SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function

Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting...

Full description

Saved in:
Bibliographic Details
Published inNature immunology Vol. 21; no. 11; pp. 1327 - 1335
Main Authors Winkler, Emma S., Bailey, Adam L., Kafai, Natasha M., Nair, Sharmila, McCune, Broc T., Yu, Jinsheng, Fox, Julie M., Chen, Rita E., Earnest, James T., Keeler, Shamus P., Ritter, Jon H., Kang, Liang-I, Dort, Sarah, Robichaud, Annette, Head, Richard, Holtzman, Michael J., Diamond, Michael S.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.11.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1529-2908
1529-2916
1529-2916
DOI10.1038/s41590-020-0778-2

Cover

Abstract Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Diamond and colleagues generate a K18-hACE2 model of SARS-CoV-2 infection that shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
AbstractList Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-[kappa]B-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.Diamond and colleagues generate a K18-hACE2 model of SARS-CoV-2 infection that shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Diamond and colleagues generate a K18-hACE2 model of SARS-CoV-2 infection that shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-[kappa]B-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Diamond and colleagues generate a K18-hACE2 model of SARS-CoV-2 infection that shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
Audience Academic
Author Chen, Rita E.
Head, Richard
Winkler, Emma S.
Nair, Sharmila
Diamond, Michael S.
Fox, Julie M.
Robichaud, Annette
Kang, Liang-I
Earnest, James T.
Bailey, Adam L.
Dort, Sarah
McCune, Broc T.
Kafai, Natasha M.
Keeler, Shamus P.
Holtzman, Michael J.
Ritter, Jon H.
Yu, Jinsheng
Author_xml – sequence: 1
  givenname: Emma S.
  surname: Winkler
  fullname: Winkler, Emma S.
  organization: Department of Medicine, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine
– sequence: 2
  givenname: Adam L.
  surname: Bailey
  fullname: Bailey, Adam L.
  organization: Department of Pathology and Immunology, Washington University School of Medicine
– sequence: 3
  givenname: Natasha M.
  surname: Kafai
  fullname: Kafai, Natasha M.
  organization: Department of Medicine, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine
– sequence: 4
  givenname: Sharmila
  surname: Nair
  fullname: Nair, Sharmila
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 5
  givenname: Broc T.
  surname: McCune
  fullname: McCune, Broc T.
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 6
  givenname: Jinsheng
  orcidid: 0000-0003-3377-4304
  surname: Yu
  fullname: Yu, Jinsheng
  organization: Department of Genetics, Washington University School of Medicine
– sequence: 7
  givenname: Julie M.
  orcidid: 0000-0003-0567-738X
  surname: Fox
  fullname: Fox, Julie M.
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 8
  givenname: Rita E.
  surname: Chen
  fullname: Chen, Rita E.
  organization: Department of Medicine, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine
– sequence: 9
  givenname: James T.
  surname: Earnest
  fullname: Earnest, James T.
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 10
  givenname: Shamus P.
  orcidid: 0000-0002-1301-0852
  surname: Keeler
  fullname: Keeler, Shamus P.
  organization: Department of Medicine, Washington University School of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine
– sequence: 11
  givenname: Jon H.
  surname: Ritter
  fullname: Ritter, Jon H.
  organization: Department of Pathology and Immunology, Washington University School of Medicine
– sequence: 12
  givenname: Liang-I
  surname: Kang
  fullname: Kang, Liang-I
  organization: Department of Pathology and Immunology, Washington University School of Medicine
– sequence: 13
  givenname: Sarah
  surname: Dort
  fullname: Dort, Sarah
  organization: SCIREQ Scientific Respiratory Equipment
– sequence: 14
  givenname: Annette
  surname: Robichaud
  fullname: Robichaud, Annette
  organization: SCIREQ Scientific Respiratory Equipment
– sequence: 15
  givenname: Richard
  surname: Head
  fullname: Head, Richard
  organization: Department of Genetics, Washington University School of Medicine
– sequence: 16
  givenname: Michael J.
  orcidid: 0000-0001-8750-3716
  surname: Holtzman
  fullname: Holtzman, Michael J.
  organization: Department of Medicine, Washington University School of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine
– sequence: 17
  givenname: Michael S.
  orcidid: 0000-0002-8791-3165
  surname: Diamond
  fullname: Diamond, Michael S.
  email: diamond@wusm.wustl.edu
  organization: Department of Medicine, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32839612$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1r1TAYgINM3If-AG8k4I1edOajTdLLw2HqYCDsqLchTd90GW16TNqh_970nM1xhkopDeV53rxfp-gojAEQek3JOSVcfUglrWpSEJZfKVXBnqETWrG6YDUVR3_ORB2j05RuCaGlFOULdMyZ4rWg7ATdbFbXm2I9fi8Y9sGBnfwY8OjwzTyYgFfrC1ZM0YTUQfAWD94CtmZOkHCCO4iA-zl0i9qbYTA724QW-2FrfIQWuznsYr5Ez53pE7y6_56hbx8vvq4_F1dfPl2uV1eFrRSbCmsbCRwcbzgIKp1wTLQql2NaAGIEtXVVWp6ZpqVciJJBI61qnTMNJ0LyM_RuH3cbxx8zpEkPPlnoexNgnJNmJZeUUV6RjL59gt6Ocww5u0zJihClavVIdaYHnQsdcz_sElSvBFc143x37flfqPy0kHuWx-Z8_n8gvD8QMjPBz6nLvU36cnN9yL65T3RuBmj1NvrBxF_6YYwZkHvAxjGlCE5bP-2GkbPwvaZELwuj9wuj88LoZWH0YtIn5kPw_zls76TMhg7iY9_-Lf0GuEHO3g
CitedBy_id crossref_primary_10_1038_s12276_023_01110_0
crossref_primary_10_1016_j_ebiom_2021_103762
crossref_primary_10_1371_journal_ppat_1010465
crossref_primary_10_1016_j_omtn_2022_02_008
crossref_primary_10_1126_scitranslmed_abm0899
crossref_primary_10_4049_immunohorizons_2400030
crossref_primary_10_3390_v14112451
crossref_primary_10_3390_v14081627
crossref_primary_10_1021_acscentsci_2c01359
crossref_primary_10_1126_scitranslmed_abf8396
crossref_primary_10_1186_s40001_023_01373_3
crossref_primary_10_3389_fimmu_2024_1345499
crossref_primary_10_1002_adhm_202300889
crossref_primary_10_1038_s41467_024_55272_0
crossref_primary_10_1186_s41232_020_00148_1
crossref_primary_10_4155_bio_2021_0096
crossref_primary_10_5501_wjv_v11_i1_40
crossref_primary_10_1007_s12015_022_10409_w
crossref_primary_10_1016_j_xpro_2023_102303
crossref_primary_10_3389_fimmu_2022_836492
crossref_primary_10_1126_sciadv_abm0220
crossref_primary_10_3390_cells13030203
crossref_primary_10_4049_jimmunol_2100421
crossref_primary_10_1128_msphere_00726_24
crossref_primary_10_1021_acscentsci_2c01243
crossref_primary_10_1073_pnas_2122897119
crossref_primary_10_1007_s11914_023_00843_1
crossref_primary_10_1007_s00705_022_05609_1
crossref_primary_10_1016_j_it_2021_09_003
crossref_primary_10_1016_j_coph_2021_12_008
crossref_primary_10_1016_j_isci_2022_105748
crossref_primary_10_1186_s12879_024_10000_3
crossref_primary_10_1016_j_isci_2022_105507
crossref_primary_10_3390_v14112584
crossref_primary_10_1093_cid_ciab903
crossref_primary_10_3389_fimmu_2021_748103
crossref_primary_10_1371_journal_ppat_1011777
crossref_primary_10_1177_03009858211057197
crossref_primary_10_1016_j_omtn_2022_10_021
crossref_primary_10_3389_fimmu_2022_918881
crossref_primary_10_3390_pathogens12010020
crossref_primary_10_1161_HYPERTENSIONAHA_124_22064
crossref_primary_10_1128_jvi_00794_24
crossref_primary_10_1128_mbio_02906_21
crossref_primary_10_1126_sciadv_abi5246
crossref_primary_10_26508_lsa_202000886
crossref_primary_10_1016_j_jmb_2021_167243
crossref_primary_10_3389_fimmu_2024_1440314
crossref_primary_10_1080_22221751_2021_1898291
crossref_primary_10_3390_v15040999
crossref_primary_10_1073_pnas_2026785118
crossref_primary_10_1016_j_bcp_2021_114543
crossref_primary_10_1038_s41579_024_01036_y
crossref_primary_10_1016_j_celrep_2022_111359
crossref_primary_10_1128_mbio_03693_24
crossref_primary_10_1371_journal_ppat_1011409
crossref_primary_10_1016_j_celrep_2022_110387
crossref_primary_10_1126_scitranslmed_adf4100
crossref_primary_10_1371_journal_pone_0302344
crossref_primary_10_1038_s41589_022_01193_2
crossref_primary_10_1007_s12275_022_1608_z
crossref_primary_10_1186_s13287_024_04086_4
crossref_primary_10_3389_fneur_2023_1172416
crossref_primary_10_1128_JVI_01511_21
crossref_primary_10_3390_pathogens13040316
crossref_primary_10_1007_s11914_023_00842_2
crossref_primary_10_1016_j_fmre_2021_03_001
crossref_primary_10_1016_j_actbio_2024_05_048
crossref_primary_10_1002_jmv_28094
crossref_primary_10_1186_s43141_021_00130_5
crossref_primary_10_30802_AALAS_CM_22_000073
crossref_primary_10_1016_j_celrep_2022_110561
crossref_primary_10_1371_journal_pone_0310915
crossref_primary_10_1038_s41467_024_45628_x
crossref_primary_10_1038_s41589_021_00965_6
crossref_primary_10_1126_sciimmunol_abl4509
crossref_primary_10_1134_S0026893322050028
crossref_primary_10_1038_s42003_025_07820_7
crossref_primary_10_1073_pnas_2101555118
crossref_primary_10_3389_fmicb_2021_651403
crossref_primary_10_1038_s41467_022_28766_y
crossref_primary_10_1038_s41392_024_01917_x
crossref_primary_10_1038_s41423_022_00855_4
crossref_primary_10_1093_infdis_jiad526
crossref_primary_10_1038_s41541_024_00838_8
crossref_primary_10_1128_jvi_02184_21
crossref_primary_10_4049_jimmunol_2200198
crossref_primary_10_1016_j_mce_2021_111255
crossref_primary_10_1128_jvi_01179_24
crossref_primary_10_3389_fimmu_2023_1158455
crossref_primary_10_1016_j_virol_2022_08_003
crossref_primary_10_1080_17460441_2022_1995352
crossref_primary_10_1172_jci_insight_182704
crossref_primary_10_3389_fimmu_2022_863831
crossref_primary_10_1093_ibd_izab274
crossref_primary_10_1371_journal_ppat_1009544
crossref_primary_10_3389_fimmu_2024_1382655
crossref_primary_10_1038_s41467_022_35225_1
crossref_primary_10_3390_biomedicines11061736
crossref_primary_10_1186_s13578_021_00723_0
crossref_primary_10_1038_s41586_022_04865_0
crossref_primary_10_26508_lsa_202301969
crossref_primary_10_3389_fimmu_2022_919815
crossref_primary_10_3389_fimmu_2022_849465
crossref_primary_10_1016_j_medj_2022_03_009
crossref_primary_10_15252_emmm_202115298
crossref_primary_10_1038_s41577_022_00744_x
crossref_primary_10_1016_j_xcrm_2021_100450
crossref_primary_10_1038_s41598_022_08104_4
crossref_primary_10_1084_jem_20232192
crossref_primary_10_3389_fcimb_2021_679878
crossref_primary_10_1038_s41564_022_01119_7
crossref_primary_10_3390_cells10113067
crossref_primary_10_3390_v13122506
crossref_primary_10_1016_j_jmb_2023_168173
crossref_primary_10_3390_pathogens11020257
crossref_primary_10_1165_rcmb_2020_0456ED
crossref_primary_10_3390_nu14153061
crossref_primary_10_1021_acs_nanolett_1c01284
crossref_primary_10_1128_aac_01361_23
crossref_primary_10_3390_biomedicines12030543
crossref_primary_10_1128_aac_00835_24
crossref_primary_10_3389_fimmu_2023_1264323
crossref_primary_10_1038_s41541_022_00451_7
crossref_primary_10_1016_j_ebiom_2024_105361
crossref_primary_10_1186_s13578_021_00624_2
crossref_primary_10_3390_ijms22052681
crossref_primary_10_14348_molcells_2021_0094
crossref_primary_10_1038_s41590_023_01560_8
crossref_primary_10_2139_ssrn_4089984
crossref_primary_10_1016_j_bbrc_2024_151198
crossref_primary_10_3389_fbioe_2021_737627
crossref_primary_10_1038_s41467_023_40076_5
crossref_primary_10_1080_08830185_2022_2089666
crossref_primary_10_1073_pnas_2420441122
crossref_primary_10_1016_j_ymthe_2024_03_029
crossref_primary_10_1371_journal_ppat_1010867
crossref_primary_10_1016_j_celrep_2022_111447
crossref_primary_10_1038_s41541_022_00440_w
crossref_primary_10_1038_s41590_021_01068_z
crossref_primary_10_1016_j_ebiom_2024_105132
crossref_primary_10_1016_j_jbc_2021_100346
crossref_primary_10_1038_s41467_023_37795_0
crossref_primary_10_3390_v15010085
crossref_primary_10_4049_jimmunol_2300282
crossref_primary_10_3389_fddsv_2022_899587
crossref_primary_10_3389_fimmu_2021_733921
crossref_primary_10_3389_fimmu_2023_1108716
crossref_primary_10_1007_s00011_024_01985_3
crossref_primary_10_1007_s43440_023_00463_7
crossref_primary_10_1371_journal_ppat_1010741
crossref_primary_10_1002_mnfr_202200804
crossref_primary_10_1161_CIRCRESAHA_122_321930
crossref_primary_10_1007_s00430_022_00735_8
crossref_primary_10_1073_pnas_2303509120
crossref_primary_10_1016_j_cell_2021_08_016
crossref_primary_10_1371_journal_ppat_1009758
crossref_primary_10_1016_j_isci_2022_104925
crossref_primary_10_1093_infdis_jiad567
crossref_primary_10_1038_s41467_021_26602_3
crossref_primary_10_1002_mco2_98
crossref_primary_10_1111_jpi_12772
crossref_primary_10_1080_19490976_2021_2018900
crossref_primary_10_1186_s13020_022_00598_4
crossref_primary_10_2139_ssrn_3961037
crossref_primary_10_3390_v14010027
crossref_primary_10_3390_v14050966
crossref_primary_10_1002_jmv_29671
crossref_primary_10_4110_in_2021_21_e1
crossref_primary_10_1016_j_vaccine_2023_09_033
crossref_primary_10_1016_j_neuint_2023_105567
crossref_primary_10_1172_jci_insight_155896
crossref_primary_10_1016_j_immuni_2021_08_016
crossref_primary_10_1016_j_immuni_2021_08_015
crossref_primary_10_1073_pnas_2117198119
crossref_primary_10_3390_jpm12030349
crossref_primary_10_29328_journal_ibm_1001018
crossref_primary_10_3390_v14020189
crossref_primary_10_1038_s41586_022_04856_1
crossref_primary_10_1172_jci_insight_179726
crossref_primary_10_1126_sciadv_adg5461
crossref_primary_10_1097_CCE_0000000000001225
crossref_primary_10_1016_j_isci_2021_102699
crossref_primary_10_1016_j_cell_2020_11_025
crossref_primary_10_1016_j_immuni_2021_01_017
crossref_primary_10_1042_CS20220663
crossref_primary_10_1016_j_immuni_2021_08_024
crossref_primary_10_1038_s41586_021_03631_y
crossref_primary_10_1073_pnas_2410451121
crossref_primary_10_30895_2221_996X_2022_22_4_414_434
crossref_primary_10_1021_acsami_2c03442
crossref_primary_10_1016_j_xcrm_2023_101362
crossref_primary_10_4110_in_2024_24_e7
crossref_primary_10_1111_jcmm_70030
crossref_primary_10_1371_journal_pone_0289139
crossref_primary_10_1016_j_antiviral_2021_105138
crossref_primary_10_1038_s41541_024_00961_6
crossref_primary_10_1371_journal_pone_0291537
crossref_primary_10_1080_22221751_2024_2353302
crossref_primary_10_1021_acs_analchem_3c01522
crossref_primary_10_1371_journal_pbio_3001284
crossref_primary_10_3389_fmicb_2021_626553
crossref_primary_10_1038_s42003_023_04689_2
crossref_primary_10_1002_jmv_29336
crossref_primary_10_1016_j_medj_2022_08_002
crossref_primary_10_1142_S0218127421501637
crossref_primary_10_1016_j_jcrc_2023_154318
crossref_primary_10_1093_glycob_cwad031
crossref_primary_10_3390_ijms251810054
crossref_primary_10_1038_s41392_022_00996_y
crossref_primary_10_1016_j_cell_2024_02_020
crossref_primary_10_1038_s41598_023_41115_3
crossref_primary_10_1016_j_lfs_2021_119881
crossref_primary_10_1096_fj_202302202RR
crossref_primary_10_3389_fimmu_2023_1166725
crossref_primary_10_1039_D1LC00817J
crossref_primary_10_1016_j_semnephrol_2022_10_005
crossref_primary_10_1016_j_omtn_2022_08_031
crossref_primary_10_1002_jmv_29349
crossref_primary_10_1038_s41596_020_00403_2
crossref_primary_10_1091_mbc_E22_02_0045
crossref_primary_10_1038_s41564_022_01288_5
crossref_primary_10_1002_prp2_1194
crossref_primary_10_3389_fimmu_2022_1007080
crossref_primary_10_3390_v13010132
crossref_primary_10_1038_s41467_021_25729_7
crossref_primary_10_1002_adbi_202200002
crossref_primary_10_1016_j_ebiom_2023_104932
crossref_primary_10_3390_v17010100
crossref_primary_10_1002_eji_202250332
crossref_primary_10_1371_journal_ppat_1009715
crossref_primary_10_1126_sciadv_abj8065
crossref_primary_10_1038_s41467_023_41381_9
crossref_primary_10_1016_j_celrep_2020_108528
crossref_primary_10_1080_22221751_2020_1838955
crossref_primary_10_1016_j_biopha_2020_111193
crossref_primary_10_1111_jne_12935
crossref_primary_10_3390_vaccines10081173
crossref_primary_10_1126_sciimmunol_abl9929
crossref_primary_10_1172_jci_insight_145916
crossref_primary_10_1016_j_drudis_2021_05_008
crossref_primary_10_3390_nu13072216
crossref_primary_10_3390_vaccines9070747
crossref_primary_10_1024_0301_1526_a000991
crossref_primary_10_1038_s41423_020_00616_1
crossref_primary_10_1016_j_ajpath_2021_10_009
crossref_primary_10_3390_v14071507
crossref_primary_10_4049_jimmunol_2300591
crossref_primary_10_1038_s41586_021_03720_y
crossref_primary_10_1002_jex2_58
crossref_primary_10_3389_fimmu_2021_824728
crossref_primary_10_1038_s41586_024_07926_8
crossref_primary_10_1242_dmm_049632
crossref_primary_10_1152_ajplung_00222_2020
crossref_primary_10_3389_fimmu_2023_1138215
crossref_primary_10_1093_infdis_jiad135
crossref_primary_10_3390_cells11020306
crossref_primary_10_1165_rcmb_2023_0007OC
crossref_primary_10_1038_s41418_021_00805_z
crossref_primary_10_3390_v14102272
crossref_primary_10_1016_j_isci_2023_106092
crossref_primary_10_3389_fimmu_2022_993754
crossref_primary_10_1038_s41586_021_03237_4
crossref_primary_10_1126_scitranslmed_abm3302
crossref_primary_10_1038_s12276_024_01197_z
crossref_primary_10_1152_physiol_00033_2021
crossref_primary_10_1080_22221751_2024_2321994
crossref_primary_10_1182_bloodadvances_2022007444
crossref_primary_10_3389_fimmu_2021_707856
crossref_primary_10_15252_embr_202152948
crossref_primary_10_1080_21505594_2024_2316438
crossref_primary_10_1007_s41745_022_00318_9
crossref_primary_10_1038_s41467_021_24339_7
crossref_primary_10_1126_scitranslmed_abq0603
crossref_primary_10_1038_s41586_021_03995_1
crossref_primary_10_1126_sciadv_adj1736
crossref_primary_10_1177_03009858221092015
crossref_primary_10_51335_organoid_2022_2_e16
crossref_primary_10_3389_fimmu_2022_844837
crossref_primary_10_1016_j_lfs_2025_123404
crossref_primary_10_3390_cells12071092
crossref_primary_10_1038_s41467_023_39049_5
crossref_primary_10_1038_s41586_022_04690_5
crossref_primary_10_1038_s41392_021_00851_6
crossref_primary_10_1111_all_14754
crossref_primary_10_4049_jimmunol_2000965
crossref_primary_10_3389_fimmu_2024_1374541
crossref_primary_10_1016_j_isci_2021_102479
crossref_primary_10_3390_v15010123
crossref_primary_10_1016_j_chom_2021_06_008
crossref_primary_10_1038_s41591_022_02092_8
crossref_primary_10_1186_s12979_025_00503_1
crossref_primary_10_1038_s41586_020_2943_z
crossref_primary_10_1038_s41586_022_05128_8
crossref_primary_10_3390_v14010011
crossref_primary_10_1111_imm_13386
crossref_primary_10_1038_s41392_022_00981_5
crossref_primary_10_3389_fimmu_2024_1447962
crossref_primary_10_1038_s41467_021_21239_8
crossref_primary_10_1016_j_talanta_2021_123076
crossref_primary_10_1128_mBio_02756_21
crossref_primary_10_4049_jimmunol_2300675
crossref_primary_10_1038_s41467_022_32216_0
crossref_primary_10_1128_spectrum_03916_23
crossref_primary_10_1038_s41586_022_04890_z
crossref_primary_10_3390_immuno4020010
crossref_primary_10_3390_v14061218
crossref_primary_10_1038_s41593_022_01242_y
crossref_primary_10_1016_j_smim_2022_101650
crossref_primary_10_1002_cti2_1251
crossref_primary_10_1016_j_ymthe_2022_03_014
crossref_primary_10_1038_s41467_022_31721_6
crossref_primary_10_1038_s41586_022_05482_7
crossref_primary_10_1038_s41577_020_00471_1
crossref_primary_10_3390_v13081656
crossref_primary_10_14348_molcells_2022_0089
crossref_primary_10_1016_j_coviro_2021_03_009
crossref_primary_10_1038_s41423_023_01122_w
crossref_primary_10_1016_j_heliyon_2022_e12653
crossref_primary_10_4196_kjpp_2024_28_5_403
crossref_primary_10_1002_jmv_70049
crossref_primary_10_1016_j_bbadis_2025_167726
crossref_primary_10_1038_s41586_022_04441_6
crossref_primary_10_1016_j_cell_2021_03_029
crossref_primary_10_1172_JCI162282
crossref_primary_10_1016_j_heliyon_2023_e21893
crossref_primary_10_3389_fimmu_2022_1023255
crossref_primary_10_1073_pnas_2310421121
crossref_primary_10_1080_22221751_2021_2024095
crossref_primary_10_1038_s41467_023_39815_5
crossref_primary_10_2147_IJN_S497742
crossref_primary_10_1038_s41590_021_01091_0
crossref_primary_10_1161_ATVBAHA_121_316925
crossref_primary_10_1038_s41564_024_01786_8
crossref_primary_10_1016_j_chom_2021_11_013
crossref_primary_10_1016_j_metabol_2022_155236
crossref_primary_10_1016_j_antiviral_2023_105738
crossref_primary_10_1172_jci_insight_172488
crossref_primary_10_1016_j_jviromet_2021_114306
crossref_primary_10_1016_j_biocel_2023_106421
crossref_primary_10_1126_sciimmunol_abo0535
crossref_primary_10_1681_ASN_2021091209
crossref_primary_10_3389_fimmu_2022_912899
crossref_primary_10_1073_pnas_2319566121
crossref_primary_10_1186_s13567_024_01325_7
crossref_primary_10_15252_emmm_202114459
crossref_primary_10_1007_s00335_025_10115_1
crossref_primary_10_1016_j_isci_2022_105038
crossref_primary_10_1016_j_chom_2024_10_016
crossref_primary_10_1016_j_stemcr_2021_02_007
crossref_primary_10_1016_j_bbih_2024_100888
crossref_primary_10_1161_ATVBAHA_120_315527
crossref_primary_10_1016_j_bbadis_2024_167322
crossref_primary_10_1126_sciadv_abj1476
crossref_primary_10_1016_j_celrep_2021_109664
crossref_primary_10_3390_v15020354
crossref_primary_10_1016_j_coviro_2021_11_015
crossref_primary_10_1038_s41467_023_36110_1
crossref_primary_10_3389_fmicb_2024_1466980
crossref_primary_10_1146_annurev_pharmtox_121120_012309
crossref_primary_10_1007_s11481_020_09968_x
crossref_primary_10_1002_jmv_28532
crossref_primary_10_1038_s41541_021_00406_4
crossref_primary_10_1016_j_jep_2021_114965
crossref_primary_10_3390_biomedicines11082287
crossref_primary_10_1038_s41392_024_01836_x
crossref_primary_10_1172_jci_insight_152529
crossref_primary_10_1007_s10753_021_01464_5
crossref_primary_10_1016_j_celrep_2022_110714
crossref_primary_10_1007_s10142_025_01566_5
crossref_primary_10_1038_s41418_021_00866_0
crossref_primary_10_1016_j_ebiom_2021_103291
crossref_primary_10_1177_2041731420985299
crossref_primary_10_1016_j_tranon_2021_101095
crossref_primary_10_1186_s12859_021_04484_y
crossref_primary_10_1038_s42255_021_00479_4
crossref_primary_10_1093_pnasnexus_pgad282
crossref_primary_10_1038_s41392_021_00818_7
crossref_primary_10_1038_s41420_023_01584_x
crossref_primary_10_1016_j_celrep_2020_108488
crossref_primary_10_1097_JBR_0000000000000150
crossref_primary_10_3389_fimmu_2022_948431
crossref_primary_10_1038_s41598_021_95086_4
crossref_primary_10_1038_s41598_022_21223_2
crossref_primary_10_1038_s41598_024_77087_1
crossref_primary_10_1016_S1473_3099_20_30982_8
crossref_primary_10_1080_19420862_2021_1958663
crossref_primary_10_4239_wjd_v12_i6_839
crossref_primary_10_7554_eLife_78273
crossref_primary_10_1016_j_antiviral_2022_105430
crossref_primary_10_1038_s41598_021_99401_x
crossref_primary_10_3389_fimmu_2022_820131
crossref_primary_10_1038_s41467_022_32547_y
crossref_primary_10_1080_14760584_2022_2027240
crossref_primary_10_1093_cvr_cvac139
crossref_primary_10_1016_j_celrep_2023_113275
crossref_primary_10_17802_2306_1278_2024_13_3S_173_190
crossref_primary_10_1038_s41467_024_45050_3
crossref_primary_10_1021_acscentsci_1c01293
crossref_primary_10_3389_fimmu_2022_996637
crossref_primary_10_3389_fimmu_2022_995412
crossref_primary_10_1371_journal_ppat_1012156
crossref_primary_10_1038_s41392_022_01087_8
crossref_primary_10_1084_jem_20220621
crossref_primary_10_1186_s40779_020_00296_y
crossref_primary_10_1016_j_immuni_2021_05_004
crossref_primary_10_1038_s41467_024_52810_8
crossref_primary_10_1016_j_biocel_2021_106090
crossref_primary_10_1016_j_jbc_2024_108063
crossref_primary_10_1016_j_celrep_2021_109604
crossref_primary_10_1038_s41419_022_04589_z
crossref_primary_10_1371_journal_ppat_1011063
crossref_primary_10_1038_s41467_023_39738_1
crossref_primary_10_1371_journal_ppat_1010093
crossref_primary_10_3390_v16060863
crossref_primary_10_1111_1440_1681_13620
crossref_primary_10_1038_s41541_023_00800_0
crossref_primary_10_1002_jmv_28437
crossref_primary_10_1016_j_pupt_2023_102189
crossref_primary_10_3389_fnins_2021_674576
crossref_primary_10_1016_j_xcrm_2023_101305
crossref_primary_10_1016_j_bone_2021_116227
crossref_primary_10_1016_j_heliyon_2023_e19226
crossref_primary_10_1161_CIRCRESAHA_123_321878
crossref_primary_10_4049_jimmunol_2300731
crossref_primary_10_1002_nano_202100123
crossref_primary_10_3389_fimmu_2023_1223260
crossref_primary_10_1038_s41586_022_04661_w
crossref_primary_10_1002_sctm_21_0183
crossref_primary_10_1126_sciimmunol_abi9007
crossref_primary_10_3389_fimmu_2021_689866
crossref_primary_10_1038_s41467_023_43447_0
crossref_primary_10_1038_s41588_022_01131_x
crossref_primary_10_1016_j_jconrel_2025_01_044
crossref_primary_10_1126_sciimmunol_abi9002
crossref_primary_10_1084_jem_20211818
crossref_primary_10_3390_antib10040045
crossref_primary_10_1073_pnas_2119093119
crossref_primary_10_1126_scisignal_abg8744
crossref_primary_10_1038_s41598_022_24519_5
crossref_primary_10_1073_pnas_2406332121
crossref_primary_10_1371_journal_pone_0294176
crossref_primary_10_1016_j_fitote_2023_105695
crossref_primary_10_1128_JVI_02260_20
crossref_primary_10_3389_fimmu_2024_1383086
crossref_primary_10_1016_j_freeradbiomed_2025_01_015
crossref_primary_10_3389_fimmu_2023_1195299
crossref_primary_10_1038_s41467_021_26803_w
crossref_primary_10_3390_v14050991
crossref_primary_10_1124_jpet_124_002154
crossref_primary_10_1128_msphere_00558_22
crossref_primary_10_3390_ijms232113623
crossref_primary_10_1371_journal_ppat_1011168
crossref_primary_10_3390_v13112137
crossref_primary_10_3390_vaccines9111266
crossref_primary_10_15252_embr_202153865
crossref_primary_10_3389_fped_2024_1325562
crossref_primary_10_3389_fcimb_2023_1307553
crossref_primary_10_1007_s11914_022_00734_x
crossref_primary_10_1016_j_cell_2021_11_023
crossref_primary_10_1016_j_celrep_2023_112395
crossref_primary_10_1038_s41592_022_01427_0
crossref_primary_10_1016_j_intimp_2022_109325
crossref_primary_10_1038_s42003_025_07491_4
crossref_primary_10_1016_j_cell_2022_11_030
crossref_primary_10_1002_2211_5463_70002
crossref_primary_10_1016_j_isci_2024_111347
crossref_primary_10_1016_j_cell_2022_03_037
crossref_primary_10_1152_ajpgi_00293_2022
crossref_primary_10_1371_journal_ppat_1012368
crossref_primary_10_1038_s41598_022_23880_9
crossref_primary_10_1007_s10753_022_01656_7
crossref_primary_10_1128_spectrum_02371_22
crossref_primary_10_1016_j_vaccine_2022_05_087
crossref_primary_10_1021_acs_molpharmaceut_3c00114
crossref_primary_10_1134_S0026893322050065
crossref_primary_10_1038_s41579_021_00542_7
crossref_primary_10_2174_1872208316666220124101611
crossref_primary_10_3390_jcm11195691
crossref_primary_10_7554_eLife_66522
crossref_primary_10_1038_s41392_021_00800_3
crossref_primary_10_1038_s41467_023_44134_w
crossref_primary_10_1038_s41586_024_08320_0
crossref_primary_10_3389_fimmu_2022_1007955
crossref_primary_10_1038_s41467_020_19891_7
crossref_primary_10_1172_JCI174439
crossref_primary_10_1172_jci_insight_159573
crossref_primary_10_3390_ijms25158245
crossref_primary_10_3390_vaccines12050491
crossref_primary_10_1016_j_onehlt_2021_100282
crossref_primary_10_1042_CS20200480
crossref_primary_10_3389_fimmu_2022_893792
crossref_primary_10_1016_j_omtn_2024_102331
crossref_primary_10_3390_microorganisms9040868
crossref_primary_10_3390_v14051020
crossref_primary_10_1371_journal_ppat_1010175
crossref_primary_10_1007_s10456_021_09823_4
crossref_primary_10_3390_v16071158
crossref_primary_10_1002_adhm_202304186
crossref_primary_10_1172_JCI148036
crossref_primary_10_1038_s41467_024_45180_8
crossref_primary_10_1038_s42003_023_05626_z
crossref_primary_10_1016_j_mcpro_2025_100913
crossref_primary_10_1111_imm_13889
crossref_primary_10_1016_j_immuni_2021_04_002
crossref_primary_10_1155_2022_3193671
crossref_primary_10_1371_journal_pone_0288920
crossref_primary_10_7554_eLife_70002
crossref_primary_10_1038_s41467_021_25030_7
crossref_primary_10_1016_j_virol_2024_110384
crossref_primary_10_1038_s41385_021_00464_w
crossref_primary_10_3390_v13101993
crossref_primary_10_1126_sciimmunol_adf8161
crossref_primary_10_1038_s41422_021_00473_1
crossref_primary_10_1016_j_tem_2023_08_010
crossref_primary_10_1016_j_celrep_2021_110143
crossref_primary_10_1038_s41467_023_38783_0
crossref_primary_10_1371_journal_ppat_1012100
crossref_primary_10_1007_s00011_023_01798_w
crossref_primary_10_1128_spectrum_01091_22
crossref_primary_10_1084_jem_20211862
crossref_primary_10_1038_s42003_022_03189_z
crossref_primary_10_31254_jahm_2022_8401
crossref_primary_10_1007_s10495_024_01942_9
crossref_primary_10_1371_journal_ppat_1010161
crossref_primary_10_4049_jimmunol_2100608
crossref_primary_10_1007_s10555_021_10017_z
crossref_primary_10_1016_j_ebiom_2022_104390
crossref_primary_10_2147_JIR_S323026
crossref_primary_10_26508_lsa_202301997
crossref_primary_10_3389_fimmu_2022_1055811
crossref_primary_10_3390_v13061062
crossref_primary_10_1128_mbio_00683_22
crossref_primary_10_1055_a_1825_9641
crossref_primary_10_2139_ssrn_3919940
crossref_primary_10_3389_fmed_2021_644678
crossref_primary_10_1126_science_abq0839
crossref_primary_10_1096_fj_202002742RR
crossref_primary_10_1016_j_virusres_2024_199319
crossref_primary_10_3390_vaccines9060587
crossref_primary_10_1016_j_isci_2023_105972
crossref_primary_10_1128_jvi_01276_21
crossref_primary_10_1128_msphere_00243_22
crossref_primary_10_1038_s41467_021_25153_x
crossref_primary_10_1002_jmv_27718
crossref_primary_10_3390_vaccines9111346
crossref_primary_10_3389_fphys_2021_688946
crossref_primary_10_3390_v17010098
crossref_primary_10_2174_0118715303265960230926113201
crossref_primary_10_35772_ghm_2022_01013
crossref_primary_10_1016_j_cell_2021_02_044
crossref_primary_10_1128_JVI_01010_21
crossref_primary_10_1128_JVI_00964_21
crossref_primary_10_3389_fcvm_2022_1054690
crossref_primary_10_3389_fviro_2022_848465
crossref_primary_10_7554_eLife_74623
crossref_primary_10_1016_j_celrep_2022_110799
crossref_primary_10_3389_fimmu_2022_1011185
crossref_primary_10_1038_s42003_023_05263_6
crossref_primary_10_1371_journal_ppat_1009163
crossref_primary_10_1172_JCI163105
crossref_primary_10_1038_s41598_023_29118_6
crossref_primary_10_1152_ajplung_00384_2021
crossref_primary_10_1007_s00401_021_02314_2
crossref_primary_10_1016_j_celrep_2021_109452
crossref_primary_10_1152_ajplung_00223_2021
crossref_primary_10_1002_jmv_70237
crossref_primary_10_3390_v14061137
crossref_primary_10_3390_v16030417
crossref_primary_10_1002_eji_202350624
crossref_primary_10_1038_s41392_021_00848_1
crossref_primary_10_1136_bmjresp_2023_001762
crossref_primary_10_3390_ijms21239289
crossref_primary_10_1038_s41586_022_04421_w
crossref_primary_10_1016_j_isci_2022_104046
crossref_primary_10_1016_j_virs_2024_03_009
crossref_primary_10_3389_fmed_2020_626796
crossref_primary_10_1038_s41467_022_34571_4
crossref_primary_10_1080_22221751_2022_2119169
crossref_primary_10_1038_s41598_021_93855_9
crossref_primary_10_1016_j_ebiom_2025_105615
crossref_primary_10_5713_ab_22_0143
crossref_primary_10_1111_resp_13997
crossref_primary_10_1016_j_molmed_2023_11_001
crossref_primary_10_1126_science_abf4058
crossref_primary_10_1016_j_csbj_2021_04_043
crossref_primary_10_1371_journal_ppat_1010377
crossref_primary_10_3390_v15030611
crossref_primary_10_1007_s12015_021_10129_7
crossref_primary_10_3389_fmicb_2022_840757
crossref_primary_10_1016_j_ebiom_2025_105619
crossref_primary_10_1038_s41586_022_04630_3
crossref_primary_10_1038_s41577_022_00785_2
crossref_primary_10_1038_s41589_022_01094_4
crossref_primary_10_4049_immunohorizons_2200075
crossref_primary_10_1016_j_cell_2021_02_026
crossref_primary_10_1038_s41590_024_01743_x
crossref_primary_10_3390_ijms24021314
crossref_primary_10_1016_j_matdes_2022_111087
crossref_primary_10_1038_s41577_022_00762_9
crossref_primary_10_1126_sciadv_abj9815
crossref_primary_10_3389_fimmu_2021_808932
crossref_primary_10_1016_j_it_2024_06_003
crossref_primary_10_1021_acsnano_2c03119
crossref_primary_10_1016_j_celrep_2021_109353
crossref_primary_10_1021_acsomega_4c03023
crossref_primary_10_1038_s41598_021_87462_x
crossref_primary_10_1099_jgv_0_001599
crossref_primary_10_1038_s41592_022_01447_w
crossref_primary_10_1146_annurev_bioeng_072623_044010
crossref_primary_10_1126_scitranslmed_ado1941
crossref_primary_10_1038_s41590_021_00962_w
crossref_primary_10_1371_journal_pbio_3001510
crossref_primary_10_3390_v15061364
crossref_primary_10_3389_fncel_2021_674123
crossref_primary_10_1038_s41467_023_43027_2
crossref_primary_10_3390_ijms241511957
crossref_primary_10_1096_fj_202101013
crossref_primary_10_1371_journal_pone_0273430
crossref_primary_10_3389_fimmu_2024_1370511
crossref_primary_10_1038_s41598_023_29909_x
crossref_primary_10_2139_ssrn_4113979
crossref_primary_10_1371_journal_ppat_1011328
crossref_primary_10_1128_spectrum_00653_23
crossref_primary_10_1038_s41467_021_26113_1
crossref_primary_10_3390_v14030535
crossref_primary_10_1016_j_cell_2021_03_051
crossref_primary_10_1038_s41564_023_01488_7
crossref_primary_10_3390_v13030529
crossref_primary_10_3389_fimmu_2022_995235
crossref_primary_10_3389_fimmu_2024_1378591
crossref_primary_10_3390_pathogens10050509
crossref_primary_10_3390_ijms25052477
crossref_primary_10_1016_j_biopha_2023_115882
crossref_primary_10_1016_j_nbd_2021_105561
crossref_primary_10_1038_s42003_021_02410_9
crossref_primary_10_1038_s41564_023_01431_w
crossref_primary_10_1016_j_it_2023_10_004
crossref_primary_10_1172_jci_insight_148999
crossref_primary_10_1186_s12985_022_01818_x
crossref_primary_10_3390_v16040537
Cites_doi 10.1016/j.phrs.2020.104833
10.1084/jem.20201241
10.1016/j.cca.2020.05.019
10.1016/j.chom.2020.04.017
10.1016/j.jinf.2020.03.041
10.1016/j.cell.2020.04.026
10.1093/bioinformatics/btt656
10.1002/path.1570
10.1016/j.cell.2015.12.032
10.1038/s41392-020-0159-1
10.1128/JVI.00841-19
10.1128/jvi.00127-20
10.1111/bph.15143
10.1016/j.chom.2020.04.009
10.1016/j.jaci.2020.04.027
10.1016/j.virol.2016.06.022
10.1016/j.chom.2015.04.005
10.1161/CIRCRESAHA.114.300558
10.1038/s41586-020-2312-y
10.1016/0306-4522(93)90045-H
10.1093/bioinformatics/bts356
10.1016/j.cell.2015.12.027
10.1093/bioinformatics/btp616
10.1016/j.cell.2020.06.011
10.1126/science.abb7314
10.1016/j.cell.2020.04.035
10.1016/S0140-6736(20)30628-0
10.1093/cid/ciaa449
10.3109/01902148.2014.971921
10.1148/radiol.2020200370
10.1016/j.ebiom.2020.102763
10.1128/JVI.00737-08
10.1016/j.cell.2020.05.027
10.1038/s41591-020-0944-y
10.1128/JVI.02012-06
10.1038/s41591-020-0901-9
10.1016/j.immuni.2019.03.025
10.1016/j.cell.2020.05.006
10.1016/j.chom.2016.01.007
10.1016/j.ijantimicag.2020.106024
10.1038/s41564-020-0688-y
10.1016/S0140-6736(20)30183-5
10.1128/JVI.02113-07
10.1093/bioinformatics/bts635
10.1172/JCI137244
10.1038/s41587-020-0602-4
10.1016/S2213-2600(20)30076-X
10.1001/jama.2020.6771
10.1093/nar/gkv412
10.1513/AnnalsATS.202005-462RL
10.1093/nar/gkv007
10.1016/j.chom.2020.05.008
10.1016/j.chom.2020.05.020
10.1093/cid/ciaa629
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
COPYRIGHT 2020 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7T5
7TK
7TM
7U9
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/s41590-020-0778-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

ProQuest Central Student
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1529-2916
EndPage 1335
ExternalDocumentID A638923367
32839612
10_1038_s41590_020_0778_2
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  grantid: HR001117S0019
  funderid: https://doi.org/10.13039/100000185
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: 75N93019C00062; R01 AI127828; R01 AI130591; R35 HL145242; F32 AI138392
  funderid: https://doi.org/10.13039/100000060
– fundername: NIAID NIH HHS
  grantid: 75N93019C00062
– fundername: NIBIB NIH HHS
  grantid: T32 EB021955
– fundername: NIAID NIH HHS
  grantid: T32 AI007163
– fundername: NIAID NIH HHS
  grantid: R01 AI127828
– fundername: NIAID NIH HHS
  grantid: F30 AI152327
– fundername: NIAID NIH HHS
  grantid: R01 AI157155
– fundername: NCATS NIH HHS
  grantid: UL1 TR002345
– fundername: NIAID NIH HHS
  grantid: R01 AI130591
– fundername: NIAMS NIH HHS
  grantid: P30 AR073752
– fundername: NHLBI NIH HHS
  grantid: R35 HL145242
GroupedDBID ---
.55
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABOCM
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ISR
ITC
L-9
LK8
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WH7
X7M
Y6R
ZXP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AGQPQ
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QP
7QR
7T5
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c582t-ccb7e3ef3b3e617f6f26d8916adee0a61c954c37e3bd136642eb7c8dffab30673
IEDL.DBID 7X7
ISSN 1529-2908
1529-2916
IngestDate Fri Sep 05 09:35:39 EDT 2025
Tue Aug 12 07:27:21 EDT 2025
Tue Jun 17 21:34:15 EDT 2025
Tue Jun 10 20:43:16 EDT 2025
Fri Jun 27 04:25:37 EDT 2025
Mon Jul 21 06:00:23 EDT 2025
Thu Apr 24 23:01:38 EDT 2025
Tue Jul 01 01:02:32 EDT 2025
Fri Feb 21 02:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-ccb7e3ef3b3e617f6f26d8916adee0a61c954c37e3bd136642eb7c8dffab30673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8791-3165
0000-0003-3377-4304
0000-0002-1301-0852
0000-0001-8750-3716
0000-0003-0567-738X
OpenAccessLink https://www.nature.com/articles/s41590-020-0778-2.pdf
PMID 32839612
PQID 2475008898
PQPubID 45782
PageCount 9
ParticipantIDs proquest_miscellaneous_2437121350
proquest_journals_2475008898
gale_infotracmisc_A638923367
gale_infotracacademiconefile_A638923367
gale_incontextgauss_ISR_A638923367
pubmed_primary_32839612
crossref_citationtrail_10_1038_s41590_020_0778_2
crossref_primary_10_1038_s41590_020_0778_2
springer_journals_10_1038_s41590_020_0778_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature immunology
PublicationTitleAbbrev Nat Immunol
PublicationTitleAlternate Nat Immunol
PublicationYear 2020
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Hamming (CR2) 2004; 203
Liu (CR25) 2020; 55
Ritchie (CR54) 2015; 43
Chen (CR41) 2020; 130
Robichaud, Fereydoonzad, Urovitch, Brunet (CR16) 2015; 41
CR30
Channappanavar (CR43) 2016; 19
Cook (CR33) 2019; 94
Pan (CR39) 2020; 295
Fu (CR27) 2020; 80
Robinson, McCarthy, Smyth (CR53) 2010; 26
Dobin (CR50) 2013; 29
Barnett, Cassell, Perlman (CR45) 1993; 57
Li, Zhou, Yang, You (CR47) 2020; 157
Jiang (CR38) 2008; 82
Jiang (CR11) 2020; 182
CR3
CR5
CR8
CR7
Huang (CR22) 2020; 395
Mukherjee (CR48) 2016; 497
Rockx (CR4) 2020; 368
Liao, Smyth, Shi (CR51) 2014; 30
Ziegler (CR1) 2020; 181
Mehta (CR21) 2020; 395
CR42
Yang, Pabon, Murry (CR14) 2014; 114
Yang (CR26) 2020; 146
Wang, Wang, Li (CR52) 2012; 28
Blanco-Melo (CR32) 2020; 181
McGovern, Robichaud, Robichaud, Schuessler, Martin (CR49) 2013; 2013
Spinato (CR46) 2020; 323
Mostafavi (CR44) 2016; 164
CR18
CR17
CR13
CR12
Liu (CR28) 2020; 508
Park, Iwasaki (CR36) 2020; 27
Netland, Meyerholz, Moore, Cassell, Perlman (CR15) 2008; 82
Wilk (CR29) 2020; 26
Bost (CR20) 2020; 181
Liu (CR55) 2015; 43
Zhou (CR31) 2020; 27
Liao (CR19) 2020; 26
Lazear, Schoggins, Diamond (CR37) 2019; 50
Ng, Mendoza, Garcia, Oldstone (CR34) 2016; 164
CR24
CR23
Israelow (CR9) 2020; 217
Xu (CR40) 2020; 8
Letko, Marzi, Munster (CR6) 2020; 5
McCray (CR10) 2007; 81
Ng (CR35) 2015; 17
R Channappanavar (778_CR43) 2016; 19
G Spinato (778_CR46) 2020; 323
Z Xu (778_CR40) 2020; 8
D Blanco-Melo (778_CR32) 2020; 181
PB McCray Jr. (778_CR10) 2007; 81
M Letko (778_CR6) 2020; 5
G Chen (778_CR41) 2020; 130
778_CR12
778_CR13
TK McGovern (778_CR49) 2013; 2013
778_CR18
778_CR17
EM Barnett (778_CR45) 1993; 57
MD Robinson (778_CR53) 2010; 26
L Wang (778_CR52) 2012; 28
L Fu (778_CR27) 2020; 80
Y Liao (778_CR51) 2014; 30
I Hamming (778_CR2) 2004; 203
S Mostafavi (778_CR44) 2016; 164
CT Ng (778_CR34) 2016; 164
CT Ng (778_CR35) 2015; 17
778_CR5
HM Lazear (778_CR37) 2019; 50
P Bost (778_CR20) 2020; 181
778_CR3
A Robichaud (778_CR16) 2015; 41
778_CR23
ME Ritchie (778_CR54) 2015; 43
778_CR24
A Dobin (778_CR50) 2013; 29
LE Cook (778_CR33) 2019; 94
R Liu (778_CR28) 2020; 508
P Mehta (778_CR21) 2020; 395
F Pan (778_CR39) 2020; 295
Y Yang (778_CR26) 2020; 146
778_CR8
Y Li (778_CR47) 2020; 157
S Mukherjee (778_CR48) 2016; 497
778_CR30
778_CR7
CGK Ziegler (778_CR1) 2020; 181
J Liu (778_CR25) 2020; 55
D Jiang (778_CR38) 2008; 82
X Yang (778_CR14) 2014; 114
A Park (778_CR36) 2020; 27
R Liu (778_CR55) 2015; 43
B Israelow (778_CR9) 2020; 217
AJ Wilk (778_CR29) 2020; 26
Z Zhou (778_CR31) 2020; 27
C Huang (778_CR22) 2020; 395
RD Jiang (778_CR11) 2020; 182
M Liao (778_CR19) 2020; 26
B Rockx (778_CR4) 2020; 368
778_CR42
J Netland (778_CR15) 2008; 82
32879513 - Nat Immunol. 2020 Sep 2
References_xml – volume: 181
  start-page: 1475
  year: 2020
  end-page: 1488.e12
  ident: CR20
  article-title: Host–viral infection maps reveal signatures of severe COVID-19 patients
  publication-title: Cell
– ident: CR12
– volume: 2013
  start-page: e50172
  year: 2013
  ident: CR49
  article-title: Evaluation of respiratory system mechanics in mice using the forced oscillation technique
  publication-title: J. Vis. Exp.
– volume: 295
  start-page: 715
  year: 2020
  end-page: 721
  ident: CR39
  article-title: Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19)
  publication-title: Radiology
– volume: 17
  start-page: 653
  year: 2015
  end-page: 661
  ident: CR35
  article-title: Blockade of interferon beta, but not interferon alpha, signaling controls persistent viral infection
  publication-title: Cell Host Microbe
– volume: 26
  start-page: 842
  year: 2020
  end-page: 844
  ident: CR19
  article-title: Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19
  publication-title: Nat. Med.
– volume: 26
  start-page: 1070
  year: 2020
  end-page: 1076
  ident: CR29
  article-title: A single-cell atlas of the peripheral immune response in patients with severe COVID-19
  publication-title: Nat. Med.
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: CR22
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– ident: CR8
– volume: 181
  start-page: 1036
  year: 2020
  end-page: 1045.e9
  ident: CR32
  article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19
  publication-title: Cell
– volume: 508
  start-page: 110
  year: 2020
  end-page: 114
  ident: CR28
  article-title: Decreased T cell populations contribute to the increased severity of COVID-19
  publication-title: Clin. Chim. Acta
– ident: CR42
– volume: 43
  start-page: e97
  year: 2015
  ident: CR55
  article-title: Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses
  publication-title: Nucleic Acids Res.
– volume: 82
  start-page: 1665
  year: 2008
  end-page: 1678
  ident: CR38
  article-title: Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus
  publication-title: J. Virol.
– volume: 368
  start-page: 1012
  year: 2020
  end-page: 1015
  ident: CR4
  article-title: Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model
  publication-title: Science
– volume: 57
  start-page: 1007
  year: 1993
  end-page: 1025
  ident: CR45
  article-title: Two neurotropic viruses, herpes simplex virus type 1 and mouse hepatitis virus, spread along different neural pathways from the main olfactory bulb
  publication-title: Neuroscience
– volume: 323
  start-page: 2089
  year: 2020
  end-page: 2090
  ident: CR46
  article-title: Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection
  publication-title: J. Am. Med. Assoc.
– volume: 82
  start-page: 7264
  year: 2008
  end-page: 7275
  ident: CR15
  article-title: Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2
  publication-title: J. Virol.
– volume: 182
  start-page: 50
  year: 2020
  end-page: 58.e8
  ident: CR11
  article-title: Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2
  publication-title: Cell
– volume: 27
  start-page: 883
  year: 2020
  end-page: 890.e2
  ident: CR31
  article-title: Heightened innate immune responses in the respiratory tract of COVID-19 patients
  publication-title: Cell Host Microbe
– volume: 50
  start-page: 907
  year: 2019
  end-page: 923
  ident: CR37
  article-title: Shared and distinct functions of type I and type III interferons
  publication-title: Immunity
– volume: 164
  start-page: 564
  year: 2016
  end-page: 578
  ident: CR44
  article-title: Parsing the interferon transcriptional network and its disease associations
  publication-title: Cell
– volume: 181
  start-page: 1016
  year: 2020
  end-page: 1035.e19
  ident: CR1
  article-title: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues
  publication-title: Cell
– ident: CR5
– volume: 217
  start-page: e20201241
  year: 2020
  ident: CR9
  article-title: Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling
  publication-title: J. Exp. Med.
– volume: 203
  start-page: 631
  year: 2004
  end-page: 637
  ident: CR2
  article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
  publication-title: J. Pathol.
– volume: 5
  start-page: 562
  year: 2020
  end-page: 569
  ident: CR6
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
– volume: 94
  start-page: e00841-19
  year: 2019
  ident: CR33
  article-title: Distinct roles of interferon alpha and beta in controlling Chikungunya virus replication and modulating neutrophil-mediated inflammation
  publication-title: J. Virol.
– ident: CR18
– ident: CR30
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  ident: CR51
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
– volume: 497
  start-page: 33
  year: 2016
  end-page: 40
  ident: CR48
  article-title: Enhancing dengue virus maturation using a stable furin over-expressing cell line
  publication-title: Virology
– volume: 41
  start-page: 84
  year: 2015
  end-page: 92
  ident: CR16
  article-title: Comparative study of three flexiVent system configurations using mechanical test loads
  publication-title: Exp. Lung Res.
– volume: 43
  start-page: e47
  year: 2015
  ident: CR54
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
– volume: 28
  start-page: 2184
  year: 2012
  end-page: 2185
  ident: CR52
  article-title: RSeQC: quality control of RNA-seq experiments
  publication-title: Bioinformatics
– volume: 19
  start-page: 181
  year: 2016
  end-page: 193
  ident: CR43
  article-title: Dysregulated type I interferon and inflammatory monocyte–macrophage responses cause lethal pneumonia in SARS-CoV-infected mice
  publication-title: Cell Host Microbe
– volume: 114
  start-page: 511
  year: 2014
  end-page: 523
  ident: CR14
  article-title: Engineering adolescence: maturation of human pluripotent stem cell–derived cardiomyocytes
  publication-title: Circ. Res.
– volume: 395
  start-page: 1033
  year: 2020
  end-page: 1034
  ident: CR21
  article-title: COVID-19: consider cytokine storm syndromes and immunosuppression
  publication-title: Lancet
– ident: CR23
– volume: 27
  start-page: 870
  year: 2020
  end-page: 878
  ident: CR36
  article-title: Type I and type III interferons—induction, signaling, evasion, and application to combat COVID-19
  publication-title: Cell Host Microbe
– volume: 146
  start-page: 119
  year: 2020
  end-page: 127.e4
  ident: CR26
  article-title: Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19
  publication-title: J. Allergy Clin. Immunol.
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: CR53
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 130
  start-page: 2620
  year: 2020
  end-page: 2629
  ident: CR41
  article-title: Clinical and immunological features of severe and moderate coronavirus disease 2019
  publication-title: J. Clin. Invest.
– ident: CR3
– volume: 55
  start-page: 102763
  year: 2020
  ident: CR25
  article-title: Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients
  publication-title: EBioMedicine
– ident: CR17
– volume: 81
  start-page: 813
  year: 2007
  end-page: 821
  ident: CR10
  article-title: Lethal infection of K18- mice infected with severe acute respiratory syndrome coronavirus
  publication-title: J. Virol.
– ident: CR13
– volume: 8
  start-page: 420
  year: 2020
  end-page: 422
  ident: CR40
  article-title: Pathological findings of COVID-19 associated with acute respiratory distress syndrome
  publication-title: Lancet Resp. Med.
– ident: CR7
– volume: 164
  start-page: 349
  year: 2016
  end-page: 352
  ident: CR34
  article-title: Alpha and beta type 1 interferon signaling: passage for diverse biologic outcomes
  publication-title: Cell
– volume: 157
  start-page: 104833
  year: 2020
  ident: CR47
  article-title: Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor
  publication-title: Pharmacol. Res.
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: CR50
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– ident: CR24
– volume: 80
  start-page: 656
  year: 2020
  end-page: 665
  ident: CR27
  article-title: Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: a systematic review and meta-analysis
  publication-title: J. Infect.
– volume: 157
  start-page: 104833
  year: 2020
  ident: 778_CR47
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.104833
– volume: 217
  start-page: e20201241
  year: 2020
  ident: 778_CR9
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20201241
– volume: 508
  start-page: 110
  year: 2020
  ident: 778_CR28
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2020.05.019
– volume: 27
  start-page: 883
  year: 2020
  ident: 778_CR31
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.04.017
– volume: 80
  start-page: 656
  year: 2020
  ident: 778_CR27
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.03.041
– volume: 181
  start-page: 1036
  year: 2020
  ident: 778_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.026
– volume: 30
  start-page: 923
  year: 2014
  ident: 778_CR51
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 203
  start-page: 631
  year: 2004
  ident: 778_CR2
  publication-title: J. Pathol.
  doi: 10.1002/path.1570
– volume: 164
  start-page: 564
  year: 2016
  ident: 778_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.032
– ident: 778_CR42
  doi: 10.1038/s41392-020-0159-1
– volume: 94
  start-page: e00841-19
  year: 2019
  ident: 778_CR33
  publication-title: J. Virol.
  doi: 10.1128/JVI.00841-19
– ident: 778_CR7
  doi: 10.1128/jvi.00127-20
– ident: 778_CR5
  doi: 10.1111/bph.15143
– ident: 778_CR18
  doi: 10.1016/j.chom.2020.04.009
– volume: 146
  start-page: 119
  year: 2020
  ident: 778_CR26
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2020.04.027
– volume: 497
  start-page: 33
  year: 2016
  ident: 778_CR48
  publication-title: Virology
  doi: 10.1016/j.virol.2016.06.022
– volume: 17
  start-page: 653
  year: 2015
  ident: 778_CR35
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.04.005
– volume: 114
  start-page: 511
  year: 2014
  ident: 778_CR14
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.300558
– ident: 778_CR12
  doi: 10.1038/s41586-020-2312-y
– volume: 57
  start-page: 1007
  year: 1993
  ident: 778_CR45
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(93)90045-H
– volume: 28
  start-page: 2184
  year: 2012
  ident: 778_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts356
– volume: 164
  start-page: 349
  year: 2016
  ident: 778_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.027
– volume: 26
  start-page: 139
  year: 2010
  ident: 778_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– ident: 778_CR8
  doi: 10.1016/j.cell.2020.06.011
– volume: 368
  start-page: 1012
  year: 2020
  ident: 778_CR4
  publication-title: Science
  doi: 10.1126/science.abb7314
– volume: 181
  start-page: 1016
  year: 2020
  ident: 778_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.035
– volume: 395
  start-page: 1033
  year: 2020
  ident: 778_CR21
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30628-0
– ident: 778_CR24
  doi: 10.1093/cid/ciaa449
– volume: 41
  start-page: 84
  year: 2015
  ident: 778_CR16
  publication-title: Exp. Lung Res.
  doi: 10.3109/01902148.2014.971921
– volume: 295
  start-page: 715
  year: 2020
  ident: 778_CR39
  publication-title: Radiology
  doi: 10.1148/radiol.2020200370
– volume: 2013
  start-page: e50172
  year: 2013
  ident: 778_CR49
  publication-title: J. Vis. Exp.
– volume: 55
  start-page: 102763
  year: 2020
  ident: 778_CR25
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.102763
– volume: 82
  start-page: 7264
  year: 2008
  ident: 778_CR15
  publication-title: J. Virol.
  doi: 10.1128/JVI.00737-08
– volume: 182
  start-page: 50
  year: 2020
  ident: 778_CR11
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.027
– volume: 26
  start-page: 1070
  year: 2020
  ident: 778_CR29
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0944-y
– volume: 81
  start-page: 813
  year: 2007
  ident: 778_CR10
  publication-title: J. Virol.
  doi: 10.1128/JVI.02012-06
– volume: 26
  start-page: 842
  year: 2020
  ident: 778_CR19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0901-9
– volume: 50
  start-page: 907
  year: 2019
  ident: 778_CR37
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.025
– volume: 181
  start-page: 1475
  year: 2020
  ident: 778_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.006
– volume: 19
  start-page: 181
  year: 2016
  ident: 778_CR43
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.01.007
– ident: 778_CR3
  doi: 10.1016/j.ijantimicag.2020.106024
– volume: 5
  start-page: 562
  year: 2020
  ident: 778_CR6
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– volume: 395
  start-page: 497
  year: 2020
  ident: 778_CR22
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 82
  start-page: 1665
  year: 2008
  ident: 778_CR38
  publication-title: J. Virol.
  doi: 10.1128/JVI.02113-07
– volume: 29
  start-page: 15
  year: 2013
  ident: 778_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 130
  start-page: 2620
  year: 2020
  ident: 778_CR41
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI137244
– ident: 778_CR23
  doi: 10.1038/s41587-020-0602-4
– volume: 8
  start-page: 420
  year: 2020
  ident: 778_CR40
  publication-title: Lancet Resp. Med.
  doi: 10.1016/S2213-2600(20)30076-X
– volume: 323
  start-page: 2089
  year: 2020
  ident: 778_CR46
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2020.6771
– volume: 43
  start-page: e97
  year: 2015
  ident: 778_CR55
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv412
– ident: 778_CR17
  doi: 10.1513/AnnalsATS.202005-462RL
– volume: 43
  start-page: e47
  year: 2015
  ident: 778_CR54
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 27
  start-page: 870
  year: 2020
  ident: 778_CR36
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.05.008
– ident: 778_CR13
  doi: 10.1016/j.chom.2020.05.020
– ident: 778_CR30
  doi: 10.1093/cid/ciaa629
– reference: 32879513 - Nat Immunol. 2020 Sep 2;:
SSID ssj0014764
Score 2.7299545
Snippet Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1327
SubjectTerms 631/250/2499
631/326/596/4130
ACE2
Angiotensin
Angiotensin converting enzyme
Angiotensin I
Angiotensin-Converting Enzyme 2
Animal models
Animals
Antiviral drugs
Betacoronavirus - immunology
Biomedical and Life Sciences
Biomedicine
Care and treatment
Cell activation
Chlorocebus aethiops
Coronavirus Infections - immunology
Coronavirus Infections - pathology
Coronaviruses
COVID-19
Cytokeratin
Development and progression
Disease Models, Animal
Female
Gene expression
Genetic aspects
Health aspects
Humans
Immune response
Immunity, Innate - immunology
Immunology
Infections
Infectious Diseases
Inflammation
Innate immunity
Inoculation
Interferon
Interferon Type I - immunology
Interferon-gamma - immunology
Keratin-18 - genetics
Leukocytes (neutrophilic)
Leukocytes - immunology
Lung diseases
Lymphocyte Activation - immunology
Lymphocytes T
Male
Mice
Mice, Transgenic
Monocytes
Monocytes - immunology
Neutrophil Infiltration - immunology
Neutrophils - immunology
NF-kappa B - immunology
Pandemics
Peptidyl-dipeptidase A
Peptidyl-Dipeptidase A - genetics
Phenotypes
Pneumonia - genetics
Pneumonia - pathology
Pneumonia - virology
Pneumonia, Viral - immunology
Pneumonia, Viral - pathology
Promoter Regions, Genetic - genetics
Respiratory function
Respiratory tract infections
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
T-Lymphocytes - immunology
Transgenic animals
Transgenic mice
Vero Cells
Viral infections
Virus Replication - immunology
Title SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function
URI https://link.springer.com/article/10.1038/s41590-020-0778-2
https://www.ncbi.nlm.nih.gov/pubmed/32839612
https://www.proquest.com/docview/2475008898
https://www.proquest.com/docview/2437121350
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2gvCMbHAmMyCAkJZC2x8-E8obZqNZBWoZahvlmOcwakKRlL-8B_z10-OjqJvTRSc07i3Pl-d_F9MPbOOQ9l6GJRRJCI2CalyCFSQoLzFpIoc20FvvN5enYRf1klq_6DW9OHVQ46sVXUZe3oG_mpjBHbKCZHf7r6LahrFO2u9i007rP9CC0Rat2QrbYOVxRnbfkohKhcyDzUw66m0qcNAlceCnKewgwdKbmDS7e18z_wdGu_tIWh2WP2qLcf-ahj-BN2D6pD9qDrKPnnkD087_fKn7Kfy9FiKSb1dyH5EHJV8drzti0fH02mUqwJqVCEfjlObem5s5sGGo5oCdfAL1ER0FAUmi7Bkduq5JRXiXqy5ASJ9O8zdjGbfpucib6vgnCJlmvhXJGBAq8KBWjA-NTLtNRoJ9oSILRp5PIkdgppijJSKXooUGROl97bgjwM9ZztVXUFR4znZZ57bTWOL2JEe-QBZJTvCqEHG2cBC4e3alxfdJx6X1yadvNbadMxwiAjDDHCyIB92A656ipu3EX8llhlqJJFRaEyP_A9NebzcmFGZItJpVJ8iPc9ka_x5s72mQc4BSp-tUN5vEOJS83tnh4kwvRLvTE3ghmwN9vTNJLC1yqoN0SjMqqdl4QBe9FJ0nZuCg28HO3MgH0cROvm4v-d-Mu7H-UVO5Ak223S5DHbW19v4DVaT-vipF0i-Ksn0QnbH83G4zkex9P518VfItAWaA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIo4XBOVaKGAQCAlkNbFzPiC0Wlrt0m4feqC-mcQZA1JJSrMr1D_Fb2Qmx5atRN_6moyT2DOeb5y5AF5b67DwbCBzH0MZZGEhU_S1VGhdhqEf26YC33Q3Gh8Gn4_CoxX40-fCcFhlrxMbRV1Ulv-Rb6iAsI1jcpKPJ78kd41i72rfQqMVi208-01HtvrD5BPx941SW5sHo7HsugpIGyZqJq3NY9TodK6R4NtFTkVFQlZSViB6WeTbNAysJpq88HVE9jnmsU0K57Kc7WtNz70G1znTiGv1J6NFSIkfxE25KoLEVKrUS3ovqk42agLK1JN8WPNiOripJRy8iAb_wOEF_2wDe1t34U5nr4phK2D3YAXLNbjRdrA8W4Ob0843fx--7w_39uWo-iKV6EO8SlE50bQBFMPRppIzRkYS2R9W_CQNJWw2r7EWhM54iuKYFA8PJSFtEypFVhaC8zhJLxeCIZivPoDDK1nxh7BaViU-BpEWaeqSLKHxeUDWRao9jDm_Fj2HWRAPwOtX1diuyDn32jg2jbNdJ6ZlhCFGGGaEUQN4txhy0lb4uIz4FbPKcOWMkkNzvtE61Wayv2eGbPsprSP6iLcdkavo5TbrMh1oClxsa4lyfYmStrZdvt1LhOlUS23ON8IAXi5u80gOlyuxmjONjrlWX-gN4FErSYu5aTIoU7JrB_C-F63zh_934k8u_5QXcGt8MN0xO5Pd7adwW7GcNwmb67A6O53jM7LcZvnzZrsI-HrV-_MvPXRQ7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJiZeEIyvwgCDQEggq6mdz4cJla7Vylg1tQztzTj-AKSRjKUV2r_IX8Vd4nR0Envba3JOYt_5fufcFyGvtHbWBDpkec9GLFSRYZntCcatdspGvUTXFfgOJvHeUfjxODpeI3_aXBgMq2x1Yq2oTanxH3mXh4BtGJOTdp0PizjcHb0__cWwgxR6Wtt2Gsq3WTA7dbkxn-Sxb89_w3Gu2hnvAu9fcz4afh7sMd9xgOko5XOmdZ5YYZ3IhQVod7HjsUnBglLG2kDFPZ1FoRZAk5ueiMF2t3miU-OcytH2FvDcG2QjAdSHg-DGh-HkcLr0aYRJXcwKADNjPAvS1scq0m4FMJoFDI9yQQLHOr6Ckpex4h-wvOS9rUFxdIfc9tYs7Tfid5es2WKL3Gz6W55vkc0D77m_R77P-tMZG5RfGKdtAFhBS0frJoG0PxhyNkfcBIH-oelP0F9Uq0VlKwrYbc8sPQG1hENBhJt0S6oKQzHLE7S2oQjQePU-ObqWNX9A1ouysI8IzUyWuVSlMD4PwfbIRGATzL61gbMqTDokaFdVal8CHTtxnMjaFS9S2TBCAiMkMkLyDnm7HHLa1P-4ivglskpiXY0CJfQbrFMlx7Op7KNlyIWI4SPeeCJXwsu18nkQMAUsxbVCub1CCRtfr95uJUJ6xVPJi23SIS-Wt3EkBtMVtlwgjUiwkl8UdMjDRpKWcxNgbmZg9XbIu1a0Lh7-34k_vvpTnpNN2Kvy03iy_4Tc4ijmdTbnNlmfny3sUzDr5vkzv18o-XrdW_QvlHZb_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+infection+of+human+ACE2-transgenic+mice+causes+severe+lung+inflammation+and+impaired+function&rft.jtitle=Nature+immunology&rft.au=Winkler%2C+Emma+S&rft.au=Bailey%2C+Adam+L&rft.au=Kafai%2C+Natasha+M&rft.au=Nair%2C+Sharmila&rft.date=2020-11-01&rft.issn=1529-2916&rft.eissn=1529-2916&rft.volume=21&rft.issue=11&rft.spage=1327&rft_id=info:doi/10.1038%2Fs41590-020-0778-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon