Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania
Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgress...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 246 - 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.01.2019
Nature Publishing Group Nature Research Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-018-08089-7 |
Cover
Abstract | Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.
Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third archaic introgression common to all Asian and Oceanian human populations by applying an approximate Bayesian computation with a Deep Learning framework. |
---|---|
AbstractList | Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.
Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third archaic introgression common to all Asian and Oceanian human populations by applying an approximate Bayesian computation with a Deep Learning framework. Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics. Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics. M.M was supported by the European Union through the European Regional Development Fund (Project No. 2014-2020.4.01.16-0030). For J.B, this study has been possible thanks to grant BFU2016-77961-P (AEI/FEDER, UE) awarded by the Agencia Estatal de Investigación (MINECO, Spain) and with the support of Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 702). Part of the “Unidad de Excelencia María de Maeztu”, funded by the MINECO (ref: MDM-2014-0370). O.L. was supported by a Ramón y Cajal grant from the Spanish Ministerio de Economia y Competitividad (MINECO) with reference RYC-2013-14797, a BFU2015-68759-P (MINECO/FEDER) grant and the support of Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 937). Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics. Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third archaic introgression common to all Asian and Oceanian human populations by applying an approximate Bayesian computation with a Deep Learning framework. Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third archaic introgression common to all Asian and Oceanian human populations by applying an approximate Bayesian computation with a Deep Learning framework. |
ArticleNumber | 246 |
Author | Bertranpetit, Jaume Lao, Oscar Mondal, Mayukh |
Author_xml | – sequence: 1 givenname: Mayukh orcidid: 0000-0003-0122-0323 surname: Mondal fullname: Mondal, Mayukh organization: Institute of Genomics, University of Tartu – sequence: 2 givenname: Jaume orcidid: 0000-0003-0100-0590 surname: Bertranpetit fullname: Bertranpetit, Jaume email: jaume.bertranpetit@upf.edu organization: Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra – sequence: 3 givenname: Oscar orcidid: 0000-0002-8525-9649 surname: Lao fullname: Lao, Oscar email: oscar.lao@cnag.crg.eu organization: CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30651539$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOyxIVLwF-xnQvSUhWoVKkXOFuO_XbXq6wd7KTQf1_vZlvaHmrJ8tfM-M3TvK2OQgxQVe8J_kwwU18yJ1zIGhNVY4VVW8tX1QnFnNREUnb0aH9cneW8wWWwlijO31THDIuGNKw9qcJiGFL857dmBPTN3EL2JiAbt8M0mtHHgP76cY0cwIB6MCn4sEJ5GoaYxowMGtc-OWSSXRtvkQ9jiqsEOe-YPqBFkUMmOHRtwQRv3lWvl6bPcHZYT6vf3y9-nf-sr65_XJ4vrmrbKDrWitmOWSed4J3ATpKmpUIA5R1I2hDKGW7lsrWKuxaIbIUinVNuqcAp4cCw0-py1nXRbPSQir90q6Pxen8R00qbNHrbg7aNaISVtsPG8a41rVPd0hjAmOKGCVG0vs5aw9RtwVkoJk3_RPTpS_BrvYo3WjBWeqyKAJkFbJ6sTmAhWTPuiQ-H3aRYUs24aBgrnE-HT1P8M0Ee9dZnC31vAsQpa1pcM6WowgX68Rl0E6cUSnsLSkjZYs5IQX147OKh_PsoFIA6VJlizgmW2vo5AsWU7zXBehc8PQdPl-DpffC0LFT6jHqv_iKJzaRcwGEF6X_ZL7DuAAH066Q |
CitedBy_id | crossref_primary_10_1038_s10038_021_00930_0 crossref_primary_10_1016_j_cell_2021_03_039 crossref_primary_10_1002_ajpa_23951 crossref_primary_10_7554_eLife_64669 crossref_primary_10_1038_s41576_023_00636_3 crossref_primary_10_1152_physrev_00040_2021 crossref_primary_10_1016_j_gde_2020_05_026 crossref_primary_10_1093_molbev_msae077 crossref_primary_10_1038_s41586_021_03244_5 crossref_primary_10_1002_evan_21895 crossref_primary_10_1002_ange_202109170 crossref_primary_10_1134_S1995080222110075 crossref_primary_10_1016_j_cub_2020_09_051 crossref_primary_10_1073_pnas_1904824116 crossref_primary_10_1016_j_matchemphys_2021_124337 crossref_primary_10_1111_tpj_16859 crossref_primary_10_1111_1755_0998_13413 crossref_primary_10_1111_1755_0998_13534 crossref_primary_10_1534_genetics_120_303167 crossref_primary_10_1038_s41586_021_03823_6 crossref_primary_10_1093_nargab_lqaa061 crossref_primary_10_1093_molbev_msad252 crossref_primary_10_3390_genes13010044 crossref_primary_10_1016_j_jglr_2021_08_008 crossref_primary_10_1145_3471188 crossref_primary_10_1073_pnas_2405889121 crossref_primary_10_1093_bioinformatics_btab468 crossref_primary_10_1002_anie_202109170 crossref_primary_10_14746_pst_2022_41_04 crossref_primary_10_1016_j_jhevol_2020_102888 crossref_primary_10_1038_s41431_021_00875_0 crossref_primary_10_1016_j_ajhg_2021_09_006 crossref_primary_10_1093_sysbio_syad033 crossref_primary_10_1016_j_earscirev_2024_104941 crossref_primary_10_2478_anre_2021_0020 crossref_primary_10_1093_gbe_evad008 crossref_primary_10_1111_1755_0998_13224 crossref_primary_10_1016_j_aanat_2022_151887 crossref_primary_10_1126_science_aaw8020 crossref_primary_10_1093_gbe_evab115 crossref_primary_10_1186_s13059_019_1684_5 crossref_primary_10_1007_s11427_024_2659_2 crossref_primary_10_1109_TPDS_2023_3238045 crossref_primary_10_1002_evl3_165 crossref_primary_10_1038_s41467_022_29267_8 crossref_primary_10_1002_ajpa_70010 crossref_primary_10_1093_genetics_iyad007 crossref_primary_10_1111_aman_13410 crossref_primary_10_1111_mec_17505 crossref_primary_10_2478_biocosmos_2022_0003 crossref_primary_10_3390_genes13122373 crossref_primary_10_2478_anre_2020_0008 crossref_primary_10_1093_biomet_asaa090 crossref_primary_10_1038_s41559_021_01408_0 crossref_primary_10_1093_sysbio_syac011 crossref_primary_10_1111_1755_0998_13355 crossref_primary_10_1111_2041_210X_13901 crossref_primary_10_1016_j_pocean_2023_103190 crossref_primary_10_1186_s13059_024_03341_4 crossref_primary_10_1371_journal_pone_0257273 crossref_primary_10_1002_bies_202000012 crossref_primary_10_1038_s41598_020_65322_4 crossref_primary_10_1038_s41467_021_26503_5 crossref_primary_10_7717_peerj_8767 |
Cites_doi | 10.1038/ng.3559 10.1038/nature17993 10.1371/journal.pgen.1005550 10.1016/j.cell.2018.02.031 10.1111/j.1365-294X.2010.04690.x 10.1534/genetics.112.148213 10.1038/nature18299 10.1016/j.cub.2016.03.037 10.1126/science.1188021 10.1016/j.cell.2017.08.049 10.1126/science.1211177 10.1016/j.jhevol.2005.04.006 10.1016/j.ajhg.2009.05.001 10.1038/nature11632 10.1126/science.aao6266 10.1534/genetics.112.145037 10.1111/j.2041-210X.2011.00179.x 10.1534/genetics.116.192708 10.1038/nature14539 10.1038/ng.3621 10.1371/journal.pcbi.1002803 10.1126/science.1224344 10.1038/nature10231 10.1016/j.ajhg.2017.04.002 10.1002/ajpa.20188 10.1016/j.ajhg.2015.01.006 10.1534/genetics.112.141846 10.1126/science.aao1887 10.1371/journal.pgen.1003905 10.1016/j.ajhg.2014.12.029 10.1038/nature18964 10.1371/journal.pgen.1005877 10.1371/journal.pcbi.0030110 10.1093/bioinformatics/18.2.337 10.1038/nature19792 10.1016/j.ajhg.2016.07.002 10.1371/journal.pgen.1000695 10.1126/science.aad2149 10.1038/nature16544 10.1371/journal.pcbi.1004845 10.1038/nature19310 10.1038/nature12886 10.1101/gr.196634.115 10.1038/ncomms16046 10.1038/s41586-018-0455-x 10.1038/nature09710 10.1038/nature15393 10.1201/b14835 10.1101/292581 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. info:eu-repo/semantics/openAccess © The Author(s) 2019. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. http://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: info:eu-repo/semantics/openAccess © The Author(s) 2019. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by/4.0/.">http://creativecommons.org/licenses/by/4.0/.</a> <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a> |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 XX2 5PM DOA |
DOI | 10.1038/s41467-018-08089-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Recercat PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_c5656c7cb0ad4b9a9d8bfaae00205366 PMC6335398 oai_recercat_cat_2072_346533 30651539 10_1038_s41467_018_08089_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Africa |
GeographicLocations_xml | – name: Africa |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 4.4 ABAWZ BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH XX2 5PM |
ID | FETCH-LOGICAL-c582t-83cb3cd7d64b60d7159266e24be7251243097f9c84d9e179681bd8df8ed86dea3 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:10:55 EDT 2025 Thu Aug 21 18:02:42 EDT 2025 Fri Sep 26 12:39:03 EDT 2025 Fri Sep 05 06:12:56 EDT 2025 Wed Aug 13 04:19:07 EDT 2025 Wed Feb 19 02:31:41 EST 2025 Tue Jul 01 02:21:21 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Fri Feb 21 02:38:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c582t-83cb3cd7d64b60d7159266e24be7251243097f9c84d9e179681bd8df8ed86dea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8525-9649 0000-0003-0100-0590 0000-0003-0122-0323 |
OpenAccessLink | https://doaj.org/article/c5656c7cb0ad4b9a9d8bfaae00205366 |
PMID | 30651539 |
PQID | 2167790431 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5656c7cb0ad4b9a9d8bfaae00205366 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6335398 csuc_recercat_oai_recercat_cat_2072_346533 proquest_miscellaneous_2179388280 proquest_journals_2167790431 pubmed_primary_30651539 crossref_citationtrail_10_1038_s41467_018_08089_7 crossref_primary_10_1038_s41467_018_08089_7 springer_journals_10_1038_s41467_018_08089_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-16 |
PublicationDateYYYYMMDD | 2019-01-16 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Research Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Research – name: Nature Portfolio |
References | Simonti (CR36) 2016; 351 Hsieh (CR18) 2016; 26 Reich (CR17) 2010; 468 Bock, Walter, Paulsen, Lengauer (CR51) 2007; 3 CR39 Vernot, Akey (CR34) 2015; 96 Excoffier, Dupanloup, Huerta-Sánchez, Sousa, Foll (CR21) 2013; 9 Pagani (CR11) 2016; 538 Bertorelle, Benazzo, Mona (CR25) 2010; 19 Browning, Browning, Zhou, Tucci, Akey (CR20) 2018; 173 Lazaridis (CR40) 2016; 536 Li, Durbin (CR5) 2011; 475 Lecun, Bengio, Hinton (CR28) 2015; 521 Rasmussen (CR9) 2011; 334 Boitard, Rodríguez, Jay, Mona, Austerlitz (CR32) 2016; 12 Malaspinas (CR7) 2016; 538 Kuhlwilm (CR14) 2016; 530 Csilléry, François, Blum (CR52) 2012; 3 Poznik (CR4) 2016; 48 Posth (CR15) 2017; 8 Jiang, Wu, Zheng, Wong (CR26) 2017; 27 Lapierre, Lambert, Achaz (CR30) 2017; 206 CR49 Mondal (CR6) 2016; 48 Sankararaman, Mallick, Patterson, Reich (CR44) 2016; 26 CR42 Slon (CR37) 2018; 561 Hudson (CR48) 2002; 18 Schlebusch (CR1) 2017; 358 Soares (CR3) 2009; 84 Wall (CR35) 2013; 194 Kim, Lohmueller (CR46) 2015; 96 Gutenkunst, Hernandez, Williamson, Bustamante (CR29) 2009; 5 Lukic, Hey (CR31) 2012; 192 CR53 Skoglund (CR2) 2017; 171 Abecasis (CR33) 2012; 491 Mallick (CR8) 2016; 538 Fenner (CR38) 2005; 128 Sunnåker (CR24) 2013; 9 Grün (CR10) 2005; 49 Auton (CR47) 2015; 526 Prüfer (CR43) 2017; 358 Fu (CR45) 2016; 534 Wall (CR41) 2017; 100 Lu (CR19) 2016; 99 Meyer (CR12) 2012; 338 CR22 Sheehan, Song (CR27) 2016; 12 Patterson (CR23) 2012; 192 Green (CR13) 2010; 328 Prüfer (CR16) 2014; 505 Lipson (CR50) 2015; 11 K Prüfer (8089_CR16) 2014; 505 RN Gutenkunst (8089_CR29) 2009; 5 H Li (8089_CR5) 2011; 475 K Csilléry (8089_CR52) 2012; 3 AS Malaspinas (8089_CR7) 2016; 538 JD Wall (8089_CR41) 2017; 100 8089_CR49 PH Hsieh (8089_CR18) 2016; 26 Q Fu (8089_CR45) 2016; 534 L Pagani (8089_CR11) 2016; 538 8089_CR42 M Lapierre (8089_CR30) 2017; 206 BY Kim (8089_CR46) 2015; 96 R Grün (8089_CR10) 2005; 49 C Bock (8089_CR51) 2007; 3 N Patterson (8089_CR23) 2012; 192 M Sunnåker (8089_CR24) 2013; 9 M Rasmussen (8089_CR9) 2011; 334 SR Browning (8089_CR20) 2018; 173 M Lipson (8089_CR50) 2015; 11 S Sankararaman (8089_CR44) 2016; 26 8089_CR39 CM Schlebusch (8089_CR1) 2017; 358 RR Hudson (8089_CR48) 2002; 18 GD Poznik (8089_CR4) 2016; 48 P Soares (8089_CR3) 2009; 84 D Lu (8089_CR19) 2016; 99 Y Lecun (8089_CR28) 2015; 521 P Skoglund (8089_CR2) 2017; 171 B Jiang (8089_CR26) 2017; 27 JD Wall (8089_CR35) 2013; 194 G Bertorelle (8089_CR25) 2010; 19 L Excoffier (8089_CR21) 2013; 9 RE Green (8089_CR13) 2010; 328 I Lazaridis (8089_CR40) 2016; 536 A Auton (8089_CR47) 2015; 526 V Slon (8089_CR37) 2018; 561 B Vernot (8089_CR34) 2015; 96 K Prüfer (8089_CR43) 2017; 358 M Mondal (8089_CR6) 2016; 48 S Mallick (8089_CR8) 2016; 538 S Lukic (8089_CR31) 2012; 192 8089_CR22 C Posth (8089_CR15) 2017; 8 JN Fenner (8089_CR38) 2005; 128 CN Simonti (8089_CR36) 2016; 351 S Sheehan (8089_CR27) 2016; 12 GR Abecasis (8089_CR33) 2012; 491 M Meyer (8089_CR12) 2012; 338 M Kuhlwilm (8089_CR14) 2016; 530 S Boitard (8089_CR32) 2016; 12 D Reich (8089_CR17) 2010; 468 8089_CR53 |
References_xml | – volume: 48 start-page: 593 year: 2016 end-page: 599 ident: CR4 article-title: Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences publication-title: Nat. Genet. doi: 10.1038/ng.3559 – ident: CR22 – volume: 534 start-page: 200 year: 2016 end-page: 205 ident: CR45 article-title: The genetic history of Ice Age Europe publication-title: Nature doi: 10.1038/nature17993 – ident: CR49 – volume: 11 start-page: e1005550 year: 2015 ident: CR50 article-title: Calibrating the human mutation rate via ancestral recombination density in diploid genomes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005550 – volume: 173 start-page: 53 year: 2018 end-page: 61.e9 ident: CR20 article-title: Analysis of human sequence data reveals two pulses of archaic denisovan admixture publication-title: Cell doi: 10.1016/j.cell.2018.02.031 – volume: 19 start-page: 2609 year: 2010 end-page: 2625 ident: CR25 article-title: ABC as a flexible framework to estimate demography over space and time: Some cons, many pros publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2010.04690.x – volume: 194 start-page: 199 year: 2013 end-page: 209 ident: CR35 article-title: Higher levels of Neanderthal ancestry in east Asians than in Europeans publication-title: Genetics doi: 10.1534/genetics.112.148213 – ident: CR39 – volume: 538 start-page: 207 year: 2016 end-page: 214 ident: CR7 article-title: A genomic history of Aboriginal Australia publication-title: Nature doi: 10.1038/nature18299 – volume: 26 start-page: 1241 year: 2016 end-page: 1247 ident: CR44 article-title: The combined landscape of denisovan and neanderthal ancestry in present-day humans publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.03.037 – volume: 328 start-page: 710 year: 2010 end-page: 722 ident: CR13 article-title: A draft sequence of the neandertal genome publication-title: Sci. (80). doi: 10.1126/science.1188021 – volume: 171 start-page: 59 year: 2017 end-page: 71.e21 ident: CR2 article-title: Reconstructing prehistoric african population structure publication-title: Cell doi: 10.1016/j.cell.2017.08.049 – volume: 334 start-page: 94 year: 2011 end-page: 98 ident: CR9 article-title: An aboriginal Australian genome reveals separate human dispersals into Asia publication-title: Science. doi: 10.1126/science.1211177 – volume: 49 start-page: 316 year: 2005 end-page: 334 ident: CR10 article-title: U-series and ESR analyses of bones and teeth relating to the human burials from Skhul publication-title: J. Hum. Evol. doi: 10.1016/j.jhevol.2005.04.006 – volume: 84 start-page: 740 year: 2009 end-page: 759 ident: CR3 article-title: Correcting for purifying selection: an improved human mitochondrial molecular clock publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.05.001 – volume: 491 start-page: 56 year: 2012 end-page: 65 ident: CR33 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature doi: 10.1038/nature11632 – volume: 358 start-page: 652 year: 2017 end-page: 655 ident: CR1 article-title: Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago publication-title: Science. doi: 10.1126/science.aao6266 – ident: CR42 – volume: 192 start-page: 1065 year: 2012 end-page: 1093 ident: CR23 article-title: Ancient admixture in human history publication-title: Genetics doi: 10.1534/genetics.112.145037 – volume: 3 start-page: 475 year: 2012 end-page: 479 ident: CR52 article-title: Abc: An R package for approximate Bayesian computation (ABC) publication-title: Methods Ecol. Evol. doi: 10.1111/j.2041-210X.2011.00179.x – volume: 206 start-page: 139 year: 2017 end-page: 449 ident: CR30 article-title: Accuracy of demographic inferences from the site frequency spectrum: he case of the yoruba population publication-title: Genetics doi: 10.1534/genetics.116.192708 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 48 start-page: 1066 year: 2016 end-page: 1070 ident: CR6 article-title: Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation publication-title: Nat. Genet. doi: 10.1038/ng.3621 – volume: 9 start-page: e1002803 year: 2013 ident: CR24 article-title: Approximate Bayesian computation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002803 – volume: 338 start-page: 222 year: 2012 end-page: 226 ident: CR12 article-title: A high-coverage genome sequence from an archaic Denisovan individual publication-title: Sci. (80). doi: 10.1126/science.1224344 – volume: 475 start-page: 493 year: 2011 end-page: 496 ident: CR5 article-title: Inference of human population history from individual whole-genome sequences publication-title: Nature doi: 10.1038/nature10231 – volume: 100 start-page: 766 year: 2017 end-page: 772 ident: CR41 article-title: Inferring human demographic histories of non-african populations from patterns of allele sharing publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2017.04.002 – volume: 128 start-page: 415 year: 2005 end-page: 423 ident: CR38 article-title: Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies publication-title: Am. J. Phys. Anthropol. doi: 10.1002/ajpa.20188 – volume: 27 start-page: 1595 year: 2017 end-page: 1618 ident: CR26 article-title: Learning summary statistic for approximate Bayesian computation via deep neural network publication-title: Stat. Sin. – volume: 96 start-page: 448 year: 2015 end-page: 453 ident: CR34 article-title: Complex history of admixture between modern humans and neandertals publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.01.006 – volume: 192 start-page: 619 year: 2012 end-page: 639 ident: CR31 article-title: Demographic inference using spectral methods on SNP data, with an analysis of the human out-of-Africa expansion publication-title: Genetics doi: 10.1534/genetics.112.141846 – volume: 358 start-page: 655 year: 2017 end-page: 658 ident: CR43 article-title: A high-coverage Neandertal genome from Vindija Cave in Croatia publication-title: Science doi: 10.1126/science.aao1887 – ident: CR53 – volume: 9 start-page: e1003905 year: 2013 ident: CR21 article-title: Robust demographic inference from genomic and SNP Data publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003905 – volume: 96 start-page: 454 year: 2015 end-page: 461 ident: CR46 article-title: Selection and reduced population size cannot explain higher amounts of Neandertal ancestry in East Asian than in European human populations publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2014.12.029 – volume: 538 start-page: 201 year: 2016 end-page: 206 ident: CR8 article-title: The Simons Genome Diversity Project: 300 genomes from 142 diverse populations publication-title: Nature doi: 10.1038/nature18964 – volume: 12 start-page: e1005877 year: 2016 ident: CR32 article-title: Inferring population size history from large samples of genome-wide molecular data—an approximate bayesian computation approach publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005877 – volume: 3 start-page: e110 year: 2007 ident: CR51 article-title: CpG island mapping by epigenome prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030110 – volume: 18 start-page: 337 year: 2002 end-page: 338 ident: CR48 article-title: Generating samples under a Wright-Fisher neutral model of genetic variation publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.2.337 – volume: 538 start-page: 238 year: 2016 end-page: 242 ident: CR11 article-title: Genomic analyses inform on migration events during the peopling of Eurasia publication-title: Nature doi: 10.1038/nature19792 – volume: 99 start-page: 580 year: 2016 end-page: 594 ident: CR19 article-title: Ancestral origins and genetic history of Tibetan highlanders publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2016.07.002 – volume: 5 start-page: e1000695 year: 2009 ident: CR29 article-title: Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000695 – volume: 351 start-page: 737 year: 2016 end-page: 741 ident: CR36 article-title: The phenotypic legacy of admixture between modern humans and Neandertals publication-title: Sci. (80). doi: 10.1126/science.aad2149 – volume: 530 start-page: 429 year: 2016 end-page: 433 ident: CR14 article-title: Ancient gene flow from early modern humans into Eastern Neanderthals publication-title: Nature doi: 10.1038/nature16544 – volume: 12 start-page: e1004845 year: 2016 ident: CR27 article-title: Deep learning for population genetic inference publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004845 – volume: 536 start-page: 419 year: 2016 end-page: 424 ident: CR40 article-title: Genomic insights into the origin of farming in the ancient Near East publication-title: Nature doi: 10.1038/nature19310 – volume: 505 start-page: 43 year: 2014 end-page: 49 ident: CR16 article-title: The complete genome sequence of a Neanderthal from the Altai Mountains publication-title: Nature doi: 10.1038/nature12886 – volume: 26 start-page: 291 year: 2016 end-page: 300 ident: CR18 article-title: Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies publication-title: Genome Res. doi: 10.1101/gr.196634.115 – volume: 8 year: 2017 ident: CR15 article-title: Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals publication-title: Nat. Commun. doi: 10.1038/ncomms16046 – volume: 561 start-page: 113 year: 2018 end-page: 116 ident: CR37 article-title: The genome of the offspring of a Neanderthal mother and a Denisovan father publication-title: Nature doi: 10.1038/s41586-018-0455-x – volume: 468 start-page: 1053 year: 2010 end-page: 1060 ident: CR17 article-title: Genetic history of an archaic hominin group from Denisova cave in Siberia publication-title: Nature doi: 10.1038/nature09710 – volume: 526 start-page: 68 year: 2015 end-page: 74 ident: CR47 article-title: A global reference for human genetic variation publication-title: Nature doi: 10.1038/nature15393 – volume: 194 start-page: 199 year: 2013 ident: 8089_CR35 publication-title: Genetics doi: 10.1534/genetics.112.148213 – volume: 530 start-page: 429 year: 2016 ident: 8089_CR14 publication-title: Nature doi: 10.1038/nature16544 – volume: 173 start-page: 53 year: 2018 ident: 8089_CR20 publication-title: Cell doi: 10.1016/j.cell.2018.02.031 – volume: 538 start-page: 207 year: 2016 ident: 8089_CR7 publication-title: Nature doi: 10.1038/nature18299 – volume: 491 start-page: 56 year: 2012 ident: 8089_CR33 publication-title: Nature doi: 10.1038/nature11632 – ident: 8089_CR53 – volume: 8 year: 2017 ident: 8089_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms16046 – volume: 96 start-page: 448 year: 2015 ident: 8089_CR34 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2015.01.006 – volume: 338 start-page: 222 year: 2012 ident: 8089_CR12 publication-title: Sci. (80). doi: 10.1126/science.1224344 – volume: 171 start-page: 59 year: 2017 ident: 8089_CR2 publication-title: Cell doi: 10.1016/j.cell.2017.08.049 – volume: 5 start-page: e1000695 year: 2009 ident: 8089_CR29 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000695 – volume: 538 start-page: 238 year: 2016 ident: 8089_CR11 publication-title: Nature doi: 10.1038/nature19792 – volume: 358 start-page: 652 year: 2017 ident: 8089_CR1 publication-title: Science. doi: 10.1126/science.aao6266 – ident: 8089_CR39 doi: 10.1201/b14835 – volume: 84 start-page: 740 year: 2009 ident: 8089_CR3 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.05.001 – volume: 9 start-page: e1003905 year: 2013 ident: 8089_CR21 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003905 – volume: 27 start-page: 1595 year: 2017 ident: 8089_CR26 publication-title: Stat. Sin. – volume: 536 start-page: 419 year: 2016 ident: 8089_CR40 publication-title: Nature doi: 10.1038/nature19310 – volume: 468 start-page: 1053 year: 2010 ident: 8089_CR17 publication-title: Nature doi: 10.1038/nature09710 – volume: 334 start-page: 94 year: 2011 ident: 8089_CR9 publication-title: Science. doi: 10.1126/science.1211177 – volume: 3 start-page: 475 year: 2012 ident: 8089_CR52 publication-title: Methods Ecol. Evol. doi: 10.1111/j.2041-210X.2011.00179.x – volume: 26 start-page: 291 year: 2016 ident: 8089_CR18 publication-title: Genome Res. doi: 10.1101/gr.196634.115 – volume: 206 start-page: 139 year: 2017 ident: 8089_CR30 publication-title: Genetics doi: 10.1534/genetics.116.192708 – volume: 99 start-page: 580 year: 2016 ident: 8089_CR19 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2016.07.002 – volume: 9 start-page: e1002803 year: 2013 ident: 8089_CR24 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002803 – ident: 8089_CR49 – volume: 96 start-page: 454 year: 2015 ident: 8089_CR46 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2014.12.029 – volume: 538 start-page: 201 year: 2016 ident: 8089_CR8 publication-title: Nature doi: 10.1038/nature18964 – ident: 8089_CR22 – volume: 505 start-page: 43 year: 2014 ident: 8089_CR16 publication-title: Nature doi: 10.1038/nature12886 – volume: 12 start-page: e1004845 year: 2016 ident: 8089_CR27 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004845 – volume: 328 start-page: 710 year: 2010 ident: 8089_CR13 publication-title: Sci. (80). doi: 10.1126/science.1188021 – ident: 8089_CR42 doi: 10.1101/292581 – volume: 19 start-page: 2609 year: 2010 ident: 8089_CR25 publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2010.04690.x – volume: 49 start-page: 316 year: 2005 ident: 8089_CR10 publication-title: J. Hum. Evol. doi: 10.1016/j.jhevol.2005.04.006 – volume: 192 start-page: 1065 year: 2012 ident: 8089_CR23 publication-title: Genetics doi: 10.1534/genetics.112.145037 – volume: 128 start-page: 415 year: 2005 ident: 8089_CR38 publication-title: Am. J. Phys. Anthropol. doi: 10.1002/ajpa.20188 – volume: 475 start-page: 493 year: 2011 ident: 8089_CR5 publication-title: Nature doi: 10.1038/nature10231 – volume: 12 start-page: e1005877 year: 2016 ident: 8089_CR32 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005877 – volume: 358 start-page: 655 year: 2017 ident: 8089_CR43 publication-title: Science doi: 10.1126/science.aao1887 – volume: 534 start-page: 200 year: 2016 ident: 8089_CR45 publication-title: Nature doi: 10.1038/nature17993 – volume: 48 start-page: 1066 year: 2016 ident: 8089_CR6 publication-title: Nat. Genet. doi: 10.1038/ng.3621 – volume: 100 start-page: 766 year: 2017 ident: 8089_CR41 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2017.04.002 – volume: 521 start-page: 436 year: 2015 ident: 8089_CR28 publication-title: Nature doi: 10.1038/nature14539 – volume: 192 start-page: 619 year: 2012 ident: 8089_CR31 publication-title: Genetics doi: 10.1534/genetics.112.141846 – volume: 3 start-page: e110 year: 2007 ident: 8089_CR51 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030110 – volume: 526 start-page: 68 year: 2015 ident: 8089_CR47 publication-title: Nature doi: 10.1038/nature15393 – volume: 351 start-page: 737 year: 2016 ident: 8089_CR36 publication-title: Sci. (80). doi: 10.1126/science.aad2149 – volume: 561 start-page: 113 year: 2018 ident: 8089_CR37 publication-title: Nature doi: 10.1038/s41586-018-0455-x – volume: 48 start-page: 593 year: 2016 ident: 8089_CR4 publication-title: Nat. Genet. doi: 10.1038/ng.3559 – volume: 11 start-page: e1005550 year: 2015 ident: 8089_CR50 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005550 – volume: 26 start-page: 1241 year: 2016 ident: 8089_CR44 publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.03.037 – volume: 18 start-page: 337 year: 2002 ident: 8089_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.2.337 |
SSID | ssj0000391844 |
Score | 2.54174 |
Snippet | Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently... Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third... |
SourceID | doaj pubmedcentral csuc proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 246 |
SubjectTerms | 45/23 631/181/457/649 631/208/457/649 Bayesian analysis Computation Deep learning Demographics Evolutionary algorithms Evolutionary genetics Genetic diversity Genetic variation Genomes Genomics Hominids Homo neanderthalensis Homo sapiens denisova Human populations Humanities and Social Sciences multidisciplinary Population genetics Populations Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA7rLIIv4t3qKhF8UsumTZqkDyIzsssiOIq4sG8hTTKzBemMMx1w_73npJdlvOzDPHSahrTnki85J98h5LXOFgDyFy4tdVGkSEgOJlWwVFWwGPMlC5bh2eHPc3l2Lj5dFBcHZD6chcG0ysEnRkftVw73yI_zTCI1Hsx3H9Y_U6wahdHVoYSG7Usr-PeRYuwWOQSXXLAJOZydzL9-G3ddkA9dC9GfnmFcH29F9BUsQ6JmpstU7c1QE7fduZ7P_18g9O9cyj8CqnGeOr1H7vYAk047jbhPDkLzgNzuSk5ePSTNFEnEf9UAVAOd2auAhyipi7UdopAo7sxSH8Ka9hUllnS7W8fIArW0vaw3nkaGpdrRGvPcl10qbQNXdArdUdt4-sUF29T2ETk_Pfn-8Sztay6krtB5m2ruKu688lJUknkFaAem8JCLKiiEQoKzUi1Kp4UvAxizBNjrtV_o4LX0wfLHZNKsmvCUUFkBdtGwvAxOCKtEyZ2AnkLGbWVzERKSDd_ZuJ6QHOti_DAxMM616WRjQDYmysaohLwdn1l3dBw3tn6D4jMwd4SNs61BLu3xAn85U7nhyDHHEzJDIY_dYtv4x2qzNL0ZG4f41ylXMetFVdrS62phbUDUXXApE3I0qIjpncHWXKtuQl6Nt8GMMTZjm7DaYRtwlLDa0SwhTzqNGkcCqzpAnbxMiNrTtb2h7t9p6stIFS45hwd1Qt4NWnk9rP9_t2c3v8VzcgdgI6bZpZk8IpN2swsvAJq11cve3n4DhEg2iw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWIiQuiPcGFmQkTkAgiR0_Dgh1EasVEnCh0t4sx3a7kVZpaVNp---ZcR6oUDhxyCGJbVmemfibzPgbQl6qfA4gf-5SrcoyRUJyMKkyS2UFzpjXWbAZnh3-8lWcz_jni_LiiAzljvoF3Bx07bCe1Gx99fb6x-4DGPz77si4erfh0dyzHLmWM6VTeYPcjPEiTOXr4X78MjMNDg3vz84c7rq3P03cZut6Nv9DEPTPTMrfwqlxlzq7S-708JJOO324R45Cc5_c6gpO7h6QZooU4tc1wNRAT-0u4BFK6mJlhygiiv9lqQ9hRft6Egu62a5iXIFa2l7Wa08jv1LtaI1Z7osukbaBOzqF4ahtPP3mgm1q-5DMzj59_3ie9hUXUleqok0VcxVzXnrBK5F5CVgHNvBQ8CpIBEKcZVrOtVPc6wCmLAD0euXnKnglfLDsEZk0yyYcEyoqQC4KnMvgOLeSa-Y4jBRyZitb8JCQfFhn43o6cqyKcWViWJwp08nGgGxMlI2RCXk99ll1ZBz_bP0KxWdg5whrZ1uDTNrjDV5FJgvDkGGOJeQUhTwOi23jg-V6YXojNg7Rr5Ouyqznlbbaq2pubUDMXTIhEnIyqIgZNNkUuUBORwBqCXkxvgYjxsiMbcJyi23gMwm-jsoS8rjTqHEm4NMB5mQ6IXJP1_amuv-mqS8jUbhgDDqqhLwZtPLXtP6-bk_-x1I8JbcBWmIqXpqLEzJp19vwDOBbWz2PNvkTew9AmQ priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPQRfxG-rp0TwSS2mTZqkj3vicSyoD3pwbyFNsnsF6S77Ad5_70zarayegg99SPNByMwkvyST3wC8NsUcQf7c57WpqpwIydGkKp7rBjdjoebRcXo7_OmzOr-Qs8vq8gjK_VuY5LSfKC3TNL33Dnu_kcmkeUF8ytzUub4Fx0bj9DuB4-l09nU2nqwQ57mRcnghw4W5ofLBKjTxm50fOPtvApp_-kv-dmma1qKze3B3AJFs2nf7PhzF7gHc7sNKXj-EbkpE4T9aBKORnbrrSA8lmU_xG5IgGJ2-shDjig1RIxZss1ul2wPm2PaqXQeWWJRaz1ryZV_07rIdptgUm2OuC-yLj65r3SO4OPv47cN5PsRVyH1lym1uhG-EDzoo2SgeNCIaXKZjKZuoCe5IwWs9r72RoY5osAqhbTBhbmIwKkQnHsOkW3bxKTDVID4xuIWMXkqnZS28xJZiIVzjShkzKPbjbP1AOk6xL77bdPktjO1lY1E2NsnG6gzejnVWPeXGP0u_IfFZXB_i2rutJb7sMUFfyXVpBfHIiQxOSchjs1Q2_ViuF3bQNesJ43rtG-6CbGpXB9PMnYuErCuhVAYnexWxg8FvbFkoYm5EOJbBqzEbTZXuX1wXlzsqg5Mh7mgMz-BJr1FjT3DnhshS1BnoA1076OphTtdeJTpwJQRWNBm822vlr279fdye_V_x53AHoSK51uWFOoHJdr2LLxCObZuXg_39BELILz8 priority: 102 providerName: Springer Nature |
Title | Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania |
URI | https://link.springer.com/article/10.1038/s41467-018-08089-7 https://www.ncbi.nlm.nih.gov/pubmed/30651539 https://www.proquest.com/docview/2167790431 https://www.proquest.com/docview/2179388280 https://recercat.cat/handle/2072/346533 https://pubmed.ncbi.nlm.nih.gov/PMC6335398 https://doaj.org/article/c5656c7cb0ad4b9a9d8bfaae00205366 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegCIkXxPcCozIST0A0J3Zi-7GtVqZKGwiY1DfLsZ0tEsqqfkjsv-fOScvK5wsPSZTEsVzfnf27-vw7Ql6rrAaQX7tUq6JIkZAcTKpgqazAGfOaBctw7_DpWXlyLmbzYn4j1RfGhHX0wF3HHTlEHE66ilkvKm21V1VtbUCcU_Aykm0zzW44U3EM5hpcF9HvkmFcHa1EHBNYhoTMTOlU7s1EA7fauJ63_3dg89eYyZ8WTuN8NH1A7vdAko66H_CQ3ArtI3K3Sy15_Zi0IyQL_9YAIA10bK8DbpakLuZwiMKg-A8s9SEsaJ854oKuNou4gkAtXV82S08jk1LjaIPx7BddyGwLd3QE1VHbevrBBds29gk5nx5_mZykfW6F1BUqX6eKu4o7L30pqpJ5CagGpuqQiypIhDyCMy1r7ZTwOoDRlgBvvfK1Cl6VPlj-lAzaqzYcEFpWgFEUuJHBCWGl0NwJqClk3FY2FyEh2bafjeuJxzH_xVcTF8C5Mp1sDMjGRNkYmZC3u28WHe3GX0u_QfEZmCPC0tm1Qc7s3Q0eOZO54cglxxMyRiHvqsWy8QFonem1zvxL6xJyuFUR0xv9yuRZieyNAMkS8mr3GswV12BsG642WAYGRPBqFEvIs06jdi0B7w3QJdcJkXu6ttfU_TdtcxkpwUvO4UOVkHdbrfzRrD_32_P_0RUvyD0AkRh0l2blIRmsl5vwEoDauhqS23Iu4aym74fkzmg0-zyD6_j47OMneDopJ8NotXA-Feo7mQ0_7g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEFyBqEjuJc6jQLrRqabsg1Eq9Gcf2biOh7LIPwf45fhszeVXLo7ceckjiWI5nPPP5Md8AvJThCEH-yPiZjGOfCMlxSMWBn-Y4GbNZ4HRAscPHw2T_VHw8i8824FcbC0PHKlubWBlqOzG0Rr4dhQlR46G_ezf97lPWKNpdbVNo6Ca1gt2pKMaawI5Dt_qBU7j5zsEHlPerKNrbPXm_7zdZBnwTy2jhS25ybmxqE5EngU3Rv6PTcpHIXUrOX_AgS0eZkcJmDtU3QaBnpR1JZ2VineZY7zXYFLSA0oPNwe7w85dulYf416UQTbROwOX2XFS2KQiJGDqQmZ-uecSemS9Nkz_gX6D377Obf2zgVn5x7zbcagAt69caeAc2XHkXrtcpLlf3oOwTafnPAoGxYwO9chS0yUyVS6JSCkYrwcw6N2VNBosxmy-n1U4G02xxXswsqxidCsMKOlc_ro_ulnjH-lgd06Vln4zTZaHvw-mV9P4D6JWT0j0CluSIlSROZ50RQqci40ZgTS7kOteRcB6EbT8r0xCgUx6Ob6raiOdS1bJRKBtVyUalHrzpvpnW9B-Xln5N4lPoq9zM6IUi7u7uhq4oSCPFidOOezAgIXfVUtnqwWQ2Vo3ZUIbwtklNHmgr8kxnVuYjrR2h_JgniQdbrYqoxvjM1cVQ8eBF9xrNBu0F6dJNllQGDTPOrmTgwcNao7qW4CwSUS7PPEjXdG2tqetvyuK8oiZPOMcPpQdvW628aNb_--3x5X_xHG7snxwfqaOD4eETuImQlY74-WGyBb3FbOmeIixc5M-ascfg61UP99-4vXMq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkaCCxBtEjuJc6jQLu2qpbBUiEq9uY7tbCOh7LIPwf5FfhUziZNqefTWwx6ySSzHM575xh5_Q8hLERYA8gvtZyKOfSQkhykVB36aQzBmssCqAM8OfxonByf8w2l8ukV-tWdhMK2ytYm1oTZTjWvk_ShMkBoP_F2_cGkRx3ujd7PvPlaQwp3WtpyGcmUWzG5NN-YOeRzZ9Q8I5xa7h3sg-1dRNNr_-v7AdxUHfB2LaOkLpnOmTWoSnieBScHXgwOzEc9tikCAsyBLi0wLbjILqpwA6DPCFMIakRirGLR7jWyn4PUhENwe7o-Pv3QrPsjFLjh3J3cCJvoLXtupIESS6EBkfrrhHXt6sdKulsC_APDfeZx_bObWPnJ0m9xy4JYOGm28Q7ZsdZdcb8pdru-RaoAE5j9LAMmWDtXa4gFOquu6ErWCUFwVpsbaGXXVLCZ0sZrVuxpU0eV5OTe0ZncqNS0xx37SpPFWcEUH0BxVlaGftVVVqe6TkysZ_QekV00r-4jQJAfcJCC0tZpzlfKMaQ4t2ZCpXEXceiRsx1lqR4aONTm-yXpTngnZyEaCbGQtG5l65E33zqyhArn06dcoPgl-y861Wkrk8e4u8BcFaSQZ8tsxjwxRyF2z-Gz9x3Q-kc6ESI3YW6c6D5TheaYyI_JCKYuIP2ZJ4pGdVkWkM0QLeTFtPPKiuw0mBPeFVGWnK3wGjDREWiLwyMNGo7qeQEQJiJdlHkk3dG2jq5t3qvK8pilPGIMXhUfetlp50a3_j9vjy7_iObkB015-PBwfPSE3Ab1itp8fJjukt5yv7FNAiMv8mZt6lJxd9Wz_DWatd24 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Bayesian+computation+with+deep+learning+supports+a+third+archaic+introgression+in+Asia+and+Oceania&rft.jtitle=Nature+communications&rft.au=Mayukh+Mondal&rft.au=Jaume+Bertranpetit&rft.au=Oscar+Lao&rft.date=2019-01-16&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-018-08089-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c5656c7cb0ad4b9a9d8bfaae00205366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |