Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania

Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgress...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 246 - 9
Main Authors Mondal, Mayukh, Bertranpetit, Jaume, Lao, Oscar
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.01.2019
Nature Publishing Group
Nature Research
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-018-08089-7

Cover

Abstract Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics. Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third archaic introgression common to all Asian and Oceanian human populations by applying an approximate Bayesian computation with a Deep Learning framework.
AbstractList Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics. Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third archaic introgression common to all Asian and Oceanian human populations by applying an approximate Bayesian computation with a Deep Learning framework.
Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.
Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics. M.M was supported by the European Union through the European Regional Development Fund (Project No. 2014-2020.4.01.16-0030). For J.B, this study has been possible thanks to grant BFU2016-77961-P (AEI/FEDER, UE) awarded by the Agencia Estatal de Investigación (MINECO, Spain) and with the support of Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 702). Part of the “Unidad de Excelencia María de Maeztu”, funded by the MINECO (ref: MDM-2014-0370). O.L. was supported by a Ramón y Cajal grant from the Spanish Ministerio de Economia y Competitividad (MINECO) with reference RYC-2013-14797, a BFU2015-68759-P (MINECO/FEDER) grant and the support of Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 937).
Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.
Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third archaic introgression common to all Asian and Oceanian human populations by applying an approximate Bayesian computation with a Deep Learning framework.
Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third archaic introgression common to all Asian and Oceanian human populations by applying an approximate Bayesian computation with a Deep Learning framework.
ArticleNumber 246
Author Bertranpetit, Jaume
Lao, Oscar
Mondal, Mayukh
Author_xml – sequence: 1
  givenname: Mayukh
  orcidid: 0000-0003-0122-0323
  surname: Mondal
  fullname: Mondal, Mayukh
  organization: Institute of Genomics, University of Tartu
– sequence: 2
  givenname: Jaume
  orcidid: 0000-0003-0100-0590
  surname: Bertranpetit
  fullname: Bertranpetit, Jaume
  email: jaume.bertranpetit@upf.edu
  organization: Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra
– sequence: 3
  givenname: Oscar
  orcidid: 0000-0002-8525-9649
  surname: Lao
  fullname: Lao, Oscar
  email: oscar.lao@cnag.crg.eu
  organization: CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30651539$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV_gAOyxIVLwF-xnQvSUhWoVKkXOFuO_XbXq6wd7KTQf1_vZlvaHmrJ8tfM-M3TvK2OQgxQVe8J_kwwU18yJ1zIGhNVY4VVW8tX1QnFnNREUnb0aH9cneW8wWWwlijO31THDIuGNKw9qcJiGFL857dmBPTN3EL2JiAbt8M0mtHHgP76cY0cwIB6MCn4sEJ5GoaYxowMGtc-OWSSXRtvkQ9jiqsEOe-YPqBFkUMmOHRtwQRv3lWvl6bPcHZYT6vf3y9-nf-sr65_XJ4vrmrbKDrWitmOWSed4J3ATpKmpUIA5R1I2hDKGW7lsrWKuxaIbIUinVNuqcAp4cCw0-py1nXRbPSQir90q6Pxen8R00qbNHrbg7aNaISVtsPG8a41rVPd0hjAmOKGCVG0vs5aw9RtwVkoJk3_RPTpS_BrvYo3WjBWeqyKAJkFbJ6sTmAhWTPuiQ-H3aRYUs24aBgrnE-HT1P8M0Ee9dZnC31vAsQpa1pcM6WowgX68Rl0E6cUSnsLSkjZYs5IQX147OKh_PsoFIA6VJlizgmW2vo5AsWU7zXBehc8PQdPl-DpffC0LFT6jHqv_iKJzaRcwGEF6X_ZL7DuAAH066Q
CitedBy_id crossref_primary_10_1038_s10038_021_00930_0
crossref_primary_10_1016_j_cell_2021_03_039
crossref_primary_10_1002_ajpa_23951
crossref_primary_10_7554_eLife_64669
crossref_primary_10_1038_s41576_023_00636_3
crossref_primary_10_1152_physrev_00040_2021
crossref_primary_10_1016_j_gde_2020_05_026
crossref_primary_10_1093_molbev_msae077
crossref_primary_10_1038_s41586_021_03244_5
crossref_primary_10_1002_evan_21895
crossref_primary_10_1002_ange_202109170
crossref_primary_10_1134_S1995080222110075
crossref_primary_10_1016_j_cub_2020_09_051
crossref_primary_10_1073_pnas_1904824116
crossref_primary_10_1016_j_matchemphys_2021_124337
crossref_primary_10_1111_tpj_16859
crossref_primary_10_1111_1755_0998_13413
crossref_primary_10_1111_1755_0998_13534
crossref_primary_10_1534_genetics_120_303167
crossref_primary_10_1038_s41586_021_03823_6
crossref_primary_10_1093_nargab_lqaa061
crossref_primary_10_1093_molbev_msad252
crossref_primary_10_3390_genes13010044
crossref_primary_10_1016_j_jglr_2021_08_008
crossref_primary_10_1145_3471188
crossref_primary_10_1073_pnas_2405889121
crossref_primary_10_1093_bioinformatics_btab468
crossref_primary_10_1002_anie_202109170
crossref_primary_10_14746_pst_2022_41_04
crossref_primary_10_1016_j_jhevol_2020_102888
crossref_primary_10_1038_s41431_021_00875_0
crossref_primary_10_1016_j_ajhg_2021_09_006
crossref_primary_10_1093_sysbio_syad033
crossref_primary_10_1016_j_earscirev_2024_104941
crossref_primary_10_2478_anre_2021_0020
crossref_primary_10_1093_gbe_evad008
crossref_primary_10_1111_1755_0998_13224
crossref_primary_10_1016_j_aanat_2022_151887
crossref_primary_10_1126_science_aaw8020
crossref_primary_10_1093_gbe_evab115
crossref_primary_10_1186_s13059_019_1684_5
crossref_primary_10_1007_s11427_024_2659_2
crossref_primary_10_1109_TPDS_2023_3238045
crossref_primary_10_1002_evl3_165
crossref_primary_10_1038_s41467_022_29267_8
crossref_primary_10_1002_ajpa_70010
crossref_primary_10_1093_genetics_iyad007
crossref_primary_10_1111_aman_13410
crossref_primary_10_1111_mec_17505
crossref_primary_10_2478_biocosmos_2022_0003
crossref_primary_10_3390_genes13122373
crossref_primary_10_2478_anre_2020_0008
crossref_primary_10_1093_biomet_asaa090
crossref_primary_10_1038_s41559_021_01408_0
crossref_primary_10_1093_sysbio_syac011
crossref_primary_10_1111_1755_0998_13355
crossref_primary_10_1111_2041_210X_13901
crossref_primary_10_1016_j_pocean_2023_103190
crossref_primary_10_1186_s13059_024_03341_4
crossref_primary_10_1371_journal_pone_0257273
crossref_primary_10_1002_bies_202000012
crossref_primary_10_1038_s41598_020_65322_4
crossref_primary_10_1038_s41467_021_26503_5
crossref_primary_10_7717_peerj_8767
Cites_doi 10.1038/ng.3559
10.1038/nature17993
10.1371/journal.pgen.1005550
10.1016/j.cell.2018.02.031
10.1111/j.1365-294X.2010.04690.x
10.1534/genetics.112.148213
10.1038/nature18299
10.1016/j.cub.2016.03.037
10.1126/science.1188021
10.1016/j.cell.2017.08.049
10.1126/science.1211177
10.1016/j.jhevol.2005.04.006
10.1016/j.ajhg.2009.05.001
10.1038/nature11632
10.1126/science.aao6266
10.1534/genetics.112.145037
10.1111/j.2041-210X.2011.00179.x
10.1534/genetics.116.192708
10.1038/nature14539
10.1038/ng.3621
10.1371/journal.pcbi.1002803
10.1126/science.1224344
10.1038/nature10231
10.1016/j.ajhg.2017.04.002
10.1002/ajpa.20188
10.1016/j.ajhg.2015.01.006
10.1534/genetics.112.141846
10.1126/science.aao1887
10.1371/journal.pgen.1003905
10.1016/j.ajhg.2014.12.029
10.1038/nature18964
10.1371/journal.pgen.1005877
10.1371/journal.pcbi.0030110
10.1093/bioinformatics/18.2.337
10.1038/nature19792
10.1016/j.ajhg.2016.07.002
10.1371/journal.pgen.1000695
10.1126/science.aad2149
10.1038/nature16544
10.1371/journal.pcbi.1004845
10.1038/nature19310
10.1038/nature12886
10.1101/gr.196634.115
10.1038/ncomms16046
10.1038/s41586-018-0455-x
10.1038/nature09710
10.1038/nature15393
10.1201/b14835
10.1101/292581
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
info:eu-repo/semantics/openAccess © The Author(s) 2019. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: info:eu-repo/semantics/openAccess © The Author(s) 2019. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by/4.0/.">http://creativecommons.org/licenses/by/4.0/.</a> <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a>
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
XX2
5PM
DOA
DOI 10.1038/s41467-018-08089-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Recercat
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_c5656c7cb0ad4b9a9d8bfaae00205366
PMC6335398
oai_recercat_cat_2072_346533
30651539
10_1038_s41467_018_08089_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
4.4
ABAWZ
BAPOH
CAG
COF
EJD
LGEZI
LOTEE
NADUK
NXXTH
XX2
5PM
ID FETCH-LOGICAL-c582t-83cb3cd7d64b60d7159266e24be7251243097f9c84d9e179681bd8df8ed86dea3
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:10:55 EDT 2025
Thu Aug 21 18:02:42 EDT 2025
Fri Sep 26 12:39:03 EDT 2025
Fri Sep 05 06:12:56 EDT 2025
Wed Aug 13 04:19:07 EDT 2025
Wed Feb 19 02:31:41 EST 2025
Tue Jul 01 02:21:21 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
Fri Feb 21 02:38:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-83cb3cd7d64b60d7159266e24be7251243097f9c84d9e179681bd8df8ed86dea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8525-9649
0000-0003-0100-0590
0000-0003-0122-0323
OpenAccessLink https://doaj.org/article/c5656c7cb0ad4b9a9d8bfaae00205366
PMID 30651539
PQID 2167790431
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_c5656c7cb0ad4b9a9d8bfaae00205366
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6335398
csuc_recercat_oai_recercat_cat_2072_346533
proquest_miscellaneous_2179388280
proquest_journals_2167790431
pubmed_primary_30651539
crossref_citationtrail_10_1038_s41467_018_08089_7
crossref_primary_10_1038_s41467_018_08089_7
springer_journals_10_1038_s41467_018_08089_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-16
PublicationDateYYYYMMDD 2019-01-16
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Research
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Research
– name: Nature Portfolio
References Simonti (CR36) 2016; 351
Hsieh (CR18) 2016; 26
Reich (CR17) 2010; 468
Bock, Walter, Paulsen, Lengauer (CR51) 2007; 3
CR39
Vernot, Akey (CR34) 2015; 96
Excoffier, Dupanloup, Huerta-Sánchez, Sousa, Foll (CR21) 2013; 9
Pagani (CR11) 2016; 538
Bertorelle, Benazzo, Mona (CR25) 2010; 19
Browning, Browning, Zhou, Tucci, Akey (CR20) 2018; 173
Lazaridis (CR40) 2016; 536
Li, Durbin (CR5) 2011; 475
Lecun, Bengio, Hinton (CR28) 2015; 521
Rasmussen (CR9) 2011; 334
Boitard, Rodríguez, Jay, Mona, Austerlitz (CR32) 2016; 12
Malaspinas (CR7) 2016; 538
Kuhlwilm (CR14) 2016; 530
Csilléry, François, Blum (CR52) 2012; 3
Poznik (CR4) 2016; 48
Posth (CR15) 2017; 8
Jiang, Wu, Zheng, Wong (CR26) 2017; 27
Lapierre, Lambert, Achaz (CR30) 2017; 206
CR49
Mondal (CR6) 2016; 48
Sankararaman, Mallick, Patterson, Reich (CR44) 2016; 26
CR42
Slon (CR37) 2018; 561
Hudson (CR48) 2002; 18
Schlebusch (CR1) 2017; 358
Soares (CR3) 2009; 84
Wall (CR35) 2013; 194
Kim, Lohmueller (CR46) 2015; 96
Gutenkunst, Hernandez, Williamson, Bustamante (CR29) 2009; 5
Lukic, Hey (CR31) 2012; 192
CR53
Skoglund (CR2) 2017; 171
Abecasis (CR33) 2012; 491
Mallick (CR8) 2016; 538
Fenner (CR38) 2005; 128
Sunnåker (CR24) 2013; 9
Grün (CR10) 2005; 49
Auton (CR47) 2015; 526
Prüfer (CR43) 2017; 358
Fu (CR45) 2016; 534
Wall (CR41) 2017; 100
Lu (CR19) 2016; 99
Meyer (CR12) 2012; 338
CR22
Sheehan, Song (CR27) 2016; 12
Patterson (CR23) 2012; 192
Green (CR13) 2010; 328
Prüfer (CR16) 2014; 505
Lipson (CR50) 2015; 11
K Prüfer (8089_CR16) 2014; 505
RN Gutenkunst (8089_CR29) 2009; 5
H Li (8089_CR5) 2011; 475
K Csilléry (8089_CR52) 2012; 3
AS Malaspinas (8089_CR7) 2016; 538
JD Wall (8089_CR41) 2017; 100
8089_CR49
PH Hsieh (8089_CR18) 2016; 26
Q Fu (8089_CR45) 2016; 534
L Pagani (8089_CR11) 2016; 538
8089_CR42
M Lapierre (8089_CR30) 2017; 206
BY Kim (8089_CR46) 2015; 96
R Grün (8089_CR10) 2005; 49
C Bock (8089_CR51) 2007; 3
N Patterson (8089_CR23) 2012; 192
M Sunnåker (8089_CR24) 2013; 9
M Rasmussen (8089_CR9) 2011; 334
SR Browning (8089_CR20) 2018; 173
M Lipson (8089_CR50) 2015; 11
S Sankararaman (8089_CR44) 2016; 26
8089_CR39
CM Schlebusch (8089_CR1) 2017; 358
RR Hudson (8089_CR48) 2002; 18
GD Poznik (8089_CR4) 2016; 48
P Soares (8089_CR3) 2009; 84
D Lu (8089_CR19) 2016; 99
Y Lecun (8089_CR28) 2015; 521
P Skoglund (8089_CR2) 2017; 171
B Jiang (8089_CR26) 2017; 27
JD Wall (8089_CR35) 2013; 194
G Bertorelle (8089_CR25) 2010; 19
L Excoffier (8089_CR21) 2013; 9
RE Green (8089_CR13) 2010; 328
I Lazaridis (8089_CR40) 2016; 536
A Auton (8089_CR47) 2015; 526
V Slon (8089_CR37) 2018; 561
B Vernot (8089_CR34) 2015; 96
K Prüfer (8089_CR43) 2017; 358
M Mondal (8089_CR6) 2016; 48
S Mallick (8089_CR8) 2016; 538
S Lukic (8089_CR31) 2012; 192
8089_CR22
C Posth (8089_CR15) 2017; 8
JN Fenner (8089_CR38) 2005; 128
CN Simonti (8089_CR36) 2016; 351
S Sheehan (8089_CR27) 2016; 12
GR Abecasis (8089_CR33) 2012; 491
M Meyer (8089_CR12) 2012; 338
M Kuhlwilm (8089_CR14) 2016; 530
S Boitard (8089_CR32) 2016; 12
D Reich (8089_CR17) 2010; 468
8089_CR53
References_xml – volume: 48
  start-page: 593
  year: 2016
  end-page: 599
  ident: CR4
  article-title: Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3559
– ident: CR22
– volume: 534
  start-page: 200
  year: 2016
  end-page: 205
  ident: CR45
  article-title: The genetic history of Ice Age Europe
  publication-title: Nature
  doi: 10.1038/nature17993
– ident: CR49
– volume: 11
  start-page: e1005550
  year: 2015
  ident: CR50
  article-title: Calibrating the human mutation rate via ancestral recombination density in diploid genomes
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005550
– volume: 173
  start-page: 53
  year: 2018
  end-page: 61.e9
  ident: CR20
  article-title: Analysis of human sequence data reveals two pulses of archaic denisovan admixture
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.031
– volume: 19
  start-page: 2609
  year: 2010
  end-page: 2625
  ident: CR25
  article-title: ABC as a flexible framework to estimate demography over space and time: Some cons, many pros
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2010.04690.x
– volume: 194
  start-page: 199
  year: 2013
  end-page: 209
  ident: CR35
  article-title: Higher levels of Neanderthal ancestry in east Asians than in Europeans
  publication-title: Genetics
  doi: 10.1534/genetics.112.148213
– ident: CR39
– volume: 538
  start-page: 207
  year: 2016
  end-page: 214
  ident: CR7
  article-title: A genomic history of Aboriginal Australia
  publication-title: Nature
  doi: 10.1038/nature18299
– volume: 26
  start-page: 1241
  year: 2016
  end-page: 1247
  ident: CR44
  article-title: The combined landscape of denisovan and neanderthal ancestry in present-day humans
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.03.037
– volume: 328
  start-page: 710
  year: 2010
  end-page: 722
  ident: CR13
  article-title: A draft sequence of the neandertal genome
  publication-title: Sci. (80).
  doi: 10.1126/science.1188021
– volume: 171
  start-page: 59
  year: 2017
  end-page: 71.e21
  ident: CR2
  article-title: Reconstructing prehistoric african population structure
  publication-title: Cell
  doi: 10.1016/j.cell.2017.08.049
– volume: 334
  start-page: 94
  year: 2011
  end-page: 98
  ident: CR9
  article-title: An aboriginal Australian genome reveals separate human dispersals into Asia
  publication-title: Science.
  doi: 10.1126/science.1211177
– volume: 49
  start-page: 316
  year: 2005
  end-page: 334
  ident: CR10
  article-title: U-series and ESR analyses of bones and teeth relating to the human burials from Skhul
  publication-title: J. Hum. Evol.
  doi: 10.1016/j.jhevol.2005.04.006
– volume: 84
  start-page: 740
  year: 2009
  end-page: 759
  ident: CR3
  article-title: Correcting for purifying selection: an improved human mitochondrial molecular clock
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.05.001
– volume: 491
  start-page: 56
  year: 2012
  end-page: 65
  ident: CR33
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 358
  start-page: 652
  year: 2017
  end-page: 655
  ident: CR1
  article-title: Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago
  publication-title: Science.
  doi: 10.1126/science.aao6266
– ident: CR42
– volume: 192
  start-page: 1065
  year: 2012
  end-page: 1093
  ident: CR23
  article-title: Ancient admixture in human history
  publication-title: Genetics
  doi: 10.1534/genetics.112.145037
– volume: 3
  start-page: 475
  year: 2012
  end-page: 479
  ident: CR52
  article-title: Abc: An R package for approximate Bayesian computation (ABC)
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/j.2041-210X.2011.00179.x
– volume: 206
  start-page: 139
  year: 2017
  end-page: 449
  ident: CR30
  article-title: Accuracy of demographic inferences from the site frequency spectrum: he case of the yoruba population
  publication-title: Genetics
  doi: 10.1534/genetics.116.192708
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 48
  start-page: 1066
  year: 2016
  end-page: 1070
  ident: CR6
  article-title: Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3621
– volume: 9
  start-page: e1002803
  year: 2013
  ident: CR24
  article-title: Approximate Bayesian computation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002803
– volume: 338
  start-page: 222
  year: 2012
  end-page: 226
  ident: CR12
  article-title: A high-coverage genome sequence from an archaic Denisovan individual
  publication-title: Sci. (80).
  doi: 10.1126/science.1224344
– volume: 475
  start-page: 493
  year: 2011
  end-page: 496
  ident: CR5
  article-title: Inference of human population history from individual whole-genome sequences
  publication-title: Nature
  doi: 10.1038/nature10231
– volume: 100
  start-page: 766
  year: 2017
  end-page: 772
  ident: CR41
  article-title: Inferring human demographic histories of non-african populations from patterns of allele sharing
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.04.002
– volume: 128
  start-page: 415
  year: 2005
  end-page: 423
  ident: CR38
  article-title: Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies
  publication-title: Am. J. Phys. Anthropol.
  doi: 10.1002/ajpa.20188
– volume: 27
  start-page: 1595
  year: 2017
  end-page: 1618
  ident: CR26
  article-title: Learning summary statistic for approximate Bayesian computation via deep neural network
  publication-title: Stat. Sin.
– volume: 96
  start-page: 448
  year: 2015
  end-page: 453
  ident: CR34
  article-title: Complex history of admixture between modern humans and neandertals
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.01.006
– volume: 192
  start-page: 619
  year: 2012
  end-page: 639
  ident: CR31
  article-title: Demographic inference using spectral methods on SNP data, with an analysis of the human out-of-Africa expansion
  publication-title: Genetics
  doi: 10.1534/genetics.112.141846
– volume: 358
  start-page: 655
  year: 2017
  end-page: 658
  ident: CR43
  article-title: A high-coverage Neandertal genome from Vindija Cave in Croatia
  publication-title: Science
  doi: 10.1126/science.aao1887
– ident: CR53
– volume: 9
  start-page: e1003905
  year: 2013
  ident: CR21
  article-title: Robust demographic inference from genomic and SNP Data
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003905
– volume: 96
  start-page: 454
  year: 2015
  end-page: 461
  ident: CR46
  article-title: Selection and reduced population size cannot explain higher amounts of Neandertal ancestry in East Asian than in European human populations
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2014.12.029
– volume: 538
  start-page: 201
  year: 2016
  end-page: 206
  ident: CR8
  article-title: The Simons Genome Diversity Project: 300 genomes from 142 diverse populations
  publication-title: Nature
  doi: 10.1038/nature18964
– volume: 12
  start-page: e1005877
  year: 2016
  ident: CR32
  article-title: Inferring population size history from large samples of genome-wide molecular data—an approximate bayesian computation approach
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005877
– volume: 3
  start-page: e110
  year: 2007
  ident: CR51
  article-title: CpG island mapping by epigenome prediction
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030110
– volume: 18
  start-page: 337
  year: 2002
  end-page: 338
  ident: CR48
  article-title: Generating samples under a Wright-Fisher neutral model of genetic variation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.2.337
– volume: 538
  start-page: 238
  year: 2016
  end-page: 242
  ident: CR11
  article-title: Genomic analyses inform on migration events during the peopling of Eurasia
  publication-title: Nature
  doi: 10.1038/nature19792
– volume: 99
  start-page: 580
  year: 2016
  end-page: 594
  ident: CR19
  article-title: Ancestral origins and genetic history of Tibetan highlanders
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.07.002
– volume: 5
  start-page: e1000695
  year: 2009
  ident: CR29
  article-title: Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000695
– volume: 351
  start-page: 737
  year: 2016
  end-page: 741
  ident: CR36
  article-title: The phenotypic legacy of admixture between modern humans and Neandertals
  publication-title: Sci. (80).
  doi: 10.1126/science.aad2149
– volume: 530
  start-page: 429
  year: 2016
  end-page: 433
  ident: CR14
  article-title: Ancient gene flow from early modern humans into Eastern Neanderthals
  publication-title: Nature
  doi: 10.1038/nature16544
– volume: 12
  start-page: e1004845
  year: 2016
  ident: CR27
  article-title: Deep learning for population genetic inference
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004845
– volume: 536
  start-page: 419
  year: 2016
  end-page: 424
  ident: CR40
  article-title: Genomic insights into the origin of farming in the ancient Near East
  publication-title: Nature
  doi: 10.1038/nature19310
– volume: 505
  start-page: 43
  year: 2014
  end-page: 49
  ident: CR16
  article-title: The complete genome sequence of a Neanderthal from the Altai Mountains
  publication-title: Nature
  doi: 10.1038/nature12886
– volume: 26
  start-page: 291
  year: 2016
  end-page: 300
  ident: CR18
  article-title: Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies
  publication-title: Genome Res.
  doi: 10.1101/gr.196634.115
– volume: 8
  year: 2017
  ident: CR15
  article-title: Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16046
– volume: 561
  start-page: 113
  year: 2018
  end-page: 116
  ident: CR37
  article-title: The genome of the offspring of a Neanderthal mother and a Denisovan father
  publication-title: Nature
  doi: 10.1038/s41586-018-0455-x
– volume: 468
  start-page: 1053
  year: 2010
  end-page: 1060
  ident: CR17
  article-title: Genetic history of an archaic hominin group from Denisova cave in Siberia
  publication-title: Nature
  doi: 10.1038/nature09710
– volume: 526
  start-page: 68
  year: 2015
  end-page: 74
  ident: CR47
  article-title: A global reference for human genetic variation
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 194
  start-page: 199
  year: 2013
  ident: 8089_CR35
  publication-title: Genetics
  doi: 10.1534/genetics.112.148213
– volume: 530
  start-page: 429
  year: 2016
  ident: 8089_CR14
  publication-title: Nature
  doi: 10.1038/nature16544
– volume: 173
  start-page: 53
  year: 2018
  ident: 8089_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.031
– volume: 538
  start-page: 207
  year: 2016
  ident: 8089_CR7
  publication-title: Nature
  doi: 10.1038/nature18299
– volume: 491
  start-page: 56
  year: 2012
  ident: 8089_CR33
  publication-title: Nature
  doi: 10.1038/nature11632
– ident: 8089_CR53
– volume: 8
  year: 2017
  ident: 8089_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16046
– volume: 96
  start-page: 448
  year: 2015
  ident: 8089_CR34
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2015.01.006
– volume: 338
  start-page: 222
  year: 2012
  ident: 8089_CR12
  publication-title: Sci. (80).
  doi: 10.1126/science.1224344
– volume: 171
  start-page: 59
  year: 2017
  ident: 8089_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2017.08.049
– volume: 5
  start-page: e1000695
  year: 2009
  ident: 8089_CR29
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000695
– volume: 538
  start-page: 238
  year: 2016
  ident: 8089_CR11
  publication-title: Nature
  doi: 10.1038/nature19792
– volume: 358
  start-page: 652
  year: 2017
  ident: 8089_CR1
  publication-title: Science.
  doi: 10.1126/science.aao6266
– ident: 8089_CR39
  doi: 10.1201/b14835
– volume: 84
  start-page: 740
  year: 2009
  ident: 8089_CR3
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.05.001
– volume: 9
  start-page: e1003905
  year: 2013
  ident: 8089_CR21
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003905
– volume: 27
  start-page: 1595
  year: 2017
  ident: 8089_CR26
  publication-title: Stat. Sin.
– volume: 536
  start-page: 419
  year: 2016
  ident: 8089_CR40
  publication-title: Nature
  doi: 10.1038/nature19310
– volume: 468
  start-page: 1053
  year: 2010
  ident: 8089_CR17
  publication-title: Nature
  doi: 10.1038/nature09710
– volume: 334
  start-page: 94
  year: 2011
  ident: 8089_CR9
  publication-title: Science.
  doi: 10.1126/science.1211177
– volume: 3
  start-page: 475
  year: 2012
  ident: 8089_CR52
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/j.2041-210X.2011.00179.x
– volume: 26
  start-page: 291
  year: 2016
  ident: 8089_CR18
  publication-title: Genome Res.
  doi: 10.1101/gr.196634.115
– volume: 206
  start-page: 139
  year: 2017
  ident: 8089_CR30
  publication-title: Genetics
  doi: 10.1534/genetics.116.192708
– volume: 99
  start-page: 580
  year: 2016
  ident: 8089_CR19
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2016.07.002
– volume: 9
  start-page: e1002803
  year: 2013
  ident: 8089_CR24
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002803
– ident: 8089_CR49
– volume: 96
  start-page: 454
  year: 2015
  ident: 8089_CR46
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2014.12.029
– volume: 538
  start-page: 201
  year: 2016
  ident: 8089_CR8
  publication-title: Nature
  doi: 10.1038/nature18964
– ident: 8089_CR22
– volume: 505
  start-page: 43
  year: 2014
  ident: 8089_CR16
  publication-title: Nature
  doi: 10.1038/nature12886
– volume: 12
  start-page: e1004845
  year: 2016
  ident: 8089_CR27
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004845
– volume: 328
  start-page: 710
  year: 2010
  ident: 8089_CR13
  publication-title: Sci. (80).
  doi: 10.1126/science.1188021
– ident: 8089_CR42
  doi: 10.1101/292581
– volume: 19
  start-page: 2609
  year: 2010
  ident: 8089_CR25
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2010.04690.x
– volume: 49
  start-page: 316
  year: 2005
  ident: 8089_CR10
  publication-title: J. Hum. Evol.
  doi: 10.1016/j.jhevol.2005.04.006
– volume: 192
  start-page: 1065
  year: 2012
  ident: 8089_CR23
  publication-title: Genetics
  doi: 10.1534/genetics.112.145037
– volume: 128
  start-page: 415
  year: 2005
  ident: 8089_CR38
  publication-title: Am. J. Phys. Anthropol.
  doi: 10.1002/ajpa.20188
– volume: 475
  start-page: 493
  year: 2011
  ident: 8089_CR5
  publication-title: Nature
  doi: 10.1038/nature10231
– volume: 12
  start-page: e1005877
  year: 2016
  ident: 8089_CR32
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005877
– volume: 358
  start-page: 655
  year: 2017
  ident: 8089_CR43
  publication-title: Science
  doi: 10.1126/science.aao1887
– volume: 534
  start-page: 200
  year: 2016
  ident: 8089_CR45
  publication-title: Nature
  doi: 10.1038/nature17993
– volume: 48
  start-page: 1066
  year: 2016
  ident: 8089_CR6
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3621
– volume: 100
  start-page: 766
  year: 2017
  ident: 8089_CR41
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.04.002
– volume: 521
  start-page: 436
  year: 2015
  ident: 8089_CR28
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 192
  start-page: 619
  year: 2012
  ident: 8089_CR31
  publication-title: Genetics
  doi: 10.1534/genetics.112.141846
– volume: 3
  start-page: e110
  year: 2007
  ident: 8089_CR51
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030110
– volume: 526
  start-page: 68
  year: 2015
  ident: 8089_CR47
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 351
  start-page: 737
  year: 2016
  ident: 8089_CR36
  publication-title: Sci. (80).
  doi: 10.1126/science.aad2149
– volume: 561
  start-page: 113
  year: 2018
  ident: 8089_CR37
  publication-title: Nature
  doi: 10.1038/s41586-018-0455-x
– volume: 48
  start-page: 593
  year: 2016
  ident: 8089_CR4
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3559
– volume: 11
  start-page: e1005550
  year: 2015
  ident: 8089_CR50
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005550
– volume: 26
  start-page: 1241
  year: 2016
  ident: 8089_CR44
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.03.037
– volume: 18
  start-page: 337
  year: 2002
  ident: 8089_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.2.337
SSID ssj0000391844
Score 2.54174
Snippet Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently...
Introgression of Neanderthals and Denisovans left genomic signals in anatomically modern human after Out-of-Africa event. Here, the authors identify a third...
SourceID doaj
pubmedcentral
csuc
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 246
SubjectTerms 45/23
631/181/457/649
631/208/457/649
Bayesian analysis
Computation
Deep learning
Demographics
Evolutionary algorithms
Evolutionary genetics
Genetic diversity
Genetic variation
Genomes
Genomics
Hominids
Homo neanderthalensis
Homo sapiens denisova
Human populations
Humanities and Social Sciences
multidisciplinary
Population genetics
Populations
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA7rLIIv4t3qKhF8UsumTZqkDyIzsssiOIq4sG8hTTKzBemMMx1w_73npJdlvOzDPHSahrTnki85J98h5LXOFgDyFy4tdVGkSEgOJlWwVFWwGPMlC5bh2eHPc3l2Lj5dFBcHZD6chcG0ysEnRkftVw73yI_zTCI1Hsx3H9Y_U6wahdHVoYSG7Usr-PeRYuwWOQSXXLAJOZydzL9-G3ddkA9dC9GfnmFcH29F9BUsQ6JmpstU7c1QE7fduZ7P_18g9O9cyj8CqnGeOr1H7vYAk047jbhPDkLzgNzuSk5ePSTNFEnEf9UAVAOd2auAhyipi7UdopAo7sxSH8Ka9hUllnS7W8fIArW0vaw3nkaGpdrRGvPcl10qbQNXdArdUdt4-sUF29T2ETk_Pfn-8Sztay6krtB5m2ruKu688lJUknkFaAem8JCLKiiEQoKzUi1Kp4UvAxizBNjrtV_o4LX0wfLHZNKsmvCUUFkBdtGwvAxOCKtEyZ2AnkLGbWVzERKSDd_ZuJ6QHOti_DAxMM616WRjQDYmysaohLwdn1l3dBw3tn6D4jMwd4SNs61BLu3xAn85U7nhyDHHEzJDIY_dYtv4x2qzNL0ZG4f41ylXMetFVdrS62phbUDUXXApE3I0qIjpncHWXKtuQl6Nt8GMMTZjm7DaYRtwlLDa0SwhTzqNGkcCqzpAnbxMiNrTtb2h7t9p6stIFS45hwd1Qt4NWnk9rP9_t2c3v8VzcgdgI6bZpZk8IpN2swsvAJq11cve3n4DhEg2iw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELaWIiQuiPcGFmQkTkAgiR0_Dgh1EasVEnCh0t4sx3a7kVZpaVNp---ZcR6oUDhxyCGJbVmemfibzPgbQl6qfA4gf-5SrcoyRUJyMKkyS2UFzpjXWbAZnh3-8lWcz_jni_LiiAzljvoF3Bx07bCe1Gx99fb6x-4DGPz77si4erfh0dyzHLmWM6VTeYPcjPEiTOXr4X78MjMNDg3vz84c7rq3P03cZut6Nv9DEPTPTMrfwqlxlzq7S-708JJOO324R45Cc5_c6gpO7h6QZooU4tc1wNRAT-0u4BFK6mJlhygiiv9lqQ9hRft6Egu62a5iXIFa2l7Wa08jv1LtaI1Z7osukbaBOzqF4ahtPP3mgm1q-5DMzj59_3ie9hUXUleqok0VcxVzXnrBK5F5CVgHNvBQ8CpIBEKcZVrOtVPc6wCmLAD0euXnKnglfLDsEZk0yyYcEyoqQC4KnMvgOLeSa-Y4jBRyZitb8JCQfFhn43o6cqyKcWViWJwp08nGgGxMlI2RCXk99ll1ZBz_bP0KxWdg5whrZ1uDTNrjDV5FJgvDkGGOJeQUhTwOi23jg-V6YXojNg7Rr5Ouyqznlbbaq2pubUDMXTIhEnIyqIgZNNkUuUBORwBqCXkxvgYjxsiMbcJyi23gMwm-jsoS8rjTqHEm4NMB5mQ6IXJP1_amuv-mqS8jUbhgDDqqhLwZtPLXtP6-bk_-x1I8JbcBWmIqXpqLEzJp19vwDOBbWz2PNvkTew9AmQ
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPQRfxG-rp0TwSS2mTZqkj3vicSyoD3pwbyFNsnsF6S77Ad5_70zarayegg99SPNByMwkvyST3wC8NsUcQf7c57WpqpwIydGkKp7rBjdjoebRcXo7_OmzOr-Qs8vq8gjK_VuY5LSfKC3TNL33Dnu_kcmkeUF8ytzUub4Fx0bj9DuB4-l09nU2nqwQ57mRcnghw4W5ofLBKjTxm50fOPtvApp_-kv-dmma1qKze3B3AJFs2nf7PhzF7gHc7sNKXj-EbkpE4T9aBKORnbrrSA8lmU_xG5IgGJ2-shDjig1RIxZss1ul2wPm2PaqXQeWWJRaz1ryZV_07rIdptgUm2OuC-yLj65r3SO4OPv47cN5PsRVyH1lym1uhG-EDzoo2SgeNCIaXKZjKZuoCe5IwWs9r72RoY5osAqhbTBhbmIwKkQnHsOkW3bxKTDVID4xuIWMXkqnZS28xJZiIVzjShkzKPbjbP1AOk6xL77bdPktjO1lY1E2NsnG6gzejnVWPeXGP0u_IfFZXB_i2rutJb7sMUFfyXVpBfHIiQxOSchjs1Q2_ViuF3bQNesJ43rtG-6CbGpXB9PMnYuErCuhVAYnexWxg8FvbFkoYm5EOJbBqzEbTZXuX1wXlzsqg5Mh7mgMz-BJr1FjT3DnhshS1BnoA1076OphTtdeJTpwJQRWNBm822vlr279fdye_V_x53AHoSK51uWFOoHJdr2LLxCObZuXg_39BELILz8
  priority: 102
  providerName: Springer Nature
Title Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania
URI https://link.springer.com/article/10.1038/s41467-018-08089-7
https://www.ncbi.nlm.nih.gov/pubmed/30651539
https://www.proquest.com/docview/2167790431
https://www.proquest.com/docview/2179388280
https://recercat.cat/handle/2072/346533
https://pubmed.ncbi.nlm.nih.gov/PMC6335398
https://doaj.org/article/c5656c7cb0ad4b9a9d8bfaae00205366
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegCIkXxPcCozIST0A0J3Zi-7GtVqZKGwiY1DfLsZ0tEsqqfkjsv-fOScvK5wsPSZTEsVzfnf27-vw7Ql6rrAaQX7tUq6JIkZAcTKpgqazAGfOaBctw7_DpWXlyLmbzYn4j1RfGhHX0wF3HHTlEHE66ilkvKm21V1VtbUCcU_Aykm0zzW44U3EM5hpcF9HvkmFcHa1EHBNYhoTMTOlU7s1EA7fauJ63_3dg89eYyZ8WTuN8NH1A7vdAko66H_CQ3ArtI3K3Sy15_Zi0IyQL_9YAIA10bK8DbpakLuZwiMKg-A8s9SEsaJ854oKuNou4gkAtXV82S08jk1LjaIPx7BddyGwLd3QE1VHbevrBBds29gk5nx5_mZykfW6F1BUqX6eKu4o7L30pqpJ5CagGpuqQiypIhDyCMy1r7ZTwOoDRlgBvvfK1Cl6VPlj-lAzaqzYcEFpWgFEUuJHBCWGl0NwJqClk3FY2FyEh2bafjeuJxzH_xVcTF8C5Mp1sDMjGRNkYmZC3u28WHe3GX0u_QfEZmCPC0tm1Qc7s3Q0eOZO54cglxxMyRiHvqsWy8QFonem1zvxL6xJyuFUR0xv9yuRZieyNAMkS8mr3GswV12BsG642WAYGRPBqFEvIs06jdi0B7w3QJdcJkXu6ttfU_TdtcxkpwUvO4UOVkHdbrfzRrD_32_P_0RUvyD0AkRh0l2blIRmsl5vwEoDauhqS23Iu4aym74fkzmg0-zyD6_j47OMneDopJ8NotXA-Feo7mQ0_7g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEFyBqEjuJc6jQLrRqabsg1Eq9Gcf2biOh7LIPwf45fhszeVXLo7ceckjiWI5nPPP5Md8AvJThCEH-yPiZjGOfCMlxSMWBn-Y4GbNZ4HRAscPHw2T_VHw8i8824FcbC0PHKlubWBlqOzG0Rr4dhQlR46G_ezf97lPWKNpdbVNo6Ca1gt2pKMaawI5Dt_qBU7j5zsEHlPerKNrbPXm_7zdZBnwTy2jhS25ybmxqE5EngU3Rv6PTcpHIXUrOX_AgS0eZkcJmDtU3QaBnpR1JZ2VineZY7zXYFLSA0oPNwe7w85dulYf416UQTbROwOX2XFS2KQiJGDqQmZ-uecSemS9Nkz_gX6D377Obf2zgVn5x7zbcagAt69caeAc2XHkXrtcpLlf3oOwTafnPAoGxYwO9chS0yUyVS6JSCkYrwcw6N2VNBosxmy-n1U4G02xxXswsqxidCsMKOlc_ro_ulnjH-lgd06Vln4zTZaHvw-mV9P4D6JWT0j0CluSIlSROZ50RQqci40ZgTS7kOteRcB6EbT8r0xCgUx6Ob6raiOdS1bJRKBtVyUalHrzpvpnW9B-Xln5N4lPoq9zM6IUi7u7uhq4oSCPFidOOezAgIXfVUtnqwWQ2Vo3ZUIbwtklNHmgr8kxnVuYjrR2h_JgniQdbrYqoxvjM1cVQ8eBF9xrNBu0F6dJNllQGDTPOrmTgwcNao7qW4CwSUS7PPEjXdG2tqetvyuK8oiZPOMcPpQdvW628aNb_--3x5X_xHG7snxwfqaOD4eETuImQlY74-WGyBb3FbOmeIixc5M-ascfg61UP99-4vXMq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkaCCxBtEjuJc6jQLu2qpbBUiEq9uY7tbCOh7LIPwf5FfhUziZNqefTWwx6ySSzHM575xh5_Q8hLERYA8gvtZyKOfSQkhykVB36aQzBmssCqAM8OfxonByf8w2l8ukV-tWdhMK2ytYm1oTZTjWvk_ShMkBoP_F2_cGkRx3ujd7PvPlaQwp3WtpyGcmUWzG5NN-YOeRzZ9Q8I5xa7h3sg-1dRNNr_-v7AdxUHfB2LaOkLpnOmTWoSnieBScHXgwOzEc9tikCAsyBLi0wLbjILqpwA6DPCFMIakRirGLR7jWyn4PUhENwe7o-Pv3QrPsjFLjh3J3cCJvoLXtupIESS6EBkfrrhHXt6sdKulsC_APDfeZx_bObWPnJ0m9xy4JYOGm28Q7ZsdZdcb8pdru-RaoAE5j9LAMmWDtXa4gFOquu6ErWCUFwVpsbaGXXVLCZ0sZrVuxpU0eV5OTe0ZncqNS0xx37SpPFWcEUH0BxVlaGftVVVqe6TkysZ_QekV00r-4jQJAfcJCC0tZpzlfKMaQ4t2ZCpXEXceiRsx1lqR4aONTm-yXpTngnZyEaCbGQtG5l65E33zqyhArn06dcoPgl-y861Wkrk8e4u8BcFaSQZ8tsxjwxRyF2z-Gz9x3Q-kc6ESI3YW6c6D5TheaYyI_JCKYuIP2ZJ4pGdVkWkM0QLeTFtPPKiuw0mBPeFVGWnK3wGjDREWiLwyMNGo7qeQEQJiJdlHkk3dG2jq5t3qvK8pilPGIMXhUfetlp50a3_j9vjy7_iObkB015-PBwfPSE3Ab1itp8fJjukt5yv7FNAiMv8mZt6lJxd9Wz_DWatd24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Bayesian+computation+with+deep+learning+supports+a+third+archaic+introgression+in+Asia+and+Oceania&rft.jtitle=Nature+communications&rft.au=Mayukh+Mondal&rft.au=Jaume+Bertranpetit&rft.au=Oscar+Lao&rft.date=2019-01-16&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-018-08089-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c5656c7cb0ad4b9a9d8bfaae00205366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon