Protein N-Terminal Acetylation: Structural Basis, Mechanism, Versatility, and Regulation
N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date...
        Saved in:
      
    
          | Published in | Trends in biochemical sciences (Amsterdam. Regular ed.) Vol. 46; no. 1; pp. 15 - 27 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Elsevier Ltd
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0968-0004 1362-4326 1362-4326  | 
| DOI | 10.1016/j.tibs.2020.08.005 | 
Cover
| Abstract | N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions.
To date, a total of 12 different NATs have been identified, to collectively N-terminally acetylate countless proteins from all domains of life, to mediate many biological processes.NATs uniquely mediate both post- and co-translational N-terminal acetylation.The currently availability of structures of many NATs bound to their cognate substrates, now allows for a detailed molecular comparison to derive conserved and unique features, underlying NAT activity and substrate specificity.NATs are subject to regulation by inhibitor and stimulatory proteins, and the molecular basis for this regulation has recently come to light | 
    
|---|---|
| AbstractList | N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions. N-terminal acetylation (NTA) (see Glossary) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs) (see Glossary). To date, twelve NATs have been identified, harboring different composition, substrate specificity and, in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins now allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit employs unique elements to mediate substrate-specific activity and employ NAT-type specific auxiliary and regulatory subunits for their cellular functions. N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions.N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions. N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on bacterial and archaea proteins. This modification is carried out by a family of enzymes called N-terminal acetyltransferases (NATs). To date, 12 NATs have been identified, harboring different composition, substrate specificity, and in some cases, modes of regulation. Recent structural and biochemical analysis of NAT proteins allows for a comparison of their molecular mechanisms and modes of regulation, which are described here. Although sharing an evolutionarily conserved fold and related catalytic mechanism, each catalytic subunit uses unique elements to mediate substrate-specific activity, and use NAT-type specific auxiliary and regulatory subunits, for their cellular functions. To date, a total of 12 different NATs have been identified, to collectively N-terminally acetylate countless proteins from all domains of life, to mediate many biological processes.NATs uniquely mediate both post- and co-translational N-terminal acetylation.The currently availability of structures of many NATs bound to their cognate substrates, now allows for a detailed molecular comparison to derive conserved and unique features, underlying NAT activity and substrate specificity.NATs are subject to regulation by inhibitor and stimulatory proteins, and the molecular basis for this regulation has recently come to light  | 
    
| Author | Marmorstein, Ronen Deng, Sunbin  | 
    
| AuthorAffiliation | 1 Department of Chemistry, University of Pennsylvania, 231 South 34 th Street, Philadelphia, PA 19104, USA 2 Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Chemistry, University of Pennsylvania, 231 South 34 th Street, Philadelphia, PA 19104, USA – name: 2 Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA – name: 3 Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA  | 
    
| Author_xml | – sequence: 1 givenname: Sunbin surname: Deng fullname: Deng, Sunbin organization: Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA – sequence: 2 givenname: Ronen surname: Marmorstein fullname: Marmorstein, Ronen email: marmor@upenn.edu organization: Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32912665$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU1v1DAQhi1URLeFP8AB5chhE8Z24jgIVSpV-ZDKh6AgbpbjTFqvss5iO6323-MlpQIOhZOl8fvMvPPOAdlzo0NCHlMoKFDxbFVE24aCAYMCZAFQ3SMLygXLS87EHllAI2QOAOU-OQhhBUCruq4ekH3OGsqEqBbk20c_RrQue5-fo19bp4fs2GDcDjra0T3PPkc_mTj5VH-pgw3L7B2aS-1sWC-zr-hD0g02bpeZdl32CS-mmXxI7vd6CPjo5j0kX16dnp-8yc8-vH57cnyWm0qymPdtBTUKLowo27qUYFiPDWrQPWotmWx0C7Xktai6tpOUU-BdmzYuGUBrWn5I-Nx3chu9vdbDoDberrXfKgpql5NaqV1OapeTAqlSTok6mqnN1K6xM-hi2vCWHLVVf_44e6kuxitV12UDvE4Nnt408OP3CUNUaxsMDoN2OE5pWFWlebLi4t_SsqSCUpA76ZPfbd36-XWvJJCzwPgxBI-9Mjb-zDu5tMPdK7O_0P_K6cUMYTrhlUWvgrHoDHbWo4mqG-1d-A-datHy | 
    
| CitedBy_id | crossref_primary_10_1016_j_str_2022_12_008 crossref_primary_10_3390_genes15060775 crossref_primary_10_1093_plphys_kiae200 crossref_primary_10_3390_metabo13030407 crossref_primary_10_3389_fpls_2022_832144 crossref_primary_10_1016_j_tcb_2023_07_003 crossref_primary_10_7554_eLife_57491 crossref_primary_10_1371_journal_pgen_1010848 crossref_primary_10_1242_jcs_260551 crossref_primary_10_20517_jca_2024_21 crossref_primary_10_4103_NRR_NRR_D_24_00779 crossref_primary_10_1016_j_jbc_2021_101363 crossref_primary_10_1002_mco2_292 crossref_primary_10_1093_nar_gkab945 crossref_primary_10_1007_s12265_025_10600_7 crossref_primary_10_1038_s41467_023_41520_2 crossref_primary_10_3390_ijms241612776 crossref_primary_10_3390_pharmaceutics14102045 crossref_primary_10_1016_j_mcpro_2024_100850 crossref_primary_10_3390_v16010131 crossref_primary_10_1016_j_gendis_2022_03_022 crossref_primary_10_2131_fts_9_179 crossref_primary_10_1016_j_str_2021_05_003 crossref_primary_10_3390_genes13050742 crossref_primary_10_1016_j_ijbiomac_2022_01_050 crossref_primary_10_3390_ijms232214492 crossref_primary_10_1016_j_gene_2023_147866 crossref_primary_10_1021_acs_jmedchem_1c00141 crossref_primary_10_1038_s41467_024_46881_w crossref_primary_10_1098_rsob_240033 crossref_primary_10_3389_fimmu_2024_1392546 crossref_primary_10_3389_fnagi_2022_1025473 crossref_primary_10_2139_ssrn_4126600 crossref_primary_10_1042_BSR20202828 crossref_primary_10_3390_ijms21228609 crossref_primary_10_1007_s12265_021_10135_7 crossref_primary_10_1016_j_tins_2024_03_006 crossref_primary_10_1021_acs_chemrev_1c00937 crossref_primary_10_1128_mbio_03125_22 crossref_primary_10_1038_s41586_024_07846_7 crossref_primary_10_1111_febs_17209 crossref_primary_10_1016_j_tibs_2023_10_003 crossref_primary_10_18632_aging_205406 crossref_primary_10_3390_ijms231810805 crossref_primary_10_1016_j_yjmcc_2023_06_002 crossref_primary_10_3390_cancers14020346 crossref_primary_10_1136_jitc_2024_009905 crossref_primary_10_1038_s41467_023_40224_x crossref_primary_10_1186_s12864_024_10873_3 crossref_primary_10_33647_2713_0428_19_3E_43_46 crossref_primary_10_3390_ijms221910692 crossref_primary_10_1016_j_jmb_2025_169056 crossref_primary_10_1016_j_bbrc_2025_151491 crossref_primary_10_3390_molecules28031337 crossref_primary_10_1007_s44307_024_00027_7 crossref_primary_10_1016_j_fbio_2025_106365 crossref_primary_10_1038_s41467_024_53903_0 crossref_primary_10_1016_j_aquaculture_2024_741754 crossref_primary_10_1002_mco2_674 crossref_primary_10_1126_science_adg3297 crossref_primary_10_1186_s43042_021_00160_1  | 
    
| Cites_doi | 10.1002/pmic.201500025 10.1038/nbt.3418 10.3390/ijms17071018 10.1016/j.gene.2015.04.085 10.1016/j.molcel.2019.02.007 10.1016/j.csbj.2020.02.017 10.1021/pr0700347 10.1074/mcp.M110.004580 10.1073/pnas.1310365110 10.1111/nph.16747 10.1002/pmic.201400619 10.1042/BJ20041071 10.1002/j.1460-2075.1992.tb05267.x 10.1038/srep28892 10.1093/emboj/18.21.6155 10.1128/MCB.01909-08 10.1371/journal.pone.0024713 10.1093/emboj/19.2.174 10.1016/j.str.2014.10.025 10.1074/jbc.M313384200 10.1016/j.str.2017.03.003 10.1016/j.jprot.2014.11.006 10.1074/jbc.C300355200 10.1038/s12276-018-0116-z 10.1016/j.str.2016.04.020 10.1186/s13104-018-3513-4 10.1093/jxb/ery241 10.1002/cm.21455 10.1110/ps.035899.108 10.1016/j.jmb.2006.07.086 10.1016/j.str.2018.04.003 10.1074/jbc.M115.709428 10.1126/sciadv.aay8793 10.1074/mcp.M111.015131 10.1074/jbc.M109.001347 10.2174/1389203719666180809113122 10.1038/s41594-018-0165-y 10.1111/j.1365-2958.2007.05752.x 10.1016/j.biochi.2014.11.008 10.1021/acs.biochem.5b01269 10.1039/c2mb05499j 10.1002/pmic.201400575 10.1128/MCB.01199-09 10.1074/jbc.M611436200 10.1021/pr800517a 10.1016/j.tibs.2016.07.005 10.1074/jbc.M011440200 10.1074/mcp.M111.011627 10.1073/pnas.1719251115 10.1038/srep21304 10.1111/febs.14605 10.18632/oncotarget.5867 10.1002/jcb.21418 10.1128/MCB.23.20.7403-7414.2003 10.1016/j.str.2019.04.014 10.1016/j.bbapap.2014.07.011 10.1371/journal.pone.0186278 10.1038/onc.2012.82 10.1073/pnas.1210303109 10.1104/pp.19.00792 10.1002/pmic.201500027 10.1038/ncomms15726 10.1371/journal.pgen.1002169 10.1016/j.celrep.2015.01.053 10.1074/jbc.M111.282863 10.1074/jbc.M116.770362 10.1074/mcp.M116.061010 10.1074/jbc.M116.737585 10.1073/pnas.1705898114 10.1002/j.1460-2075.1989.tb03615.x 10.1074/jbc.M502401200 10.1073/pnas.1718336115 10.1038/nsmb.2636 10.1093/hmg/ddz111 10.1074/jbc.M111.326587 10.1021/cb400136s 10.1073/pnas.0901931106 10.1083/jcb.200701043  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.tibs.2020.08.005 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1362-4326 | 
    
| EndPage | 27 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7749037 PMC7749037 32912665 10_1016_j_tibs_2020_08_005 S0968000420302024  | 
    
| Genre | Journal Article Review Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM118090 – fundername: NIA NIH HHS grantid: P01 AG031862  | 
    
| GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 123 1B1 1CY 1RT 1~. 1~5 29Q 3EH 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACKIV ACNCT ACPRK ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ H~9 IH2 IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TAE UQL WUQ X7M XFK XPP Y6R ZCA ZMT ~G- AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI ADVLN ADXHL AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c582t-fb507e636c64b7480c2fe9ea0afeaa8289ab0783765dbd813103db0204200bcb3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0968-0004 1362-4326  | 
    
| IngestDate | Sun Oct 26 03:59:26 EDT 2025 Tue Sep 30 16:42:48 EDT 2025 Thu Oct 02 05:33:06 EDT 2025 Sun Sep 28 07:25:24 EDT 2025 Mon Jul 21 06:00:45 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Sat Oct 25 06:12:13 EDT 2025 Fri Feb 23 02:47:06 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | NATs N-terminal acetylation ribosome post-translational modification enzyme mechanism co-translational modification HYPK IP6 IP  | 
    
| Language | English | 
    
| License | Copyright © 2020 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c582t-fb507e636c64b7480c2fe9ea0afeaa8289ab0783765dbd813103db0204200bcb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7749037 | 
    
| PMID | 32912665 | 
    
| PQID | 2441611086 | 
    
| PQPubID | 23479 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_tibs_2020_08_005 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7749037 proquest_miscellaneous_2552028536 proquest_miscellaneous_2441611086 pubmed_primary_32912665 crossref_citationtrail_10_1016_j_tibs_2020_08_005 crossref_primary_10_1016_j_tibs_2020_08_005 elsevier_sciencedirect_doi_10_1016_j_tibs_2020_08_005  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-01 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Trends in biochemical sciences (Amsterdam. Regular ed.) | 
    
| PublicationTitleAlternate | Trends Biochem Sci | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Van Damme (bb0280) 2016; 15 Mullen (bb0195) 1989; 8 Van Damme (bb0210) 2011; 10 Rathore (bb0325) 2016; 6 Evjenth (bb0120) 2012; 287 Deng (bb0250) 2020; 11 Varland, Arnesen (bb0405) 2018; 11 Kalvik, Arnesen (bb0080) 2013; 32 Evjenth (bb0110) 2009; 284 Gautschi (bb0390) 2003; 23 Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response. Liszczak (bb0305) 2011; 286 Stove (bb0350) 2016; 24 Aivaliotis (bb0065) 2007; 6 Oh (bb0070) 2017; 114 Mohamed, Mohamed (bb0005) 2018; 19 Ree (bb0095) 2018; 50 Arnesen (bb0365) 2018; 75 Park, Szostak (bb0200) 1992; 11 Favrot (bb0130) 2016; 55 Wiame (bb0370) 2018; 285 Mackay (bb0175) 2007; 64 Polevoda (bb0385) 2008; 103 Chen (bb0345) 2016; 6 Linster, Wirtz (bb0030) 2018; 69 Raue (bb0395) 2007; 282 Varland (bb0010) 2015; 15 Linster, E. Foyn (bb0125) 2013; 8 Ma (bb0190) 2014; 1844 Published online 2020 Jun 16. Kelkar (bb0045) 2011; 10 Kirkland (bb0060) 2008; 7 Deng (bb0240) 2019; 27 . Song (bb0290) 2003; 278 Wahl (bb0160) 2000; 19 Bernal-Perez (bb0135) 2012; 8 Polevoda, Sherman (bb0275) 2001; 276 Knorr (bb0410) 2019; 26 Bienvenut (bb0050) 2015; 15 Vetting (bb0155) 2005; 280 Van Damme (bb0260) 2012; 109 Pathak (bb0150) 2016; 6 Bocharov (bb0165) 2004; 279 Falb (bb0170) 2006; 362 Rong (bb0315) 2016; 291 Hole (bb0295) 2011; 6 Dinh (bb0360) 2015; 15 Vetting (bb0145) 2008; 17 Rebowski (bb0380) 2020; 6 Gottlieb, Marmorstein (bb0245) 2018; 26 Aksnes (bb0020) 2019; 73 Drazic (bb0220) 2018; 115 Cheng (bb0255) 2019; 28 The Dorfel, Lyon (bb0085) 2015; 567 Ouidir (bb0140) 2015; 114 Myklebust (bb0075) 2015; 6 Arnesen (bb0205) 2005; 386 Liszczak (bb0230) 2013; 20 Aksnes (bb0025) 2016; 41 Abboud (bb0115) 2020; 18 Van Damme (bb0310) 2015; 15 Arnesen (bb0035) 2009; 106 Weyer (bb0235) 2017; 8 Polevoda (bb0215) 1999; 18 Magin (bb0105) 2016; 291 Arnesen (bb0375) 2010; 30 Schmidt (bb0055) 2016; 34 Huber (bb0090) 2020; 182 Aksnes (bb0335) 2015; 10 Magin (bb0400) 2017; 12 Salah Ud-Din (bb0100) 2016; 17 Van Damme (bb0330) 2011; 7 Magin (bb0300) 2015; 23 Chang, Hsu (bb0185) 2015; 5 Hong (bb0265) 2017; 25 Hou (bb0320) 2007; 177 Starheim (bb0285) 2009; 29 Goris (bb0225) 2018; 115 Aksnes (bb0340) 2017; 292 Giglione (bb0015) 2015; 114 Bienvenut (bb0040) 2012; 11 Liszczak, Marmorstein (bb0180) 2013; 110 Gottlieb (10.1016/j.tibs.2020.08.005_bb0245) 2018; 26 Arnesen (10.1016/j.tibs.2020.08.005_bb0365) 2018; 75 Vetting (10.1016/j.tibs.2020.08.005_bb0155) 2005; 280 Hong (10.1016/j.tibs.2020.08.005_bb0265) 2017; 25 Magin (10.1016/j.tibs.2020.08.005_bb0400) 2017; 12 Wahl (10.1016/j.tibs.2020.08.005_bb0160) 2000; 19 Dorfel (10.1016/j.tibs.2020.08.005_bb0085) 2015; 567 Deng (10.1016/j.tibs.2020.08.005_bb0250) 2020; 11 Rathore (10.1016/j.tibs.2020.08.005_bb0325) 2016; 6 10.1016/j.tibs.2020.08.005_bb0355 Liszczak (10.1016/j.tibs.2020.08.005_bb0230) 2013; 20 Abboud (10.1016/j.tibs.2020.08.005_bb0115) 2020; 18 Cheng (10.1016/j.tibs.2020.08.005_bb0255) 2019; 28 Oh (10.1016/j.tibs.2020.08.005_bb0070) 2017; 114 Polevoda (10.1016/j.tibs.2020.08.005_bb0215) 1999; 18 Bocharov (10.1016/j.tibs.2020.08.005_bb0165) 2004; 279 Rebowski (10.1016/j.tibs.2020.08.005_bb0380) 2020; 6 Schmidt (10.1016/j.tibs.2020.08.005_bb0055) 2016; 34 Kelkar (10.1016/j.tibs.2020.08.005_bb0045) 2011; 10 Aksnes (10.1016/j.tibs.2020.08.005_bb0335) 2015; 10 Gautschi (10.1016/j.tibs.2020.08.005_bb0390) 2003; 23 Raue (10.1016/j.tibs.2020.08.005_bb0395) 2007; 282 Song (10.1016/j.tibs.2020.08.005_bb0290) 2003; 278 Arnesen (10.1016/j.tibs.2020.08.005_bb0205) 2005; 386 Rong (10.1016/j.tibs.2020.08.005_bb0315) 2016; 291 Knorr (10.1016/j.tibs.2020.08.005_bb0410) 2019; 26 Wiame (10.1016/j.tibs.2020.08.005_bb0370) 2018; 285 Liszczak (10.1016/j.tibs.2020.08.005_bb0305) 2011; 286 Van Damme (10.1016/j.tibs.2020.08.005_bb0280) 2016; 15 Bernal-Perez (10.1016/j.tibs.2020.08.005_bb0135) 2012; 8 Liszczak (10.1016/j.tibs.2020.08.005_bb0180) 2013; 110 Aivaliotis (10.1016/j.tibs.2020.08.005_bb0065) 2007; 6 Park (10.1016/j.tibs.2020.08.005_bb0200) 1992; 11 Chen (10.1016/j.tibs.2020.08.005_bb0345) 2016; 6 Bienvenut (10.1016/j.tibs.2020.08.005_bb0050) 2015; 15 Arnesen (10.1016/j.tibs.2020.08.005_bb0375) 2010; 30 Chang (10.1016/j.tibs.2020.08.005_bb0185) 2015; 5 Vetting (10.1016/j.tibs.2020.08.005_bb0145) 2008; 17 Van Damme (10.1016/j.tibs.2020.08.005_bb0260) 2012; 109 Varland (10.1016/j.tibs.2020.08.005_bb0010) 2015; 15 Arnesen (10.1016/j.tibs.2020.08.005_bb0035) 2009; 106 Van Damme (10.1016/j.tibs.2020.08.005_bb0310) 2015; 15 Dinh (10.1016/j.tibs.2020.08.005_bb0360) 2015; 15 Hou (10.1016/j.tibs.2020.08.005_bb0320) 2007; 177 Goris (10.1016/j.tibs.2020.08.005_bb0225) 2018; 115 Aksnes (10.1016/j.tibs.2020.08.005_bb0020) 2019; 73 Deng (10.1016/j.tibs.2020.08.005_bb0240) 2019; 27 Kirkland (10.1016/j.tibs.2020.08.005_bb0060) 2008; 7 Favrot (10.1016/j.tibs.2020.08.005_bb0130) 2016; 55 Salah Ud-Din (10.1016/j.tibs.2020.08.005_bb0100) 2016; 17 Pathak (10.1016/j.tibs.2020.08.005_bb0150) 2016; 6 Ma (10.1016/j.tibs.2020.08.005_bb0190) 2014; 1844 Varland (10.1016/j.tibs.2020.08.005_bb0405) 2018; 11 Drazic (10.1016/j.tibs.2020.08.005_bb0220) 2018; 115 Magin (10.1016/j.tibs.2020.08.005_bb0300) 2015; 23 Ouidir (10.1016/j.tibs.2020.08.005_bb0140) 2015; 114 Mohamed (10.1016/j.tibs.2020.08.005_bb0005) 2018; 19 Linster (10.1016/j.tibs.2020.08.005_bb0030) 2018; 69 Polevoda (10.1016/j.tibs.2020.08.005_bb0275) 2001; 276 Kalvik (10.1016/j.tibs.2020.08.005_bb0080) 2013; 32 Evjenth (10.1016/j.tibs.2020.08.005_bb0110) 2009; 284 Van Damme (10.1016/j.tibs.2020.08.005_bb0330) 2011; 7 Mullen (10.1016/j.tibs.2020.08.005_bb0195) 1989; 8 Hole (10.1016/j.tibs.2020.08.005_bb0295) 2011; 6 Giglione (10.1016/j.tibs.2020.08.005_bb0015) 2015; 114 Starheim (10.1016/j.tibs.2020.08.005_bb0285) 2009; 29 Aksnes (10.1016/j.tibs.2020.08.005_bb0025) 2016; 41 Mackay (10.1016/j.tibs.2020.08.005_bb0175) 2007; 64 Ree (10.1016/j.tibs.2020.08.005_bb0095) 2018; 50 Huber (10.1016/j.tibs.2020.08.005_bb0090) 2020; 182 Evjenth (10.1016/j.tibs.2020.08.005_bb0120) 2012; 287 Bienvenut (10.1016/j.tibs.2020.08.005_bb0040) 2012; 11 Falb (10.1016/j.tibs.2020.08.005_bb0170) 2006; 362 Weyer (10.1016/j.tibs.2020.08.005_bb0235) 2017; 8 Myklebust (10.1016/j.tibs.2020.08.005_bb0075) 2015; 6 Foyn (10.1016/j.tibs.2020.08.005_bb0125) 2013; 8 Aksnes (10.1016/j.tibs.2020.08.005_bb0340) 2017; 292 Stove (10.1016/j.tibs.2020.08.005_bb0350) 2016; 24 Van Damme (10.1016/j.tibs.2020.08.005_bb0210) 2011; 10 Polevoda (10.1016/j.tibs.2020.08.005_bb0385) 2008; 103 Magin (10.1016/j.tibs.2020.08.005_bb0105) 2016; 291  | 
    
| References_xml | – volume: 284 start-page: 31122 year: 2009 end-page: 31129 ident: bb0110 article-title: Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity publication-title: J. Biol. Chem. – volume: 106 start-page: 8157 year: 2009 end-page: 8162 ident: bb0035 article-title: Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 114 start-page: E4370 year: 2017 end-page: E4379 ident: bb0070 article-title: Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 282 start-page: 7809 year: 2007 end-page: 7816 ident: bb0395 article-title: Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence publication-title: J. Biol. Chem. – volume: 5 year: 2015 ident: bb0185 article-title: Structural basis for substrate-specific acetylation of Nα-acetyltransferase Ard1 from publication-title: Sci. Rep. – volume: 11 year: 2020 ident: bb0250 article-title: Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK publication-title: Nat. Commun. – volume: 10 year: 2011 ident: bb0045 article-title: Proteogenomic analysis of publication-title: Mol. Cell Proteomics – volume: 15 start-page: 2436 year: 2015 end-page: 2446 ident: bb0310 article-title: N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases publication-title: Proteomics – volume: 55 start-page: 989 year: 2016 end-page: 1002 ident: bb0130 article-title: Bacterial GCN5-related N-acetyltransferases: from resistance to regulation publication-title: Biochemistry – volume: 32 start-page: 269 year: 2013 end-page: 276 ident: bb0080 article-title: Protein N-terminal acetyltransferases in cancer publication-title: Oncogene – volume: 110 start-page: 14652 year: 2013 end-page: 14657 ident: bb0180 article-title: Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 1121 year: 2013 end-page: 1127 ident: bb0125 article-title: Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors publication-title: ACS Chem. Biol. – volume: 11 year: 2018 ident: bb0405 article-title: Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae publication-title: BMC Res. Notes – volume: 177 start-page: 587 year: 2007 end-page: 597 ident: bb0320 article-title: The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner publication-title: J. Cell Biol. – volume: 29 start-page: 3569 year: 2009 end-page: 3581 ident: bb0285 article-title: Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization publication-title: Mol. Cell. Biol. – volume: 19 start-page: 1214 year: 2018 end-page: 1223 ident: bb0005 article-title: Post-translational N-terminal arginylation of protein fragments: a pivotal portal to proteolysis publication-title: Curr. Protein Pept. Sci. – volume: 41 start-page: 746 year: 2016 end-page: 760 ident: bb0025 article-title: First things first: vital protein marks by N-terminal acetyltransferases publication-title: Trends Biochem. Sci. – volume: 285 start-page: 3299 year: 2018 end-page: 3316 ident: bb0370 article-title: NAT6 acetylates the N-terminus of different forms of actin publication-title: FEBS J. – volume: 6 year: 2016 ident: bb0345 article-title: Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase publication-title: Sci. Rep. – volume: 362 start-page: 915 year: 2006 end-page: 924 ident: bb0170 article-title: Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey publication-title: J. Mol. Biol. – volume: 6 start-page: 34041 year: 2015 end-page: 34042 ident: bb0075 article-title: Naa10 in development and disease publication-title: Oncotarget – volume: 19 start-page: 174 year: 2000 end-page: 186 ident: bb0160 article-title: Flexibility, conformational diversity, and two dimerization modes in complexes of ribosomal protein L12 publication-title: EMBO J. – volume: 64 start-page: 1540 year: 2007 end-page: 1548 ident: bb0175 article-title: An acetylase with relaxed specificity catalyses protein N-terminal acetylation in publication-title: Mol. Microbiol. – volume: 286 start-page: 37002 year: 2011 end-page: 37010 ident: bb0305 article-title: Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation publication-title: J. Biol. Chem. – volume: 12 year: 2017 ident: bb0400 article-title: Probing the interaction between NatA and the ribosome for co-translational protein acetylation publication-title: PLoS One – volume: 8 start-page: 1128 year: 2012 end-page: 1130 ident: bb0135 article-title: RimJ-mediated context-dependent N-terminal acetylation of the recombinant Z-domain protein in publication-title: Mol. BioSyst. – volume: 6 start-page: 2195 year: 2007 end-page: 2204 ident: bb0065 article-title: Large-scale identification of N-terminal peptides in the halophilic archaea publication-title: J. Proteome Res. – volume: 7 start-page: 5033 year: 2008 end-page: 5039 ident: bb0060 article-title: Shotgun proteomics of the haloarchaeon publication-title: J. Proteome Res. – volume: 8 start-page: 2067 year: 1989 end-page: 2075 ident: bb0195 article-title: Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast publication-title: EMBO J. – volume: 15 start-page: 2426 year: 2015 end-page: 2435 ident: bb0360 article-title: Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling publication-title: Proteomics – volume: 24 start-page: 1044 year: 2016 end-page: 1056 ident: bb0350 article-title: Crystal structure of the Golgi-associated human Nalpha-acetyltransferase 60 reveals the molecular determinants for substrate-specific acetylation publication-title: Structure – volume: 11 start-page: 2087 year: 1992 end-page: 2093 ident: bb0200 article-title: ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity publication-title: EMBO J. – volume: 26 start-page: 925 year: 2018 end-page: 935 ident: bb0245 article-title: Structure of human NatA and its regulation by the huntingtin interacting protein HYPK publication-title: Structure – volume: 17 start-page: 1018 year: 2016 ident: bb0100 article-title: Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT) publication-title: Int. J. Mol. Sci. – volume: 18 start-page: 6155 year: 1999 end-page: 6168 ident: bb0215 article-title: Identification and specificities of N-terminal acetyltransferases from publication-title: EMBO J. – reference: . Published online 2020 Jun 16. – volume: 291 start-page: 19079 year: 2016 end-page: 19091 ident: bb0315 article-title: Opposing functions of the N-terminal acetyltransferases Naa50 and NatA in sister-chromatid cohesion publication-title: J. Biol. Chem. – volume: 6 year: 2016 ident: bb0325 article-title: Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms publication-title: Sci. Rep. – volume: 26 start-page: 35 year: 2019 end-page: 39 ident: bb0410 article-title: Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation publication-title: Nat. Struct. Mol. Biol. – volume: 15 start-page: 3361 year: 2016 end-page: 3372 ident: bb0280 article-title: A role for human N-alpha acetyltransferase 30 (Naa30) in maintaining mitochondrial integrity publication-title: Mol. Cell. Proteomics – volume: 34 start-page: 104 year: 2016 end-page: 110 ident: bb0055 article-title: The quantitative and condition-dependent publication-title: Nat. Biotechnol. – volume: 15 start-page: 2385 year: 2015 end-page: 2401 ident: bb0010 article-title: N-terminal modifications of cellular proteins: the enzymes involved, their substrate specificities, and biological effects publication-title: Proteomics – volume: 115 start-page: 4405 year: 2018 end-page: 4410 ident: bb0225 article-title: Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 182 start-page: 792 year: 2020 end-page: 806 ident: bb0090 article-title: NatB-mediated N-terminal acetylation affects growth and biotic stress responses publication-title: Plant Physiol. – reference: Nα-acetyltransferase NAA60 locates to the plasma membrane and is vital for the high salt stress response. – volume: 69 start-page: 4555 year: 2018 end-page: 4568 ident: bb0030 article-title: N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses publication-title: J. Exp. Bot. – volume: 28 start-page: 2900 year: 2019 end-page: 2919 ident: bb0255 article-title: Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15 publication-title: Hum. Mol. Genet. – volume: 276 start-page: 20154 year: 2001 end-page: 20159 ident: bb0275 article-title: NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p publication-title: J. Biol. Chem. – volume: 280 start-page: 22108 year: 2005 end-page: 22114 ident: bb0155 article-title: A novel dimeric structure of the RimL Nalpha-acetyltransferase from publication-title: J. Biol. Chem. – volume: 10 start-page: 1362 year: 2015 end-page: 1374 ident: bb0335 article-title: An organellar nalpha-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity publication-title: Cell Rep. – volume: 292 start-page: 6821 year: 2017 end-page: 6837 ident: bb0340 article-title: Molecular determinants of the N-terminal acetyltransferase Naa60 anchoring to the Golgi membrane publication-title: J. Biol. Chem. – reference: The – volume: 386 start-page: 433 year: 2005 end-page: 443 ident: bb0205 article-title: Identification and characterization of the human ARD1-NATH protein acetyltransferase complex publication-title: Biochem. J. – volume: 103 start-page: 492 year: 2008 end-page: 508 ident: bb0385 article-title: Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes publication-title: J. Cell. Biochem. – volume: 279 start-page: 17697 year: 2004 end-page: 17706 ident: bb0165 article-title: From structure and dynamics of protein L7/L12 to molecular switching in ribosome publication-title: J. Biol. Chem. – volume: 25 start-page: 641 year: 2017 end-page: 649 ident: bb0265 article-title: Molecular basis of substrate specific acetylation by N-terminal acetyltransferase NatB publication-title: Structure – volume: 17 start-page: 1781 year: 2008 end-page: 1790 ident: bb0145 article-title: Crystal structure of RimI from publication-title: Protein Sci. – volume: 23 start-page: 332 year: 2015 end-page: 341 ident: bb0300 article-title: The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD publication-title: Structure – volume: 15 start-page: 2503 year: 2015 end-page: 2518 ident: bb0050 article-title: Proteome-wide analysis of the amino terminal status of publication-title: Proteomics – volume: 278 start-page: 38109 year: 2003 end-page: 38112 ident: bb0290 article-title: An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A publication-title: J. Biol. Chem. – volume: 20 start-page: 1098 year: 2013 end-page: 1105 ident: bb0230 article-title: Molecular basis for N-terminal acetylation by the heterodimeric NatA complex publication-title: Nat. Struct. Mol. Biol. – volume: 291 start-page: 5270 year: 2016 end-page: 5277 ident: bb0105 article-title: The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues publication-title: J. Biol. Chem. – volume: 27 start-page: 1057 year: 2019 end-page: 1070 ident: bb0240 article-title: Structure and mechanism of acetylation by the N-terminal dual enzyme NatA/Naa50 complex publication-title: Structure – reference: Linster, E. – volume: 75 start-page: 318 year: 2018 end-page: 322 ident: bb0365 article-title: Actin's N-terminal acetyltransferase uncovered publication-title: Cytoskeleton – volume: 6 year: 2020 ident: bb0380 article-title: Mechanism of actin N-terminal acetylation publication-title: Sci. Adv. – volume: 1844 start-page: 1790 year: 2014 end-page: 1797 ident: bb0190 article-title: Structure of Thermoplasma volcanium Ard1 belongs to N-acetyltransferase family member suggesting multiple ligand binding modes with acetyl coenzyme A and coenzyme A publication-title: Biochim. Biophys. Acta – volume: 114 start-page: 134 year: 2015 end-page: 146 ident: bb0015 article-title: N-terminal protein modifications: bringing back into play the ribosome publication-title: Biochimie – volume: 287 start-page: 10081 year: 2012 end-page: 10088 ident: bb0120 article-title: Human protein N-terminal acetyltransferase hNaa50p (hNAT5/hSAN) follows ordered sequential catalytic mechanism: combined kinetic and NMR study publication-title: J. Biol. Chem. – volume: 6 year: 2011 ident: bb0295 article-title: The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4 publication-title: PLoS One – volume: 8 year: 2017 ident: bb0235 article-title: Structural basis of HypK regulating N-terminal acetylation by the NatA complex publication-title: Nat. Commun. – reference: . – volume: 73 start-page: 1097 year: 2019 end-page: 1114 ident: bb0020 article-title: Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases publication-title: Mol. Cell – volume: 115 start-page: 4399 year: 2018 end-page: 4404 ident: bb0220 article-title: NAA80 is actin's N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 year: 2012 ident: bb0040 article-title: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features publication-title: Mol. Cell. Proteomics – volume: 7 year: 2011 ident: bb0330 article-title: NatF Contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation publication-title: PLoS Genet. – volume: 6 year: 2016 ident: bb0150 article-title: Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of publication-title: Sci. Rep. – volume: 109 start-page: 12449 year: 2012 end-page: 12454 ident: bb0260 article-title: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 year: 2011 ident: bb0210 article-title: Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase publication-title: Mol. Cell. Proteomics – volume: 23 start-page: 7403 year: 2003 end-page: 7414 ident: bb0390 article-title: The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides publication-title: Mol. Cell. Biol. – volume: 114 start-page: 214 year: 2015 end-page: 225 ident: bb0140 article-title: Characterization of N-terminal protein modifications in publication-title: J. Proteome – volume: 30 start-page: 1898 year: 2010 end-page: 1909 ident: bb0375 article-title: The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation publication-title: Mol. Cell. Biol. – volume: 50 start-page: 1 year: 2018 end-page: 13 ident: bb0095 article-title: Spotlight on protein N-terminal acetylation publication-title: Exp. Mol. Med. – volume: 567 start-page: 103 year: 2015 end-page: 131 ident: bb0085 article-title: The biological functions of Naa10 - from amino-terminal acetylation to human disease publication-title: Gene – volume: 18 start-page: 532 year: 2020 end-page: 547 ident: bb0115 article-title: Dynamics-function relationship in the catalytic domains of N-terminal acetyltransferases publication-title: Comput. Struct. Biotechnol. J. – volume: 15 start-page: 2426 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0360 article-title: Molecular identification and functional characterization of the first Nalpha-acetyltransferase in plastids by global acetylome profiling publication-title: Proteomics doi: 10.1002/pmic.201500025 – volume: 34 start-page: 104 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0055 article-title: The quantitative and condition-dependent Escherichia coli proteome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3418 – volume: 17 start-page: 1018 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0100 article-title: Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT) publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17071018 – volume: 567 start-page: 103 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0085 article-title: The biological functions of Naa10 - from amino-terminal acetylation to human disease publication-title: Gene doi: 10.1016/j.gene.2015.04.085 – volume: 73 start-page: 1097 year: 2019 ident: 10.1016/j.tibs.2020.08.005_bb0020 article-title: Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.007 – volume: 18 start-page: 532 year: 2020 ident: 10.1016/j.tibs.2020.08.005_bb0115 article-title: Dynamics-function relationship in the catalytic domains of N-terminal acetyltransferases publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.02.017 – volume: 6 start-page: 2195 year: 2007 ident: 10.1016/j.tibs.2020.08.005_bb0065 article-title: Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis publication-title: J. Proteome Res. doi: 10.1021/pr0700347 – volume: 10 year: 2011 ident: 10.1016/j.tibs.2020.08.005_bb0210 article-title: Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M110.004580 – volume: 110 start-page: 14652 year: 2013 ident: 10.1016/j.tibs.2020.08.005_bb0180 article-title: Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1310365110 – ident: 10.1016/j.tibs.2020.08.005_bb0355 doi: 10.1111/nph.16747 – volume: 15 start-page: 2385 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0010 article-title: N-terminal modifications of cellular proteins: the enzymes involved, their substrate specificities, and biological effects publication-title: Proteomics doi: 10.1002/pmic.201400619 – volume: 386 start-page: 433 year: 2005 ident: 10.1016/j.tibs.2020.08.005_bb0205 article-title: Identification and characterization of the human ARD1-NATH protein acetyltransferase complex publication-title: Biochem. J. doi: 10.1042/BJ20041071 – volume: 11 start-page: 2087 year: 1992 ident: 10.1016/j.tibs.2020.08.005_bb0200 article-title: ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05267.x – volume: 6 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0150 article-title: Biochemical evidence for relaxed substrate specificity of Nα-acetyltransferase (Rv3420c/rimI) of Mycobacterium tuberculosis publication-title: Sci. Rep. doi: 10.1038/srep28892 – volume: 18 start-page: 6155 year: 1999 ident: 10.1016/j.tibs.2020.08.005_bb0215 article-title: Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae publication-title: EMBO J. doi: 10.1093/emboj/18.21.6155 – volume: 29 start-page: 3569 year: 2009 ident: 10.1016/j.tibs.2020.08.005_bb0285 article-title: Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01909-08 – volume: 11 year: 2020 ident: 10.1016/j.tibs.2020.08.005_bb0250 article-title: Molecular basis for N-terminal acetylation by human NatE and its modulation by HYPK publication-title: Nat. Commun. – volume: 6 year: 2011 ident: 10.1016/j.tibs.2020.08.005_bb0295 article-title: The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4 publication-title: PLoS One doi: 10.1371/journal.pone.0024713 – volume: 19 start-page: 174 year: 2000 ident: 10.1016/j.tibs.2020.08.005_bb0160 article-title: Flexibility, conformational diversity, and two dimerization modes in complexes of ribosomal protein L12 publication-title: EMBO J. doi: 10.1093/emboj/19.2.174 – volume: 23 start-page: 332 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0300 article-title: The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD publication-title: Structure doi: 10.1016/j.str.2014.10.025 – volume: 279 start-page: 17697 year: 2004 ident: 10.1016/j.tibs.2020.08.005_bb0165 article-title: From structure and dynamics of protein L7/L12 to molecular switching in ribosome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313384200 – volume: 25 start-page: 641 year: 2017 ident: 10.1016/j.tibs.2020.08.005_bb0265 article-title: Molecular basis of substrate specific acetylation by N-terminal acetyltransferase NatB publication-title: Structure doi: 10.1016/j.str.2017.03.003 – volume: 114 start-page: 214 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0140 article-title: Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14 publication-title: J. Proteome doi: 10.1016/j.jprot.2014.11.006 – volume: 278 start-page: 38109 year: 2003 ident: 10.1016/j.tibs.2020.08.005_bb0290 article-title: An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A publication-title: J. Biol. Chem. doi: 10.1074/jbc.C300355200 – volume: 50 start-page: 1 year: 2018 ident: 10.1016/j.tibs.2020.08.005_bb0095 article-title: Spotlight on protein N-terminal acetylation publication-title: Exp. Mol. Med. doi: 10.1038/s12276-018-0116-z – volume: 24 start-page: 1044 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0350 article-title: Crystal structure of the Golgi-associated human Nalpha-acetyltransferase 60 reveals the molecular determinants for substrate-specific acetylation publication-title: Structure doi: 10.1016/j.str.2016.04.020 – volume: 11 year: 2018 ident: 10.1016/j.tibs.2020.08.005_bb0405 article-title: Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae publication-title: BMC Res. Notes doi: 10.1186/s13104-018-3513-4 – volume: 5 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0185 article-title: Structural basis for substrate-specific acetylation of Nα-acetyltransferase Ard1 from Sulfolobus solfataricus publication-title: Sci. Rep. – volume: 69 start-page: 4555 year: 2018 ident: 10.1016/j.tibs.2020.08.005_bb0030 article-title: N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery241 – volume: 75 start-page: 318 year: 2018 ident: 10.1016/j.tibs.2020.08.005_bb0365 article-title: Actin's N-terminal acetyltransferase uncovered publication-title: Cytoskeleton doi: 10.1002/cm.21455 – volume: 17 start-page: 1781 year: 2008 ident: 10.1016/j.tibs.2020.08.005_bb0145 article-title: Crystal structure of RimI from Salmonella typhimurium LT2, the GNAT responsible for Nα-acetylation of ribosomal protein S18 publication-title: Protein Sci. doi: 10.1110/ps.035899.108 – volume: 362 start-page: 915 year: 2006 ident: 10.1016/j.tibs.2020.08.005_bb0170 article-title: Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.07.086 – volume: 26 start-page: 925 year: 2018 ident: 10.1016/j.tibs.2020.08.005_bb0245 article-title: Structure of human NatA and its regulation by the huntingtin interacting protein HYPK publication-title: Structure doi: 10.1016/j.str.2018.04.003 – volume: 291 start-page: 5270 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0105 article-title: The N-terminal acetyltransferase Naa10/ARD1 does not acetylate lysine residues publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.709428 – volume: 6 year: 2020 ident: 10.1016/j.tibs.2020.08.005_bb0380 article-title: Mechanism of actin N-terminal acetylation publication-title: Sci. Adv. doi: 10.1126/sciadv.aay8793 – volume: 11 year: 2012 ident: 10.1016/j.tibs.2020.08.005_bb0040 article-title: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M111.015131 – volume: 284 start-page: 31122 year: 2009 ident: 10.1016/j.tibs.2020.08.005_bb0110 article-title: Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.001347 – volume: 19 start-page: 1214 year: 2018 ident: 10.1016/j.tibs.2020.08.005_bb0005 article-title: Post-translational N-terminal arginylation of protein fragments: a pivotal portal to proteolysis publication-title: Curr. Protein Pept. Sci. doi: 10.2174/1389203719666180809113122 – volume: 26 start-page: 35 year: 2019 ident: 10.1016/j.tibs.2020.08.005_bb0410 article-title: Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0165-y – volume: 64 start-page: 1540 year: 2007 ident: 10.1016/j.tibs.2020.08.005_bb0175 article-title: An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05752.x – volume: 114 start-page: 134 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0015 article-title: N-terminal protein modifications: bringing back into play the ribosome publication-title: Biochimie doi: 10.1016/j.biochi.2014.11.008 – volume: 55 start-page: 989 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0130 article-title: Bacterial GCN5-related N-acetyltransferases: from resistance to regulation publication-title: Biochemistry doi: 10.1021/acs.biochem.5b01269 – volume: 8 start-page: 1128 year: 2012 ident: 10.1016/j.tibs.2020.08.005_bb0135 article-title: RimJ-mediated context-dependent N-terminal acetylation of the recombinant Z-domain protein in Escherichia coli publication-title: Mol. BioSyst. doi: 10.1039/c2mb05499j – volume: 15 start-page: 2436 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0310 article-title: N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases publication-title: Proteomics doi: 10.1002/pmic.201400575 – volume: 30 start-page: 1898 year: 2010 ident: 10.1016/j.tibs.2020.08.005_bb0375 article-title: The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01199-09 – volume: 282 start-page: 7809 year: 2007 ident: 10.1016/j.tibs.2020.08.005_bb0395 article-title: Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence publication-title: J. Biol. Chem. doi: 10.1074/jbc.M611436200 – volume: 7 start-page: 5033 year: 2008 ident: 10.1016/j.tibs.2020.08.005_bb0060 article-title: Shotgun proteomics of the haloarchaeon Haloferax volcanii publication-title: J. Proteome Res. doi: 10.1021/pr800517a – volume: 41 start-page: 746 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0025 article-title: First things first: vital protein marks by N-terminal acetyltransferases publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.07.005 – volume: 276 start-page: 20154 year: 2001 ident: 10.1016/j.tibs.2020.08.005_bb0275 article-title: NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p publication-title: J. Biol. Chem. doi: 10.1074/jbc.M011440200 – volume: 10 year: 2011 ident: 10.1016/j.tibs.2020.08.005_bb0045 article-title: Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrometry publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M111.011627 – volume: 6 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0345 article-title: Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase publication-title: Sci. Rep. – volume: 115 start-page: 4405 year: 2018 ident: 10.1016/j.tibs.2020.08.005_bb0225 article-title: Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1719251115 – volume: 6 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0325 article-title: Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms publication-title: Sci. Rep. doi: 10.1038/srep21304 – volume: 285 start-page: 3299 year: 2018 ident: 10.1016/j.tibs.2020.08.005_bb0370 article-title: NAT6 acetylates the N-terminus of different forms of actin publication-title: FEBS J. doi: 10.1111/febs.14605 – volume: 6 start-page: 34041 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0075 article-title: Naa10 in development and disease publication-title: Oncotarget doi: 10.18632/oncotarget.5867 – volume: 103 start-page: 492 year: 2008 ident: 10.1016/j.tibs.2020.08.005_bb0385 article-title: Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes publication-title: J. Cell. Biochem. doi: 10.1002/jcb.21418 – volume: 23 start-page: 7403 year: 2003 ident: 10.1016/j.tibs.2020.08.005_bb0390 article-title: The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.20.7403-7414.2003 – volume: 27 start-page: 1057 year: 2019 ident: 10.1016/j.tibs.2020.08.005_bb0240 article-title: Structure and mechanism of acetylation by the N-terminal dual enzyme NatA/Naa50 complex publication-title: Structure doi: 10.1016/j.str.2019.04.014 – volume: 1844 start-page: 1790 year: 2014 ident: 10.1016/j.tibs.2020.08.005_bb0190 article-title: Structure of Thermoplasma volcanium Ard1 belongs to N-acetyltransferase family member suggesting multiple ligand binding modes with acetyl coenzyme A and coenzyme A publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2014.07.011 – volume: 12 year: 2017 ident: 10.1016/j.tibs.2020.08.005_bb0400 article-title: Probing the interaction between NatA and the ribosome for co-translational protein acetylation publication-title: PLoS One doi: 10.1371/journal.pone.0186278 – volume: 32 start-page: 269 year: 2013 ident: 10.1016/j.tibs.2020.08.005_bb0080 article-title: Protein N-terminal acetyltransferases in cancer publication-title: Oncogene doi: 10.1038/onc.2012.82 – volume: 109 start-page: 12449 year: 2012 ident: 10.1016/j.tibs.2020.08.005_bb0260 article-title: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1210303109 – volume: 182 start-page: 792 year: 2020 ident: 10.1016/j.tibs.2020.08.005_bb0090 article-title: NatB-mediated N-terminal acetylation affects growth and biotic stress responses publication-title: Plant Physiol. doi: 10.1104/pp.19.00792 – volume: 15 start-page: 2503 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0050 article-title: Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition publication-title: Proteomics doi: 10.1002/pmic.201500027 – volume: 8 year: 2017 ident: 10.1016/j.tibs.2020.08.005_bb0235 article-title: Structural basis of HypK regulating N-terminal acetylation by the NatA complex publication-title: Nat. Commun. doi: 10.1038/ncomms15726 – volume: 7 year: 2011 ident: 10.1016/j.tibs.2020.08.005_bb0330 article-title: NatF Contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002169 – volume: 10 start-page: 1362 year: 2015 ident: 10.1016/j.tibs.2020.08.005_bb0335 article-title: An organellar nalpha-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.01.053 – volume: 286 start-page: 37002 year: 2011 ident: 10.1016/j.tibs.2020.08.005_bb0305 article-title: Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.282863 – volume: 292 start-page: 6821 year: 2017 ident: 10.1016/j.tibs.2020.08.005_bb0340 article-title: Molecular determinants of the N-terminal acetyltransferase Naa60 anchoring to the Golgi membrane publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.770362 – volume: 15 start-page: 3361 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0280 article-title: A role for human N-alpha acetyltransferase 30 (Naa30) in maintaining mitochondrial integrity publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M116.061010 – volume: 291 start-page: 19079 year: 2016 ident: 10.1016/j.tibs.2020.08.005_bb0315 article-title: Opposing functions of the N-terminal acetyltransferases Naa50 and NatA in sister-chromatid cohesion publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.737585 – volume: 114 start-page: E4370 year: 2017 ident: 10.1016/j.tibs.2020.08.005_bb0070 article-title: Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1705898114 – volume: 8 start-page: 2067 year: 1989 ident: 10.1016/j.tibs.2020.08.005_bb0195 article-title: Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast publication-title: EMBO J. doi: 10.1002/j.1460-2075.1989.tb03615.x – volume: 280 start-page: 22108 year: 2005 ident: 10.1016/j.tibs.2020.08.005_bb0155 article-title: A novel dimeric structure of the RimL Nalpha-acetyltransferase from Salmonella typhimurium publication-title: J. Biol. Chem. doi: 10.1074/jbc.M502401200 – volume: 115 start-page: 4399 year: 2018 ident: 10.1016/j.tibs.2020.08.005_bb0220 article-title: NAA80 is actin's N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1718336115 – volume: 20 start-page: 1098 year: 2013 ident: 10.1016/j.tibs.2020.08.005_bb0230 article-title: Molecular basis for N-terminal acetylation by the heterodimeric NatA complex publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2636 – volume: 28 start-page: 2900 year: 2019 ident: 10.1016/j.tibs.2020.08.005_bb0255 article-title: Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddz111 – volume: 287 start-page: 10081 year: 2012 ident: 10.1016/j.tibs.2020.08.005_bb0120 article-title: Human protein N-terminal acetyltransferase hNaa50p (hNAT5/hSAN) follows ordered sequential catalytic mechanism: combined kinetic and NMR study publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.326587 – volume: 8 start-page: 1121 year: 2013 ident: 10.1016/j.tibs.2020.08.005_bb0125 article-title: Design, synthesis, and kinetic characterization of protein N-terminal acetyltransferase inhibitors publication-title: ACS Chem. Biol. doi: 10.1021/cb400136s – volume: 106 start-page: 8157 year: 2009 ident: 10.1016/j.tibs.2020.08.005_bb0035 article-title: Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0901931106 – volume: 177 start-page: 587 year: 2007 ident: 10.1016/j.tibs.2020.08.005_bb0320 article-title: The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner publication-title: J. Cell Biol. doi: 10.1083/jcb.200701043  | 
    
| SSID | ssj0015775 | 
    
| Score | 2.577485 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | N-terminal acetylation (NTA) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly less common on... N-terminal acetylation (NTA) (see Glossary) is one of the most widespread protein modifications, which occurs on most eukaryotic proteins, but is significantly...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 15 | 
    
| SubjectTerms | Acetylation acetyltransferases Acetyltransferases - chemistry co-translational modification enzyme mechanism HYPK IP6 N-terminal acetylation NATs post-translational modification Protein Conformation Protein Processing, Post-Translational protein subunits ribosome substrate specificity  | 
    
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBUhUNJLaZt-bNoUBXrruivZlmTnloSEUEgoTQJ7M_oyddg4C7uh7KW_vTOSbbqkLKFXe2QLaSQ9STPvEfJZlbaAhVInTFib5KVjiclsmRhufCprmXEb2D4v5flN_m0qplvkpM-FwbDKbu6Pc3qYrbsnk641J_OmmVwB-C4QkqTgp7CFR07QPFeoYvD19xDmwYUKZLtoHDKou8SZGOO1bAxSdqcs0HiihN2_F6fH4PNxDOXOQzvXq196NvtrgTp7SV50yJIexcq_Ilu-fU2eRa3J1S6ZfkdGhqall8l1DIABW-uXqxgMd0ivApMssnDQY71oFmN64TEtuFncjSkeq4EdYvYx1a2jP6KGPZR8Q27OTq9PzpNOViGxokiXSW0AA3qZSStzo_KC2bT2pddM115r3IFpg5d7SgpnXMFRicwZTKKFEWWsyd6S7fa-9e8JLUWmLa-tghK5crJwmWVOWZ5yp6RnI8L79qxsxzmO0hezqg8uu62wDyrsgwr1MJkYkS9DmXlk3NhoLfpuqtb8poIlYWO5g75PKxhQeEuiW3__AEY57vlQgGqDjRDwLUA6YPMu-sFQ1ywtOaAe-INa85DBAAm919-0zc9A7A1QvGSZGpHx4EtPaIK9_2yCD-R5igE64TzpI9kGL_P7gLCW5lMYQn8AGYgkMg priority: 102 providerName: Elsevier  | 
    
| Title | Protein N-Terminal Acetylation: Structural Basis, Mechanism, Versatility, and Regulation | 
    
| URI | https://dx.doi.org/10.1016/j.tibs.2020.08.005 https://www.ncbi.nlm.nih.gov/pubmed/32912665 https://www.proquest.com/docview/2441611086 https://www.proquest.com/docview/2552028536 https://pubmed.ncbi.nlm.nih.gov/PMC7749037 https://www.ncbi.nlm.nih.gov/pmc/articles/7749037  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 46 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1362-4326 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015775 issn: 0968-0004 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1362-4326 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015775 issn: 0968-0004 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1362-4326 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015775 issn: 0968-0004 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1362-4326 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015775 issn: 0968-0004 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1362-4326 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015775 issn: 0968-0004 databaseCode: AKRWK dateStart: 19760101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7ttkJw4f0ojypI3GiycRI7CbeCWBUQ1WrZSuUU2Y4DgTZbqalQOfDbmYmTimVRxZ49TuLMWP5sf_MNwIs41QkulNL1udZulOa-q0KduoopE4hChEw3ap9TMZlF7-d8fgCsy4VpSPtalV61WHpV-bXhVq6W-qjjiR0hXkn9MD6EvuAIv3vQn01Pxp8bTT2RNFnSNteKsoEC0SbKWE5XXSqS6A78RraTStb9ezG6DDYvcyavb6qV3P6Qi8UfC9LxLTjthmJ5KN-9Ta08_fMvlccrjfU23GzhqTO2TXfgwFR34ZotWLm9B_MTknUoK2fqnlkWDdpqU28to-6V86mRoyUpD-e1XJfrkfPRUG5xuV6OHDqbQzsC_iNHVrlzar601cPuw-z47dmbidvWZnA1T4LaLRQCSSNCoUWk4ijxdVCY1EhfFkZK2sZJRTeEseC5yhNG5cxyRZm4OC2VVuED6FXnlXkETspDqVmhY-wRxblI8lD7eaxZwPJYGH8ArHNSplvhcqqfscg6htq3jBybkWMzKqrp8wG83PVZWdmOvda8833WAg8LKDJcV_b2e94FSoazkq5aZGXON2gU0caRqljtseEcn4VwCW0e2uDafWsYpAyhE74hvhB2OwNSBb_YggHUqIO3MTOA0S5A_-MXPL6a-RO4ERC5pzmLego9DC7zDNFZrYZw6P1iQ-iP332YTIft7PwNiTI8DA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGENpe0Phc-TQSbzQ0cWI74W1MTAW2CrFO6lvkr4hMXVapnVBf-Nu5s5OIaqhCvCbnxPKdfT_bd78j5K0sTA6OUkUxNybKChtHOjVFpBPtmKhEmhjP9jkR44vsy4zPdshxlwuDYZXt2h_WdL9at09G7WiOFnU9OgfwnSMkYWCnsIXP7pC7GWcSd2Dvf_VxHgmXnm0XpX0KdZs5E4K8VrVGzm4Wex5PrGH3d-90G33eDqLcu2kWav1Tzed_eKiTA3K_hZb0KPT-AdlxzUNyLxSbXD8is29IyVA3dBJNQwQMyBq3WodouA_03FPJIg0H_aiW9XJIzxzmBdfLqyHFczWQQ9A-pKqx9HsoYg8tH5OLk0_T43HU1lWIDM_ZKqo0gEAnUmFEpmWWx4ZVrnAqVpVTCrdgSuPtnhTcapsnWIrMasyihSmljU6fkN3munGHhBY8VSapjIQWmbQit6mJrTQJS6wULh6QpBvP0rSk41j7Yl520WWXJeqgRB2UWBAz5gPyrm-zCJQbW6V5p6Zyw3BK8Alb273pdFrCjMJrEtW46xsQynDThxWotshwDt8CqAMyT4Md9H1NWZEA7IE_yA0L6QWQ0XvzTVP_8MzegMWLOJUDMuxt6R-G4Nl_DsFrsjeenp2Wp58nX5-TfYbROv5w6QXZBYtzLwFurfQrP51-A89CJ1U | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGJwQv3C_lJiPxRtM5F9sJbwMxTUhU01il8hT5lhFos0pNhcqv5xw7qRhDFXv2cRLnHMuf7e98h5A3sjA5LJQqYtyYKCssi3RqikjH2iWiEmlsvNrnRBxPs08zPtsjcZ8L40n7RtfjZr4YN_U3z61cLsxBzxM7ALxSsFTeIPuCA_wekP3p5OTwq9fUE7nPkg65VpgNlIguUSZwutpao0R3wrxsJ5as-_didBVsXuVM3lo3S7X5qebzPxako7vktB9K4KH8GK9bPTa__lJ5vNZY75E7HTylh6HpPtlzzQNyMxSs3DwksxOUdagbOonOAosGbI1rN4FR945-8XK0KOVB36tVvRrRzw5zi-vVYkTxbA7sEPiPqGosPXXnXfWwR2R69PHsw3HU1WaIDM-TNqo0AEknUmFEpmWWM5NUrnCKqcophds4pfGGUAputc1jLGdmNWbiwrTURqePyaC5aNxTQgueKhNXRkKPTFqR29QwK02cxFYKx4Yk7p1Umk64HOtnzMueofa9RMeW6NgSi2oyPiRvt32WQbZjpzXvfV92wCMAihLWlZ39XveBUsKsxKsW1biLNRhluHHEKlY7bDiHZwFcApsnIbi235omRQzQCd4gL4Xd1gBVwS-3QAB5dfAuZoZktA3Q__gFz65n_pzcTpDc48-iXpABBJd7Ceis1a-6-fgbV6g5gA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+N-Terminal+Acetylation%3A+Structural+Basis%2C+Mechanism%2C+Versatility%2C+and+Regulation&rft.jtitle=Trends+in+biochemical+sciences+%28Amsterdam.+Regular+ed.%29&rft.au=Deng%2C+Sunbin&rft.au=Marmorstein%2C+Ronen&rft.date=2021-01-01&rft.issn=0968-0004&rft.volume=46&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1016%2Fj.tibs.2020.08.005&rft_id=info%3Apmid%2F32912665&rft.externalDocID=32912665 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-0004&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-0004&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-0004&client=summon |