 samples were divided into calibration and prediction sets in terms of their respective actual value for avoiding bias in subset division. One of every four samples was divided into the prediction set according the range of actual value in calibration set covering the range in the prediction set. The calibration set contained 83 samples, and the remaining 27 samples constituted the p
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201314033
chongqing_primary_46511896
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2013
Publisher 华东交通大学机电工程学院,南昌,330013%华东交通大学外国语学院,南昌,330013
Publisher_xml – name: 华东交通大学机电工程学院,南昌,330013%华东交通大学外国语学院,南昌,330013
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.0161161
Snippet 还原糖含量是评价马铃薯全粉品质的重要指标之一,该文研究基于近红外光谱技术结合最小二乘支持向量机(least squares support vector machine,LSSVM)算法的马铃薯全粉还原...
TP374+.52%TS235.2; 还原糖含量是评价马铃薯全粉品质的重要指标之一,该文研究基于近红外光谱技术结合最小二乘支持向量机(least squares support vector...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 262
SubjectTerms 变量选择
无损检测
算法
近红外光谱
还原糖
马铃薯
Title 近红外光谱快速检测马铃薯全粉还原糖
URI http://lib.cqvip.com/qk/90712X/201314/46511896.html
https://d.wanfangdata.com.cn/periodical/nygcxb201314033
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsFkjiB7EJyY-2EP6JLPOTM-j-9izzhIDeloht2V6tmdzmsS4Ac0pIDkEQZDA4i2gHhQFX3jxsl-zye5fWNXb-0BCUGF2qO3qqa6Z6qmu6umuImS5KNyM4fazNvhXThCwzOEBVw7PosJrx0WsMpyHfPgoWnkcrK6Fa5XKwdyqpe2uquU7J-4r-R-pQhnIFXfJ_oNkp0ShAGCQL5xBwnD-KxnTlNOkQYVH05gmkkqfpiGVARURAhwOYeq4NPGwBCrLhKbCrG9o0DSikiEMQAKVDUrCUUdAAIrh5UBNNixByU1b_oQytM4NKjUEAcXoOHnsxOQ12IgKoBnQBKhJw0lMZYj1gSC2C5TvUxkhJxxuJJx0BIsRAjEiRtiSqd81vHl4C0jQpdwwAJwk_vxkxngXqtW8qJojbvWnVc12MsR2wWBe0Vodru0_ftJwwEQkzHCALdSmLeCCPgZDRM0dx-D4I-A2Zof3uIjOkLN-DOYLxg59sDqzMT10o6dK0MMEBN5s87GPoQWimQ8XegwzCEzXHeFX99B8grfcnCPLltV7pzGKsT_WN8rOE7BozAazssjKzpwt1LxELlonpirHPfIyqeysXyEXZGfLBnLRVwkb9l8f_3o7eN8b7O0Pv34b9D-Ndg-P3u0e_Xw5-vh5dPBi2Psy2Ptw_H1_2H8zeHV4_KN3jTQbabO-4tgEHU4ecubk4Gt7vmY6iwXmJVA-b8fgfyoPrEIuNPzcQkdhmwVFwfyMCS-P8yJX2gUFAXbidbJQbpT6Bqm6ytVBpnSofBbkWoHdpDTXbjsPoUCpRbI0vfvW5jgOS2siqEVStY-jZV_Op63yeSd_pvD5YUBKtnTa9TfJed8kOcGJtVtkobu1rW-DqdlVd4zofwNoeWFh
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%BF%91%E7%BA%A2%E5%A4%96%E5%85%89%E8%B0%B1%E5%BF%AB%E9%80%9F%E6%A3%80%E6%B5%8B%E9%A9%AC%E9%93%83%E8%96%AF%E5%85%A8%E7%B2%89%E8%BF%98%E5%8E%9F%E7%B3%96&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E6%97%AD%E4%B8%9C+%E8%91%A3%E5%B0%8F%E7%8E%B2&rft.date=2013&rft.issn=1002-6819&rft.volume=29&rft.issue=14&rft.spage=262&rft.epage=268&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2013.14.033&rft.externalDocID=46511896
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg