SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function
Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting...
Saved in:
Published in | Nature immunology Vol. 21; no. 11; pp. 1327 - 1335 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.11.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1529-2908 1529-2916 1529-2916 |
DOI | 10.1038/s41590-020-0778-2 |
Cover
Abstract | Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.
Diamond and colleagues generate a K18-hACE2 model of SARS-CoV-2 infection that shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. |
---|---|
AbstractList | Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-[kappa]B-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures.Diamond and colleagues generate a K18-hACE2 model of SARS-CoV-2 infection that shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-κB-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Diamond and colleagues generate a K18-hACE2 model of SARS-CoV-2 infection that shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung disease phenotypes seen in humans who have been hospitalized. Here, we evaluate transgenic mice expressing the human angiotensin I-converting enzyme 2 (ACE2) receptor driven by the cytokeratin-18 (K18) gene promoter (K18-hACE2) as a model of SARS-CoV-2 infection. Intranasal inoculation of SARS-CoV-2 in K18-hACE2 mice results in high levels of viral infection in lungs, with spread to other organs. A decline in pulmonary function occurs 4 days after peak viral titer and correlates with infiltration of monocytes, neutrophils and activated T cells. SARS-CoV-2-infected lung tissues show a massively upregulated innate immune response with signatures of nuclear factor-[kappa]B-dependent, type I and II interferon signaling, and leukocyte activation pathways. Thus, the K18-hACE2 model of SARS-CoV-2 infection shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. Diamond and colleagues generate a K18-hACE2 model of SARS-CoV-2 infection that shares many features of severe COVID-19 infection and can be used to define the basis of lung disease and test immune and antiviral-based countermeasures. |
Audience | Academic |
Author | Chen, Rita E. Head, Richard Winkler, Emma S. Nair, Sharmila Diamond, Michael S. Fox, Julie M. Robichaud, Annette Kang, Liang-I Earnest, James T. Bailey, Adam L. Dort, Sarah McCune, Broc T. Kafai, Natasha M. Keeler, Shamus P. Holtzman, Michael J. Ritter, Jon H. Yu, Jinsheng |
Author_xml | – sequence: 1 givenname: Emma S. surname: Winkler fullname: Winkler, Emma S. organization: Department of Medicine, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine – sequence: 2 givenname: Adam L. surname: Bailey fullname: Bailey, Adam L. organization: Department of Pathology and Immunology, Washington University School of Medicine – sequence: 3 givenname: Natasha M. surname: Kafai fullname: Kafai, Natasha M. organization: Department of Medicine, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine – sequence: 4 givenname: Sharmila surname: Nair fullname: Nair, Sharmila organization: Department of Medicine, Washington University School of Medicine – sequence: 5 givenname: Broc T. surname: McCune fullname: McCune, Broc T. organization: Department of Medicine, Washington University School of Medicine – sequence: 6 givenname: Jinsheng orcidid: 0000-0003-3377-4304 surname: Yu fullname: Yu, Jinsheng organization: Department of Genetics, Washington University School of Medicine – sequence: 7 givenname: Julie M. orcidid: 0000-0003-0567-738X surname: Fox fullname: Fox, Julie M. organization: Department of Medicine, Washington University School of Medicine – sequence: 8 givenname: Rita E. surname: Chen fullname: Chen, Rita E. organization: Department of Medicine, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine – sequence: 9 givenname: James T. surname: Earnest fullname: Earnest, James T. organization: Department of Medicine, Washington University School of Medicine – sequence: 10 givenname: Shamus P. orcidid: 0000-0002-1301-0852 surname: Keeler fullname: Keeler, Shamus P. organization: Department of Medicine, Washington University School of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine – sequence: 11 givenname: Jon H. surname: Ritter fullname: Ritter, Jon H. organization: Department of Pathology and Immunology, Washington University School of Medicine – sequence: 12 givenname: Liang-I surname: Kang fullname: Kang, Liang-I organization: Department of Pathology and Immunology, Washington University School of Medicine – sequence: 13 givenname: Sarah surname: Dort fullname: Dort, Sarah organization: SCIREQ Scientific Respiratory Equipment – sequence: 14 givenname: Annette surname: Robichaud fullname: Robichaud, Annette organization: SCIREQ Scientific Respiratory Equipment – sequence: 15 givenname: Richard surname: Head fullname: Head, Richard organization: Department of Genetics, Washington University School of Medicine – sequence: 16 givenname: Michael J. orcidid: 0000-0001-8750-3716 surname: Holtzman fullname: Holtzman, Michael J. organization: Department of Medicine, Washington University School of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine – sequence: 17 givenname: Michael S. orcidid: 0000-0002-8791-3165 surname: Diamond fullname: Diamond, Michael S. email: diamond@wusm.wustl.edu organization: Department of Medicine, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32839612$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1r1TAYgINM3If-AG8k4I1edOajTdLLw2HqYCDsqLchTd90GW16TNqh_970nM1xhkopDeV53rxfp-gojAEQek3JOSVcfUglrWpSEJZfKVXBnqETWrG6YDUVR3_ORB2j05RuCaGlFOULdMyZ4rWg7ATdbFbXm2I9fi8Y9sGBnfwY8OjwzTyYgFfrC1ZM0YTUQfAWD94CtmZOkHCCO4iA-zl0i9qbYTA724QW-2FrfIQWuznsYr5Ez53pE7y6_56hbx8vvq4_F1dfPl2uV1eFrRSbCmsbCRwcbzgIKp1wTLQql2NaAGIEtXVVWp6ZpqVciJJBI61qnTMNJ0LyM_RuH3cbxx8zpEkPPlnoexNgnJNmJZeUUV6RjL59gt6Ocww5u0zJihClavVIdaYHnQsdcz_sElSvBFc143x37flfqPy0kHuWx-Z8_n8gvD8QMjPBz6nLvU36cnN9yL65T3RuBmj1NvrBxF_6YYwZkHvAxjGlCE5bP-2GkbPwvaZELwuj9wuj88LoZWH0YtIn5kPw_zls76TMhg7iY9_-Lf0GuEHO3g |
CitedBy_id | crossref_primary_10_1038_s12276_023_01110_0 crossref_primary_10_1016_j_ebiom_2021_103762 crossref_primary_10_1371_journal_ppat_1010465 crossref_primary_10_1016_j_omtn_2022_02_008 crossref_primary_10_1126_scitranslmed_abm0899 crossref_primary_10_4049_immunohorizons_2400030 crossref_primary_10_3390_v14112451 crossref_primary_10_3390_v14081627 crossref_primary_10_1021_acscentsci_2c01359 crossref_primary_10_1126_scitranslmed_abf8396 crossref_primary_10_1186_s40001_023_01373_3 crossref_primary_10_3389_fimmu_2024_1345499 crossref_primary_10_1002_adhm_202300889 crossref_primary_10_1038_s41467_024_55272_0 crossref_primary_10_1186_s41232_020_00148_1 crossref_primary_10_4155_bio_2021_0096 crossref_primary_10_5501_wjv_v11_i1_40 crossref_primary_10_1007_s12015_022_10409_w crossref_primary_10_1016_j_xpro_2023_102303 crossref_primary_10_3389_fimmu_2022_836492 crossref_primary_10_1126_sciadv_abm0220 crossref_primary_10_3390_cells13030203 crossref_primary_10_4049_jimmunol_2100421 crossref_primary_10_1128_msphere_00726_24 crossref_primary_10_1021_acscentsci_2c01243 crossref_primary_10_1073_pnas_2122897119 crossref_primary_10_1007_s11914_023_00843_1 crossref_primary_10_1007_s00705_022_05609_1 crossref_primary_10_1016_j_it_2021_09_003 crossref_primary_10_1016_j_coph_2021_12_008 crossref_primary_10_1016_j_isci_2022_105748 crossref_primary_10_1186_s12879_024_10000_3 crossref_primary_10_1016_j_isci_2022_105507 crossref_primary_10_3390_v14112584 crossref_primary_10_1093_cid_ciab903 crossref_primary_10_3389_fimmu_2021_748103 crossref_primary_10_1371_journal_ppat_1011777 crossref_primary_10_1177_03009858211057197 crossref_primary_10_1016_j_omtn_2022_10_021 crossref_primary_10_3389_fimmu_2022_918881 crossref_primary_10_3390_pathogens12010020 crossref_primary_10_1161_HYPERTENSIONAHA_124_22064 crossref_primary_10_1128_jvi_00794_24 crossref_primary_10_1128_mbio_02906_21 crossref_primary_10_1126_sciadv_abi5246 crossref_primary_10_26508_lsa_202000886 crossref_primary_10_1016_j_jmb_2021_167243 crossref_primary_10_3389_fimmu_2024_1440314 crossref_primary_10_1080_22221751_2021_1898291 crossref_primary_10_3390_v15040999 crossref_primary_10_1073_pnas_2026785118 crossref_primary_10_1016_j_bcp_2021_114543 crossref_primary_10_1038_s41579_024_01036_y crossref_primary_10_1016_j_celrep_2022_111359 crossref_primary_10_1128_mbio_03693_24 crossref_primary_10_1371_journal_ppat_1011409 crossref_primary_10_1016_j_celrep_2022_110387 crossref_primary_10_1126_scitranslmed_adf4100 crossref_primary_10_1371_journal_pone_0302344 crossref_primary_10_1038_s41589_022_01193_2 crossref_primary_10_1007_s12275_022_1608_z crossref_primary_10_1186_s13287_024_04086_4 crossref_primary_10_3389_fneur_2023_1172416 crossref_primary_10_1128_JVI_01511_21 crossref_primary_10_3390_pathogens13040316 crossref_primary_10_1007_s11914_023_00842_2 crossref_primary_10_1016_j_fmre_2021_03_001 crossref_primary_10_1016_j_actbio_2024_05_048 crossref_primary_10_1002_jmv_28094 crossref_primary_10_1186_s43141_021_00130_5 crossref_primary_10_30802_AALAS_CM_22_000073 crossref_primary_10_1016_j_celrep_2022_110561 crossref_primary_10_1371_journal_pone_0310915 crossref_primary_10_1038_s41467_024_45628_x crossref_primary_10_1038_s41589_021_00965_6 crossref_primary_10_1126_sciimmunol_abl4509 crossref_primary_10_1134_S0026893322050028 crossref_primary_10_1038_s42003_025_07820_7 crossref_primary_10_1073_pnas_2101555118 crossref_primary_10_3389_fmicb_2021_651403 crossref_primary_10_1038_s41467_022_28766_y crossref_primary_10_1038_s41392_024_01917_x crossref_primary_10_1038_s41423_022_00855_4 crossref_primary_10_1093_infdis_jiad526 crossref_primary_10_1038_s41541_024_00838_8 crossref_primary_10_1128_jvi_02184_21 crossref_primary_10_4049_jimmunol_2200198 crossref_primary_10_1016_j_mce_2021_111255 crossref_primary_10_1128_jvi_01179_24 crossref_primary_10_3389_fimmu_2023_1158455 crossref_primary_10_1016_j_virol_2022_08_003 crossref_primary_10_1080_17460441_2022_1995352 crossref_primary_10_1172_jci_insight_182704 crossref_primary_10_3389_fimmu_2022_863831 crossref_primary_10_1093_ibd_izab274 crossref_primary_10_1371_journal_ppat_1009544 crossref_primary_10_3389_fimmu_2024_1382655 crossref_primary_10_1038_s41467_022_35225_1 crossref_primary_10_3390_biomedicines11061736 crossref_primary_10_1186_s13578_021_00723_0 crossref_primary_10_1038_s41586_022_04865_0 crossref_primary_10_26508_lsa_202301969 crossref_primary_10_3389_fimmu_2022_919815 crossref_primary_10_3389_fimmu_2022_849465 crossref_primary_10_1016_j_medj_2022_03_009 crossref_primary_10_15252_emmm_202115298 crossref_primary_10_1038_s41577_022_00744_x crossref_primary_10_1016_j_xcrm_2021_100450 crossref_primary_10_1038_s41598_022_08104_4 crossref_primary_10_1084_jem_20232192 crossref_primary_10_3389_fcimb_2021_679878 crossref_primary_10_1038_s41564_022_01119_7 crossref_primary_10_3390_cells10113067 crossref_primary_10_3390_v13122506 crossref_primary_10_1016_j_jmb_2023_168173 crossref_primary_10_3390_pathogens11020257 crossref_primary_10_1165_rcmb_2020_0456ED crossref_primary_10_3390_nu14153061 crossref_primary_10_1021_acs_nanolett_1c01284 crossref_primary_10_1128_aac_01361_23 crossref_primary_10_3390_biomedicines12030543 crossref_primary_10_1128_aac_00835_24 crossref_primary_10_3389_fimmu_2023_1264323 crossref_primary_10_1038_s41541_022_00451_7 crossref_primary_10_1016_j_ebiom_2024_105361 crossref_primary_10_1186_s13578_021_00624_2 crossref_primary_10_3390_ijms22052681 crossref_primary_10_14348_molcells_2021_0094 crossref_primary_10_1038_s41590_023_01560_8 crossref_primary_10_2139_ssrn_4089984 crossref_primary_10_1016_j_bbrc_2024_151198 crossref_primary_10_3389_fbioe_2021_737627 crossref_primary_10_1038_s41467_023_40076_5 crossref_primary_10_1080_08830185_2022_2089666 crossref_primary_10_1073_pnas_2420441122 crossref_primary_10_1016_j_ymthe_2024_03_029 crossref_primary_10_1371_journal_ppat_1010867 crossref_primary_10_1016_j_celrep_2022_111447 crossref_primary_10_1038_s41541_022_00440_w crossref_primary_10_1038_s41590_021_01068_z crossref_primary_10_1016_j_ebiom_2024_105132 crossref_primary_10_1016_j_jbc_2021_100346 crossref_primary_10_1038_s41467_023_37795_0 crossref_primary_10_3390_v15010085 crossref_primary_10_4049_jimmunol_2300282 crossref_primary_10_3389_fddsv_2022_899587 crossref_primary_10_3389_fimmu_2021_733921 crossref_primary_10_3389_fimmu_2023_1108716 crossref_primary_10_1007_s00011_024_01985_3 crossref_primary_10_1007_s43440_023_00463_7 crossref_primary_10_1371_journal_ppat_1010741 crossref_primary_10_1002_mnfr_202200804 crossref_primary_10_1161_CIRCRESAHA_122_321930 crossref_primary_10_1007_s00430_022_00735_8 crossref_primary_10_1073_pnas_2303509120 crossref_primary_10_1016_j_cell_2021_08_016 crossref_primary_10_1371_journal_ppat_1009758 crossref_primary_10_1016_j_isci_2022_104925 crossref_primary_10_1093_infdis_jiad567 crossref_primary_10_1038_s41467_021_26602_3 crossref_primary_10_1002_mco2_98 crossref_primary_10_1111_jpi_12772 crossref_primary_10_1080_19490976_2021_2018900 crossref_primary_10_1186_s13020_022_00598_4 crossref_primary_10_2139_ssrn_3961037 crossref_primary_10_3390_v14010027 crossref_primary_10_3390_v14050966 crossref_primary_10_1002_jmv_29671 crossref_primary_10_4110_in_2021_21_e1 crossref_primary_10_1016_j_vaccine_2023_09_033 crossref_primary_10_1016_j_neuint_2023_105567 crossref_primary_10_1172_jci_insight_155896 crossref_primary_10_1016_j_immuni_2021_08_016 crossref_primary_10_1016_j_immuni_2021_08_015 crossref_primary_10_1073_pnas_2117198119 crossref_primary_10_3390_jpm12030349 crossref_primary_10_29328_journal_ibm_1001018 crossref_primary_10_3390_v14020189 crossref_primary_10_1038_s41586_022_04856_1 crossref_primary_10_1172_jci_insight_179726 crossref_primary_10_1126_sciadv_adg5461 crossref_primary_10_1097_CCE_0000000000001225 crossref_primary_10_1016_j_isci_2021_102699 crossref_primary_10_1016_j_cell_2020_11_025 crossref_primary_10_1016_j_immuni_2021_01_017 crossref_primary_10_1042_CS20220663 crossref_primary_10_1016_j_immuni_2021_08_024 crossref_primary_10_1038_s41586_021_03631_y crossref_primary_10_1073_pnas_2410451121 crossref_primary_10_30895_2221_996X_2022_22_4_414_434 crossref_primary_10_1021_acsami_2c03442 crossref_primary_10_1016_j_xcrm_2023_101362 crossref_primary_10_4110_in_2024_24_e7 crossref_primary_10_1111_jcmm_70030 crossref_primary_10_1371_journal_pone_0289139 crossref_primary_10_1016_j_antiviral_2021_105138 crossref_primary_10_1038_s41541_024_00961_6 crossref_primary_10_1371_journal_pone_0291537 crossref_primary_10_1080_22221751_2024_2353302 crossref_primary_10_1021_acs_analchem_3c01522 crossref_primary_10_1371_journal_pbio_3001284 crossref_primary_10_3389_fmicb_2021_626553 crossref_primary_10_1038_s42003_023_04689_2 crossref_primary_10_1002_jmv_29336 crossref_primary_10_1016_j_medj_2022_08_002 crossref_primary_10_1142_S0218127421501637 crossref_primary_10_1016_j_jcrc_2023_154318 crossref_primary_10_1093_glycob_cwad031 crossref_primary_10_3390_ijms251810054 crossref_primary_10_1038_s41392_022_00996_y crossref_primary_10_1016_j_cell_2024_02_020 crossref_primary_10_1038_s41598_023_41115_3 crossref_primary_10_1016_j_lfs_2021_119881 crossref_primary_10_1096_fj_202302202RR crossref_primary_10_3389_fimmu_2023_1166725 crossref_primary_10_1039_D1LC00817J crossref_primary_10_1016_j_semnephrol_2022_10_005 crossref_primary_10_1016_j_omtn_2022_08_031 crossref_primary_10_1002_jmv_29349 crossref_primary_10_1038_s41596_020_00403_2 crossref_primary_10_1091_mbc_E22_02_0045 crossref_primary_10_1038_s41564_022_01288_5 crossref_primary_10_1002_prp2_1194 crossref_primary_10_3389_fimmu_2022_1007080 crossref_primary_10_3390_v13010132 crossref_primary_10_1038_s41467_021_25729_7 crossref_primary_10_1002_adbi_202200002 crossref_primary_10_1016_j_ebiom_2023_104932 crossref_primary_10_3390_v17010100 crossref_primary_10_1002_eji_202250332 crossref_primary_10_1371_journal_ppat_1009715 crossref_primary_10_1126_sciadv_abj8065 crossref_primary_10_1038_s41467_023_41381_9 crossref_primary_10_1016_j_celrep_2020_108528 crossref_primary_10_1080_22221751_2020_1838955 crossref_primary_10_1016_j_biopha_2020_111193 crossref_primary_10_1111_jne_12935 crossref_primary_10_3390_vaccines10081173 crossref_primary_10_1126_sciimmunol_abl9929 crossref_primary_10_1172_jci_insight_145916 crossref_primary_10_1016_j_drudis_2021_05_008 crossref_primary_10_3390_nu13072216 crossref_primary_10_3390_vaccines9070747 crossref_primary_10_1024_0301_1526_a000991 crossref_primary_10_1038_s41423_020_00616_1 crossref_primary_10_1016_j_ajpath_2021_10_009 crossref_primary_10_3390_v14071507 crossref_primary_10_4049_jimmunol_2300591 crossref_primary_10_1038_s41586_021_03720_y crossref_primary_10_1002_jex2_58 crossref_primary_10_3389_fimmu_2021_824728 crossref_primary_10_1038_s41586_024_07926_8 crossref_primary_10_1242_dmm_049632 crossref_primary_10_1152_ajplung_00222_2020 crossref_primary_10_3389_fimmu_2023_1138215 crossref_primary_10_1093_infdis_jiad135 crossref_primary_10_3390_cells11020306 crossref_primary_10_1165_rcmb_2023_0007OC crossref_primary_10_1038_s41418_021_00805_z crossref_primary_10_3390_v14102272 crossref_primary_10_1016_j_isci_2023_106092 crossref_primary_10_3389_fimmu_2022_993754 crossref_primary_10_1038_s41586_021_03237_4 crossref_primary_10_1126_scitranslmed_abm3302 crossref_primary_10_1038_s12276_024_01197_z crossref_primary_10_1152_physiol_00033_2021 crossref_primary_10_1080_22221751_2024_2321994 crossref_primary_10_1182_bloodadvances_2022007444 crossref_primary_10_3389_fimmu_2021_707856 crossref_primary_10_15252_embr_202152948 crossref_primary_10_1080_21505594_2024_2316438 crossref_primary_10_1007_s41745_022_00318_9 crossref_primary_10_1038_s41467_021_24339_7 crossref_primary_10_1126_scitranslmed_abq0603 crossref_primary_10_1038_s41586_021_03995_1 crossref_primary_10_1126_sciadv_adj1736 crossref_primary_10_1177_03009858221092015 crossref_primary_10_51335_organoid_2022_2_e16 crossref_primary_10_3389_fimmu_2022_844837 crossref_primary_10_1016_j_lfs_2025_123404 crossref_primary_10_3390_cells12071092 crossref_primary_10_1038_s41467_023_39049_5 crossref_primary_10_1038_s41586_022_04690_5 crossref_primary_10_1038_s41392_021_00851_6 crossref_primary_10_1111_all_14754 crossref_primary_10_4049_jimmunol_2000965 crossref_primary_10_3389_fimmu_2024_1374541 crossref_primary_10_1016_j_isci_2021_102479 crossref_primary_10_3390_v15010123 crossref_primary_10_1016_j_chom_2021_06_008 crossref_primary_10_1038_s41591_022_02092_8 crossref_primary_10_1186_s12979_025_00503_1 crossref_primary_10_1038_s41586_020_2943_z crossref_primary_10_1038_s41586_022_05128_8 crossref_primary_10_3390_v14010011 crossref_primary_10_1111_imm_13386 crossref_primary_10_1038_s41392_022_00981_5 crossref_primary_10_3389_fimmu_2024_1447962 crossref_primary_10_1038_s41467_021_21239_8 crossref_primary_10_1016_j_talanta_2021_123076 crossref_primary_10_1128_mBio_02756_21 crossref_primary_10_4049_jimmunol_2300675 crossref_primary_10_1038_s41467_022_32216_0 crossref_primary_10_1128_spectrum_03916_23 crossref_primary_10_1038_s41586_022_04890_z crossref_primary_10_3390_immuno4020010 crossref_primary_10_3390_v14061218 crossref_primary_10_1038_s41593_022_01242_y crossref_primary_10_1016_j_smim_2022_101650 crossref_primary_10_1002_cti2_1251 crossref_primary_10_1016_j_ymthe_2022_03_014 crossref_primary_10_1038_s41467_022_31721_6 crossref_primary_10_1038_s41586_022_05482_7 crossref_primary_10_1038_s41577_020_00471_1 crossref_primary_10_3390_v13081656 crossref_primary_10_14348_molcells_2022_0089 crossref_primary_10_1016_j_coviro_2021_03_009 crossref_primary_10_1038_s41423_023_01122_w crossref_primary_10_1016_j_heliyon_2022_e12653 crossref_primary_10_4196_kjpp_2024_28_5_403 crossref_primary_10_1002_jmv_70049 crossref_primary_10_1016_j_bbadis_2025_167726 crossref_primary_10_1038_s41586_022_04441_6 crossref_primary_10_1016_j_cell_2021_03_029 crossref_primary_10_1172_JCI162282 crossref_primary_10_1016_j_heliyon_2023_e21893 crossref_primary_10_3389_fimmu_2022_1023255 crossref_primary_10_1073_pnas_2310421121 crossref_primary_10_1080_22221751_2021_2024095 crossref_primary_10_1038_s41467_023_39815_5 crossref_primary_10_2147_IJN_S497742 crossref_primary_10_1038_s41590_021_01091_0 crossref_primary_10_1161_ATVBAHA_121_316925 crossref_primary_10_1038_s41564_024_01786_8 crossref_primary_10_1016_j_chom_2021_11_013 crossref_primary_10_1016_j_metabol_2022_155236 crossref_primary_10_1016_j_antiviral_2023_105738 crossref_primary_10_1172_jci_insight_172488 crossref_primary_10_1016_j_jviromet_2021_114306 crossref_primary_10_1016_j_biocel_2023_106421 crossref_primary_10_1126_sciimmunol_abo0535 crossref_primary_10_1681_ASN_2021091209 crossref_primary_10_3389_fimmu_2022_912899 crossref_primary_10_1073_pnas_2319566121 crossref_primary_10_1186_s13567_024_01325_7 crossref_primary_10_15252_emmm_202114459 crossref_primary_10_1007_s00335_025_10115_1 crossref_primary_10_1016_j_isci_2022_105038 crossref_primary_10_1016_j_chom_2024_10_016 crossref_primary_10_1016_j_stemcr_2021_02_007 crossref_primary_10_1016_j_bbih_2024_100888 crossref_primary_10_1161_ATVBAHA_120_315527 crossref_primary_10_1016_j_bbadis_2024_167322 crossref_primary_10_1126_sciadv_abj1476 crossref_primary_10_1016_j_celrep_2021_109664 crossref_primary_10_3390_v15020354 crossref_primary_10_1016_j_coviro_2021_11_015 crossref_primary_10_1038_s41467_023_36110_1 crossref_primary_10_3389_fmicb_2024_1466980 crossref_primary_10_1146_annurev_pharmtox_121120_012309 crossref_primary_10_1007_s11481_020_09968_x crossref_primary_10_1002_jmv_28532 crossref_primary_10_1038_s41541_021_00406_4 crossref_primary_10_1016_j_jep_2021_114965 crossref_primary_10_3390_biomedicines11082287 crossref_primary_10_1038_s41392_024_01836_x crossref_primary_10_1172_jci_insight_152529 crossref_primary_10_1007_s10753_021_01464_5 crossref_primary_10_1016_j_celrep_2022_110714 crossref_primary_10_1007_s10142_025_01566_5 crossref_primary_10_1038_s41418_021_00866_0 crossref_primary_10_1016_j_ebiom_2021_103291 crossref_primary_10_1177_2041731420985299 crossref_primary_10_1016_j_tranon_2021_101095 crossref_primary_10_1186_s12859_021_04484_y crossref_primary_10_1038_s42255_021_00479_4 crossref_primary_10_1093_pnasnexus_pgad282 crossref_primary_10_1038_s41392_021_00818_7 crossref_primary_10_1038_s41420_023_01584_x crossref_primary_10_1016_j_celrep_2020_108488 crossref_primary_10_1097_JBR_0000000000000150 crossref_primary_10_3389_fimmu_2022_948431 crossref_primary_10_1038_s41598_021_95086_4 crossref_primary_10_1038_s41598_022_21223_2 crossref_primary_10_1038_s41598_024_77087_1 crossref_primary_10_1016_S1473_3099_20_30982_8 crossref_primary_10_1080_19420862_2021_1958663 crossref_primary_10_4239_wjd_v12_i6_839 crossref_primary_10_7554_eLife_78273 crossref_primary_10_1016_j_antiviral_2022_105430 crossref_primary_10_1038_s41598_021_99401_x crossref_primary_10_3389_fimmu_2022_820131 crossref_primary_10_1038_s41467_022_32547_y crossref_primary_10_1080_14760584_2022_2027240 crossref_primary_10_1093_cvr_cvac139 crossref_primary_10_1016_j_celrep_2023_113275 crossref_primary_10_17802_2306_1278_2024_13_3S_173_190 crossref_primary_10_1038_s41467_024_45050_3 crossref_primary_10_1021_acscentsci_1c01293 crossref_primary_10_3389_fimmu_2022_996637 crossref_primary_10_3389_fimmu_2022_995412 crossref_primary_10_1371_journal_ppat_1012156 crossref_primary_10_1038_s41392_022_01087_8 crossref_primary_10_1084_jem_20220621 crossref_primary_10_1186_s40779_020_00296_y crossref_primary_10_1016_j_immuni_2021_05_004 crossref_primary_10_1038_s41467_024_52810_8 crossref_primary_10_1016_j_biocel_2021_106090 crossref_primary_10_1016_j_jbc_2024_108063 crossref_primary_10_1016_j_celrep_2021_109604 crossref_primary_10_1038_s41419_022_04589_z crossref_primary_10_1371_journal_ppat_1011063 crossref_primary_10_1038_s41467_023_39738_1 crossref_primary_10_1371_journal_ppat_1010093 crossref_primary_10_3390_v16060863 crossref_primary_10_1111_1440_1681_13620 crossref_primary_10_1038_s41541_023_00800_0 crossref_primary_10_1002_jmv_28437 crossref_primary_10_1016_j_pupt_2023_102189 crossref_primary_10_3389_fnins_2021_674576 crossref_primary_10_1016_j_xcrm_2023_101305 crossref_primary_10_1016_j_bone_2021_116227 crossref_primary_10_1016_j_heliyon_2023_e19226 crossref_primary_10_1161_CIRCRESAHA_123_321878 crossref_primary_10_4049_jimmunol_2300731 crossref_primary_10_1002_nano_202100123 crossref_primary_10_3389_fimmu_2023_1223260 crossref_primary_10_1038_s41586_022_04661_w crossref_primary_10_1002_sctm_21_0183 crossref_primary_10_1126_sciimmunol_abi9007 crossref_primary_10_3389_fimmu_2021_689866 crossref_primary_10_1038_s41467_023_43447_0 crossref_primary_10_1038_s41588_022_01131_x crossref_primary_10_1016_j_jconrel_2025_01_044 crossref_primary_10_1126_sciimmunol_abi9002 crossref_primary_10_1084_jem_20211818 crossref_primary_10_3390_antib10040045 crossref_primary_10_1073_pnas_2119093119 crossref_primary_10_1126_scisignal_abg8744 crossref_primary_10_1038_s41598_022_24519_5 crossref_primary_10_1073_pnas_2406332121 crossref_primary_10_1371_journal_pone_0294176 crossref_primary_10_1016_j_fitote_2023_105695 crossref_primary_10_1128_JVI_02260_20 crossref_primary_10_3389_fimmu_2024_1383086 crossref_primary_10_1016_j_freeradbiomed_2025_01_015 crossref_primary_10_3389_fimmu_2023_1195299 crossref_primary_10_1038_s41467_021_26803_w crossref_primary_10_3390_v14050991 crossref_primary_10_1124_jpet_124_002154 crossref_primary_10_1128_msphere_00558_22 crossref_primary_10_3390_ijms232113623 crossref_primary_10_1371_journal_ppat_1011168 crossref_primary_10_3390_v13112137 crossref_primary_10_3390_vaccines9111266 crossref_primary_10_15252_embr_202153865 crossref_primary_10_3389_fped_2024_1325562 crossref_primary_10_3389_fcimb_2023_1307553 crossref_primary_10_1007_s11914_022_00734_x crossref_primary_10_1016_j_cell_2021_11_023 crossref_primary_10_1016_j_celrep_2023_112395 crossref_primary_10_1038_s41592_022_01427_0 crossref_primary_10_1016_j_intimp_2022_109325 crossref_primary_10_1038_s42003_025_07491_4 crossref_primary_10_1016_j_cell_2022_11_030 crossref_primary_10_1002_2211_5463_70002 crossref_primary_10_1016_j_isci_2024_111347 crossref_primary_10_1016_j_cell_2022_03_037 crossref_primary_10_1152_ajpgi_00293_2022 crossref_primary_10_1371_journal_ppat_1012368 crossref_primary_10_1038_s41598_022_23880_9 crossref_primary_10_1007_s10753_022_01656_7 crossref_primary_10_1128_spectrum_02371_22 crossref_primary_10_1016_j_vaccine_2022_05_087 crossref_primary_10_1021_acs_molpharmaceut_3c00114 crossref_primary_10_1134_S0026893322050065 crossref_primary_10_1038_s41579_021_00542_7 crossref_primary_10_2174_1872208316666220124101611 crossref_primary_10_3390_jcm11195691 crossref_primary_10_7554_eLife_66522 crossref_primary_10_1038_s41392_021_00800_3 crossref_primary_10_1038_s41467_023_44134_w crossref_primary_10_1038_s41586_024_08320_0 crossref_primary_10_3389_fimmu_2022_1007955 crossref_primary_10_1038_s41467_020_19891_7 crossref_primary_10_1172_JCI174439 crossref_primary_10_1172_jci_insight_159573 crossref_primary_10_3390_ijms25158245 crossref_primary_10_3390_vaccines12050491 crossref_primary_10_1016_j_onehlt_2021_100282 crossref_primary_10_1042_CS20200480 crossref_primary_10_3389_fimmu_2022_893792 crossref_primary_10_1016_j_omtn_2024_102331 crossref_primary_10_3390_microorganisms9040868 crossref_primary_10_3390_v14051020 crossref_primary_10_1371_journal_ppat_1010175 crossref_primary_10_1007_s10456_021_09823_4 crossref_primary_10_3390_v16071158 crossref_primary_10_1002_adhm_202304186 crossref_primary_10_1172_JCI148036 crossref_primary_10_1038_s41467_024_45180_8 crossref_primary_10_1038_s42003_023_05626_z crossref_primary_10_1016_j_mcpro_2025_100913 crossref_primary_10_1111_imm_13889 crossref_primary_10_1016_j_immuni_2021_04_002 crossref_primary_10_1155_2022_3193671 crossref_primary_10_1371_journal_pone_0288920 crossref_primary_10_7554_eLife_70002 crossref_primary_10_1038_s41467_021_25030_7 crossref_primary_10_1016_j_virol_2024_110384 crossref_primary_10_1038_s41385_021_00464_w crossref_primary_10_3390_v13101993 crossref_primary_10_1126_sciimmunol_adf8161 crossref_primary_10_1038_s41422_021_00473_1 crossref_primary_10_1016_j_tem_2023_08_010 crossref_primary_10_1016_j_celrep_2021_110143 crossref_primary_10_1038_s41467_023_38783_0 crossref_primary_10_1371_journal_ppat_1012100 crossref_primary_10_1007_s00011_023_01798_w crossref_primary_10_1128_spectrum_01091_22 crossref_primary_10_1084_jem_20211862 crossref_primary_10_1038_s42003_022_03189_z crossref_primary_10_31254_jahm_2022_8401 crossref_primary_10_1007_s10495_024_01942_9 crossref_primary_10_1371_journal_ppat_1010161 crossref_primary_10_4049_jimmunol_2100608 crossref_primary_10_1007_s10555_021_10017_z crossref_primary_10_1016_j_ebiom_2022_104390 crossref_primary_10_2147_JIR_S323026 crossref_primary_10_26508_lsa_202301997 crossref_primary_10_3389_fimmu_2022_1055811 crossref_primary_10_3390_v13061062 crossref_primary_10_1128_mbio_00683_22 crossref_primary_10_1055_a_1825_9641 crossref_primary_10_2139_ssrn_3919940 crossref_primary_10_3389_fmed_2021_644678 crossref_primary_10_1126_science_abq0839 crossref_primary_10_1096_fj_202002742RR crossref_primary_10_1016_j_virusres_2024_199319 crossref_primary_10_3390_vaccines9060587 crossref_primary_10_1016_j_isci_2023_105972 crossref_primary_10_1128_jvi_01276_21 crossref_primary_10_1128_msphere_00243_22 crossref_primary_10_1038_s41467_021_25153_x crossref_primary_10_1002_jmv_27718 crossref_primary_10_3390_vaccines9111346 crossref_primary_10_3389_fphys_2021_688946 crossref_primary_10_3390_v17010098 crossref_primary_10_2174_0118715303265960230926113201 crossref_primary_10_35772_ghm_2022_01013 crossref_primary_10_1016_j_cell_2021_02_044 crossref_primary_10_1128_JVI_01010_21 crossref_primary_10_1128_JVI_00964_21 crossref_primary_10_3389_fcvm_2022_1054690 crossref_primary_10_3389_fviro_2022_848465 crossref_primary_10_7554_eLife_74623 crossref_primary_10_1016_j_celrep_2022_110799 crossref_primary_10_3389_fimmu_2022_1011185 crossref_primary_10_1038_s42003_023_05263_6 crossref_primary_10_1371_journal_ppat_1009163 crossref_primary_10_1172_JCI163105 crossref_primary_10_1038_s41598_023_29118_6 crossref_primary_10_1152_ajplung_00384_2021 crossref_primary_10_1007_s00401_021_02314_2 crossref_primary_10_1016_j_celrep_2021_109452 crossref_primary_10_1152_ajplung_00223_2021 crossref_primary_10_1002_jmv_70237 crossref_primary_10_3390_v14061137 crossref_primary_10_3390_v16030417 crossref_primary_10_1002_eji_202350624 crossref_primary_10_1038_s41392_021_00848_1 crossref_primary_10_1136_bmjresp_2023_001762 crossref_primary_10_3390_ijms21239289 crossref_primary_10_1038_s41586_022_04421_w crossref_primary_10_1016_j_isci_2022_104046 crossref_primary_10_1016_j_virs_2024_03_009 crossref_primary_10_3389_fmed_2020_626796 crossref_primary_10_1038_s41467_022_34571_4 crossref_primary_10_1080_22221751_2022_2119169 crossref_primary_10_1038_s41598_021_93855_9 crossref_primary_10_1016_j_ebiom_2025_105615 crossref_primary_10_5713_ab_22_0143 crossref_primary_10_1111_resp_13997 crossref_primary_10_1016_j_molmed_2023_11_001 crossref_primary_10_1126_science_abf4058 crossref_primary_10_1016_j_csbj_2021_04_043 crossref_primary_10_1371_journal_ppat_1010377 crossref_primary_10_3390_v15030611 crossref_primary_10_1007_s12015_021_10129_7 crossref_primary_10_3389_fmicb_2022_840757 crossref_primary_10_1016_j_ebiom_2025_105619 crossref_primary_10_1038_s41586_022_04630_3 crossref_primary_10_1038_s41577_022_00785_2 crossref_primary_10_1038_s41589_022_01094_4 crossref_primary_10_4049_immunohorizons_2200075 crossref_primary_10_1016_j_cell_2021_02_026 crossref_primary_10_1038_s41590_024_01743_x crossref_primary_10_3390_ijms24021314 crossref_primary_10_1016_j_matdes_2022_111087 crossref_primary_10_1038_s41577_022_00762_9 crossref_primary_10_1126_sciadv_abj9815 crossref_primary_10_3389_fimmu_2021_808932 crossref_primary_10_1016_j_it_2024_06_003 crossref_primary_10_1021_acsnano_2c03119 crossref_primary_10_1016_j_celrep_2021_109353 crossref_primary_10_1021_acsomega_4c03023 crossref_primary_10_1038_s41598_021_87462_x crossref_primary_10_1099_jgv_0_001599 crossref_primary_10_1038_s41592_022_01447_w crossref_primary_10_1146_annurev_bioeng_072623_044010 crossref_primary_10_1126_scitranslmed_ado1941 crossref_primary_10_1038_s41590_021_00962_w crossref_primary_10_1371_journal_pbio_3001510 crossref_primary_10_3390_v15061364 crossref_primary_10_3389_fncel_2021_674123 crossref_primary_10_1038_s41467_023_43027_2 crossref_primary_10_3390_ijms241511957 crossref_primary_10_1096_fj_202101013 crossref_primary_10_1371_journal_pone_0273430 crossref_primary_10_3389_fimmu_2024_1370511 crossref_primary_10_1038_s41598_023_29909_x crossref_primary_10_2139_ssrn_4113979 crossref_primary_10_1371_journal_ppat_1011328 crossref_primary_10_1128_spectrum_00653_23 crossref_primary_10_1038_s41467_021_26113_1 crossref_primary_10_3390_v14030535 crossref_primary_10_1016_j_cell_2021_03_051 crossref_primary_10_1038_s41564_023_01488_7 crossref_primary_10_3390_v13030529 crossref_primary_10_3389_fimmu_2022_995235 crossref_primary_10_3389_fimmu_2024_1378591 crossref_primary_10_3390_pathogens10050509 crossref_primary_10_3390_ijms25052477 crossref_primary_10_1016_j_biopha_2023_115882 crossref_primary_10_1016_j_nbd_2021_105561 crossref_primary_10_1038_s42003_021_02410_9 crossref_primary_10_1038_s41564_023_01431_w crossref_primary_10_1016_j_it_2023_10_004 crossref_primary_10_1172_jci_insight_148999 crossref_primary_10_1186_s12985_022_01818_x crossref_primary_10_3390_v16040537 |
Cites_doi | 10.1016/j.phrs.2020.104833 10.1084/jem.20201241 10.1016/j.cca.2020.05.019 10.1016/j.chom.2020.04.017 10.1016/j.jinf.2020.03.041 10.1016/j.cell.2020.04.026 10.1093/bioinformatics/btt656 10.1002/path.1570 10.1016/j.cell.2015.12.032 10.1038/s41392-020-0159-1 10.1128/JVI.00841-19 10.1128/jvi.00127-20 10.1111/bph.15143 10.1016/j.chom.2020.04.009 10.1016/j.jaci.2020.04.027 10.1016/j.virol.2016.06.022 10.1016/j.chom.2015.04.005 10.1161/CIRCRESAHA.114.300558 10.1038/s41586-020-2312-y 10.1016/0306-4522(93)90045-H 10.1093/bioinformatics/bts356 10.1016/j.cell.2015.12.027 10.1093/bioinformatics/btp616 10.1016/j.cell.2020.06.011 10.1126/science.abb7314 10.1016/j.cell.2020.04.035 10.1016/S0140-6736(20)30628-0 10.1093/cid/ciaa449 10.3109/01902148.2014.971921 10.1148/radiol.2020200370 10.1016/j.ebiom.2020.102763 10.1128/JVI.00737-08 10.1016/j.cell.2020.05.027 10.1038/s41591-020-0944-y 10.1128/JVI.02012-06 10.1038/s41591-020-0901-9 10.1016/j.immuni.2019.03.025 10.1016/j.cell.2020.05.006 10.1016/j.chom.2016.01.007 10.1016/j.ijantimicag.2020.106024 10.1038/s41564-020-0688-y 10.1016/S0140-6736(20)30183-5 10.1128/JVI.02113-07 10.1093/bioinformatics/bts635 10.1172/JCI137244 10.1038/s41587-020-0602-4 10.1016/S2213-2600(20)30076-X 10.1001/jama.2020.6771 10.1093/nar/gkv412 10.1513/AnnalsATS.202005-462RL 10.1093/nar/gkv007 10.1016/j.chom.2020.05.008 10.1016/j.chom.2020.05.020 10.1093/cid/ciaa629 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 COPYRIGHT 2020 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7T5 7TK 7TM 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
DOI | 10.1038/s41590-020-0778-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1529-2916 |
EndPage | 1335 |
ExternalDocumentID | A638923367 32839612 10_1038_s41590_020_0778_2 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) grantid: HR001117S0019 funderid: https://doi.org/10.13039/100000185 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: 75N93019C00062; R01 AI127828; R01 AI130591; R35 HL145242; F32 AI138392 funderid: https://doi.org/10.13039/100000060 – fundername: NIAID NIH HHS grantid: 75N93019C00062 – fundername: NIBIB NIH HHS grantid: T32 EB021955 – fundername: NIAID NIH HHS grantid: T32 AI007163 – fundername: NIAID NIH HHS grantid: R01 AI127828 – fundername: NIAID NIH HHS grantid: F30 AI152327 – fundername: NIAID NIH HHS grantid: R01 AI157155 – fundername: NCATS NIH HHS grantid: UL1 TR002345 – fundername: NIAID NIH HHS grantid: R01 AI130591 – fundername: NIAMS NIH HHS grantid: P30 AR073752 – fundername: NHLBI NIH HHS grantid: R35 HL145242 |
GroupedDBID | --- .55 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABOCM ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ISR ITC L-9 LK8 M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WH7 X7M Y6R ZXP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AGQPQ CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QP 7QR 7T5 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO |
ID | FETCH-LOGICAL-c582t-ccb7e3ef3b3e617f6f26d8916adee0a61c954c37e3bd136642eb7c8dffab30673 |
IEDL.DBID | 7X7 |
ISSN | 1529-2908 1529-2916 |
IngestDate | Fri Sep 05 09:35:39 EDT 2025 Tue Aug 12 07:27:21 EDT 2025 Tue Jun 17 21:34:15 EDT 2025 Tue Jun 10 20:43:16 EDT 2025 Fri Jun 27 04:25:37 EDT 2025 Mon Jul 21 06:00:23 EDT 2025 Thu Apr 24 23:01:38 EDT 2025 Tue Jul 01 01:02:32 EDT 2025 Fri Feb 21 02:38:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c582t-ccb7e3ef3b3e617f6f26d8916adee0a61c954c37e3bd136642eb7c8dffab30673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8791-3165 0000-0003-3377-4304 0000-0002-1301-0852 0000-0001-8750-3716 0000-0003-0567-738X |
OpenAccessLink | https://www.nature.com/articles/s41590-020-0778-2.pdf |
PMID | 32839612 |
PQID | 2475008898 |
PQPubID | 45782 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2437121350 proquest_journals_2475008898 gale_infotracmisc_A638923367 gale_infotracacademiconefile_A638923367 gale_incontextgauss_ISR_A638923367 pubmed_primary_32839612 crossref_citationtrail_10_1038_s41590_020_0778_2 crossref_primary_10_1038_s41590_020_0778_2 springer_journals_10_1038_s41590_020_0778_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature immunology |
PublicationTitleAbbrev | Nat Immunol |
PublicationTitleAlternate | Nat Immunol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Hamming (CR2) 2004; 203 Liu (CR25) 2020; 55 Ritchie (CR54) 2015; 43 Chen (CR41) 2020; 130 Robichaud, Fereydoonzad, Urovitch, Brunet (CR16) 2015; 41 CR30 Channappanavar (CR43) 2016; 19 Cook (CR33) 2019; 94 Pan (CR39) 2020; 295 Fu (CR27) 2020; 80 Robinson, McCarthy, Smyth (CR53) 2010; 26 Dobin (CR50) 2013; 29 Barnett, Cassell, Perlman (CR45) 1993; 57 Li, Zhou, Yang, You (CR47) 2020; 157 Jiang (CR38) 2008; 82 Jiang (CR11) 2020; 182 CR3 CR5 CR8 CR7 Huang (CR22) 2020; 395 Mukherjee (CR48) 2016; 497 Rockx (CR4) 2020; 368 Liao, Smyth, Shi (CR51) 2014; 30 Ziegler (CR1) 2020; 181 Mehta (CR21) 2020; 395 CR42 Yang, Pabon, Murry (CR14) 2014; 114 Yang (CR26) 2020; 146 Wang, Wang, Li (CR52) 2012; 28 Blanco-Melo (CR32) 2020; 181 McGovern, Robichaud, Robichaud, Schuessler, Martin (CR49) 2013; 2013 Spinato (CR46) 2020; 323 Mostafavi (CR44) 2016; 164 CR18 CR17 CR13 CR12 Liu (CR28) 2020; 508 Park, Iwasaki (CR36) 2020; 27 Netland, Meyerholz, Moore, Cassell, Perlman (CR15) 2008; 82 Wilk (CR29) 2020; 26 Bost (CR20) 2020; 181 Liu (CR55) 2015; 43 Zhou (CR31) 2020; 27 Liao (CR19) 2020; 26 Lazear, Schoggins, Diamond (CR37) 2019; 50 Ng, Mendoza, Garcia, Oldstone (CR34) 2016; 164 CR24 CR23 Israelow (CR9) 2020; 217 Xu (CR40) 2020; 8 Letko, Marzi, Munster (CR6) 2020; 5 McCray (CR10) 2007; 81 Ng (CR35) 2015; 17 R Channappanavar (778_CR43) 2016; 19 G Spinato (778_CR46) 2020; 323 Z Xu (778_CR40) 2020; 8 D Blanco-Melo (778_CR32) 2020; 181 PB McCray Jr. (778_CR10) 2007; 81 M Letko (778_CR6) 2020; 5 G Chen (778_CR41) 2020; 130 778_CR12 778_CR13 TK McGovern (778_CR49) 2013; 2013 778_CR18 778_CR17 EM Barnett (778_CR45) 1993; 57 MD Robinson (778_CR53) 2010; 26 L Wang (778_CR52) 2012; 28 L Fu (778_CR27) 2020; 80 Y Liao (778_CR51) 2014; 30 I Hamming (778_CR2) 2004; 203 S Mostafavi (778_CR44) 2016; 164 CT Ng (778_CR34) 2016; 164 CT Ng (778_CR35) 2015; 17 778_CR5 HM Lazear (778_CR37) 2019; 50 P Bost (778_CR20) 2020; 181 778_CR3 A Robichaud (778_CR16) 2015; 41 778_CR23 ME Ritchie (778_CR54) 2015; 43 778_CR24 A Dobin (778_CR50) 2013; 29 LE Cook (778_CR33) 2019; 94 R Liu (778_CR28) 2020; 508 P Mehta (778_CR21) 2020; 395 F Pan (778_CR39) 2020; 295 Y Yang (778_CR26) 2020; 146 778_CR8 Y Li (778_CR47) 2020; 157 S Mukherjee (778_CR48) 2016; 497 778_CR30 778_CR7 CGK Ziegler (778_CR1) 2020; 181 J Liu (778_CR25) 2020; 55 D Jiang (778_CR38) 2008; 82 X Yang (778_CR14) 2014; 114 A Park (778_CR36) 2020; 27 R Liu (778_CR55) 2015; 43 B Israelow (778_CR9) 2020; 217 AJ Wilk (778_CR29) 2020; 26 Z Zhou (778_CR31) 2020; 27 C Huang (778_CR22) 2020; 395 RD Jiang (778_CR11) 2020; 182 M Liao (778_CR19) 2020; 26 B Rockx (778_CR4) 2020; 368 778_CR42 J Netland (778_CR15) 2008; 82 32879513 - Nat Immunol. 2020 Sep 2 |
References_xml | – volume: 181 start-page: 1475 year: 2020 end-page: 1488.e12 ident: CR20 article-title: Host–viral infection maps reveal signatures of severe COVID-19 patients publication-title: Cell – ident: CR12 – volume: 2013 start-page: e50172 year: 2013 ident: CR49 article-title: Evaluation of respiratory system mechanics in mice using the forced oscillation technique publication-title: J. Vis. Exp. – volume: 295 start-page: 715 year: 2020 end-page: 721 ident: CR39 article-title: Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19) publication-title: Radiology – volume: 17 start-page: 653 year: 2015 end-page: 661 ident: CR35 article-title: Blockade of interferon beta, but not interferon alpha, signaling controls persistent viral infection publication-title: Cell Host Microbe – volume: 26 start-page: 842 year: 2020 end-page: 844 ident: CR19 article-title: Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 publication-title: Nat. Med. – volume: 26 start-page: 1070 year: 2020 end-page: 1076 ident: CR29 article-title: A single-cell atlas of the peripheral immune response in patients with severe COVID-19 publication-title: Nat. Med. – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: CR22 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – ident: CR8 – volume: 181 start-page: 1036 year: 2020 end-page: 1045.e9 ident: CR32 article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19 publication-title: Cell – volume: 508 start-page: 110 year: 2020 end-page: 114 ident: CR28 article-title: Decreased T cell populations contribute to the increased severity of COVID-19 publication-title: Clin. Chim. Acta – ident: CR42 – volume: 43 start-page: e97 year: 2015 ident: CR55 article-title: Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses publication-title: Nucleic Acids Res. – volume: 82 start-page: 1665 year: 2008 end-page: 1678 ident: CR38 article-title: Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus publication-title: J. Virol. – volume: 368 start-page: 1012 year: 2020 end-page: 1015 ident: CR4 article-title: Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model publication-title: Science – volume: 57 start-page: 1007 year: 1993 end-page: 1025 ident: CR45 article-title: Two neurotropic viruses, herpes simplex virus type 1 and mouse hepatitis virus, spread along different neural pathways from the main olfactory bulb publication-title: Neuroscience – volume: 323 start-page: 2089 year: 2020 end-page: 2090 ident: CR46 article-title: Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection publication-title: J. Am. Med. Assoc. – volume: 82 start-page: 7264 year: 2008 end-page: 7275 ident: CR15 article-title: Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2 publication-title: J. Virol. – volume: 182 start-page: 50 year: 2020 end-page: 58.e8 ident: CR11 article-title: Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2 publication-title: Cell – volume: 27 start-page: 883 year: 2020 end-page: 890.e2 ident: CR31 article-title: Heightened innate immune responses in the respiratory tract of COVID-19 patients publication-title: Cell Host Microbe – volume: 50 start-page: 907 year: 2019 end-page: 923 ident: CR37 article-title: Shared and distinct functions of type I and type III interferons publication-title: Immunity – volume: 164 start-page: 564 year: 2016 end-page: 578 ident: CR44 article-title: Parsing the interferon transcriptional network and its disease associations publication-title: Cell – volume: 181 start-page: 1016 year: 2020 end-page: 1035.e19 ident: CR1 article-title: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues publication-title: Cell – ident: CR5 – volume: 217 start-page: e20201241 year: 2020 ident: CR9 article-title: Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling publication-title: J. Exp. Med. – volume: 203 start-page: 631 year: 2004 end-page: 637 ident: CR2 article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis publication-title: J. Pathol. – volume: 5 start-page: 562 year: 2020 end-page: 569 ident: CR6 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. – volume: 94 start-page: e00841-19 year: 2019 ident: CR33 article-title: Distinct roles of interferon alpha and beta in controlling Chikungunya virus replication and modulating neutrophil-mediated inflammation publication-title: J. Virol. – ident: CR18 – ident: CR30 – volume: 30 start-page: 923 year: 2014 end-page: 930 ident: CR51 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 497 start-page: 33 year: 2016 end-page: 40 ident: CR48 article-title: Enhancing dengue virus maturation using a stable furin over-expressing cell line publication-title: Virology – volume: 41 start-page: 84 year: 2015 end-page: 92 ident: CR16 article-title: Comparative study of three flexiVent system configurations using mechanical test loads publication-title: Exp. Lung Res. – volume: 43 start-page: e47 year: 2015 ident: CR54 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. – volume: 28 start-page: 2184 year: 2012 end-page: 2185 ident: CR52 article-title: RSeQC: quality control of RNA-seq experiments publication-title: Bioinformatics – volume: 19 start-page: 181 year: 2016 end-page: 193 ident: CR43 article-title: Dysregulated type I interferon and inflammatory monocyte–macrophage responses cause lethal pneumonia in SARS-CoV-infected mice publication-title: Cell Host Microbe – volume: 114 start-page: 511 year: 2014 end-page: 523 ident: CR14 article-title: Engineering adolescence: maturation of human pluripotent stem cell–derived cardiomyocytes publication-title: Circ. Res. – volume: 395 start-page: 1033 year: 2020 end-page: 1034 ident: CR21 article-title: COVID-19: consider cytokine storm syndromes and immunosuppression publication-title: Lancet – ident: CR23 – volume: 27 start-page: 870 year: 2020 end-page: 878 ident: CR36 article-title: Type I and type III interferons—induction, signaling, evasion, and application to combat COVID-19 publication-title: Cell Host Microbe – volume: 146 start-page: 119 year: 2020 end-page: 127.e4 ident: CR26 article-title: Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19 publication-title: J. Allergy Clin. Immunol. – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: CR53 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 130 start-page: 2620 year: 2020 end-page: 2629 ident: CR41 article-title: Clinical and immunological features of severe and moderate coronavirus disease 2019 publication-title: J. Clin. Invest. – ident: CR3 – volume: 55 start-page: 102763 year: 2020 ident: CR25 article-title: Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients publication-title: EBioMedicine – ident: CR17 – volume: 81 start-page: 813 year: 2007 end-page: 821 ident: CR10 article-title: Lethal infection of K18- mice infected with severe acute respiratory syndrome coronavirus publication-title: J. Virol. – ident: CR13 – volume: 8 start-page: 420 year: 2020 end-page: 422 ident: CR40 article-title: Pathological findings of COVID-19 associated with acute respiratory distress syndrome publication-title: Lancet Resp. Med. – ident: CR7 – volume: 164 start-page: 349 year: 2016 end-page: 352 ident: CR34 article-title: Alpha and beta type 1 interferon signaling: passage for diverse biologic outcomes publication-title: Cell – volume: 157 start-page: 104833 year: 2020 ident: CR47 article-title: Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor publication-title: Pharmacol. Res. – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: CR50 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – ident: CR24 – volume: 80 start-page: 656 year: 2020 end-page: 665 ident: CR27 article-title: Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: a systematic review and meta-analysis publication-title: J. Infect. – volume: 157 start-page: 104833 year: 2020 ident: 778_CR47 publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.104833 – volume: 217 start-page: e20201241 year: 2020 ident: 778_CR9 publication-title: J. Exp. Med. doi: 10.1084/jem.20201241 – volume: 508 start-page: 110 year: 2020 ident: 778_CR28 publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2020.05.019 – volume: 27 start-page: 883 year: 2020 ident: 778_CR31 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.017 – volume: 80 start-page: 656 year: 2020 ident: 778_CR27 publication-title: J. Infect. doi: 10.1016/j.jinf.2020.03.041 – volume: 181 start-page: 1036 year: 2020 ident: 778_CR32 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 30 start-page: 923 year: 2014 ident: 778_CR51 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 203 start-page: 631 year: 2004 ident: 778_CR2 publication-title: J. Pathol. doi: 10.1002/path.1570 – volume: 164 start-page: 564 year: 2016 ident: 778_CR44 publication-title: Cell doi: 10.1016/j.cell.2015.12.032 – ident: 778_CR42 doi: 10.1038/s41392-020-0159-1 – volume: 94 start-page: e00841-19 year: 2019 ident: 778_CR33 publication-title: J. Virol. doi: 10.1128/JVI.00841-19 – ident: 778_CR7 doi: 10.1128/jvi.00127-20 – ident: 778_CR5 doi: 10.1111/bph.15143 – ident: 778_CR18 doi: 10.1016/j.chom.2020.04.009 – volume: 146 start-page: 119 year: 2020 ident: 778_CR26 publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2020.04.027 – volume: 497 start-page: 33 year: 2016 ident: 778_CR48 publication-title: Virology doi: 10.1016/j.virol.2016.06.022 – volume: 17 start-page: 653 year: 2015 ident: 778_CR35 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.04.005 – volume: 114 start-page: 511 year: 2014 ident: 778_CR14 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.114.300558 – ident: 778_CR12 doi: 10.1038/s41586-020-2312-y – volume: 57 start-page: 1007 year: 1993 ident: 778_CR45 publication-title: Neuroscience doi: 10.1016/0306-4522(93)90045-H – volume: 28 start-page: 2184 year: 2012 ident: 778_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts356 – volume: 164 start-page: 349 year: 2016 ident: 778_CR34 publication-title: Cell doi: 10.1016/j.cell.2015.12.027 – volume: 26 start-page: 139 year: 2010 ident: 778_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – ident: 778_CR8 doi: 10.1016/j.cell.2020.06.011 – volume: 368 start-page: 1012 year: 2020 ident: 778_CR4 publication-title: Science doi: 10.1126/science.abb7314 – volume: 181 start-page: 1016 year: 2020 ident: 778_CR1 publication-title: Cell doi: 10.1016/j.cell.2020.04.035 – volume: 395 start-page: 1033 year: 2020 ident: 778_CR21 publication-title: Lancet doi: 10.1016/S0140-6736(20)30628-0 – ident: 778_CR24 doi: 10.1093/cid/ciaa449 – volume: 41 start-page: 84 year: 2015 ident: 778_CR16 publication-title: Exp. Lung Res. doi: 10.3109/01902148.2014.971921 – volume: 295 start-page: 715 year: 2020 ident: 778_CR39 publication-title: Radiology doi: 10.1148/radiol.2020200370 – volume: 2013 start-page: e50172 year: 2013 ident: 778_CR49 publication-title: J. Vis. Exp. – volume: 55 start-page: 102763 year: 2020 ident: 778_CR25 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102763 – volume: 82 start-page: 7264 year: 2008 ident: 778_CR15 publication-title: J. Virol. doi: 10.1128/JVI.00737-08 – volume: 182 start-page: 50 year: 2020 ident: 778_CR11 publication-title: Cell doi: 10.1016/j.cell.2020.05.027 – volume: 26 start-page: 1070 year: 2020 ident: 778_CR29 publication-title: Nat. Med. doi: 10.1038/s41591-020-0944-y – volume: 81 start-page: 813 year: 2007 ident: 778_CR10 publication-title: J. Virol. doi: 10.1128/JVI.02012-06 – volume: 26 start-page: 842 year: 2020 ident: 778_CR19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0901-9 – volume: 50 start-page: 907 year: 2019 ident: 778_CR37 publication-title: Immunity doi: 10.1016/j.immuni.2019.03.025 – volume: 181 start-page: 1475 year: 2020 ident: 778_CR20 publication-title: Cell doi: 10.1016/j.cell.2020.05.006 – volume: 19 start-page: 181 year: 2016 ident: 778_CR43 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.01.007 – ident: 778_CR3 doi: 10.1016/j.ijantimicag.2020.106024 – volume: 5 start-page: 562 year: 2020 ident: 778_CR6 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – volume: 395 start-page: 497 year: 2020 ident: 778_CR22 publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 82 start-page: 1665 year: 2008 ident: 778_CR38 publication-title: J. Virol. doi: 10.1128/JVI.02113-07 – volume: 29 start-page: 15 year: 2013 ident: 778_CR50 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 130 start-page: 2620 year: 2020 ident: 778_CR41 publication-title: J. Clin. Invest. doi: 10.1172/JCI137244 – ident: 778_CR23 doi: 10.1038/s41587-020-0602-4 – volume: 8 start-page: 420 year: 2020 ident: 778_CR40 publication-title: Lancet Resp. Med. doi: 10.1016/S2213-2600(20)30076-X – volume: 323 start-page: 2089 year: 2020 ident: 778_CR46 publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2020.6771 – volume: 43 start-page: e97 year: 2015 ident: 778_CR55 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv412 – ident: 778_CR17 doi: 10.1513/AnnalsATS.202005-462RL – volume: 43 start-page: e47 year: 2015 ident: 778_CR54 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 27 start-page: 870 year: 2020 ident: 778_CR36 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.05.008 – ident: 778_CR13 doi: 10.1016/j.chom.2020.05.020 – ident: 778_CR30 doi: 10.1093/cid/ciaa629 – reference: 32879513 - Nat Immunol. 2020 Sep 2;: |
SSID | ssj0014764 |
Score | 2.7299545 |
Snippet | Although animal models have been evaluated for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, none have fully recapitulated the lung... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1327 |
SubjectTerms | 631/250/2499 631/326/596/4130 ACE2 Angiotensin Angiotensin converting enzyme Angiotensin I Angiotensin-Converting Enzyme 2 Animal models Animals Antiviral drugs Betacoronavirus - immunology Biomedical and Life Sciences Biomedicine Care and treatment Cell activation Chlorocebus aethiops Coronavirus Infections - immunology Coronavirus Infections - pathology Coronaviruses COVID-19 Cytokeratin Development and progression Disease Models, Animal Female Gene expression Genetic aspects Health aspects Humans Immune response Immunity, Innate - immunology Immunology Infections Infectious Diseases Inflammation Innate immunity Inoculation Interferon Interferon Type I - immunology Interferon-gamma - immunology Keratin-18 - genetics Leukocytes (neutrophilic) Leukocytes - immunology Lung diseases Lymphocyte Activation - immunology Lymphocytes T Male Mice Mice, Transgenic Monocytes Monocytes - immunology Neutrophil Infiltration - immunology Neutrophils - immunology NF-kappa B - immunology Pandemics Peptidyl-dipeptidase A Peptidyl-Dipeptidase A - genetics Phenotypes Pneumonia - genetics Pneumonia - pathology Pneumonia - virology Pneumonia, Viral - immunology Pneumonia, Viral - pathology Promoter Regions, Genetic - genetics Respiratory function Respiratory tract infections SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 T-Lymphocytes - immunology Transgenic animals Transgenic mice Vero Cells Viral infections Virus Replication - immunology |
Title | SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function |
URI | https://link.springer.com/article/10.1038/s41590-020-0778-2 https://www.ncbi.nlm.nih.gov/pubmed/32839612 https://www.proquest.com/docview/2475008898 https://www.proquest.com/docview/2437121350 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2gvCMbHAmMyCAkJZC2x8-E8obZqNZBWoZahvlmOcwakKRlL-8B_z10-OjqJvTRSc07i3Pl-d_F9MPbOOQ9l6GJRRJCI2CalyCFSQoLzFpIoc20FvvN5enYRf1klq_6DW9OHVQ46sVXUZe3oG_mpjBHbKCZHf7r6LahrFO2u9i007rP9CC0Rat2QrbYOVxRnbfkohKhcyDzUw66m0qcNAlceCnKewgwdKbmDS7e18z_wdGu_tIWh2WP2qLcf-ahj-BN2D6pD9qDrKPnnkD087_fKn7Kfy9FiKSb1dyH5EHJV8drzti0fH02mUqwJqVCEfjlObem5s5sGGo5oCdfAL1ER0FAUmi7Bkduq5JRXiXqy5ASJ9O8zdjGbfpucib6vgnCJlmvhXJGBAq8KBWjA-NTLtNRoJ9oSILRp5PIkdgppijJSKXooUGROl97bgjwM9ZztVXUFR4znZZ57bTWOL2JEe-QBZJTvCqEHG2cBC4e3alxfdJx6X1yadvNbadMxwiAjDDHCyIB92A656ipu3EX8llhlqJJFRaEyP_A9NebzcmFGZItJpVJ8iPc9ka_x5s72mQc4BSp-tUN5vEOJS83tnh4kwvRLvTE3ghmwN9vTNJLC1yqoN0SjMqqdl4QBe9FJ0nZuCg28HO3MgH0cROvm4v-d-Mu7H-UVO5Ak223S5DHbW19v4DVaT-vipF0i-Ksn0QnbH83G4zkex9P518VfItAWaA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIo4XBOVaKGAQCAlkNbFzPiC0Wlrt0m4feqC-mcQZA1JJSrMr1D_Fb2Qmx5atRN_6moyT2DOeb5y5AF5b67DwbCBzH0MZZGEhU_S1VGhdhqEf26YC33Q3Gh8Gn4_CoxX40-fCcFhlrxMbRV1Ulv-Rb6iAsI1jcpKPJ78kd41i72rfQqMVi208-01HtvrD5BPx941SW5sHo7HsugpIGyZqJq3NY9TodK6R4NtFTkVFQlZSViB6WeTbNAysJpq88HVE9jnmsU0K57Kc7WtNz70G1znTiGv1J6NFSIkfxE25KoLEVKrUS3ovqk42agLK1JN8WPNiOripJRy8iAb_wOEF_2wDe1t34U5nr4phK2D3YAXLNbjRdrA8W4Ob0843fx--7w_39uWo-iKV6EO8SlE50bQBFMPRppIzRkYS2R9W_CQNJWw2r7EWhM54iuKYFA8PJSFtEypFVhaC8zhJLxeCIZivPoDDK1nxh7BaViU-BpEWaeqSLKHxeUDWRao9jDm_Fj2HWRAPwOtX1diuyDn32jg2jbNdJ6ZlhCFGGGaEUQN4txhy0lb4uIz4FbPKcOWMkkNzvtE61Wayv2eGbPsprSP6iLcdkavo5TbrMh1oClxsa4lyfYmStrZdvt1LhOlUS23ON8IAXi5u80gOlyuxmjONjrlWX-gN4FErSYu5aTIoU7JrB_C-F63zh_934k8u_5QXcGt8MN0xO5Pd7adwW7GcNwmb67A6O53jM7LcZvnzZrsI-HrV-_MvPXRQ7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJiZeEIyvwgCDQEggq6mdz4cJla7Vylg1tQztzTj-AKSRjKUV2r_IX8Vd4nR0Envba3JOYt_5fufcFyGvtHbWBDpkec9GLFSRYZntCcatdspGvUTXFfgOJvHeUfjxODpeI3_aXBgMq2x1Yq2oTanxH3mXh4BtGJOTdp0PizjcHb0__cWwgxR6Wtt2Gsq3WTA7dbkxn-Sxb89_w3Gu2hnvAu9fcz4afh7sMd9xgOko5XOmdZ5YYZ3IhQVod7HjsUnBglLG2kDFPZ1FoRZAk5ueiMF2t3miU-OcytH2FvDcG2QjAdSHg-DGh-HkcLr0aYRJXcwKADNjPAvS1scq0m4FMJoFDI9yQQLHOr6Ckpex4h-wvOS9rUFxdIfc9tYs7Tfid5es2WKL3Gz6W55vkc0D77m_R77P-tMZG5RfGKdtAFhBS0frJoG0PxhyNkfcBIH-oelP0F9Uq0VlKwrYbc8sPQG1hENBhJt0S6oKQzHLE7S2oQjQePU-ObqWNX9A1ouysI8IzUyWuVSlMD4PwfbIRGATzL61gbMqTDokaFdVal8CHTtxnMjaFS9S2TBCAiMkMkLyDnm7HHLa1P-4ivglskpiXY0CJfQbrFMlx7Op7KNlyIWI4SPeeCJXwsu18nkQMAUsxbVCub1CCRtfr95uJUJ6xVPJi23SIS-Wt3EkBtMVtlwgjUiwkl8UdMjDRpKWcxNgbmZg9XbIu1a0Lh7-34k_vvpTnpNN2Kvy03iy_4Tc4ijmdTbnNlmfny3sUzDr5vkzv18o-XrdW_QvlHZb_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+infection+of+human+ACE2-transgenic+mice+causes+severe+lung+inflammation+and+impaired+function&rft.jtitle=Nature+immunology&rft.au=Winkler%2C+Emma+S&rft.au=Bailey%2C+Adam+L&rft.au=Kafai%2C+Natasha+M&rft.au=Nair%2C+Sharmila&rft.date=2020-11-01&rft.issn=1529-2916&rft.eissn=1529-2916&rft.volume=21&rft.issue=11&rft.spage=1327&rft_id=info:doi/10.1038%2Fs41590-020-0778-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon |