Protein N-Terminal Acetylation: Structural Basis, Mechanism, Versatility, and Regulation

N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date...

Full description

Saved in:
Bibliographic Details
Published inTrends in biochemical sciences (Amsterdam. Regular ed.) Vol. 46; no. 1; pp. 15 - 27
Main Authors Deng, Sunbin, Marmorstein, Ronen
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text
ISSN0968-0004
1362-4326
1362-4326
DOI10.1016/j.tibs.2020.08.005

Cover

Abstract N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions. To date, a total of 12 different NATs have been identified, to collectively N-terminally acetylate countless proteins from all domains of life, to mediate many biological processes.NATs uniquely mediate both post- and co-translational N-terminal acetylation.The currently availability of structures of many NATs bound to their cognate substrates, now allows for a detailed molecular comparison to derive conserved and unique features, underlying NAT activity and substrate specificity.NATs are subject to regulation by inhibitor and stimulatory proteins, and the molecular basis for this regulation has recently come to light
AbstractList N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions.
N-terminal acetylation (NTA) (see Glossary) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs) (see Glossary). To date, twelve NATs have been identified, harboring different composition, substrate specificity and, in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins now allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit employs unique elements to mediate substrate-specific activity and employ NAT-type specific auxiliary and regulatory subunits for their cellular functions.
N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions.N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions.
N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions. To date, a total of 12 different NATs have been identified, to collectively N-terminally acetylate countless proteins from all domains of life, to mediate many biological processes.NATs uniquely mediate both post- and co-translational N-terminal acetylation.The currently availability of structures of many NATs bound to their cognate substrates, now allows for a detailed molecular comparison to derive conserved and unique features, underlying NAT activity and substrate specificity.NATs are subject to regulation by inhibitor and stimulatory proteins, and the molecular basis for this regulation has recently come to light
Author Marmorstein, Ronen
Deng, Sunbin
AuthorAffiliation 1 Department of Chemistry, University of Pennsylvania, 231 South 34 th Street, Philadelphia, PA 19104, USA
2 Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
3 Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
AuthorAffiliation_xml – name: 1 Department of Chemistry, University of Pennsylvania, 231 South 34 th Street, Philadelphia, PA 19104, USA
– name: 2 Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
– name: 3 Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
Author_xml – sequence: 1
  givenname: Sunbin
  surname: Deng
  fullname: Deng, Sunbin
  organization: Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Ronen
  surname: Marmorstein
  fullname: Marmorstein, Ronen
  email: marmor@upenn.edu
  organization: Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32912665$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFP8AB5chhE8Z24jgIVSpV-ZDKh6AgbpbjTFqvss5iO6323-MlpQIOhZOl8fvMvPPOAdlzo0NCHlMoKFDxbFVE24aCAYMCZAFQ3SMLygXLS87EHllAI2QOAOU-OQhhBUCruq4ekH3OGsqEqBbk20c_RrQue5-fo19bp4fs2GDcDjra0T3PPkc_mTj5VH-pgw3L7B2aS-1sWC-zr-hD0g02bpeZdl32CS-mmXxI7vd6CPjo5j0kX16dnp-8yc8-vH57cnyWm0qymPdtBTUKLowo27qUYFiPDWrQPWotmWx0C7Xktai6tpOUU-BdmzYuGUBrWn5I-Nx3chu9vdbDoDberrXfKgpql5NaqV1OapeTAqlSTok6mqnN1K6xM-hi2vCWHLVVf_44e6kuxitV12UDvE4Nnt408OP3CUNUaxsMDoN2OE5pWFWlebLi4t_SsqSCUpA76ZPfbd36-XWvJJCzwPgxBI-9Mjb-zDu5tMPdK7O_0P_K6cUMYTrhlUWvgrHoDHbWo4mqG-1d-A-datHy
CitedBy_id crossref_primary_10_1016_j_str_2022_12_008
crossref_primary_10_3390_genes15060775
crossref_primary_10_1093_plphys_kiae200
crossref_primary_10_3390_metabo13030407
crossref_primary_10_3389_fpls_2022_832144
crossref_primary_10_1016_j_tcb_2023_07_003
crossref_primary_10_7554_eLife_57491
crossref_primary_10_1371_journal_pgen_1010848
crossref_primary_10_1242_jcs_260551
crossref_primary_10_20517_jca_2024_21
crossref_primary_10_4103_NRR_NRR_D_24_00779
crossref_primary_10_1016_j_jbc_2021_101363
crossref_primary_10_1002_mco2_292
crossref_primary_10_1093_nar_gkab945
crossref_primary_10_1007_s12265_025_10600_7
crossref_primary_10_1038_s41467_023_41520_2
crossref_primary_10_3390_ijms241612776
crossref_primary_10_3390_pharmaceutics14102045
crossref_primary_10_1016_j_mcpro_2024_100850
crossref_primary_10_3390_v16010131
crossref_primary_10_1016_j_gendis_2022_03_022
crossref_primary_10_2131_fts_9_179
crossref_primary_10_1016_j_str_2021_05_003
crossref_primary_10_3390_genes13050742
crossref_primary_10_1016_j_ijbiomac_2022_01_050
crossref_primary_10_3390_ijms232214492
crossref_primary_10_1016_j_gene_2023_147866
crossref_primary_10_1021_acs_jmedchem_1c00141
crossref_primary_10_1038_s41467_024_46881_w
crossref_primary_10_1098_rsob_240033
crossref_primary_10_3389_fimmu_2024_1392546
crossref_primary_10_3389_fnagi_2022_1025473
crossref_primary_10_2139_ssrn_4126600
crossref_primary_10_1042_BSR20202828
crossref_primary_10_3390_ijms21228609
crossref_primary_10_1007_s12265_021_10135_7
crossref_primary_10_1016_j_tins_2024_03_006
crossref_primary_10_1021_acs_chemrev_1c00937
crossref_primary_10_1128_mbio_03125_22
crossref_primary_10_1038_s41586_024_07846_7
crossref_primary_10_1111_febs_17209
crossref_primary_10_1016_j_tibs_2023_10_003
crossref_primary_10_18632_aging_205406
crossref_primary_10_3390_ijms231810805
crossref_primary_10_1016_j_yjmcc_2023_06_002
crossref_primary_10_3390_cancers14020346
crossref_primary_10_1136_jitc_2024_009905
crossref_primary_10_1038_s41467_023_40224_x
crossref_primary_10_1186_s12864_024_10873_3
crossref_primary_10_33647_2713_0428_19_3E_43_46
crossref_primary_10_3390_ijms221910692
crossref_primary_10_1016_j_jmb_2025_169056
crossref_primary_10_1016_j_bbrc_2025_151491
crossref_primary_10_3390_molecules28031337
crossref_primary_10_1007_s44307_024_00027_7
crossref_primary_10_1016_j_fbio_2025_106365
crossref_primary_10_1038_s41467_024_53903_0
crossref_primary_10_1016_j_aquaculture_2024_741754
crossref_primary_10_1002_mco2_674
crossref_primary_10_1126_science_adg3297
crossref_primary_10_1186_s43042_021_00160_1
Cites_doi 10.1002/pmic.201500025
10.1038/nbt.3418
10.3390/ijms17071018
10.1016/j.gene.2015.04.085
10.1016/j.molcel.2019.02.007
10.1016/j.csbj.2020.02.017
10.1021/pr0700347
10.1074/mcp.M110.004580
10.1073/pnas.1310365110
10.1111/nph.16747
10.1002/pmic.201400619
10.1042/BJ20041071
10.1002/j.1460-2075.1992.tb05267.x
10.1038/srep28892
10.1093/emboj/18.21.6155
10.1128/MCB.01909-08
10.1371/journal.pone.0024713
10.1093/emboj/19.2.174
10.1016/j.str.2014.10.025
10.1074/jbc.M313384200
10.1016/j.str.2017.03.003
10.1016/j.jprot.2014.11.006
10.1074/jbc.C300355200
10.1038/s12276-018-0116-z
10.1016/j.str.2016.04.020
10.1186/s13104-018-3513-4
10.1093/jxb/ery241
10.1002/cm.21455
10.1110/ps.035899.108
10.1016/j.jmb.2006.07.086
10.1016/j.str.2018.04.003
10.1074/jbc.M115.709428
10.1126/sciadv.aay8793
10.1074/mcp.M111.015131
10.1074/jbc.M109.001347
10.2174/1389203719666180809113122
10.1038/s41594-018-0165-y
10.1111/j.1365-2958.2007.05752.x
10.1016/j.biochi.2014.11.008
10.1021/acs.biochem.5b01269
10.1039/c2mb05499j
10.1002/pmic.201400575
10.1128/MCB.01199-09
10.1074/jbc.M611436200
10.1021/pr800517a
10.1016/j.tibs.2016.07.005
10.1074/jbc.M011440200
10.1074/mcp.M111.011627
10.1073/pnas.1719251115
10.1038/srep21304
10.1111/febs.14605
10.18632/oncotarget.5867
10.1002/jcb.21418
10.1128/MCB.23.20.7403-7414.2003
10.1016/j.str.2019.04.014
10.1016/j.bbapap.2014.07.011
10.1371/journal.pone.0186278
10.1038/onc.2012.82
10.1073/pnas.1210303109
10.1104/pp.19.00792
10.1002/pmic.201500027
10.1038/ncomms15726
10.1371/journal.pgen.1002169
10.1016/j.celrep.2015.01.053
10.1074/jbc.M111.282863
10.1074/jbc.M116.770362
10.1074/mcp.M116.061010
10.1074/jbc.M116.737585
10.1073/pnas.1705898114
10.1002/j.1460-2075.1989.tb03615.x
10.1074/jbc.M502401200
10.1073/pnas.1718336115
10.1038/nsmb.2636
10.1093/hmg/ddz111
10.1074/jbc.M111.326587
10.1021/cb400136s
10.1073/pnas.0901931106
10.1083/jcb.200701043
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1016/j.tibs.2020.08.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1362-4326
EndPage 27
ExternalDocumentID oai:pubmedcentral.nih.gov:7749037
PMC7749037
32912665
10_1016_j_tibs_2020_08_005
S0968000420302024
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118090
– fundername: NIA NIH HHS
  grantid: P01 AG031862
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
123
1B1
1CY
1RT
1~.
1~5
29Q
3EH
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9M8
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACKIV
ACNCT
ACPRK
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
H~9
IH2
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TAE
UQL
WUQ
X7M
XFK
XPP
Y6R
ZCA
ZMT
~G-
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
ADVLN
ADXHL
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c582t-fb507e636c64b7480c2fe9ea0afeaa8289ab0783765dbd813103db0204200bcb3
IEDL.DBID UNPAY
ISSN 0968-0004
1362-4326
IngestDate Sun Oct 26 03:59:26 EDT 2025
Tue Sep 30 16:42:48 EDT 2025
Thu Oct 02 05:33:06 EDT 2025
Sun Sep 28 07:25:24 EDT 2025
Mon Jul 21 06:00:45 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Sat Oct 25 06:12:13 EDT 2025
Fri Feb 23 02:47:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NATs
N-terminal acetylation
ribosome
post-translational modification
enzyme mechanism
co-translational modification
HYPK
IP6
IP
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-fb507e636c64b7480c2fe9ea0afeaa8289ab0783765dbd813103db0204200bcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7749037
PMID 32912665
PQID 2441611086
PQPubID 23479
PageCount 13
ParticipantIDs unpaywall_primary_10_1016_j_tibs_2020_08_005
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7749037
proquest_miscellaneous_2552028536
proquest_miscellaneous_2441611086
pubmed_primary_32912665
crossref_citationtrail_10_1016_j_tibs_2020_08_005
crossref_primary_10_1016_j_tibs_2020_08_005
elsevier_sciencedirect_doi_10_1016_j_tibs_2020_08_005
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in biochemical sciences (Amsterdam. Regular ed.)
PublicationTitleAlternate Trends Biochem Sci
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Van Damme (bb0280) 2016; 15
Mullen (bb0195) 1989; 8
Van Damme (bb0210) 2011; 10
Rathore (bb0325) 2016; 6
Evjenth (bb0120) 2012; 287
Deng (bb0250) 2020; 11
Varland, Arnesen (bb0405) 2018; 11
Kalvik, Arnesen (bb0080) 2013; 32
Evjenth (bb0110) 2009; 284
Gautschi (bb0390) 2003; 23
Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response.
Liszczak (bb0305) 2011; 286
Stove (bb0350) 2016; 24
Aivaliotis (bb0065) 2007; 6
Oh (bb0070) 2017; 114
Mohamed, Mohamed (bb0005) 2018; 19
Ree (bb0095) 2018; 50
Arnesen (bb0365) 2018; 75
Park, Szostak (bb0200) 1992; 11
Favrot (bb0130) 2016; 55
Wiame (bb0370) 2018; 285
Mackay (bb0175) 2007; 64
Polevoda (bb0385) 2008; 103
Chen (bb0345) 2016; 6
Linster, Wirtz (bb0030) 2018; 69
Raue (bb0395) 2007; 282
Varland (bb0010) 2015; 15
Linster, E.
Foyn (bb0125) 2013; 8
Ma (bb0190) 2014; 1844
Published online 2020 Jun 16.
Kelkar (bb0045) 2011; 10
Kirkland (bb0060) 2008; 7
Deng (bb0240) 2019; 27
.
Song (bb0290) 2003; 278
Wahl (bb0160) 2000; 19
Bernal-Perez (bb0135) 2012; 8
Polevoda, Sherman (bb0275) 2001; 276
Knorr (bb0410) 2019; 26
Bienvenut (bb0050) 2015; 15
Vetting (bb0155) 2005; 280
Van Damme (bb0260) 2012; 109
Pathak (bb0150) 2016; 6
Bocharov (bb0165) 2004; 279
Falb (bb0170) 2006; 362
Rong (bb0315) 2016; 291
Hole (bb0295) 2011; 6
Dinh (bb0360) 2015; 15
Vetting (bb0145) 2008; 17
Rebowski (bb0380) 2020; 6
Gottlieb, Marmorstein (bb0245) 2018; 26
Aksnes (bb0020) 2019; 73
Drazic (bb0220) 2018; 115
Cheng (bb0255) 2019; 28
The
Dorfel, Lyon (bb0085) 2015; 567
Ouidir (bb0140) 2015; 114
Myklebust (bb0075) 2015; 6
Arnesen (bb0205) 2005; 386
Liszczak (bb0230) 2013; 20
Aksnes (bb0025) 2016; 41
Abboud (bb0115) 2020; 18
Van Damme (bb0310) 2015; 15
Arnesen (bb0035) 2009; 106
Weyer (bb0235) 2017; 8
Polevoda (bb0215) 1999; 18
Magin (bb0105) 2016; 291
Arnesen (bb0375) 2010; 30
Schmidt (bb0055) 2016; 34
Huber (bb0090) 2020; 182
Aksnes (bb0335) 2015; 10
Magin (bb0400) 2017; 12
Salah Ud-Din (bb0100) 2016; 17
Van Damme (bb0330) 2011; 7
Magin (bb0300) 2015; 23
Chang, Hsu (bb0185) 2015; 5
Hong (bb0265) 2017; 25
Hou (bb0320) 2007; 177
Starheim (bb0285) 2009; 29
Goris (bb0225) 2018; 115
Aksnes (bb0340) 2017; 292
Giglione (bb0015) 2015; 114
Bienvenut (bb0040) 2012; 11
Liszczak, Marmorstein (bb0180) 2013; 110
Gottlieb (10.1016/j.tibs.2020.08.005_bb0245) 2018; 26
Arnesen (10.1016/j.tibs.2020.08.005_bb0365) 2018; 75
Vetting (10.1016/j.tibs.2020.08.005_bb0155) 2005; 280
Hong (10.1016/j.tibs.2020.08.005_bb0265) 2017; 25
Magin (10.1016/j.tibs.2020.08.005_bb0400) 2017; 12
Wahl (10.1016/j.tibs.2020.08.005_bb0160) 2000; 19
Dorfel (10.1016/j.tibs.2020.08.005_bb0085) 2015; 567
Deng (10.1016/j.tibs.2020.08.005_bb0250) 2020; 11
Rathore (10.1016/j.tibs.2020.08.005_bb0325) 2016; 6
10.1016/j.tibs.2020.08.005_bb0355
Liszczak (10.1016/j.tibs.2020.08.005_bb0230) 2013; 20
Abboud (10.1016/j.tibs.2020.08.005_bb0115) 2020; 18
Cheng (10.1016/j.tibs.2020.08.005_bb0255) 2019; 28
Oh (10.1016/j.tibs.2020.08.005_bb0070) 2017; 114
Polevoda (10.1016/j.tibs.2020.08.005_bb0215) 1999; 18
Bocharov (10.1016/j.tibs.2020.08.005_bb0165) 2004; 279
Rebowski (10.1016/j.tibs.2020.08.005_bb0380) 2020; 6
Schmidt (10.1016/j.tibs.2020.08.005_bb0055) 2016; 34
Kelkar (10.1016/j.tibs.2020.08.005_bb0045) 2011; 10
Aksnes (10.1016/j.tibs.2020.08.005_bb0335) 2015; 10
Gautschi (10.1016/j.tibs.2020.08.005_bb0390) 2003; 23
Raue (10.1016/j.tibs.2020.08.005_bb0395) 2007; 282
Song (10.1016/j.tibs.2020.08.005_bb0290) 2003; 278
Arnesen (10.1016/j.tibs.2020.08.005_bb0205) 2005; 386
Rong (10.1016/j.tibs.2020.08.005_bb0315) 2016; 291
Knorr (10.1016/j.tibs.2020.08.005_bb0410) 2019; 26
Wiame (10.1016/j.tibs.2020.08.005_bb0370) 2018; 285
Liszczak (10.1016/j.tibs.2020.08.005_bb0305) 2011; 286
Van Damme (10.1016/j.tibs.2020.08.005_bb0280) 2016; 15
Bernal-Perez (10.1016/j.tibs.2020.08.005_bb0135) 2012; 8
Liszczak (10.1016/j.tibs.2020.08.005_bb0180) 2013; 110
Aivaliotis (10.1016/j.tibs.2020.08.005_bb0065) 2007; 6
Park (10.1016/j.tibs.2020.08.005_bb0200) 1992; 11
Chen (10.1016/j.tibs.2020.08.005_bb0345) 2016; 6
Bienvenut (10.1016/j.tibs.2020.08.005_bb0050) 2015; 15
Arnesen (10.1016/j.tibs.2020.08.005_bb0375) 2010; 30
Chang (10.1016/j.tibs.2020.08.005_bb0185) 2015; 5
Vetting (10.1016/j.tibs.2020.08.005_bb0145) 2008; 17
Van Damme (10.1016/j.tibs.2020.08.005_bb0260) 2012; 109
Varland (10.1016/j.tibs.2020.08.005_bb0010) 2015; 15
Arnesen (10.1016/j.tibs.2020.08.005_bb0035) 2009; 106
Van Damme (10.1016/j.tibs.2020.08.005_bb0310) 2015; 15
Dinh (10.1016/j.tibs.2020.08.005_bb0360) 2015; 15
Hou (10.1016/j.tibs.2020.08.005_bb0320) 2007; 177
Goris (10.1016/j.tibs.2020.08.005_bb0225) 2018; 115
Aksnes (10.1016/j.tibs.2020.08.005_bb0020) 2019; 73
Deng (10.1016/j.tibs.2020.08.005_bb0240) 2019; 27
Kirkland (10.1016/j.tibs.2020.08.005_bb0060) 2008; 7
Favrot (10.1016/j.tibs.2020.08.005_bb0130) 2016; 55
Salah Ud-Din (10.1016/j.tibs.2020.08.005_bb0100) 2016; 17
Pathak (10.1016/j.tibs.2020.08.005_bb0150) 2016; 6
Ma (10.1016/j.tibs.2020.08.005_bb0190) 2014; 1844
Varland (10.1016/j.tibs.2020.08.005_bb0405) 2018; 11
Drazic (10.1016/j.tibs.2020.08.005_bb0220) 2018; 115
Magin (10.1016/j.tibs.2020.08.005_bb0300) 2015; 23
Ouidir (10.1016/j.tibs.2020.08.005_bb0140) 2015; 114
Mohamed (10.1016/j.tibs.2020.08.005_bb0005) 2018; 19
Linster (10.1016/j.tibs.2020.08.005_bb0030) 2018; 69
Polevoda (10.1016/j.tibs.2020.08.005_bb0275) 2001; 276
Kalvik (10.1016/j.tibs.2020.08.005_bb0080) 2013; 32
Evjenth (10.1016/j.tibs.2020.08.005_bb0110) 2009; 284
Van Damme (10.1016/j.tibs.2020.08.005_bb0330) 2011; 7
Mullen (10.1016/j.tibs.2020.08.005_bb0195) 1989; 8
Hole (10.1016/j.tibs.2020.08.005_bb0295) 2011; 6
Giglione (10.1016/j.tibs.2020.08.005_bb0015) 2015; 114
Starheim (10.1016/j.tibs.2020.08.005_bb0285) 2009; 29
Aksnes (10.1016/j.tibs.2020.08.005_bb0025) 2016; 41
Mackay (10.1016/j.tibs.2020.08.005_bb0175) 2007; 64
Ree (10.1016/j.tibs.2020.08.005_bb0095) 2018; 50
Huber (10.1016/j.tibs.2020.08.005_bb0090) 2020; 182
Evjenth (10.1016/j.tibs.2020.08.005_bb0120) 2012; 287
Bienvenut (10.1016/j.tibs.2020.08.005_bb0040) 2012; 11
Falb (10.1016/j.tibs.2020.08.005_bb0170) 2006; 362
Weyer (10.1016/j.tibs.2020.08.005_bb0235) 2017; 8
Myklebust (10.1016/j.tibs.2020.08.005_bb0075) 2015; 6
Foyn (10.1016/j.tibs.2020.08.005_bb0125) 2013; 8
Aksnes (10.1016/j.tibs.2020.08.005_bb0340) 2017; 292
Stove (10.1016/j.tibs.2020.08.005_bb0350) 2016; 24
Van Damme (10.1016/j.tibs.2020.08.005_bb0210) 2011; 10
Polevoda (10.1016/j.tibs.2020.08.005_bb0385) 2008; 103
Magin (10.1016/j.tibs.2020.08.005_bb0105) 2016; 291
References_xml – volume: 284
  start-page: 31122
  year: 2009
  end-page: 31129
  ident: bb0110
  article-title: Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 8157
  year: 2009
  end-page: 8162
  ident: bb0035
  article-title: Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 114
  start-page: E4370
  year: 2017
  end-page: E4379
  ident: bb0070
  article-title: Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 282
  start-page: 7809
  year: 2007
  end-page: 7816
  ident: bb0395
  article-title: Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence
  publication-title: J. Biol. Chem.
– volume: 5
  year: 2015
  ident: bb0185
  article-title: Structural basis for substrate-specific acetylation of Nα-acetyltransferase Ard1 from
  publication-title: Sci. Rep.
– volume: 11
  year: 2020
  ident: bb0250
  article-title: Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK
  publication-title: Nat. Commun.
– volume: 10
  year: 2011
  ident: bb0045
  article-title: Proteogenomic analysis of
  publication-title: Mol. Cell Proteomics
– volume: 15
  start-page: 2436
  year: 2015
  end-page: 2446
  ident: bb0310
  article-title: N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases
  publication-title: Proteomics
– volume: 55
  start-page: 989
  year: 2016
  end-page: 1002
  ident: bb0130
  article-title: Bacterial GCN5-related N-acetyltransferases: from resistance to regulation
  publication-title: Biochemistry
– volume: 32
  start-page: 269
  year: 2013
  end-page: 276
  ident: bb0080
  article-title: Protein N-terminal acetyltransferases in cancer
  publication-title: Oncogene
– volume: 110
  start-page: 14652
  year: 2013
  end-page: 14657
  ident: bb0180
  article-title: Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  start-page: 1121
  year: 2013
  end-page: 1127
  ident: bb0125
  article-title: Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors
  publication-title: ACS Chem. Biol.
– volume: 11
  year: 2018
  ident: bb0405
  article-title: Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae
  publication-title: BMC Res. Notes
– volume: 177
  start-page: 587
  year: 2007
  end-page: 597
  ident: bb0320
  article-title: The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner
  publication-title: J. Cell Biol.
– volume: 29
  start-page: 3569
  year: 2009
  end-page: 3581
  ident: bb0285
  article-title: Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization
  publication-title: Mol. Cell. Biol.
– volume: 19
  start-page: 1214
  year: 2018
  end-page: 1223
  ident: bb0005
  article-title: Post-translational N-terminal arginylation of protein fragments: a pivotal portal to proteolysis
  publication-title: Curr. Protein Pept. Sci.
– volume: 41
  start-page: 746
  year: 2016
  end-page: 760
  ident: bb0025
  article-title: First things first: vital protein marks by N-terminal acetyltransferases
  publication-title: Trends Biochem. Sci.
– volume: 285
  start-page: 3299
  year: 2018
  end-page: 3316
  ident: bb0370
  article-title: NAT6 acetylates the N-terminus of different forms of actin
  publication-title: FEBS J.
– volume: 6
  year: 2016
  ident: bb0345
  article-title: Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase
  publication-title: Sci. Rep.
– volume: 362
  start-page: 915
  year: 2006
  end-page: 924
  ident: bb0170
  article-title: Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey
  publication-title: J. Mol. Biol.
– volume: 6
  start-page: 34041
  year: 2015
  end-page: 34042
  ident: bb0075
  article-title: Naa10 in development and disease
  publication-title: Oncotarget
– volume: 19
  start-page: 174
  year: 2000
  end-page: 186
  ident: bb0160
  article-title: Flexibility, conformational diversity, and two dimerization modes in complexes of ribosomal protein L12
  publication-title: EMBO J.
– volume: 64
  start-page: 1540
  year: 2007
  end-page: 1548
  ident: bb0175
  article-title: An acetylase with relaxed specificity catalyses protein N-terminal acetylation in
  publication-title: Mol. Microbiol.
– volume: 286
  start-page: 37002
  year: 2011
  end-page: 37010
  ident: bb0305
  article-title: Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation
  publication-title: J. Biol. Chem.
– volume: 12
  year: 2017
  ident: bb0400
  article-title: Probing the interaction between NatA and the ribosome for co-translational protein acetylation
  publication-title: PLoS One
– volume: 8
  start-page: 1128
  year: 2012
  end-page: 1130
  ident: bb0135
  article-title: RimJ-mediated context-dependent N-terminal acetylation of the recombinant Z-domain protein in
  publication-title: Mol. BioSyst.
– volume: 6
  start-page: 2195
  year: 2007
  end-page: 2204
  ident: bb0065
  article-title: Large-scale identification of N-terminal peptides in the halophilic archaea
  publication-title: J. Proteome Res.
– volume: 7
  start-page: 5033
  year: 2008
  end-page: 5039
  ident: bb0060
  article-title: Shotgun proteomics of the haloarchaeon
  publication-title: J. Proteome Res.
– volume: 8
  start-page: 2067
  year: 1989
  end-page: 2075
  ident: bb0195
  article-title: Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast
  publication-title: EMBO J.
– volume: 15
  start-page: 2426
  year: 2015
  end-page: 2435
  ident: bb0360
  article-title: Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling
  publication-title: Proteomics
– volume: 24
  start-page: 1044
  year: 2016
  end-page: 1056
  ident: bb0350
  article-title: Crystal structure of the Golgi-associated human Nalpha-acetyltransferase 60 reveals the molecular determinants for substrate-specific acetylation
  publication-title: Structure
– volume: 11
  start-page: 2087
  year: 1992
  end-page: 2093
  ident: bb0200
  article-title: ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity
  publication-title: EMBO J.
– volume: 26
  start-page: 925
  year: 2018
  end-page: 935
  ident: bb0245
  article-title: Structure of human NatA and its regulation by the huntingtin interacting protein HYPK
  publication-title: Structure
– volume: 17
  start-page: 1018
  year: 2016
  ident: bb0100
  article-title: Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT)
  publication-title: Int. J. Mol. Sci.
– volume: 18
  start-page: 6155
  year: 1999
  end-page: 6168
  ident: bb0215
  article-title: Identification and specificities of N-terminal acetyltransferases from
  publication-title: EMBO J.
– reference: . Published online 2020 Jun 16.
– volume: 291
  start-page: 19079
  year: 2016
  end-page: 19091
  ident: bb0315
  article-title: Opposing functions of the N-terminal acetyltransferases Naa50 and NatA in sister-chromatid cohesion
  publication-title: J. Biol. Chem.
– volume: 6
  year: 2016
  ident: bb0325
  article-title: Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms
  publication-title: Sci. Rep.
– volume: 26
  start-page: 35
  year: 2019
  end-page: 39
  ident: bb0410
  article-title: Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation
  publication-title: Nat. Struct. Mol. Biol.
– volume: 15
  start-page: 3361
  year: 2016
  end-page: 3372
  ident: bb0280
  article-title: A role for human N-alpha acetyltransferase 30 (Naa30) in maintaining mitochondrial integrity
  publication-title: Mol. Cell. Proteomics
– volume: 34
  start-page: 104
  year: 2016
  end-page: 110
  ident: bb0055
  article-title: The quantitative and condition-dependent
  publication-title: Nat. Biotechnol.
– volume: 15
  start-page: 2385
  year: 2015
  end-page: 2401
  ident: bb0010
  article-title: N-terminal modifications of cellular proteins: the enzymes involved, their substrate specificities, and biological effects
  publication-title: Proteomics
– volume: 115
  start-page: 4405
  year: 2018
  end-page: 4410
  ident: bb0225
  article-title: Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 182
  start-page: 792
  year: 2020
  end-page: 806
  ident: bb0090
  article-title: NatB-mediated N-terminal acetylation affects growth and biotic stress responses
  publication-title: Plant Physiol.
– reference: Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response.
– volume: 69
  start-page: 4555
  year: 2018
  end-page: 4568
  ident: bb0030
  article-title: N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses
  publication-title: J. Exp. Bot.
– volume: 28
  start-page: 2900
  year: 2019
  end-page: 2919
  ident: bb0255
  article-title: Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15
  publication-title: Hum. Mol. Genet.
– volume: 276
  start-page: 20154
  year: 2001
  end-page: 20159
  ident: bb0275
  article-title: NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p
  publication-title: J. Biol. Chem.
– volume: 280
  start-page: 22108
  year: 2005
  end-page: 22114
  ident: bb0155
  article-title: A novel dimeric structure of the RimL Nalpha-acetyltransferase from
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 1362
  year: 2015
  end-page: 1374
  ident: bb0335
  article-title: An organellar nalpha-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity
  publication-title: Cell Rep.
– volume: 292
  start-page: 6821
  year: 2017
  end-page: 6837
  ident: bb0340
  article-title: Molecular determinants of the N-terminal acetyltransferase Naa60 anchoring to the Golgi membrane
  publication-title: J. Biol. Chem.
– reference: The
– volume: 386
  start-page: 433
  year: 2005
  end-page: 443
  ident: bb0205
  article-title: Identification and characterization of the human ARD1-NATH protein acetyltransferase complex
  publication-title: Biochem. J.
– volume: 103
  start-page: 492
  year: 2008
  end-page: 508
  ident: bb0385
  article-title: Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes
  publication-title: J. Cell. Biochem.
– volume: 279
  start-page: 17697
  year: 2004
  end-page: 17706
  ident: bb0165
  article-title: From structure and dynamics of protein L7/L12 to molecular switching in ribosome
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 641
  year: 2017
  end-page: 649
  ident: bb0265
  article-title: Molecular basis of substrate specific acetylation by N-terminal acetyltransferase NatB
  publication-title: Structure
– volume: 17
  start-page: 1781
  year: 2008
  end-page: 1790
  ident: bb0145
  article-title: Crystal structure of RimI from
  publication-title: Protein Sci.
– volume: 23
  start-page: 332
  year: 2015
  end-page: 341
  ident: bb0300
  article-title: The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD
  publication-title: Structure
– volume: 15
  start-page: 2503
  year: 2015
  end-page: 2518
  ident: bb0050
  article-title: Proteome-wide analysis of the amino terminal status of
  publication-title: Proteomics
– volume: 278
  start-page: 38109
  year: 2003
  end-page: 38112
  ident: bb0290
  article-title: An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 1098
  year: 2013
  end-page: 1105
  ident: bb0230
  article-title: Molecular basis for N-terminal acetylation by the heterodimeric NatA complex
  publication-title: Nat. Struct. Mol. Biol.
– volume: 291
  start-page: 5270
  year: 2016
  end-page: 5277
  ident: bb0105
  article-title: The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 1057
  year: 2019
  end-page: 1070
  ident: bb0240
  article-title: Structure and mechanism of acetylation by the N-terminal dual enzyme NatA/Naa50 complex
  publication-title: Structure
– reference: Linster, E.
– volume: 75
  start-page: 318
  year: 2018
  end-page: 322
  ident: bb0365
  article-title: Actin's N-terminal acetyltransferase uncovered
  publication-title: Cytoskeleton
– volume: 6
  year: 2020
  ident: bb0380
  article-title: Mechanism of actin N-terminal acetylation
  publication-title: Sci. Adv.
– volume: 1844
  start-page: 1790
  year: 2014
  end-page: 1797
  ident: bb0190
  article-title: Structure of Thermoplasma volcanium Ard1 belongs to N-acetyltransferase family member suggesting multiple ligand binding modes with acetyl coenzyme A and coenzyme A
  publication-title: Biochim. Biophys. Acta
– volume: 114
  start-page: 134
  year: 2015
  end-page: 146
  ident: bb0015
  article-title: N-terminal protein modifications: bringing back into play the ribosome
  publication-title: Biochimie
– volume: 287
  start-page: 10081
  year: 2012
  end-page: 10088
  ident: bb0120
  article-title: Human protein N-terminal acetyltransferase hNaa50p (hNAT5/hSAN) follows ordered sequential catalytic mechanism: combined kinetic and NMR study
  publication-title: J. Biol. Chem.
– volume: 6
  year: 2011
  ident: bb0295
  article-title: The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4
  publication-title: PLoS One
– volume: 8
  year: 2017
  ident: bb0235
  article-title: Structural basis of HypK regulating N-terminal acetylation by the NatA complex
  publication-title: Nat. Commun.
– reference: .
– volume: 73
  start-page: 1097
  year: 2019
  end-page: 1114
  ident: bb0020
  article-title: Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases
  publication-title: Mol. Cell
– volume: 115
  start-page: 4399
  year: 2018
  end-page: 4404
  ident: bb0220
  article-title: NAA80 is actin's N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  year: 2012
  ident: bb0040
  article-title: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features
  publication-title: Mol. Cell. Proteomics
– volume: 7
  year: 2011
  ident: bb0330
  article-title: NatF Contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation
  publication-title: PLoS Genet.
– volume: 6
  year: 2016
  ident: bb0150
  article-title: Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of
  publication-title: Sci. Rep.
– volume: 109
  start-page: 12449
  year: 2012
  end-page: 12454
  ident: bb0260
  article-title: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  year: 2011
  ident: bb0210
  article-title: Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase
  publication-title: Mol. Cell. Proteomics
– volume: 23
  start-page: 7403
  year: 2003
  end-page: 7414
  ident: bb0390
  article-title: The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides
  publication-title: Mol. Cell. Biol.
– volume: 114
  start-page: 214
  year: 2015
  end-page: 225
  ident: bb0140
  article-title: Characterization of N-terminal protein modifications in
  publication-title: J. Proteome
– volume: 30
  start-page: 1898
  year: 2010
  end-page: 1909
  ident: bb0375
  article-title: The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation
  publication-title: Mol. Cell. Biol.
– volume: 50
  start-page: 1
  year: 2018
  end-page: 13
  ident: bb0095
  article-title: Spotlight on protein N-terminal acetylation
  publication-title: Exp. Mol. Med.
– volume: 567
  start-page: 103
  year: 2015
  end-page: 131
  ident: bb0085
  article-title: The biological functions of Naa10 - from amino-terminal acetylation to human disease
  publication-title: Gene
– volume: 18
  start-page: 532
  year: 2020
  end-page: 547
  ident: bb0115
  article-title: Dynamics-function relationship in the catalytic domains of N-terminal acetyltransferases
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 15
  start-page: 2426
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0360
  article-title: Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling
  publication-title: Proteomics
  doi: 10.1002/pmic.201500025
– volume: 34
  start-page: 104
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0055
  article-title: The quantitative and condition-dependent Escherichia coli proteome
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3418
– volume: 17
  start-page: 1018
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0100
  article-title: Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT)
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17071018
– volume: 567
  start-page: 103
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0085
  article-title: The biological functions of Naa10 - from amino-terminal acetylation to human disease
  publication-title: Gene
  doi: 10.1016/j.gene.2015.04.085
– volume: 73
  start-page: 1097
  year: 2019
  ident: 10.1016/j.tibs.2020.08.005_bb0020
  article-title: Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.007
– volume: 18
  start-page: 532
  year: 2020
  ident: 10.1016/j.tibs.2020.08.005_bb0115
  article-title: Dynamics-function relationship in the catalytic domains of N-terminal acetyltransferases
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2020.02.017
– volume: 6
  start-page: 2195
  year: 2007
  ident: 10.1016/j.tibs.2020.08.005_bb0065
  article-title: Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis
  publication-title: J. Proteome Res.
  doi: 10.1021/pr0700347
– volume: 10
  year: 2011
  ident: 10.1016/j.tibs.2020.08.005_bb0210
  article-title: Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M110.004580
– volume: 110
  start-page: 14652
  year: 2013
  ident: 10.1016/j.tibs.2020.08.005_bb0180
  article-title: Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1310365110
– ident: 10.1016/j.tibs.2020.08.005_bb0355
  doi: 10.1111/nph.16747
– volume: 15
  start-page: 2385
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0010
  article-title: N-terminal modifications of cellular proteins: the enzymes involved, their substrate specificities, and biological effects
  publication-title: Proteomics
  doi: 10.1002/pmic.201400619
– volume: 386
  start-page: 433
  year: 2005
  ident: 10.1016/j.tibs.2020.08.005_bb0205
  article-title: Identification and characterization of the human ARD1-NATH protein acetyltransferase complex
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041071
– volume: 11
  start-page: 2087
  year: 1992
  ident: 10.1016/j.tibs.2020.08.005_bb0200
  article-title: ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05267.x
– volume: 6
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0150
  article-title: Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep28892
– volume: 18
  start-page: 6155
  year: 1999
  ident: 10.1016/j.tibs.2020.08.005_bb0215
  article-title: Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.21.6155
– volume: 29
  start-page: 3569
  year: 2009
  ident: 10.1016/j.tibs.2020.08.005_bb0285
  article-title: Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01909-08
– volume: 11
  year: 2020
  ident: 10.1016/j.tibs.2020.08.005_bb0250
  article-title: Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK
  publication-title: Nat. Commun.
– volume: 6
  year: 2011
  ident: 10.1016/j.tibs.2020.08.005_bb0295
  article-title: The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024713
– volume: 19
  start-page: 174
  year: 2000
  ident: 10.1016/j.tibs.2020.08.005_bb0160
  article-title: Flexibility, conformational diversity, and two dimerization modes in complexes of ribosomal protein L12
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.2.174
– volume: 23
  start-page: 332
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0300
  article-title: The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD
  publication-title: Structure
  doi: 10.1016/j.str.2014.10.025
– volume: 279
  start-page: 17697
  year: 2004
  ident: 10.1016/j.tibs.2020.08.005_bb0165
  article-title: From structure and dynamics of protein L7/L12 to molecular switching in ribosome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313384200
– volume: 25
  start-page: 641
  year: 2017
  ident: 10.1016/j.tibs.2020.08.005_bb0265
  article-title: Molecular basis of substrate specific acetylation by N-terminal acetyltransferase NatB
  publication-title: Structure
  doi: 10.1016/j.str.2017.03.003
– volume: 114
  start-page: 214
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0140
  article-title: Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14
  publication-title: J. Proteome
  doi: 10.1016/j.jprot.2014.11.006
– volume: 278
  start-page: 38109
  year: 2003
  ident: 10.1016/j.tibs.2020.08.005_bb0290
  article-title: An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C300355200
– volume: 50
  start-page: 1
  year: 2018
  ident: 10.1016/j.tibs.2020.08.005_bb0095
  article-title: Spotlight on protein N-terminal acetylation
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-018-0116-z
– volume: 24
  start-page: 1044
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0350
  article-title: Crystal structure of the Golgi-associated human Nalpha-acetyltransferase 60 reveals the molecular determinants for substrate-specific acetylation
  publication-title: Structure
  doi: 10.1016/j.str.2016.04.020
– volume: 11
  year: 2018
  ident: 10.1016/j.tibs.2020.08.005_bb0405
  article-title: Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae
  publication-title: BMC Res. Notes
  doi: 10.1186/s13104-018-3513-4
– volume: 5
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0185
  article-title: Structural basis for substrate-specific acetylation of Nα-acetyltransferase Ard1 from Sulfolobus solfataricus
  publication-title: Sci. Rep.
– volume: 69
  start-page: 4555
  year: 2018
  ident: 10.1016/j.tibs.2020.08.005_bb0030
  article-title: N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery241
– volume: 75
  start-page: 318
  year: 2018
  ident: 10.1016/j.tibs.2020.08.005_bb0365
  article-title: Actin's N-terminal acetyltransferase uncovered
  publication-title: Cytoskeleton
  doi: 10.1002/cm.21455
– volume: 17
  start-page: 1781
  year: 2008
  ident: 10.1016/j.tibs.2020.08.005_bb0145
  article-title: Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for Nα-acetylation of ribosomal protein S18
  publication-title: Protein Sci.
  doi: 10.1110/ps.035899.108
– volume: 362
  start-page: 915
  year: 2006
  ident: 10.1016/j.tibs.2020.08.005_bb0170
  article-title: Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.07.086
– volume: 26
  start-page: 925
  year: 2018
  ident: 10.1016/j.tibs.2020.08.005_bb0245
  article-title: Structure of human NatA and its regulation by the huntingtin interacting protein HYPK
  publication-title: Structure
  doi: 10.1016/j.str.2018.04.003
– volume: 291
  start-page: 5270
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0105
  article-title: The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.709428
– volume: 6
  year: 2020
  ident: 10.1016/j.tibs.2020.08.005_bb0380
  article-title: Mechanism of actin N-terminal acetylation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay8793
– volume: 11
  year: 2012
  ident: 10.1016/j.tibs.2020.08.005_bb0040
  article-title: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.015131
– volume: 284
  start-page: 31122
  year: 2009
  ident: 10.1016/j.tibs.2020.08.005_bb0110
  article-title: Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.001347
– volume: 19
  start-page: 1214
  year: 2018
  ident: 10.1016/j.tibs.2020.08.005_bb0005
  article-title: Post-translational N-terminal arginylation of protein fragments: a pivotal portal to proteolysis
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/1389203719666180809113122
– volume: 26
  start-page: 35
  year: 2019
  ident: 10.1016/j.tibs.2020.08.005_bb0410
  article-title: Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0165-y
– volume: 64
  start-page: 1540
  year: 2007
  ident: 10.1016/j.tibs.2020.08.005_bb0175
  article-title: An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05752.x
– volume: 114
  start-page: 134
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0015
  article-title: N-terminal protein modifications: bringing back into play the ribosome
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2014.11.008
– volume: 55
  start-page: 989
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0130
  article-title: Bacterial GCN5-related N-acetyltransferases: from resistance to regulation
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b01269
– volume: 8
  start-page: 1128
  year: 2012
  ident: 10.1016/j.tibs.2020.08.005_bb0135
  article-title: RimJ-mediated context-dependent N-terminal acetylation of the recombinant Z-domain protein in Escherichia coli
  publication-title: Mol. BioSyst.
  doi: 10.1039/c2mb05499j
– volume: 15
  start-page: 2436
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0310
  article-title: N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases
  publication-title: Proteomics
  doi: 10.1002/pmic.201400575
– volume: 30
  start-page: 1898
  year: 2010
  ident: 10.1016/j.tibs.2020.08.005_bb0375
  article-title: The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01199-09
– volume: 282
  start-page: 7809
  year: 2007
  ident: 10.1016/j.tibs.2020.08.005_bb0395
  article-title: Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M611436200
– volume: 7
  start-page: 5033
  year: 2008
  ident: 10.1016/j.tibs.2020.08.005_bb0060
  article-title: Shotgun proteomics of the haloarchaeon Haloferax volcanii
  publication-title: J. Proteome Res.
  doi: 10.1021/pr800517a
– volume: 41
  start-page: 746
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0025
  article-title: First things first: vital protein marks by N-terminal acetyltransferases
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2016.07.005
– volume: 276
  start-page: 20154
  year: 2001
  ident: 10.1016/j.tibs.2020.08.005_bb0275
  article-title: NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M011440200
– volume: 10
  year: 2011
  ident: 10.1016/j.tibs.2020.08.005_bb0045
  article-title: Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M111.011627
– volume: 6
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0345
  article-title: Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase
  publication-title: Sci. Rep.
– volume: 115
  start-page: 4405
  year: 2018
  ident: 10.1016/j.tibs.2020.08.005_bb0225
  article-title: Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1719251115
– volume: 6
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0325
  article-title: Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms
  publication-title: Sci. Rep.
  doi: 10.1038/srep21304
– volume: 285
  start-page: 3299
  year: 2018
  ident: 10.1016/j.tibs.2020.08.005_bb0370
  article-title: NAT6 acetylates the N-terminus of different forms of actin
  publication-title: FEBS J.
  doi: 10.1111/febs.14605
– volume: 6
  start-page: 34041
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0075
  article-title: Naa10 in development and disease
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5867
– volume: 103
  start-page: 492
  year: 2008
  ident: 10.1016/j.tibs.2020.08.005_bb0385
  article-title: Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.21418
– volume: 23
  start-page: 7403
  year: 2003
  ident: 10.1016/j.tibs.2020.08.005_bb0390
  article-title: The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.20.7403-7414.2003
– volume: 27
  start-page: 1057
  year: 2019
  ident: 10.1016/j.tibs.2020.08.005_bb0240
  article-title: Structure and mechanism of acetylation by the N-terminal dual enzyme NatA/Naa50 complex
  publication-title: Structure
  doi: 10.1016/j.str.2019.04.014
– volume: 1844
  start-page: 1790
  year: 2014
  ident: 10.1016/j.tibs.2020.08.005_bb0190
  article-title: Structure of Thermoplasma volcanium Ard1 belongs to N-acetyltransferase family member suggesting multiple ligand binding modes with acetyl coenzyme A and coenzyme A
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2014.07.011
– volume: 12
  year: 2017
  ident: 10.1016/j.tibs.2020.08.005_bb0400
  article-title: Probing the interaction between NatA and the ribosome for co-translational protein acetylation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0186278
– volume: 32
  start-page: 269
  year: 2013
  ident: 10.1016/j.tibs.2020.08.005_bb0080
  article-title: Protein N-terminal acetyltransferases in cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2012.82
– volume: 109
  start-page: 12449
  year: 2012
  ident: 10.1016/j.tibs.2020.08.005_bb0260
  article-title: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1210303109
– volume: 182
  start-page: 792
  year: 2020
  ident: 10.1016/j.tibs.2020.08.005_bb0090
  article-title: NatB-mediated N-terminal acetylation affects growth and biotic stress responses
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00792
– volume: 15
  start-page: 2503
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0050
  article-title: Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition
  publication-title: Proteomics
  doi: 10.1002/pmic.201500027
– volume: 8
  year: 2017
  ident: 10.1016/j.tibs.2020.08.005_bb0235
  article-title: Structural basis of HypK regulating N-terminal acetylation by the NatA complex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15726
– volume: 7
  year: 2011
  ident: 10.1016/j.tibs.2020.08.005_bb0330
  article-title: NatF Contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002169
– volume: 10
  start-page: 1362
  year: 2015
  ident: 10.1016/j.tibs.2020.08.005_bb0335
  article-title: An organellar nalpha-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.01.053
– volume: 286
  start-page: 37002
  year: 2011
  ident: 10.1016/j.tibs.2020.08.005_bb0305
  article-title: Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.282863
– volume: 292
  start-page: 6821
  year: 2017
  ident: 10.1016/j.tibs.2020.08.005_bb0340
  article-title: Molecular determinants of the N-terminal acetyltransferase Naa60 anchoring to the Golgi membrane
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.770362
– volume: 15
  start-page: 3361
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0280
  article-title: A role for human N-alpha acetyltransferase 30 (Naa30) in maintaining mitochondrial integrity
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M116.061010
– volume: 291
  start-page: 19079
  year: 2016
  ident: 10.1016/j.tibs.2020.08.005_bb0315
  article-title: Opposing functions of the N-terminal acetyltransferases Naa50 and NatA in sister-chromatid cohesion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.737585
– volume: 114
  start-page: E4370
  year: 2017
  ident: 10.1016/j.tibs.2020.08.005_bb0070
  article-title: Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1705898114
– volume: 8
  start-page: 2067
  year: 1989
  ident: 10.1016/j.tibs.2020.08.005_bb0195
  article-title: Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1989.tb03615.x
– volume: 280
  start-page: 22108
  year: 2005
  ident: 10.1016/j.tibs.2020.08.005_bb0155
  article-title: A novel dimeric structure of the RimL Nalpha-acetyltransferase from Salmonella typhimurium
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M502401200
– volume: 115
  start-page: 4399
  year: 2018
  ident: 10.1016/j.tibs.2020.08.005_bb0220
  article-title: NAA80 is actin's N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1718336115
– volume: 20
  start-page: 1098
  year: 2013
  ident: 10.1016/j.tibs.2020.08.005_bb0230
  article-title: Molecular basis for N-terminal acetylation by the heterodimeric NatA complex
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2636
– volume: 28
  start-page: 2900
  year: 2019
  ident: 10.1016/j.tibs.2020.08.005_bb0255
  article-title: Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddz111
– volume: 287
  start-page: 10081
  year: 2012
  ident: 10.1016/j.tibs.2020.08.005_bb0120
  article-title: Human protein N-terminal acetyltransferase hNaa50p (hNAT5/hSAN) follows ordered sequential catalytic mechanism: combined kinetic and NMR study
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.326587
– volume: 8
  start-page: 1121
  year: 2013
  ident: 10.1016/j.tibs.2020.08.005_bb0125
  article-title: Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb400136s
– volume: 106
  start-page: 8157
  year: 2009
  ident: 10.1016/j.tibs.2020.08.005_bb0035
  article-title: Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0901931106
– volume: 177
  start-page: 587
  year: 2007
  ident: 10.1016/j.tibs.2020.08.005_bb0320
  article-title: The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200701043
SSID ssj0015775
Score 2.577485
SecondaryResourceType review_article
Snippet N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on...
N-terminal acetylation (NTA) (see Glossary) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15
SubjectTerms Acetylation
acetyltransferases
Acetyltransferases - chemistry
co-translational modification
enzyme mechanism
HYPK
IP6
N-terminal acetylation
NATs
post-translational modification
Protein Conformation
Protein Processing, Post-Translational
protein subunits
ribosome
substrate specificity
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhUNJLaZt-bNoUBXrruivZlmTnloSEUEgoTQJ7M_oyddg4C7uh7KW_vTOSbbqkLKFXe2QLaSQ9STPvEfJZlbaAhVInTFib5KVjiclsmRhufCprmXEb2D4v5flN_m0qplvkpM-FwbDKbu6Pc3qYrbsnk641J_OmmVwB-C4QkqTgp7CFR07QPFeoYvD19xDmwYUKZLtoHDKou8SZGOO1bAxSdqcs0HiihN2_F6fH4PNxDOXOQzvXq196NvtrgTp7SV50yJIexcq_Ilu-fU2eRa3J1S6ZfkdGhqall8l1DIABW-uXqxgMd0ivApMssnDQY71oFmN64TEtuFncjSkeq4EdYvYx1a2jP6KGPZR8Q27OTq9PzpNOViGxokiXSW0AA3qZSStzo_KC2bT2pddM115r3IFpg5d7SgpnXMFRicwZTKKFEWWsyd6S7fa-9e8JLUWmLa-tghK5crJwmWVOWZ5yp6RnI8L79qxsxzmO0hezqg8uu62wDyrsgwr1MJkYkS9DmXlk3NhoLfpuqtb8poIlYWO5g75PKxhQeEuiW3__AEY57vlQgGqDjRDwLUA6YPMu-sFQ1ywtOaAe-INa85DBAAm919-0zc9A7A1QvGSZGpHx4EtPaIK9_2yCD-R5igE64TzpI9kGL_P7gLCW5lMYQn8AGYgkMg
  priority: 102
  providerName: Elsevier
Title Protein N-Terminal Acetylation: Structural Basis, Mechanism, Versatility, and Regulation
URI https://dx.doi.org/10.1016/j.tibs.2020.08.005
https://www.ncbi.nlm.nih.gov/pubmed/32912665
https://www.proquest.com/docview/2441611086
https://www.proquest.com/docview/2552028536
https://pubmed.ncbi.nlm.nih.gov/PMC7749037
https://www.ncbi.nlm.nih.gov/pmc/articles/7749037
UnpaywallVersion submittedVersion
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1362-4326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015775
  issn: 0968-0004
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1362-4326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015775
  issn: 0968-0004
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1362-4326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015775
  issn: 0968-0004
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1362-4326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015775
  issn: 0968-0004
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1362-4326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015775
  issn: 0968-0004
  databaseCode: AKRWK
  dateStart: 19760101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7ttkJw4f0ojypI3GiycRI7CbeCWBUQ1WrZSuUU2Y4DgTZbqalQOfDbmYmTimVRxZ49TuLMWP5sf_MNwIs41QkulNL1udZulOa-q0KduoopE4hChEw3ap9TMZlF7-d8fgCsy4VpSPtalV61WHpV-bXhVq6W-qjjiR0hXkn9MD6EvuAIv3vQn01Pxp8bTT2RNFnSNteKsoEC0SbKWE5XXSqS6A78RraTStb9ezG6DDYvcyavb6qV3P6Qi8UfC9LxLTjthmJ5KN-9Ta08_fMvlccrjfU23GzhqTO2TXfgwFR34ZotWLm9B_MTknUoK2fqnlkWDdpqU28to-6V86mRoyUpD-e1XJfrkfPRUG5xuV6OHDqbQzsC_iNHVrlzar601cPuw-z47dmbidvWZnA1T4LaLRQCSSNCoUWk4ijxdVCY1EhfFkZK2sZJRTeEseC5yhNG5cxyRZm4OC2VVuED6FXnlXkETspDqVmhY-wRxblI8lD7eaxZwPJYGH8ArHNSplvhcqqfscg6htq3jBybkWMzKqrp8wG83PVZWdmOvda8833WAg8LKDJcV_b2e94FSoazkq5aZGXON2gU0caRqljtseEcn4VwCW0e2uDafWsYpAyhE74hvhB2OwNSBb_YggHUqIO3MTOA0S5A_-MXPL6a-RO4ERC5pzmLego9DC7zDNFZrYZw6P1iQ-iP332YTIft7PwNiTI8DA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGENpe0Phc-TQSbzQ0cWI74W1MTAW2CrFO6lvkr4hMXVapnVBf-Nu5s5OIaqhCvCbnxPKdfT_bd78j5K0sTA6OUkUxNybKChtHOjVFpBPtmKhEmhjP9jkR44vsy4zPdshxlwuDYZXt2h_WdL9at09G7WiOFnU9OgfwnSMkYWCnsIXP7pC7GWcSd2Dvf_VxHgmXnm0XpX0KdZs5E4K8VrVGzm4Wex5PrGH3d-90G33eDqLcu2kWav1Tzed_eKiTA3K_hZb0KPT-AdlxzUNyLxSbXD8is29IyVA3dBJNQwQMyBq3WodouA_03FPJIg0H_aiW9XJIzxzmBdfLqyHFczWQQ9A-pKqx9HsoYg8tH5OLk0_T43HU1lWIDM_ZKqo0gEAnUmFEpmWWx4ZVrnAqVpVTCrdgSuPtnhTcapsnWIrMasyihSmljU6fkN3munGHhBY8VSapjIQWmbQit6mJrTQJS6wULh6QpBvP0rSk41j7Yl520WWXJeqgRB2UWBAz5gPyrm-zCJQbW6V5p6Zyw3BK8Alb273pdFrCjMJrEtW46xsQynDThxWotshwDt8CqAMyT4Md9H1NWZEA7IE_yA0L6QWQ0XvzTVP_8MzegMWLOJUDMuxt6R-G4Nl_DsFrsjeenp2Wp58nX5-TfYbROv5w6QXZBYtzLwFurfQrP51-A89CJ1U
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwQv3C_lJiPxRtM5F9sJbwMxTUhU01il8hT5lhFos0pNhcqv5xw7qRhDFXv2cRLnHMuf7e98h5A3sjA5LJQqYtyYKCssi3RqikjH2iWiEmlsvNrnRBxPs08zPtsjcZ8L40n7RtfjZr4YN_U3z61cLsxBzxM7ALxSsFTeIPuCA_wekP3p5OTwq9fUE7nPkg65VpgNlIguUSZwutpao0R3wrxsJ5as-_didBVsXuVM3lo3S7X5qebzPxako7vktB9K4KH8GK9bPTa__lJ5vNZY75E7HTylh6HpPtlzzQNyMxSs3DwksxOUdagbOonOAosGbI1rN4FR945-8XK0KOVB36tVvRrRzw5zi-vVYkTxbA7sEPiPqGosPXXnXfWwR2R69PHsw3HU1WaIDM-TNqo0AEknUmFEpmWWM5NUrnCKqcophds4pfGGUAputc1jLGdmNWbiwrTURqePyaC5aNxTQgueKhNXRkKPTFqR29QwK02cxFYKx4Yk7p1Umk64HOtnzMueofa9RMeW6NgSi2oyPiRvt32WQbZjpzXvfV92wCMAihLWlZ39XveBUsKsxKsW1biLNRhluHHEKlY7bDiHZwFcApsnIbi235omRQzQCd4gL4Xd1gBVwS-3QAB5dfAuZoZktA3Q__gFz65n_pzcTpDc48-iXpABBJd7Ceis1a-6-fgbV6g5gA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+N-Terminal+Acetylation%3A+Structural+Basis%2C+Mechanism%2C+Versatility%2C+and+Regulation&rft.jtitle=Trends+in+biochemical+sciences+%28Amsterdam.+Regular+ed.%29&rft.au=Deng%2C+Sunbin&rft.au=Marmorstein%2C+Ronen&rft.date=2021-01-01&rft.issn=0968-0004&rft.volume=46&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1016%2Fj.tibs.2020.08.005&rft_id=info%3Apmid%2F32912665&rft.externalDocID=32912665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-0004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-0004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-0004&client=summon