Automated Detection of Parkinson's Disease Based on Multiple Types of Sustained Phonations Using Linear Discriminant Analysis and Genetically Optimized Neural Network
Objective: Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD de...
Saved in:
| Published in | IEEE journal of translational engineering in health and medicine Vol. 7; pp. 1 - 10 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2372 2168-2372 |
| DOI | 10.1109/JTEHM.2019.2940900 |
Cover
| Abstract | Objective: Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap. Methods: To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation. Results: The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results. Conclusion: Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks. |
|---|---|
| AbstractList | Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap.
To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation.
The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results.
Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks. Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap.OBJECTIVEParkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap.To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation.METHODSTo overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation.The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results.RESULTSThe proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results.Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks.CONCLUSIONCompared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks. Objective: Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap. Methods: To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation. Results: The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results. Conclusion: Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks. Objective: Parkinson’s disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap. Methods: To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation. Results: The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results. Conclusion: Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks. |
| Author | Zhu, Ce Liu, Yipeng Ali, Liaqat Zhang, Zhonghao |
| AuthorAffiliation | School of Information and Communication Engineering University of Electronic Science and Technology of China (UESTC) Chengdu 611731 China |
| AuthorAffiliation_xml | – name: School of Information and Communication Engineering University of Electronic Science and Technology of China (UESTC) Chengdu 611731 China |
| Author_xml | – sequence: 1 givenname: Liaqat orcidid: 0000-0002-3095-7271 surname: Ali fullname: Ali, Liaqat organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 2 givenname: Ce orcidid: 0000-0001-7607-707X surname: Zhu fullname: Zhu, Ce email: eczhu@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 3 givenname: Zhonghao surname: Zhang fullname: Zhang, Zhonghao organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 4 givenname: Yipeng orcidid: 0000-0003-2084-8781 surname: Liu fullname: Liu, Yipeng email: yipengliu@uestc.edu.cn organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32166050$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UttuEzEQXaEiWkp_ACRkiQd4SfBlry9IpS1tUUsrkT5bE-9s6nRjh7WXKnwQ38mkCVEbJPbBtjznnJ3jMy-THecdJslrwYdC8Orj19HJ2eVQclENZZXyivNnyZ4UeTmQqpA7j867yUEIU05fKfJKVi-SXUXFnGd8L_l92Ec_g4g1O8aIJlrvmG_YNXR31gXv3gd2bANCQPaZlppR_bJvo523yEaLOYYl_HsfIlhH5etb72CpEthNsG7CLugauqWI6ezMOnCRHTpoF8EGBq5mp-gwWgNtu2BX80iYX6TzDfsOWtrive_uXiXPG2gDHqz3_eTmy8no6GxwcXV6fnR4MTBZKeNAjQsxFjU0WQp1VWXpOMtKkFA0ivMqK4zCoshBVDUKyDNhDJoMRZrKVIIc12o_OV_p1h6mek4NQ7fQHqx-uPDdRENHzbaoUTXNuFSihDRLualLzgU3XNVFg4UQhrTUSqt3c1jck7-NoOB6GaKeRryd6WWIeh0isT6tWPN-PMPaoIv0Dk9aeVpx9lZP_E-dl0VeKUkCH9YCnf_RY4h6Rk-PbQsOfR80jUShUloEQd9tQae-7yibJUoQTJAlQr193NGmlb9DRAC5ApjOh9Bh84_Ph2Hd9llukYyND4NDrmz7f-qbFdUi4uZfZZkLSlL9ATct-Es |
| CODEN | IJTEBN |
| CitedBy_id | crossref_primary_10_3389_fncom_2024_1357607 crossref_primary_10_1038_s41598_025_95320_3 crossref_primary_10_1016_j_measurement_2022_112166 crossref_primary_10_1109_ACCESS_2020_3032153 crossref_primary_10_1007_s00521_022_07046_2 crossref_primary_10_1186_s12891_023_06789_w crossref_primary_10_1109_ACCESS_2020_2986584 crossref_primary_10_1007_s13198_021_01174_z crossref_primary_10_2139_ssrn_5161879 crossref_primary_10_1016_j_neucom_2024_127577 crossref_primary_10_1109_ACCESS_2020_3047125 crossref_primary_10_3390_data10010004 crossref_primary_10_1016_j_apacoust_2023_109657 crossref_primary_10_3390_app131810019 crossref_primary_10_3390_electronics12040783 crossref_primary_10_1109_ACCESS_2020_2985646 crossref_primary_10_1007_s11042_024_18186_z crossref_primary_10_1038_s41598_024_51600_y crossref_primary_10_1016_j_cmpb_2022_107133 crossref_primary_10_57197_JDR_2024_0001 crossref_primary_10_1007_s11042_023_16009_1 crossref_primary_10_1007_s13534_023_00319_2 crossref_primary_10_3390_s24041113 crossref_primary_10_1007_s11831_022_09710_1 crossref_primary_10_1155_2021_9363824 crossref_primary_10_1109_ACCESS_2020_3037343 crossref_primary_10_1007_s40745_023_00482_4 crossref_primary_10_1016_j_heliyon_2024_e25469 crossref_primary_10_1016_j_chaos_2023_113472 crossref_primary_10_3389_fneur_2022_788427 crossref_primary_10_1016_j_ipm_2022_102909 crossref_primary_10_3390_a16110509 crossref_primary_10_1016_j_neucom_2023_126544 crossref_primary_10_1007_s10772_023_10068_3 crossref_primary_10_1016_j_neucom_2025_129450 crossref_primary_10_1155_2022_9288452 crossref_primary_10_3390_diagnostics11122312 crossref_primary_10_1109_ACCESS_2021_3119035 crossref_primary_10_3390_healthcare9060740 crossref_primary_10_3389_fnagi_2023_1191378 crossref_primary_10_1109_JTEHM_2023_3272796 crossref_primary_10_4103_abr_abr_254_21 crossref_primary_10_1016_j_bspc_2021_102415 crossref_primary_10_1007_s10916_023_01906_7 crossref_primary_10_3390_computers13110293 crossref_primary_10_1016_j_knosys_2024_112950 crossref_primary_10_3233_JIFS_230183 crossref_primary_10_1080_03772063_2024_2409677 crossref_primary_10_1109_ACCESS_2021_3094658 crossref_primary_10_1016_j_istruc_2022_11_041 crossref_primary_10_1016_j_vrih_2024_08_001 crossref_primary_10_1111_exsy_12923 crossref_primary_10_1159_000515346 crossref_primary_10_3390_app11020581 crossref_primary_10_1109_ACCESS_2023_3344464 crossref_primary_10_1007_s12652_022_03719_x crossref_primary_10_1016_j_eswa_2022_117496 crossref_primary_10_3389_fnins_2021_754058 crossref_primary_10_1016_j_hcc_2023_100117 crossref_primary_10_1016_j_bspc_2021_102849 crossref_primary_10_1007_s10772_021_09808_0 crossref_primary_10_1038_s41598_024_64987_5 crossref_primary_10_1109_ACCESS_2024_3498836 crossref_primary_10_1016_j_compbiomed_2021_104548 crossref_primary_10_3389_fmmed_2022_933383 crossref_primary_10_1007_s12144_022_02949_8 crossref_primary_10_1111_exsy_12776 crossref_primary_10_1007_s11517_020_02236_3 crossref_primary_10_1007_s10489_022_04345_y crossref_primary_10_1007_s00371_020_01859_9 crossref_primary_10_1109_TAP_2023_3283131 crossref_primary_10_1038_s41598_023_47568_w crossref_primary_10_1109_ACCESS_2020_3036692 crossref_primary_10_3389_fnagi_2021_633752 crossref_primary_10_3390_diagnostics12112708 crossref_primary_10_1016_j_eswa_2021_115689 crossref_primary_10_3390_app122211601 crossref_primary_10_1080_03019233_2020_1816806 crossref_primary_10_1016_j_eswa_2023_119651 crossref_primary_10_1016_j_patrec_2023_03_011 crossref_primary_10_3390_diagnostics13020220 crossref_primary_10_3390_math9243172 crossref_primary_10_3390_app14219747 crossref_primary_10_1016_j_compbiomed_2021_105162 crossref_primary_10_1007_s00521_021_05741_0 crossref_primary_10_2196_46105 crossref_primary_10_1109_JTEHM_2021_3066800 crossref_primary_10_1109_ACCESS_2020_3042848 crossref_primary_10_3390_brainsci13111546 crossref_primary_10_1109_JSEN_2025_3529638 crossref_primary_10_1016_j_bspc_2019_101831 crossref_primary_10_3389_fninf_2021_578369 crossref_primary_10_1016_j_bspc_2021_102850 crossref_primary_10_1016_j_compbiomed_2022_105599 crossref_primary_10_1016_j_bspc_2020_102165 crossref_primary_10_1016_j_eswa_2023_122837 crossref_primary_10_1007_s00521_024_09596_z crossref_primary_10_1007_s12652_022_03825_w crossref_primary_10_3390_s21217034 crossref_primary_10_2139_ssrn_4172607 crossref_primary_10_3390_biology11030469 |
| Cites_doi | 10.1007/s00521-015-2142-2 10.1016/j.irbm.2017.10.002 10.1007/s00415-019-09271-7 10.1016/j.image.2018.03.017 10.1007/s11517-016-1512-y 10.1109/JSTSP.2018.2873142 10.1016/j.jneuroling.2004.06.001 10.1016/j.parkreldis.2015.02.026 10.1109/4235.850656 10.1016/j.neucom.2018.08.036 10.1109/TITB.2011.2182616 10.1109/TBME.2012.2183367 10.1016/j.sleep.2015.07.030 10.1109/TBME.2009.2036000 10.1016/j.eswa.2007.06.012 10.1007/s10772-016-9338-4 10.1016/j.eswa.2011.01.017 10.1016/j.eswa.2018.06.003 10.1109/JBHI.2013.2245674 10.1121/1.4939739 10.1016/j.cmpb.2017.02.019 10.1109/TITB.2010.2091142 10.1093/aje/kwg068 10.1016/j.engappai.2003.09.006 10.1007/s13369-016-2206-3 10.1109/JBHI.2018.2866873 10.1016/S0952-1976(00)00045-2 10.1007/s10772-016-9367-z 10.1016/j.eswa.2005.12.008 10.1109/HealthCom.2017.8210820 10.1186/s12938-016-0242-6 10.1021/ci025626i 10.1109/TNSRE.2018.2851787 10.1016/j.eswa.2010.06.065 10.1016/j.cmpb.2014.01.004 10.1007/s11517-012-0890-z 10.1016/S0952-1976(00)00021-X 10.1016/j.eswa.2019.06.052 10.1371/journal.pone.0192192 10.1016/j.engappai.2006.03.003 10.1016/j.bspc.2018.07.019 10.1109/TBME.2008.2005954 10.1016/j.eswa.2009.06.040 10.1016/j.eswa.2015.10.034 10.1007/s10916-011-9678-1 10.1016/j.eswa.2009.03.021 10.1155/2017/6209703 10.1155/2018/2396952 10.1109/JBHI.2015.2467375 10.1109/ACCESS.2019.2932037 |
| ContentType | Journal Article |
| Copyright | 2168-2372 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 2019 |
| Copyright_xml | – notice: 2168-2372 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 – notice: 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 8FD F28 FR3 K9. 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1109/JTEHM.2019.2940900 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Journals (OA) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2372 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_e3ffb8318a4540cd80010c03d7fe711c 10.1109/jtehm.2019.2940900 PMC6876932 32166050 10_1109_JTEHM_2019_2940900 8861144 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Sichuan Province Science and Technology Support Program grantid: 2019YFH0008; 2018JY0035 funderid: 10.13039/100012542 – fundername: National Natural Science Foundation of China grantid: 61602091; 61571102 funderid: 10.13039/501100001809 – fundername: ; grantid: 2019YFH0008; 2018JY0035 – fundername: ; grantid: 61602091; 61571102 |
| GroupedDBID | 0R~ 53G 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ADRAZ AGSQL ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ DIK EBS EJD ESBDL GROUPED_DOAJ HYE IPLJI JAVBF KQ8 M43 M48 M~E O9- OCL OK1 PGMZT RIA RIE RPM AAYXX CITATION IFIPE NPM RIG 8FD F28 FR3 K9. 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c582t-3b71b1daf54ad9954b558a2a7f300957c3e776a19de1a651ccec5e144242a2bd3 |
| IEDL.DBID | M48 |
| ISSN | 2168-2372 |
| IngestDate | Fri Oct 03 12:46:18 EDT 2025 Sun Oct 26 03:10:17 EDT 2025 Thu Aug 21 14:06:09 EDT 2025 Fri Sep 05 12:48:18 EDT 2025 Tue Oct 07 07:11:00 EDT 2025 Thu Jan 02 23:00:13 EST 2025 Thu Apr 24 22:55:07 EDT 2025 Wed Oct 01 02:35:28 EDT 2025 Wed Aug 27 02:43:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dimensionality reduction genetic algorithm hyper-parameter optimization linear discriminant analysis Parkinson’s disease deep neural network |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode 2168-2372 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c582t-3b71b1daf54ad9954b558a2a7f300957c3e776a19de1a651ccec5e144242a2bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2084-8781 0000-0001-7607-707X 0000-0002-3095-7271 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1109/JTEHM.2019.2940900 |
| PMID | 32166050 |
| PQID | 2317731010 |
| PQPubID | 4437232 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_JTEHM_2019_2940900 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6876932 unpaywall_primary_10_1109_jtehm_2019_2940900 pubmed_primary_32166050 doaj_primary_oai_doaj_org_article_e3ffb8318a4540cd80010c03d7fe711c ieee_primary_8861144 proquest_miscellaneous_2377343771 crossref_citationtrail_10_1109_JTEHM_2019_2940900 proquest_journals_2317731010 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE journal of translational engineering in health and medicine |
| PublicationTitleAbbrev | JTEHM |
| PublicationTitleAlternate | IEEE J Transl Eng Health Med |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref15 ref14 kraipeerapun (ref55) 2015 ref52 ref11 ref54 ref10 ref17 ref16 ref19 ref18 al-fatlawi (ref8) 2016 boersma (ref39) 2010 behroozi (ref51) 2016; 2016 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref9 ref4 ref3 ref6 ref5 ref40 vadovský (ref53) 2017 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 esk?dere (ref50) 2015 ref24 ref23 ref26 ref25 ref20 ref22 ref21 duffy (ref7) 2013 ref28 ref27 ref29 çali?ir (ref38) 2011; 38 |
| References_xml | – ident: ref19 doi: 10.1007/s00521-015-2142-2 – ident: ref31 doi: 10.1016/j.irbm.2017.10.002 – ident: ref18 doi: 10.1007/s00415-019-09271-7 – start-page: 1290 year: 2015 ident: ref55 article-title: Using stacked generalization and complementary neural networks to predict Parkinson's disease publication-title: Proc 11th Int Conf Natural Comput (ICNC) – ident: ref43 doi: 10.1016/j.image.2018.03.017 – ident: ref23 doi: 10.1007/s11517-016-1512-y – ident: ref42 doi: 10.1109/JSTSP.2018.2873142 – ident: ref15 doi: 10.1016/j.jneuroling.2004.06.001 – ident: ref11 doi: 10.1016/j.parkreldis.2015.02.026 – ident: ref41 doi: 10.1109/4235.850656 – ident: ref14 doi: 10.1016/j.neucom.2018.08.036 – ident: ref5 doi: 10.1109/TITB.2011.2182616 – ident: ref21 doi: 10.1109/TBME.2012.2183367 – ident: ref16 doi: 10.1016/j.sleep.2015.07.030 – ident: ref40 doi: 10.1109/TBME.2009.2036000 – start-page: 321 year: 2017 ident: ref53 article-title: Parkinson's disease patients classification based on the speech signals publication-title: Proc IEEE 15th Int Symp Appl Mach Intell Inform (SAMI) – ident: ref35 doi: 10.1016/j.eswa.2007.06.012 – ident: ref1 doi: 10.1007/s10772-016-9338-4 – volume: 38 start-page: 8311 year: 2011 ident: ref38 article-title: An automatic diabetes diagnosis system based on LDA-wavelet support vector machine classifier publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.01.017 – ident: ref25 doi: 10.1016/j.eswa.2018.06.003 – ident: ref20 doi: 10.1109/JBHI.2013.2245674 – ident: ref9 doi: 10.1121/1.4939739 – year: 2010 ident: ref39 publication-title: Praat Doing phonetics by computer – ident: ref27 doi: 10.1016/j.cmpb.2017.02.019 – ident: ref3 doi: 10.1109/TITB.2010.2091142 – ident: ref2 doi: 10.1093/aje/kwg068 – ident: ref44 doi: 10.1016/j.engappai.2003.09.006 – ident: ref29 doi: 10.1007/s13369-016-2206-3 – ident: ref34 doi: 10.1109/JBHI.2018.2866873 – ident: ref45 doi: 10.1016/S0952-1976(00)00045-2 – ident: ref28 doi: 10.1007/s10772-016-9367-z – ident: ref48 doi: 10.1016/j.eswa.2005.12.008 – ident: ref30 doi: 10.1109/HealthCom.2017.8210820 – ident: ref52 doi: 10.1186/s12938-016-0242-6 – start-page: 1324 year: 2016 ident: ref8 article-title: Efficient diagnosis system for Parkinson's disease using deep belief network publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref49 doi: 10.1021/ci025626i – ident: ref17 doi: 10.1109/TNSRE.2018.2851787 – volume: 2016 year: 2016 ident: ref51 article-title: A multiple-classifier framework for Parkinson's disease detection based on various vocal tests publication-title: Int J Telemed Appl – ident: ref37 doi: 10.1016/j.eswa.2010.06.065 – ident: ref12 doi: 10.1016/j.cmpb.2014.01.004 – ident: ref4 doi: 10.1007/s11517-012-0890-z – ident: ref46 doi: 10.1016/S0952-1976(00)00021-X – ident: ref33 doi: 10.1016/j.eswa.2019.06.052 – year: 2013 ident: ref7 publication-title: Motor Speech Disorders Substrates Differential Diagnosis and Management – ident: ref56 doi: 10.1371/journal.pone.0192192 – ident: ref47 doi: 10.1016/j.engappai.2006.03.003 – start-page: 1 year: 2015 ident: ref50 article-title: Detection of Parkinson's disease from vocal features using random subspace classifier ensemble publication-title: Proc 12th Int Conf Electron Comput Comput (ICECCO) – ident: ref13 doi: 10.1016/j.bspc.2018.07.019 – ident: ref6 doi: 10.1109/TBME.2008.2005954 – ident: ref22 doi: 10.1016/j.eswa.2009.06.040 – ident: ref24 doi: 10.1016/j.eswa.2015.10.034 – ident: ref32 doi: 10.1007/s10916-011-9678-1 – ident: ref36 doi: 10.1016/j.eswa.2009.03.021 – ident: ref54 doi: 10.1155/2017/6209703 – ident: ref57 doi: 10.1155/2018/2396952 – ident: ref10 doi: 10.1109/JBHI.2015.2467375 – ident: ref26 doi: 10.1109/ACCESS.2019.2932037 |
| SSID | ssj0000816929 |
| Score | 2.5110717 |
| Snippet | Objective: Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice... Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments... Objective: Parkinson’s disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice... Objective: Parkinson’s disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Artificial intelligence Automation Classification Correlation coefficients deep neural network Diagnostic systems Dimensionality reduction Discriminant analysis Diseases Feature extraction genetic algorithm Genetic algorithms Hybrid systems hyper-parameter optimization linear discriminant analysis Machine learning Neural networks Optimization Parkinson's disease Support vector machines Testing Training Voice |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlZZHaEFGQuIAoXFeto8tbbWqtAWJVuot8ivaom1SdbOqyg_idzJjZ6OsWsGFiw_ryWziGdsz9sw3hHwwtbRKqjTOnRTQpDLWZW5jZh1sRllmEn-jOz0tJ-f5yUVxMSr1hTFhAR44DNyey-paC9A8hVhxxgr0YkySWV47zpjB1TcRcuRM-TVYsBI2_lWWTCL3Ts6OJlMM5ZJfUglODaa0jXYiD9jfV1h5yNi8HzP5eNlcq7tbNZ-PNqTjTfKstyTpfviC5-SRa7bI0xG-4Db5vb_sWjBJnaWHrvNBVw1ta4qpzj7r6-OCHoYbGnoAjaXQP-1DDCm6qAsk_xGSrKD7-6wNp4cL6mMNKLiyMFWQiQn1wZqOrnBOqGosRVhrf1w-v6PfYHm6uvwFfBASBN79NMSgvyDnx0dnXydxX5ghNoVIuzjTnGlmVV3kyiKgnC4KoVLF6wxNNm4yx3mpmLSOqbJgxjhTOHDdwB5QqbbZS7LRtI17TajmDmyYXEutoV8VwrCk5tKhJYW3rhFhKyFVpkctx-IZ88p7L4msvGArFGzVCzYin4ZnrgNmx1-pD1D2AyXibfsfQAurXgurf2lhRLZRcwYmQpTgaMLb7640qerXhkUFFjXnYFUz-Ov3QzfMaryqUY1rl0gDJDk0LCKvguINvLOUleCEwtN8TSXXvmC9p7mceeTwUmDpyzQinwflvTdCPzs3u1oboTf_Y4R2yBPkGU6vdslGd7N0b8Ge6_Q7P3X_AKhkR3U priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoADBQolpSAjIXGg2cZ5OT62tNWq0hYkWqm3yK9oC9ukYhOh9gfxO5mxs9EurRAXa7WeOLEzsb-xZ74h5IOuhJFCxmFqRQFFLEKVpyZkxsJilCQ6cie6k7N8fJGeXmaXa2RviIWx1jrnMzvCn-4s3zS6w62y_aLIAb6n62SdF7mP1Rr2UzCBBCz1i7iYSOyfnh-PJ-i8JUaxADMGg9iW1h5H0d_nVHkIXt73knzU1Tfy9peczZaWoJNNMlk8vPc8-THqWjXSd3_xOv5v756Rpz0WpQdeeZ6TNVu_IE-WGAq3yO-Drm0A1FpDj2zr3LZq2lQUg6Vd3NjHOT3yZzz0EApDoX7SOylSNHLnKP7Nh2lB9ddp4_cf59R5K1AwhuFjw0a0zzBWt3TBlEJlbSgSY7sN99kt_QIT3PXVHbSDpCLw7Gfei_0luTg5Pv88DvvUDqHOirgNE8WZYkZWWSoNUtKpLCtkLHmVIOjjOrGc55IJY5nMM6a11ZmF0QFEIWNlkldko25q-5pQxS2goFQJpaBeZoVmUcWFRSyG57YBYYuXXuqe9xzTb8xKZ_9EonSKUqKilL2iBOTTcM2NZ_34p_Qh6tIgiYzd7g94vWU_AZQ2qSpVwAwqkfNQmwKtcR0lhleWM6YDsoUqMTTSa0NAdheaWfazy7wETM454HIGt34_VMO8gIc9srZNhzIgkkLBArLtFXloO4lZDmYsXM1XVHylB6s19dXUcY_nBSbPjAOyN3wM90boe2un1ysjtPNw596Qxyjld7R2yUb7s7NvAeO16p37uP8ARQNQ9w priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAcyqNAFwoyEjfIEufl-LilrVaVdqlEVyqnyK9oC0tSsYlQe-Jv8A_4XfwSZpxstKEVgkukXY-dh8f2N_bMN4S80rkwUsjAi6xI4RIITyWR8ZixsBiFofbdie50lkzm0fFZfNbS5GAszOb5PfPF20-VXWDAOBOjQIAt4oN5vpXEgLsHZGs-Oxl_xOxxLIHuDnmwjoq5sWJv5XEE_W1GlZvA5XUfydt1cSEvv8nlcmMBOrrXZDJaOd5C9Dv5PKorNdJXf7A6_tu73SfbLQ6l40ZxHpBbtnhI7m6wE-6Qn-O6KgHQWkMPbOVctgpa5hQDpV3M2K_vP1b0oDnhoftwMRQkpq2LIkUTd4UVPjRBWlB8siib3ccVdb4KFExhGGrYiG7yixUVXfOkUFkYirTYbrt9eUnfw_T25fwK2kFKEXj6WePD_ojMjw5P3028NrGDp-M0qLxQcaaYkXkcSYOEdCqOUxlInocI-bgOLeeJZMJYJpOYaW11bMH0AzwhA2XCx2RQlIXdJVRxCxgoUkIpKJdxqpmfc2ERieGp7ZCwdadnumU9x-Qby8xZP77Ijk8PJ9MMeyFre2FIXnd1LhrOj79K76MudZLI1-3-gK7O2uGf2TDPVQrzp0TGQ21StMW1HxqeW86YHpId1MSukTRNwFCFp99ba2bWzi2rDBA554DKGdz6ZVcMswIe9cjCljXKgEgEFzYkTxpF7toOYbiAEQu1eU_Fe2_QLynOF455PEkxdWYwJG-6wXDtCzmt7n2hp_8n_ozcwZ_NPtceGVRfa_sckF-lXrRD_jeBkFRz priority: 102 providerName: Unpaywall |
| Title | Automated Detection of Parkinson's Disease Based on Multiple Types of Sustained Phonations Using Linear Discriminant Analysis and Genetically Optimized Neural Network |
| URI | https://ieeexplore.ieee.org/document/8861144 https://www.ncbi.nlm.nih.gov/pubmed/32166050 https://www.proquest.com/docview/2317731010 https://www.proquest.com/docview/2377343771 https://pubmed.ncbi.nlm.nih.gov/PMC6876932 https://doi.org/10.1109/jtehm.2019.2940900 https://doaj.org/article/e3ffb8318a4540cd80010c03d7fe711c |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: DIK dateStart: 20130101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2168-2372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2168-2372 dateEnd: 20250531 omitProxy: true ssIdentifier: ssj0000816929 issn: 2168-2372 databaseCode: M48 dateStart: 20130101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaq9gAcEFAeCyUyEjfYEu_L6wNCKW0VVUqoRCOV08qvJUXpbkk2gnDib_AP-F38Ema8DzVqhMTFSmJ7dmOP7W_s8TeEvNS5MFLIwI-sSCEJhK-SyPjMWFiMwlD33YnuaJwMJ9HJeXy-RdpwR00DLjaadhhPajKf7X__unoHA_5tw5f55uTsaDhCLy2xHwiwV_pgwu8E-AFd-Rq472bmlCXCBS4LWAIKEvKgvUezUczaWuUo_ZsYLJvg6E2vylvL4kquvsnZ7NqSdXyP3G2wJh3UynGfbNniAblzjYFwl_weLKsSQKs19NBWzi2roGVO8TK0uxf25-evBT2sT3HoASSGQolR44ZI0YxdYIWP9UUsyD6dlvUO44I6fwQK5i4MJxSi6xhiRUVbLhQqC0OR-tptqc9W9ANMYZcXP0AO0obA249rP_WHZHJ8dPZ-6DfBG3wdp0Hlh4ozxYzM40gaJJ1TcZzKQPI8RFjHdWg5TyQTxjKZxExrq2ML5h1gBhkoEz4i20VZ2CeEKm4B50RKKAX5Mk416-dcWERbeDLrEdZ2U6YbZnMMsDHLnIXTF5nr2gy7Nmu61iOvujpXNa_HP0sfYO93JZGT2_1Qzj9nzRDPbJjnKoU5UiKroTYp2tu6HxqeW86Y9sgu6k4nJE0TMEbh7fdaXcpa9c8AdXMOyJvBo1902TDy8ThHFrZcYhkoEkHCPPK4Vr1OdggKDoYq1OZrSrn2D9ZzioupYxdPUgyPGXjkdae-N1roS2Wnl2st9PS_2vMZuY1f662sPbJdzZf2OYC7SvXcpkjPjdueu43ZIzuT8eng019qXE2K |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvEohUMBISBxotnFeTo4tbbWU7oLEVuot8ivawjap2ESo_UH8TmbsbLRLK8TFWq0fiZ2x_Y098w0h71SZa5GL0I9NnkES5r5MY-0zbWAziiIV2Bvd0TgdnsbHZ8nZGtnpfWGMMdb4zAzwp73L17Vq8ahsN8tSgO_xHXI3ieM4cd5a_YkKhpCAzX7hGRPku8eTw-EIzbfyQZiDIoNubEu7jyXp76Kq3AYwb9pJbrTVpbj6JWazpU3o6CEZLV7f2Z78GLSNHKjrv5gd_7d_j8iDDo3SPSc-j8maqZ6Q-0schZvk917b1ABrjaYHprGGWxWtS4ru0tZz7P2cHrhbHroPiaaQP-rMFCmquXMs_s05akH212ntTiDn1NorUFCHYbphI8rFGKsauuBKoaLSFKmx7ZH77Ip-gSXu4vwa2kFaEXj3sbNjf0pOjw4nH4d-F9zBV0kWNn4kOZNMizKJhUZSOpkkmQgFLyOEfVxFhvNUsFwbJtKEKWVUYmB0AFOIUOpoi6xXdWWeEyq5ARwUy1xKyBdJplhQ8twgGsObW4-wxUcvVMd8jgE4ZoXVgIK8sIJSoKAUnaB45ENf59Lxfvyz9D7KUl8SObvtH_B5i24JKExUljKDNVQg66HSGerjKog0Lw1nTHlkE0Wib6STBo9sLySz6NaXeQGonHNA5gwe_bbPhpUBr3tEZeoWy0CRGBLmkWdOkPu2o5CloMhCbb4i4is9WM2pzqeWfTzNMHxm6JGdfjLcGKHvjZlerIzQi9s794ZsDCejk-Lk0_jzS3IPa7jzrW2y3vxszStAfI18bSf6H_EAVEQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAcyqNAFwoyEjfIEufl-LilrVaVdqlEVyqnyK9oC0tSsYlQe-Jv8A_4XfwSZpxstKEVgkukXY-dh8f2N_bMN4S80rkwUsjAi6xI4RIITyWR8ZixsBiFofbdie50lkzm0fFZfNbS5GAszOb5PfPF20-VXWDAOBOjQIAt4oN5vpXEgLsHZGs-Oxl_xOxxLIHuDnmwjoq5sWJv5XEE_W1GlZvA5XUfydt1cSEvv8nlcmMBOrrXZDJaOd5C9Dv5PKorNdJXf7A6_tu73SfbLQ6l40ZxHpBbtnhI7m6wE-6Qn-O6KgHQWkMPbOVctgpa5hQDpV3M2K_vP1b0oDnhoftwMRQkpq2LIkUTd4UVPjRBWlB8siib3ccVdb4KFExhGGrYiG7yixUVXfOkUFkYirTYbrt9eUnfw_T25fwK2kFKEXj6WePD_ojMjw5P3028NrGDp-M0qLxQcaaYkXkcSYOEdCqOUxlInocI-bgOLeeJZMJYJpOYaW11bMH0AzwhA2XCx2RQlIXdJVRxCxgoUkIpKJdxqpmfc2ERieGp7ZCwdadnumU9x-Qby8xZP77Ijk8PJ9MMeyFre2FIXnd1LhrOj79K76MudZLI1-3-gK7O2uGf2TDPVQrzp0TGQ21StMW1HxqeW86YHpId1MSukTRNwFCFp99ba2bWzi2rDBA554DKGdz6ZVcMswIe9cjCljXKgEgEFzYkTxpF7toOYbiAEQu1eU_Fe2_QLynOF455PEkxdWYwJG-6wXDtCzmt7n2hp_8n_ozcwZ_NPtceGVRfa_sckF-lXrRD_jeBkFRz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Parkinson%E2%80%99s+Disease+Based+on+Multiple+Types+of+Sustained+Phonations+Using+Linear+Discriminant+Analysis+and+Genetically+Optimized+Neural+Network&rft.jtitle=IEEE+journal+of+translational+engineering+in+health+and+medicine&rft.au=Ali%2C+Liaqat&rft.au=Zhu%2C+Ce&rft.au=Zhang%2C+Zhonghao&rft.au=Liu%2C+Yipeng&rft.date=2019-01-01&rft.issn=2168-2372&rft.eissn=2168-2372&rft.volume=7&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FJTEHM.2019.2940900&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JTEHM_2019_2940900 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2372&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2372&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2372&client=summon |