一种不完全信息下递推辨识方法及收敛性分析
针对信号在网络环境下传输带来不完全信息使得在线参数辨识算法和收敛性困难的问题,不同于传统递推最小二乘方法,本文提出了一种不完全信息下递推辨识方法并分析其收敛性.首先运用伯努利分布刻画引起不完全信息的数据丢包特性,然后基于辅助模型方法补偿不完全信息并构造了新的数据信息矩阵,并运用矩阵正交变换性质对数据信息矩阵进行QR分解,推导了融合网络参数的递推辨识新算法,理论证明了在不完全信息下递推参数辨识算法的收敛性.最后仿真结果验证了所提方法的可行性和有效性....
Saved in:
Published in | 自动化学报 Vol. 41; no. 8; pp. 1502 - 1515 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
上海大学机电工程与自动化学院上海市电站自动化技术重点实验室上海 200072
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.16383/j.aas.2015.c140766 |
Cover
Abstract | 针对信号在网络环境下传输带来不完全信息使得在线参数辨识算法和收敛性困难的问题,不同于传统递推最小二乘方法,本文提出了一种不完全信息下递推辨识方法并分析其收敛性.首先运用伯努利分布刻画引起不完全信息的数据丢包特性,然后基于辅助模型方法补偿不完全信息并构造了新的数据信息矩阵,并运用矩阵正交变换性质对数据信息矩阵进行QR分解,推导了融合网络参数的递推辨识新算法,理论证明了在不完全信息下递推参数辨识算法的收敛性.最后仿真结果验证了所提方法的可行性和有效性. |
---|---|
AbstractList | 针对信号在网络环境下传输带来不完全信息使得在线参数辨识算法和收敛性困难的问题,不同于传统递推最小二乘方法,本文提出了一种不完全信息下递推辨识方法并分析其收敛性。首先运用伯努利分布刻画引起不完全信息的数据丢包特性,然后基于辅助模型方法补偿不完全信息并构造了新的数据信息矩阵,并运用矩阵正交变换性质对数据信息矩阵进行QR分解,推导了融合网络参数的递推辨识新算法,理论证明了在不完全信息下递推参数辨识算法的收敛性。最后仿真结果验证了所提方法的可行性和有效性。 针对信号在网络环境下传输带来不完全信息使得在线参数辨识算法和收敛性困难的问题,不同于传统递推最小二乘方法,本文提出了一种不完全信息下递推辨识方法并分析其收敛性.首先运用伯努利分布刻画引起不完全信息的数据丢包特性,然后基于辅助模型方法补偿不完全信息并构造了新的数据信息矩阵,并运用矩阵正交变换性质对数据信息矩阵进行QR分解,推导了融合网络参数的递推辨识新算法,理论证明了在不完全信息下递推参数辨识算法的收敛性.最后仿真结果验证了所提方法的可行性和有效性. |
Abstract_FL | Under the network environment, the uncomplete infromation causes an undesirable effect on the parameter identification and convergence. Unlike the traditional recursive least squares (RLS) algorithm, the paper proposes a novel online recursive identification method with uncomplete communication constraints. In this algorithm, the Bernoulli process is firstly employed to describe the character of data packet losses, and the uncomplete information is compensated by the auxiliary model strategy. The new data information matrix is then constructed, which is decomposed by QR decomposition and the intermediate matrix can be updated recursively. An new recursive least squares (RLS) algorithm under networks with random packet losses is then presented, and its convergence is analysed. Simulation confirms the feasibility and e?ciency of the proposed method. |
Author | 杜大军 商立立 漆波 费敏锐 |
AuthorAffiliation | 上海大学机电工程与自动化学院上海市电站自动化技术重点实验室,上海200072 |
AuthorAffiliation_xml | – name: 上海大学机电工程与自动化学院上海市电站自动化技术重点实验室上海 200072 |
Author_FL | QI Bo FEI Min-Rui DU Da-Jun SHANG Li-Li |
Author_FL_xml | – sequence: 1 fullname: DU Da-Jun – sequence: 2 fullname: SHANG Li-Li – sequence: 3 fullname: QI Bo – sequence: 4 fullname: FEI Min-Rui |
Author_xml | – sequence: 1 fullname: 杜大军 商立立 漆波 费敏锐 |
BookMark | eNotz7tKA0EABdBBIhhjvsDOwm7Xec8s2EjwBQGb9Mvs7Gwe6EaziI8qFgZRoyLGRhCsksoUgsRGf2Z3jH9hJFa3OdzLnQe5uBkbABYRdBEnkqw0XKUSF0PEXI0oFJzPgDySgjoIYi8H8hAz6lDE-BwoJkk9gEhQ4WEC82A1HbW_-9101M1er7PzQfr1Ys-G6ejqp31vbwbjz8F42LGPH_atl91e2od323uy7X520bHPdwtgNlK7iSn-ZwFUNtYrpS2nvLO5XVorO5pJ4mCpGAs09RDUnDEdEq4M1CRiITFCCSS5kEjKgMmIGM8EGmMvYBhqGnIsDSmA5WntkYojFVf9RvOwFU8G_dOwdhz8HYcSIjKBS1Ooa824elCf0P1WfU-1TnzOGScMQUZ-AcOQbVY |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.2015.c140766 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Convergence Analysis of an Online Recursive Identification Method with Uncomplete Communication Constraints |
DocumentTitle_FL | Convergence Analysis of an Online Recursive Identification Method with Uncomplete Communication Constraints |
EISSN | 1874-1029 |
EndPage | 1515 |
ExternalDocumentID | zdhxb201508013 665635105 |
GrantInformation_xml | – fundername: 国家自然科学基金; 国家重大科学仪器设备开发专项课题; 上海市青年科技启明星计划; 上海市科委项目(12JC1404201,14JC1402200,15JC1401900)资助Supported by National Natural Science Foundation of China; National Key Scientific Instrument and Equipment Development Project; Shanghai Rising-Star Program; Science and Technology Com-mission of Shanghai Municipality funderid: (61473182); (2012YQ15008703); (13QA1401600); (61473182); (2012YQ15008703); (13QA1401600); (12JC1404201,14JC1402200,15JC1401900) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c583-28a55bc4910c655cd36ae0c3f5d3e7a718678188b58f3e9ebc229b520c4d628e3 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 10:28:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | 参数估计 矩阵QR分解 算法收敛性 Data packet dropout parameter estimation 数据丢包 recursive least squares algorithm convergence 递推最小二乘 matrix QR decomposition |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583-28a55bc4910c655cd36ae0c3f5d3e7a718678188b58f3e9ebc229b520c4d628e3 |
Notes | Data packet dropout, parameter estimation, recursive least squares, matrix QR decomposition, algorithm convergence Under the network environment, the uncomplete infromation causes an undesirable effect on the parameter identification and convergence. Unlike the traditional recursive least squares (RLS) algorithm, the paper proposes a novel online recursive identification method with uncomplete communication constraints. In this algorithm, the Bernoulli process is firstly employed to describe the character of data packet losses, and the uncomplete information is compensated by the auxiliary model strategy. The new data information matrix is then constructed, which is decomposed by QR decomposition and the intermediate matrix can be updated recursively. An new recursive least squares (RLS) algorithm under networks with random packet losses is then presented, and its convergence is analysed. Simulation confirms the feasibility and efficiency of the proposed method. 11-2109/TP DU Da-Jun, SHANG Li-Li, QI Bo, FEI Min- |
PageCount | 14 |
ParticipantIDs | wanfang_journals_zdhxb201508013 chongqing_primary_665635105 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | 自动化学报 |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2015 |
Publisher | 上海大学机电工程与自动化学院上海市电站自动化技术重点实验室上海 200072 |
Publisher_xml | – name: 上海大学机电工程与自动化学院上海市电站自动化技术重点实验室上海 200072 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.111564 |
Snippet | 针对信号在网络环境下传输带来不完全信息使得在线参数辨识算法和收敛性困难的问题,不同于传统递推最小二乘方法,本文提出了一种不完全信息下递推辨识方法并分析其收敛性.首... 针对信号在网络环境下传输带来不完全信息使得在线参数辨识算法和收敛性困难的问题,不同于传统递推最小二乘方法,本文提出了一种不完全信息下递推辨识方法并分析其收敛性。... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 1502 |
SubjectTerms | 参数估计 数据丢包 矩阵QR分解 算法收敛性 递推最小二乘 |
Title | 一种不完全信息下递推辨识方法及收敛性分析 |
URI | http://lib.cqvip.com/qk/90250X/201508/665635105.html https://d.wanfangdata.com.cn/periodical/zdhxb201508013 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1874-1029 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059721 issn: 0254-4156 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1874-1029 dateEnd: 20151031 omitProxy: true ssIdentifier: ssj0059721 issn: 0254-4156 databaseCode: .~1 dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btRA0EJJAwXiKUJ4pGDLCz6vd70r0awThwgBVUB0J3vPl1QXHkFCqUJBhIAAQoQGCYkqqUiBhI4GfubOhL9gZmznNiSCQGONd8az89jzzuztjj3vUhOrmHVC3rC4hSqEiLShrIAshUehbkPA22nieecbN-XsrfDaHYEVb9zTJUvZpF3e91zJ_3gV2sCveEr2Hzy7wxQaAAb_whU8DNcD-ZglIYsVblZIImYipqbrFgAEMwlTUwgogBWhZphpskRC_MjMTE0cs0TTjoeAUAkRKxbXAFAqiSgtWawRiDnTgjgDyhAKWJU0gumY-PgoEtKo-vGElR_trKNhZK5AckNkhroTKDN0hPJPM0MPIkrUQ4M4TTNNmpmw7gQa4yGJQDmwV-Aek4YV4HKJpyrBQB0TDDGgelgpqklFMA_oV8leLZGUx0NpONd2JEPEgsXRLtF21ACRY4OSoLHIfEBpBMlWuqHkkxzMLiCUBrn37x1bAqcvUh_o_8SZDI2DiUQ1pLcqR1WE3NAkNKrAkYACJuXwghZQdo8YWK3Sj9xl5UCEDUzlnV-8cqY1yBoCJ0TCIHjf6Rde5pzm3zTFUvhNMWkhgY_kb8XOKXxabi88ypAGchb87PRoAHQwtY5eja_fNsOQHiJg7cxBQsM044SsUmBJxeF9hBsDnH_y4Z7zYYqM30uQzhKIaHJI2HEJoozeBFazonXZyiJVpTLU7PJevbAiy8Jid_4exJl07K_bSbvzToQ6d8w7WqWWE6Z8Txz3Di0vnPCOOAVHT3pX-r2VHxtr_d7a4NOLwZPN_vePxeOtfu_5z5U3xcvN7W-b21urxbuvxef1watnxdsvxfr7YmVj8HS1-PD6lDc3k8xNzTaq76c0rFC8EahUiMyGkBBYKYRtc5nmvuUd0eZ5lEZYyhLCdZUJ1eG5zjMbBDoTgW_DtgxUzk97I93Fbn7Gm5A-BLHKD63085ArqZS2GVZ66oDTdJaOeeM7ZmjdLcvktCSkihzztzHvYmWYVvXyfNDa7f2zf6UY9w4jXC5-nvNGlu4_zM9DOrCUXahGzC-U3b5B |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E4%B8%8D%E5%AE%8C%E5%85%A8%E4%BF%A1%E6%81%AF%E4%B8%8B%E9%80%92%E6%8E%A8%E8%BE%A8%E8%AF%86%E6%96%B9%E6%B3%95%E5%8F%8A%E6%94%B6%E6%95%9B%E6%80%A7%E5%88%86%E6%9E%90&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%9C%E5%A4%A7%E5%86%9B&rft.au=%E5%95%86%E7%AB%8B%E7%AB%8B&rft.au=%E6%BC%86%E6%B3%A2&rft.au=%E8%B4%B9%E6%95%8F%E9%94%90&rft.date=2015&rft.pub=%E4%B8%8A%E6%B5%B7%E5%A4%A7%E5%AD%A6%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E4%B8%8E%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2%E4%B8%8A%E6%B5%B7%E5%B8%82%E7%94%B5%E7%AB%99%E8%87%AA%E5%8A%A8%E5%8C%96%E6%8A%80%E6%9C%AF%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%E4%B8%8A%E6%B5%B7+200072&rft.issn=0254-4156&rft.issue=8&rft.spage=1502&rft.epage=1515&rft_id=info:doi/10.16383%2Fj.aas.2015.c140766&rft.externalDocID=zdhxb201508013 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |