Automated Detection of Parkinson's Disease Based on Multiple Types of Sustained Phonations Using Linear Discriminant Analysis and Genetically Optimized Neural Network

Objective: Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD de...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of translational engineering in health and medicine Vol. 7; pp. 1 - 10
Main Authors Ali, Liaqat, Zhu, Ce, Zhang, Zhonghao, Liu, Yipeng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2372
2168-2372
DOI10.1109/JTEHM.2019.2940900

Cover

Abstract Objective: Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap. Methods: To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation. Results: The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results. Conclusion: Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks.
AbstractList Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap. To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation. The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results. Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks.
Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap.OBJECTIVEParkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap.To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation.METHODSTo overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation.The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results.RESULTSThe proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results.Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks.CONCLUSIONCompared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks.
Objective: Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap. Methods: To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation. Results: The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results. Conclusion: Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks.
Objective: Parkinson’s disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments are not perceptible to common listeners. Therefore, different machine learning methods have been developed for automated PD detection. However, these methods either lack generalization and clinically significant classification performance or face the problem of subject overlap. Methods: To overcome the problems discussed above, we attempt to develop a hybrid intelligent system that can automatically perform acoustic analysis of voice signals in order to detect PD. The proposed intelligent system uses linear discriminant analysis (LDA) for dimensionality reduction and genetic algorithm (GA) for hyperparameters optimization of neural network (NN) which is used as a predictive model. Moreover, to avoid subject overlap, we use leave one subject out (LOSO) validation. Results: The proposed method namely LDA-NN-GA is evaluated in numerical experiments on multiple types of sustained phonations data in terms of accuracy, sensitivity, specificity, and Matthew correlation coefficient. It achieves classification accuracy of 95% on training database and 100% on testing database using all the extracted features. However, as the dataset is imbalanced in terms of gender, thus, to obtain unbiased results, we eliminated the gender dependent features and obtained accuracy of 80% for training database and 82.14% for testing database, which seems to be more unbiased results. Conclusion: Compared with the previous machine learning methods, the proposed LDA-NN-GA method shows better performance and lower complexity. Clinical Impact: The experimental results suggest that the proposed automated diagnostic system has the potential to classify PD patients from healthy subjects. Additionally, in future the proposed method can also be exploited for prodromal and differential diagnosis, which are considered challenging tasks.
Author Zhu, Ce
Liu, Yipeng
Ali, Liaqat
Zhang, Zhonghao
AuthorAffiliation School of Information and Communication Engineering University of Electronic Science and Technology of China (UESTC) Chengdu 611731 China
AuthorAffiliation_xml – name: School of Information and Communication Engineering University of Electronic Science and Technology of China (UESTC) Chengdu 611731 China
Author_xml – sequence: 1
  givenname: Liaqat
  orcidid: 0000-0002-3095-7271
  surname: Ali
  fullname: Ali, Liaqat
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 2
  givenname: Ce
  orcidid: 0000-0001-7607-707X
  surname: Zhu
  fullname: Zhu, Ce
  email: eczhu@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 3
  givenname: Zhonghao
  surname: Zhang
  fullname: Zhang, Zhonghao
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 4
  givenname: Yipeng
  orcidid: 0000-0003-2084-8781
  surname: Liu
  fullname: Liu, Yipeng
  email: yipengliu@uestc.edu.cn
  organization: School of Information and Communication Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32166050$$D View this record in MEDLINE/PubMed
BookMark eNp9UttuEzEQXaEiWkp_ACRkiQd4SfBlry9IpS1tUUsrkT5bE-9s6nRjh7WXKnwQ38mkCVEbJPbBtjznnJ3jMy-THecdJslrwYdC8Orj19HJ2eVQclENZZXyivNnyZ4UeTmQqpA7j867yUEIU05fKfJKVi-SXUXFnGd8L_l92Ec_g4g1O8aIJlrvmG_YNXR31gXv3gd2bANCQPaZlppR_bJvo523yEaLOYYl_HsfIlhH5etb72CpEthNsG7CLugauqWI6ezMOnCRHTpoF8EGBq5mp-gwWgNtu2BX80iYX6TzDfsOWtrive_uXiXPG2gDHqz3_eTmy8no6GxwcXV6fnR4MTBZKeNAjQsxFjU0WQp1VWXpOMtKkFA0ivMqK4zCoshBVDUKyDNhDJoMRZrKVIIc12o_OV_p1h6mek4NQ7fQHqx-uPDdRENHzbaoUTXNuFSihDRLualLzgU3XNVFg4UQhrTUSqt3c1jck7-NoOB6GaKeRryd6WWIeh0isT6tWPN-PMPaoIv0Dk9aeVpx9lZP_E-dl0VeKUkCH9YCnf_RY4h6Rk-PbQsOfR80jUShUloEQd9tQae-7yibJUoQTJAlQr193NGmlb9DRAC5ApjOh9Bh84_Ph2Hd9llukYyND4NDrmz7f-qbFdUi4uZfZZkLSlL9ATct-Es
CODEN IJTEBN
CitedBy_id crossref_primary_10_3389_fncom_2024_1357607
crossref_primary_10_1038_s41598_025_95320_3
crossref_primary_10_1016_j_measurement_2022_112166
crossref_primary_10_1109_ACCESS_2020_3032153
crossref_primary_10_1007_s00521_022_07046_2
crossref_primary_10_1186_s12891_023_06789_w
crossref_primary_10_1109_ACCESS_2020_2986584
crossref_primary_10_1007_s13198_021_01174_z
crossref_primary_10_2139_ssrn_5161879
crossref_primary_10_1016_j_neucom_2024_127577
crossref_primary_10_1109_ACCESS_2020_3047125
crossref_primary_10_3390_data10010004
crossref_primary_10_1016_j_apacoust_2023_109657
crossref_primary_10_3390_app131810019
crossref_primary_10_3390_electronics12040783
crossref_primary_10_1109_ACCESS_2020_2985646
crossref_primary_10_1007_s11042_024_18186_z
crossref_primary_10_1038_s41598_024_51600_y
crossref_primary_10_1016_j_cmpb_2022_107133
crossref_primary_10_57197_JDR_2024_0001
crossref_primary_10_1007_s11042_023_16009_1
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_3390_s24041113
crossref_primary_10_1007_s11831_022_09710_1
crossref_primary_10_1155_2021_9363824
crossref_primary_10_1109_ACCESS_2020_3037343
crossref_primary_10_1007_s40745_023_00482_4
crossref_primary_10_1016_j_heliyon_2024_e25469
crossref_primary_10_1016_j_chaos_2023_113472
crossref_primary_10_3389_fneur_2022_788427
crossref_primary_10_1016_j_ipm_2022_102909
crossref_primary_10_3390_a16110509
crossref_primary_10_1016_j_neucom_2023_126544
crossref_primary_10_1007_s10772_023_10068_3
crossref_primary_10_1016_j_neucom_2025_129450
crossref_primary_10_1155_2022_9288452
crossref_primary_10_3390_diagnostics11122312
crossref_primary_10_1109_ACCESS_2021_3119035
crossref_primary_10_3390_healthcare9060740
crossref_primary_10_3389_fnagi_2023_1191378
crossref_primary_10_1109_JTEHM_2023_3272796
crossref_primary_10_4103_abr_abr_254_21
crossref_primary_10_1016_j_bspc_2021_102415
crossref_primary_10_1007_s10916_023_01906_7
crossref_primary_10_3390_computers13110293
crossref_primary_10_1016_j_knosys_2024_112950
crossref_primary_10_3233_JIFS_230183
crossref_primary_10_1080_03772063_2024_2409677
crossref_primary_10_1109_ACCESS_2021_3094658
crossref_primary_10_1016_j_istruc_2022_11_041
crossref_primary_10_1016_j_vrih_2024_08_001
crossref_primary_10_1111_exsy_12923
crossref_primary_10_1159_000515346
crossref_primary_10_3390_app11020581
crossref_primary_10_1109_ACCESS_2023_3344464
crossref_primary_10_1007_s12652_022_03719_x
crossref_primary_10_1016_j_eswa_2022_117496
crossref_primary_10_3389_fnins_2021_754058
crossref_primary_10_1016_j_hcc_2023_100117
crossref_primary_10_1016_j_bspc_2021_102849
crossref_primary_10_1007_s10772_021_09808_0
crossref_primary_10_1038_s41598_024_64987_5
crossref_primary_10_1109_ACCESS_2024_3498836
crossref_primary_10_1016_j_compbiomed_2021_104548
crossref_primary_10_3389_fmmed_2022_933383
crossref_primary_10_1007_s12144_022_02949_8
crossref_primary_10_1111_exsy_12776
crossref_primary_10_1007_s11517_020_02236_3
crossref_primary_10_1007_s10489_022_04345_y
crossref_primary_10_1007_s00371_020_01859_9
crossref_primary_10_1109_TAP_2023_3283131
crossref_primary_10_1038_s41598_023_47568_w
crossref_primary_10_1109_ACCESS_2020_3036692
crossref_primary_10_3389_fnagi_2021_633752
crossref_primary_10_3390_diagnostics12112708
crossref_primary_10_1016_j_eswa_2021_115689
crossref_primary_10_3390_app122211601
crossref_primary_10_1080_03019233_2020_1816806
crossref_primary_10_1016_j_eswa_2023_119651
crossref_primary_10_1016_j_patrec_2023_03_011
crossref_primary_10_3390_diagnostics13020220
crossref_primary_10_3390_math9243172
crossref_primary_10_3390_app14219747
crossref_primary_10_1016_j_compbiomed_2021_105162
crossref_primary_10_1007_s00521_021_05741_0
crossref_primary_10_2196_46105
crossref_primary_10_1109_JTEHM_2021_3066800
crossref_primary_10_1109_ACCESS_2020_3042848
crossref_primary_10_3390_brainsci13111546
crossref_primary_10_1109_JSEN_2025_3529638
crossref_primary_10_1016_j_bspc_2019_101831
crossref_primary_10_3389_fninf_2021_578369
crossref_primary_10_1016_j_bspc_2021_102850
crossref_primary_10_1016_j_compbiomed_2022_105599
crossref_primary_10_1016_j_bspc_2020_102165
crossref_primary_10_1016_j_eswa_2023_122837
crossref_primary_10_1007_s00521_024_09596_z
crossref_primary_10_1007_s12652_022_03825_w
crossref_primary_10_3390_s21217034
crossref_primary_10_2139_ssrn_4172607
crossref_primary_10_3390_biology11030469
Cites_doi 10.1007/s00521-015-2142-2
10.1016/j.irbm.2017.10.002
10.1007/s00415-019-09271-7
10.1016/j.image.2018.03.017
10.1007/s11517-016-1512-y
10.1109/JSTSP.2018.2873142
10.1016/j.jneuroling.2004.06.001
10.1016/j.parkreldis.2015.02.026
10.1109/4235.850656
10.1016/j.neucom.2018.08.036
10.1109/TITB.2011.2182616
10.1109/TBME.2012.2183367
10.1016/j.sleep.2015.07.030
10.1109/TBME.2009.2036000
10.1016/j.eswa.2007.06.012
10.1007/s10772-016-9338-4
10.1016/j.eswa.2011.01.017
10.1016/j.eswa.2018.06.003
10.1109/JBHI.2013.2245674
10.1121/1.4939739
10.1016/j.cmpb.2017.02.019
10.1109/TITB.2010.2091142
10.1093/aje/kwg068
10.1016/j.engappai.2003.09.006
10.1007/s13369-016-2206-3
10.1109/JBHI.2018.2866873
10.1016/S0952-1976(00)00045-2
10.1007/s10772-016-9367-z
10.1016/j.eswa.2005.12.008
10.1109/HealthCom.2017.8210820
10.1186/s12938-016-0242-6
10.1021/ci025626i
10.1109/TNSRE.2018.2851787
10.1016/j.eswa.2010.06.065
10.1016/j.cmpb.2014.01.004
10.1007/s11517-012-0890-z
10.1016/S0952-1976(00)00021-X
10.1016/j.eswa.2019.06.052
10.1371/journal.pone.0192192
10.1016/j.engappai.2006.03.003
10.1016/j.bspc.2018.07.019
10.1109/TBME.2008.2005954
10.1016/j.eswa.2009.06.040
10.1016/j.eswa.2015.10.034
10.1007/s10916-011-9678-1
10.1016/j.eswa.2009.03.021
10.1155/2017/6209703
10.1155/2018/2396952
10.1109/JBHI.2015.2467375
10.1109/ACCESS.2019.2932037
ContentType Journal Article
Copyright 2168-2372 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
2019
Copyright_xml – notice: 2168-2372 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
– notice: 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
8FD
F28
FR3
K9.
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1109/JTEHM.2019.2940900
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Journals (OA)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2372
EndPage 10
ExternalDocumentID oai_doaj_org_article_e3ffb8318a4540cd80010c03d7fe711c
10.1109/jtehm.2019.2940900
PMC6876932
32166050
10_1109_JTEHM_2019_2940900
8861144
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Sichuan Province Science and Technology Support Program
  grantid: 2019YFH0008; 2018JY0035
  funderid: 10.13039/100012542
– fundername: National Natural Science Foundation of China
  grantid: 61602091; 61571102
  funderid: 10.13039/501100001809
– fundername: ;
  grantid: 2019YFH0008; 2018JY0035
– fundername: ;
  grantid: 61602091; 61571102
GroupedDBID 0R~
53G
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ADRAZ
AGSQL
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DIK
EBS
EJD
ESBDL
GROUPED_DOAJ
HYE
IPLJI
JAVBF
KQ8
M43
M48
M~E
O9-
OCL
OK1
PGMZT
RIA
RIE
RPM
AAYXX
CITATION
IFIPE
NPM
RIG
8FD
F28
FR3
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c582t-3b71b1daf54ad9954b558a2a7f300957c3e776a19de1a651ccec5e144242a2bd3
IEDL.DBID M48
ISSN 2168-2372
IngestDate Fri Oct 03 12:46:18 EDT 2025
Sun Oct 26 03:10:17 EDT 2025
Thu Aug 21 14:06:09 EDT 2025
Fri Sep 05 12:48:18 EDT 2025
Tue Oct 07 07:11:00 EDT 2025
Thu Jan 02 23:00:13 EST 2025
Thu Apr 24 22:55:07 EDT 2025
Wed Oct 01 02:35:28 EDT 2025
Wed Aug 27 02:43:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dimensionality reduction
genetic algorithm
hyper-parameter optimization
linear discriminant analysis
Parkinson’s disease
deep neural network
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
2168-2372 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-3b71b1daf54ad9954b558a2a7f300957c3e776a19de1a651ccec5e144242a2bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2084-8781
0000-0001-7607-707X
0000-0002-3095-7271
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1109/JTEHM.2019.2940900
PMID 32166050
PQID 2317731010
PQPubID 4437232
PageCount 10
ParticipantIDs crossref_primary_10_1109_JTEHM_2019_2940900
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6876932
unpaywall_primary_10_1109_jtehm_2019_2940900
pubmed_primary_32166050
doaj_primary_oai_doaj_org_article_e3ffb8318a4540cd80010c03d7fe711c
ieee_primary_8861144
proquest_miscellaneous_2377343771
crossref_citationtrail_10_1109_JTEHM_2019_2940900
proquest_journals_2317731010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE journal of translational engineering in health and medicine
PublicationTitleAbbrev JTEHM
PublicationTitleAlternate IEEE J Transl Eng Health Med
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref14
kraipeerapun (ref55) 2015
ref52
ref11
ref54
ref10
ref17
ref16
ref19
ref18
al-fatlawi (ref8) 2016
boersma (ref39) 2010
behroozi (ref51) 2016; 2016
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref9
ref4
ref3
ref6
ref5
ref40
vadovský (ref53) 2017
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
esk?dere (ref50) 2015
ref24
ref23
ref26
ref25
ref20
ref22
ref21
duffy (ref7) 2013
ref28
ref27
ref29
çali?ir (ref38) 2011; 38
References_xml – ident: ref19
  doi: 10.1007/s00521-015-2142-2
– ident: ref31
  doi: 10.1016/j.irbm.2017.10.002
– ident: ref18
  doi: 10.1007/s00415-019-09271-7
– start-page: 1290
  year: 2015
  ident: ref55
  article-title: Using stacked generalization and complementary neural networks to predict Parkinson's disease
  publication-title: Proc 11th Int Conf Natural Comput (ICNC)
– ident: ref43
  doi: 10.1016/j.image.2018.03.017
– ident: ref23
  doi: 10.1007/s11517-016-1512-y
– ident: ref42
  doi: 10.1109/JSTSP.2018.2873142
– ident: ref15
  doi: 10.1016/j.jneuroling.2004.06.001
– ident: ref11
  doi: 10.1016/j.parkreldis.2015.02.026
– ident: ref41
  doi: 10.1109/4235.850656
– ident: ref14
  doi: 10.1016/j.neucom.2018.08.036
– ident: ref5
  doi: 10.1109/TITB.2011.2182616
– ident: ref21
  doi: 10.1109/TBME.2012.2183367
– ident: ref16
  doi: 10.1016/j.sleep.2015.07.030
– ident: ref40
  doi: 10.1109/TBME.2009.2036000
– start-page: 321
  year: 2017
  ident: ref53
  article-title: Parkinson's disease patients classification based on the speech signals
  publication-title: Proc IEEE 15th Int Symp Appl Mach Intell Inform (SAMI)
– ident: ref35
  doi: 10.1016/j.eswa.2007.06.012
– ident: ref1
  doi: 10.1007/s10772-016-9338-4
– volume: 38
  start-page: 8311
  year: 2011
  ident: ref38
  article-title: An automatic diabetes diagnosis system based on LDA-wavelet support vector machine classifier
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.01.017
– ident: ref25
  doi: 10.1016/j.eswa.2018.06.003
– ident: ref20
  doi: 10.1109/JBHI.2013.2245674
– ident: ref9
  doi: 10.1121/1.4939739
– year: 2010
  ident: ref39
  publication-title: Praat Doing phonetics by computer
– ident: ref27
  doi: 10.1016/j.cmpb.2017.02.019
– ident: ref3
  doi: 10.1109/TITB.2010.2091142
– ident: ref2
  doi: 10.1093/aje/kwg068
– ident: ref44
  doi: 10.1016/j.engappai.2003.09.006
– ident: ref29
  doi: 10.1007/s13369-016-2206-3
– ident: ref34
  doi: 10.1109/JBHI.2018.2866873
– ident: ref45
  doi: 10.1016/S0952-1976(00)00045-2
– ident: ref28
  doi: 10.1007/s10772-016-9367-z
– ident: ref48
  doi: 10.1016/j.eswa.2005.12.008
– ident: ref30
  doi: 10.1109/HealthCom.2017.8210820
– ident: ref52
  doi: 10.1186/s12938-016-0242-6
– start-page: 1324
  year: 2016
  ident: ref8
  article-title: Efficient diagnosis system for Parkinson's disease using deep belief network
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref49
  doi: 10.1021/ci025626i
– ident: ref17
  doi: 10.1109/TNSRE.2018.2851787
– volume: 2016
  year: 2016
  ident: ref51
  article-title: A multiple-classifier framework for Parkinson's disease detection based on various vocal tests
  publication-title: Int J Telemed Appl
– ident: ref37
  doi: 10.1016/j.eswa.2010.06.065
– ident: ref12
  doi: 10.1016/j.cmpb.2014.01.004
– ident: ref4
  doi: 10.1007/s11517-012-0890-z
– ident: ref46
  doi: 10.1016/S0952-1976(00)00021-X
– ident: ref33
  doi: 10.1016/j.eswa.2019.06.052
– year: 2013
  ident: ref7
  publication-title: Motor Speech Disorders Substrates Differential Diagnosis and Management
– ident: ref56
  doi: 10.1371/journal.pone.0192192
– ident: ref47
  doi: 10.1016/j.engappai.2006.03.003
– start-page: 1
  year: 2015
  ident: ref50
  article-title: Detection of Parkinson's disease from vocal features using random subspace classifier ensemble
  publication-title: Proc 12th Int Conf Electron Comput Comput (ICECCO)
– ident: ref13
  doi: 10.1016/j.bspc.2018.07.019
– ident: ref6
  doi: 10.1109/TBME.2008.2005954
– ident: ref22
  doi: 10.1016/j.eswa.2009.06.040
– ident: ref24
  doi: 10.1016/j.eswa.2015.10.034
– ident: ref32
  doi: 10.1007/s10916-011-9678-1
– ident: ref36
  doi: 10.1016/j.eswa.2009.03.021
– ident: ref54
  doi: 10.1155/2017/6209703
– ident: ref57
  doi: 10.1155/2018/2396952
– ident: ref10
  doi: 10.1109/JBHI.2015.2467375
– ident: ref26
  doi: 10.1109/ACCESS.2019.2932037
SSID ssj0000816929
Score 2.5110717
Snippet Objective: Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice...
Parkinson's disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice impairments...
Objective: Parkinson’s disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice...
Objective: Parkinson’s disease (PD) is a serious neurodegenerative disorder. It is reported that most of PD patients have voice impairments. But these voice...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Accuracy
Artificial intelligence
Automation
Classification
Correlation coefficients
deep neural network
Diagnostic systems
Dimensionality reduction
Discriminant analysis
Diseases
Feature extraction
genetic algorithm
Genetic algorithms
Hybrid systems
hyper-parameter optimization
linear discriminant analysis
Machine learning
Neural networks
Optimization
Parkinson's disease
Support vector machines
Testing
Training
Voice
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8ABlZZHaEFGQuIAoXFeto8tbbWqtAWJVuot8ivaom1SdbOqyg_idzJjZ6OsWsGFiw_ryWziGdsz9sw3hHwwtbRKqjTOnRTQpDLWZW5jZh1sRllmEn-jOz0tJ-f5yUVxMSr1hTFhAR44DNyey-paC9A8hVhxxgr0YkySWV47zpjB1TcRcuRM-TVYsBI2_lWWTCL3Ts6OJlMM5ZJfUglODaa0jXYiD9jfV1h5yNi8HzP5eNlcq7tbNZ-PNqTjTfKstyTpfviC5-SRa7bI0xG-4Db5vb_sWjBJnaWHrvNBVw1ta4qpzj7r6-OCHoYbGnoAjaXQP-1DDCm6qAsk_xGSrKD7-6wNp4cL6mMNKLiyMFWQiQn1wZqOrnBOqGosRVhrf1w-v6PfYHm6uvwFfBASBN79NMSgvyDnx0dnXydxX5ghNoVIuzjTnGlmVV3kyiKgnC4KoVLF6wxNNm4yx3mpmLSOqbJgxjhTOHDdwB5QqbbZS7LRtI17TajmDmyYXEutoV8VwrCk5tKhJYW3rhFhKyFVpkctx-IZ88p7L4msvGArFGzVCzYin4ZnrgNmx1-pD1D2AyXibfsfQAurXgurf2lhRLZRcwYmQpTgaMLb7640qerXhkUFFjXnYFUz-Ov3QzfMaryqUY1rl0gDJDk0LCKvguINvLOUleCEwtN8TSXXvmC9p7mceeTwUmDpyzQinwflvTdCPzs3u1oboTf_Y4R2yBPkGU6vdslGd7N0b8Ge6_Q7P3X_AKhkR3U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoADBQolpSAjIXGg2cZ5OT62tNWq0hYkWqm3yK9oC9ukYhOh9gfxO5mxs9EurRAXa7WeOLEzsb-xZ74h5IOuhJFCxmFqRQFFLEKVpyZkxsJilCQ6cie6k7N8fJGeXmaXa2RviIWx1jrnMzvCn-4s3zS6w62y_aLIAb6n62SdF7mP1Rr2UzCBBCz1i7iYSOyfnh-PJ-i8JUaxADMGg9iW1h5H0d_nVHkIXt73knzU1Tfy9peczZaWoJNNMlk8vPc8-THqWjXSd3_xOv5v756Rpz0WpQdeeZ6TNVu_IE-WGAq3yO-Drm0A1FpDj2zr3LZq2lQUg6Vd3NjHOT3yZzz0EApDoX7SOylSNHLnKP7Nh2lB9ddp4_cf59R5K1AwhuFjw0a0zzBWt3TBlEJlbSgSY7sN99kt_QIT3PXVHbSDpCLw7Gfei_0luTg5Pv88DvvUDqHOirgNE8WZYkZWWSoNUtKpLCtkLHmVIOjjOrGc55IJY5nMM6a11ZmF0QFEIWNlkldko25q-5pQxS2goFQJpaBeZoVmUcWFRSyG57YBYYuXXuqe9xzTb8xKZ_9EonSKUqKilL2iBOTTcM2NZ_34p_Qh6tIgiYzd7g94vWU_AZQ2qSpVwAwqkfNQmwKtcR0lhleWM6YDsoUqMTTSa0NAdheaWfazy7wETM454HIGt34_VMO8gIc9srZNhzIgkkLBArLtFXloO4lZDmYsXM1XVHylB6s19dXUcY_nBSbPjAOyN3wM90boe2un1ysjtPNw596Qxyjld7R2yUb7s7NvAeO16p37uP8ARQNQ9w
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAcyqNAFwoyEjfIEufl-LilrVaVdqlEVyqnyK9oC0tSsYlQe-Jv8A_4XfwSZpxstKEVgkukXY-dh8f2N_bMN4S80rkwUsjAi6xI4RIITyWR8ZixsBiFofbdie50lkzm0fFZfNbS5GAszOb5PfPF20-VXWDAOBOjQIAt4oN5vpXEgLsHZGs-Oxl_xOxxLIHuDnmwjoq5sWJv5XEE_W1GlZvA5XUfydt1cSEvv8nlcmMBOrrXZDJaOd5C9Dv5PKorNdJXf7A6_tu73SfbLQ6l40ZxHpBbtnhI7m6wE-6Qn-O6KgHQWkMPbOVctgpa5hQDpV3M2K_vP1b0oDnhoftwMRQkpq2LIkUTd4UVPjRBWlB8siib3ccVdb4KFExhGGrYiG7yixUVXfOkUFkYirTYbrt9eUnfw_T25fwK2kFKEXj6WePD_ojMjw5P3028NrGDp-M0qLxQcaaYkXkcSYOEdCqOUxlInocI-bgOLeeJZMJYJpOYaW11bMH0AzwhA2XCx2RQlIXdJVRxCxgoUkIpKJdxqpmfc2ERieGp7ZCwdadnumU9x-Qby8xZP77Ijk8PJ9MMeyFre2FIXnd1LhrOj79K76MudZLI1-3-gK7O2uGf2TDPVQrzp0TGQ21StMW1HxqeW86YHpId1MSukTRNwFCFp99ba2bWzi2rDBA554DKGdz6ZVcMswIe9cjCljXKgEgEFzYkTxpF7toOYbiAEQu1eU_Fe2_QLynOF455PEkxdWYwJG-6wXDtCzmt7n2hp_8n_ozcwZ_NPtceGVRfa_sckF-lXrRD_jeBkFRz
  priority: 102
  providerName: Unpaywall
Title Automated Detection of Parkinson's Disease Based on Multiple Types of Sustained Phonations Using Linear Discriminant Analysis and Genetically Optimized Neural Network
URI https://ieeexplore.ieee.org/document/8861144
https://www.ncbi.nlm.nih.gov/pubmed/32166050
https://www.proquest.com/docview/2317731010
https://www.proquest.com/docview/2377343771
https://pubmed.ncbi.nlm.nih.gov/PMC6876932
https://doi.org/10.1109/jtehm.2019.2940900
https://doaj.org/article/e3ffb8318a4540cd80010c03d7fe711c
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2168-2372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816929
  issn: 2168-2372
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2168-2372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816929
  issn: 2168-2372
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2168-2372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816929
  issn: 2168-2372
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2168-2372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816929
  issn: 2168-2372
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2168-2372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816929
  issn: 2168-2372
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2168-2372
  dateEnd: 20250531
  omitProxy: true
  ssIdentifier: ssj0000816929
  issn: 2168-2372
  databaseCode: M48
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaq9gAcEFAeCyUyEjfYEu_L6wNCKW0VVUqoRCOV08qvJUXpbkk2gnDib_AP-F38Ema8DzVqhMTFSmJ7dmOP7W_s8TeEvNS5MFLIwI-sSCEJhK-SyPjMWFiMwlD33YnuaJwMJ9HJeXy-RdpwR00DLjaadhhPajKf7X__unoHA_5tw5f55uTsaDhCLy2xHwiwV_pgwu8E-AFd-Rq472bmlCXCBS4LWAIKEvKgvUezUczaWuUo_ZsYLJvg6E2vylvL4kquvsnZ7NqSdXyP3G2wJh3UynGfbNniAblzjYFwl_weLKsSQKs19NBWzi2roGVO8TK0uxf25-evBT2sT3HoASSGQolR44ZI0YxdYIWP9UUsyD6dlvUO44I6fwQK5i4MJxSi6xhiRUVbLhQqC0OR-tptqc9W9ANMYZcXP0AO0obA249rP_WHZHJ8dPZ-6DfBG3wdp0Hlh4ozxYzM40gaJJ1TcZzKQPI8RFjHdWg5TyQTxjKZxExrq2ML5h1gBhkoEz4i20VZ2CeEKm4B50RKKAX5Mk416-dcWERbeDLrEdZ2U6YbZnMMsDHLnIXTF5nr2gy7Nmu61iOvujpXNa_HP0sfYO93JZGT2_1Qzj9nzRDPbJjnKoU5UiKroTYp2tu6HxqeW86Y9sgu6k4nJE0TMEbh7fdaXcpa9c8AdXMOyJvBo1902TDy8ThHFrZcYhkoEkHCPPK4Vr1OdggKDoYq1OZrSrn2D9ZzioupYxdPUgyPGXjkdae-N1roS2Wnl2st9PS_2vMZuY1f662sPbJdzZf2OYC7SvXcpkjPjdueu43ZIzuT8eng019qXE2K
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvEohUMBISBxotnFeTo4tbbWU7oLEVuot8ivawjap2ESo_UH8TmbsbLRLK8TFWq0fiZ2x_Y098w0h71SZa5GL0I9NnkES5r5MY-0zbWAziiIV2Bvd0TgdnsbHZ8nZGtnpfWGMMdb4zAzwp73L17Vq8ahsN8tSgO_xHXI3ieM4cd5a_YkKhpCAzX7hGRPku8eTw-EIzbfyQZiDIoNubEu7jyXp76Kq3AYwb9pJbrTVpbj6JWazpU3o6CEZLV7f2Z78GLSNHKjrv5gd_7d_j8iDDo3SPSc-j8maqZ6Q-0schZvk917b1ABrjaYHprGGWxWtS4ru0tZz7P2cHrhbHroPiaaQP-rMFCmquXMs_s05akH212ntTiDn1NorUFCHYbphI8rFGKsauuBKoaLSFKmx7ZH77Ip-gSXu4vwa2kFaEXj3sbNjf0pOjw4nH4d-F9zBV0kWNn4kOZNMizKJhUZSOpkkmQgFLyOEfVxFhvNUsFwbJtKEKWVUYmB0AFOIUOpoi6xXdWWeEyq5ARwUy1xKyBdJplhQ8twgGsObW4-wxUcvVMd8jgE4ZoXVgIK8sIJSoKAUnaB45ENf59Lxfvyz9D7KUl8SObvtH_B5i24JKExUljKDNVQg66HSGerjKog0Lw1nTHlkE0Wib6STBo9sLySz6NaXeQGonHNA5gwe_bbPhpUBr3tEZeoWy0CRGBLmkWdOkPu2o5CloMhCbb4i4is9WM2pzqeWfTzNMHxm6JGdfjLcGKHvjZlerIzQi9s794ZsDCejk-Lk0_jzS3IPa7jzrW2y3vxszStAfI18bSf6H_EAVEQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAcyqNAFwoyEjfIEufl-LilrVaVdqlEVyqnyK9oC0tSsYlQe-Jv8A_4XfwSZpxstKEVgkukXY-dh8f2N_bMN4S80rkwUsjAi6xI4RIITyWR8ZixsBiFofbdie50lkzm0fFZfNbS5GAszOb5PfPF20-VXWDAOBOjQIAt4oN5vpXEgLsHZGs-Oxl_xOxxLIHuDnmwjoq5sWJv5XEE_W1GlZvA5XUfydt1cSEvv8nlcmMBOrrXZDJaOd5C9Dv5PKorNdJXf7A6_tu73SfbLQ6l40ZxHpBbtnhI7m6wE-6Qn-O6KgHQWkMPbOVctgpa5hQDpV3M2K_vP1b0oDnhoftwMRQkpq2LIkUTd4UVPjRBWlB8siib3ccVdb4KFExhGGrYiG7yixUVXfOkUFkYirTYbrt9eUnfw_T25fwK2kFKEXj6WePD_ojMjw5P3028NrGDp-M0qLxQcaaYkXkcSYOEdCqOUxlInocI-bgOLeeJZMJYJpOYaW11bMH0AzwhA2XCx2RQlIXdJVRxCxgoUkIpKJdxqpmfc2ERieGp7ZCwdadnumU9x-Qby8xZP77Ijk8PJ9MMeyFre2FIXnd1LhrOj79K76MudZLI1-3-gK7O2uGf2TDPVQrzp0TGQ21StMW1HxqeW86YHpId1MSukTRNwFCFp99ba2bWzi2rDBA554DKGdz6ZVcMswIe9cjCljXKgEgEFzYkTxpF7toOYbiAEQu1eU_Fe2_QLynOF455PEkxdWYwJG-6wXDtCzmt7n2hp_8n_ozcwZ_NPtceGVRfa_sckF-lXrRD_jeBkFRz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Parkinson%E2%80%99s+Disease+Based+on+Multiple+Types+of+Sustained+Phonations+Using+Linear+Discriminant+Analysis+and+Genetically+Optimized+Neural+Network&rft.jtitle=IEEE+journal+of+translational+engineering+in+health+and+medicine&rft.au=Ali%2C+Liaqat&rft.au=Zhu%2C+Ce&rft.au=Zhang%2C+Zhonghao&rft.au=Liu%2C+Yipeng&rft.date=2019-01-01&rft.issn=2168-2372&rft.eissn=2168-2372&rft.volume=7&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FJTEHM.2019.2940900&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JTEHM_2019_2940900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2372&client=summon