Depot specific differences in the adipogenic potential of precursors are mediated by collagenous extracellular matrix and Flotillin 2 dependent signaling

Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remo...

Full description

Saved in:
Bibliographic Details
Published inMolecular metabolism (Germany) Vol. 5; no. 10; pp. 937 - 947
Main Authors Grandl, Gerald, Müller, Sebastian, Moest, Hansjörg, Moser, Caroline, Wollscheid, Bernd, Wolfrum, Christian
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.10.2016
Elsevier
Subjects
Online AccessGet full text
ISSN2212-8778
2212-8778
DOI10.1016/j.molmet.2016.07.008

Cover

Abstract Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation. •Different adipose tissue depots have different differentiation capacities.•Differentiation of preadipocytes is enhanced by vitamin c through formation of collagenous ECM.•Collagenous ECM is the main determinant of adipose depot specific differences in adipogenic potential.•FLOT2 plays a role in mediating collagenous-ECM specific effects.
AbstractList Abstract Objective Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. Methods We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. Results We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. Conclusions We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation.
Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation.
Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation. •Different adipose tissue depots have different differentiation capacities.•Differentiation of preadipocytes is enhanced by vitamin c through formation of collagenous ECM.•Collagenous ECM is the main determinant of adipose depot specific differences in adipogenic potential.•FLOT2 plays a role in mediating collagenous-ECM specific effects.
• Different adipose tissue depots have different differentiation capacities. • Differentiation of preadipocytes is enhanced by vitamin c through formation of collagenous ECM. • Collagenous ECM is the main determinant of adipose depot specific differences in adipogenic potential. • FLOT2 plays a role in mediating collagenous-ECM specific effects.
OBJECTIVEAdipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM.METHODSWe studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis.RESULTSWe show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling.CONCLUSIONSWe show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation.
Objective: Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. Methods: We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. Results: We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. Conclusions: We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation. Keywords: Adipocyte precursors, Extracellular matrix, Collagen, Stem cell niche, Flotillin 2
Author Müller, Sebastian
Moest, Hansjörg
Moser, Caroline
Wollscheid, Bernd
Wolfrum, Christian
Grandl, Gerald
AuthorAffiliation 2 Institute of Molecular Systems Biology, ETH Zürich, Switzerland
1 Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
AuthorAffiliation_xml – name: 1 Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
– name: 2 Institute of Molecular Systems Biology, ETH Zürich, Switzerland
Author_xml – sequence: 1
  givenname: Gerald
  surname: Grandl
  fullname: Grandl, Gerald
  organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
– sequence: 2
  givenname: Sebastian
  surname: Müller
  fullname: Müller, Sebastian
  organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
– sequence: 3
  givenname: Hansjörg
  surname: Moest
  fullname: Moest, Hansjörg
  organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
– sequence: 4
  givenname: Caroline
  surname: Moser
  fullname: Moser, Caroline
  organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
– sequence: 5
  givenname: Bernd
  surname: Wollscheid
  fullname: Wollscheid, Bernd
  organization: Institute of Molecular Systems Biology, ETH Zürich, Switzerland
– sequence: 6
  givenname: Christian
  surname: Wolfrum
  fullname: Wolfrum, Christian
  email: christian-wolfrum@ethz.ch
  organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27689006$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxiNUREvpGyDkI5dd7GzieBFCqgqFSpU4AGdrYo-3XrxxsL1V-yqceBaejAnbohYJ8MX_Zn6fZuZ7XO0NccCqeir4XHAhX6znmxg2WOY13ea8m3OuHlQHdS3qmeo6tXfnvF8d5bzmtJSUshWPqv26k2rJuTyovr3BMRaWRzTeecOsdw4TDgYz8wMrF8jA-jGucKBfCsWheAgsOjYmNNuUY8oMErINWg8FLeuvmYkhAKXEbWZ4VRIYDGEbILENlOSvGAyWnYZYfAikUv_4bnHEwRKcZb8agF5XT6qHDkLGo5v9sPp8-vbTyfvZ-Yd3ZyfH5zPTqrrMFm2rlGsXppdKKodL5-qGd1z0rQJpG7dw0HTSNG1tlbUGbderFnjbcyMQ28Vhdbbj2ghrPSa_gXStI3j96yGmlYZUvAmoFSw7qkWBE9h0poGOVAwotMuebpJYr3escdtTQwwVlCDcg97_GfyFXsVL3fJFIwUnwPMbQIpft5iL3vg8dQ8GpG5qoeq2FlLxKfTZXa3fIrfDpYCXuwCTYs4JnTa-QPFxkvZBC64nM-m13plJT2bSvNPkFEpu_ki-5f8n7aYBSBO79Ji0oVl6A-ELXmNex22i6VIdOtea64-TSyeTCrngE5UAr_4OoIn4f-v_BKBcAFQ
CitedBy_id crossref_primary_10_1186_s13075_019_2058_9
crossref_primary_10_3389_fendo_2019_00898
crossref_primary_10_1080_21623945_2018_1521229
crossref_primary_10_1039_D2LC00245K
crossref_primary_10_1371_journal_pone_0167337
crossref_primary_10_1172_JCI129192
crossref_primary_10_1038_s41467_019_09992_3
crossref_primary_10_1146_annurev_physiol_060721_092930
crossref_primary_10_1039_D0LC00508H
crossref_primary_10_1016_j_ijbiomac_2024_135376
crossref_primary_10_1016_j_mbplus_2021_100069
crossref_primary_10_1016_j_molmet_2025_102105
crossref_primary_10_1242_jeb_162958
crossref_primary_10_3390_biom11121906
crossref_primary_10_1007_s11695_020_04983_6
crossref_primary_10_1371_journal_pone_0233152
crossref_primary_10_1016_j_ghir_2017_12_010
crossref_primary_10_1016_j_molmet_2018_02_014
crossref_primary_10_1080_21623945_2017_1372871
crossref_primary_10_1096_fj_201601337R
crossref_primary_10_1016_j_neo_2018_09_004
crossref_primary_10_1016_j_celrep_2019_08_092
crossref_primary_10_3390_cells8080831
crossref_primary_10_1084_jem_20211948
crossref_primary_10_3389_fmed_2021_751277
crossref_primary_10_3390_cells10040901
Cites_doi 10.1038/nbt.2377
10.1038/ncb3122
10.1038/nature10137
10.1290/1071-2690(2000)036<0038:OOEMCD>2.0.CO;2
10.1016/j.cell.2006.02.050
10.1371/journal.pone.0084393
10.2337/db11-1753
10.2337/db06-0540
10.1016/j.bbalip.2016.06.010
10.1242/jcs.092015
10.1016/j.cmet.2014.05.005
10.1016/j.cmet.2012.03.009
10.1016/0092-8674(94)90006-X
10.1016/j.cmet.2013.03.008
10.1126/science.1156232
10.1002/emmm.201100172
10.1016/j.cell.2008.09.036
10.1038/ncb2696
10.1002/pmic.201200439
10.1016/j.cmet.2013.06.016
10.1002/stem.190
10.1002/pmic.200900375
10.1016/j.cub.2007.05.078
10.1016/j.cmet.2014.10.010
10.1038/nmat3960
10.1038/nrm3620
10.1016/j.cell.2015.09.053
10.1242/dev.124.2.577
10.1016/j.cmet.2013.08.003
10.1038/nm.3324
10.1128/MCB.01300-08
10.1038/nrm1890
10.1083/jcb.200805092
10.1038/nmat3339
10.1074/jbc.272.21.13793
10.1038/nprot.2013.092
10.1016/S0140-6736(16)30054-X
10.1016/j.cell.2013.12.012
10.1046/j.1432-0436.2002.700203.x
ContentType Journal Article
Copyright 2016 The Author(s)
The Author(s)
2016 The Author(s) 2016
Copyright_xml – notice: 2016 The Author(s)
– notice: The Author(s)
– notice: 2016 The Author(s) 2016
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.molmet.2016.07.008
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
[Open Access] DOAJ 오픈액세스 저널 디렉토리
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2212-8778
EndPage 947
ExternalDocumentID oai_doaj_org_article_8a97ace8af1e47c4a71b5ca8ed9bc4a6
PMC5034610
27689006
10_1016_j_molmet_2016_07_008
1_s2_0_S2212877816301016
S2212877816301016
Genre Journal Article
GroupedDBID -IN
.1-
.FO
0R~
1P~
457
4G.
53G
5VS
7-5
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OB0
OK1
ON-
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c582t-35588f53cb6868fe9ff240701b58a6d4f3fa476c452d8ddced7b85a05b0c1ee53
IEDL.DBID M48
ISSN 2212-8778
IngestDate Wed Aug 27 01:32:14 EDT 2025
Thu Aug 21 18:25:39 EDT 2025
Fri Sep 05 10:26:13 EDT 2025
Thu Jan 02 23:10:54 EST 2025
Tue Jul 01 04:29:45 EDT 2025
Thu Apr 24 22:56:05 EDT 2025
Tue Feb 25 20:08:45 EST 2025
Tue Aug 26 16:41:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Stem cell niche
Extracellular matrix
Flotillin 2
Adipocyte precursors
Collagen
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c582t-35588f53cb6868fe9ff240701b58a6d4f3fa476c452d8ddced7b85a05b0c1ee53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.molmet.2016.07.008
PMID 27689006
PQID 1825216800
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_8a97ace8af1e47c4a71b5ca8ed9bc4a6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5034610
proquest_miscellaneous_1825216800
pubmed_primary_27689006
crossref_citationtrail_10_1016_j_molmet_2016_07_008
crossref_primary_10_1016_j_molmet_2016_07_008
elsevier_clinicalkeyesjournals_1_s2_0_S2212877816301016
elsevier_clinicalkey_doi_10_1016_j_molmet_2016_07_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Molecular metabolism (Germany)
PublicationTitleAlternate Mol Metab
PublicationYear 2016
Publisher Elsevier GmbH
Elsevier
Publisher_xml – name: Elsevier GmbH
– name: Elsevier
References Tchkonia, Thomou, Zhu, Karagiannides, Pothoulakis, Jensen (bib12) 2013; 17
Watt, Huck (bib10) 2013; 14
Meissburger, Ukropec, Roeder, Beaton, Geiger, Teupser (bib13) 2011; 3
Lee, Petkova, Mottillo, Granneman (bib6) 2012; 15
Chun, Hotary, Sabeh, Saltiel, Allen, Weiss (bib9) 2006; 125
Khan, Muise, Iyengar, Wang, Chandalia, Abate (bib32) 2009; 29
Kubo, Kaidzu, Nakajima, Takenouchi, Nakamura (bib8) 2000; 36
Dupont, Morsut, Aragona, Enzo, Giulitti, Cordenonsi (bib33) 2011; 474
Vogel, Sheetz (bib34) 2006; 7
Joe, Yi, Even, Vogl, Rossi (bib23) 2009; 27
Rodeheffer, Birsoy, Friedman (bib4) 2008; 135
Bickel, Scherer, Schnitzer, Oh, Lisanti, Lodish (bib38) 1997; 272
Wang, Tao, Gupta, Scherer (bib28) 2013; 19
Kurrle, Völlner, Eming, Hertl, Banning, Tikkanen (bib41) 2013; 8
Tang, Zeve, Suh, Bosnakovski, Kyba, Hammer (bib3) 2008; 322
Kim, Lun, Wang, Senyo, Guillermier, Patwari (bib31) 2014; 20
Hazarika, Mccarty, Prieto, Bar-eli, Duvic (bib39) 2004
Eng, Jahan, Hoopmann (bib17) 2013; 13
Trappmann, Gautrot, Connelly, Strange, Li, Oyen (bib36) 2012; 11
Hein, Hubner, Poser, Cox, Nagaraj, Toyoda (bib42) 2015; 163
Deutsch, Mendoza, Shteynberg, Farrah, Lam, Tasman (bib18) 2010; 10
Nakajima, Muroya, Tanabe, Chikuni (bib24) 2002; 70
Mi, Muruganujan, Casagrande, Thomas (bib19) 2013; 8
Lee, Petkova, Granneman (bib30) 2013; 18
Jeffery, Church, Holtrup, Colman, Rodeheffer (bib27) 2015; 17
NCD Risk Factor Collaboration (bib1) 2016; 387
Tchkonia, Giorgadze, Pirtskhalava, Thomou, DePonte, Koo (bib21) 2006; 55
Elosegui-Artola, Bazellières, Allen, Andreu, Oria, Sunyer (bib35) 2014; 13
Rosen, Spiegelman (bib2) 2014; 156
Chambers, Maclean, Burke, Amodei, Ruderman, Neumann (bib16) 2012; 30
Meissburger, Perdikari, Moest, Müller, Geiger, Wolfrum (bib22) 2016
Choi, Larsen, Lin, Breitkreutz, Fermin, Qin (bib26) 2011; 8
Beacham, Amatangelo, Cukierman (bib14) 2007
Wernstedt Asterholm, Tao, Morley, Wang, Delgado-Lopez, Wang (bib29) 2014; 20
Berry, Rodeheffer (bib5) 2013; 15
Sun, Tordjman, Clément, Scherer (bib11) 2013; 18
Macotela, Emanuelli, Mori, Gesta, Schulz, Tseng (bib20) 2012; 61
Tontonoz, Hu, Spiegelman (bib7) 1994; 79
Otto, Nichols (bib40) 2011; 124
Frick, Bright, Riento, Bray, Merrified, Nichols (bib15) 2007; 17
Trinkle-Mulcahy, Boulon, Lam, Urcia, Boisvert, Vandermoere (bib25) 2008; 183
Schulte, Paschke, Laessing, Lottspeich, Stuermer (bib37) 1997; 124
Berry (10.1016/j.molmet.2016.07.008_bib5) 2013; 15
Vogel (10.1016/j.molmet.2016.07.008_bib34) 2006; 7
Bickel (10.1016/j.molmet.2016.07.008_bib38) 1997; 272
Trappmann (10.1016/j.molmet.2016.07.008_bib36) 2012; 11
Tontonoz (10.1016/j.molmet.2016.07.008_bib7) 1994; 79
Frick (10.1016/j.molmet.2016.07.008_bib15) 2007; 17
Joe (10.1016/j.molmet.2016.07.008_bib23) 2009; 27
Watt (10.1016/j.molmet.2016.07.008_bib10) 2013; 14
Hein (10.1016/j.molmet.2016.07.008_bib42) 2015; 163
Trinkle-Mulcahy (10.1016/j.molmet.2016.07.008_bib25) 2008; 183
Mi (10.1016/j.molmet.2016.07.008_bib19) 2013; 8
Meissburger (10.1016/j.molmet.2016.07.008_bib13) 2011; 3
Wang (10.1016/j.molmet.2016.07.008_bib28) 2013; 19
Rodeheffer (10.1016/j.molmet.2016.07.008_bib4) 2008; 135
Chun (10.1016/j.molmet.2016.07.008_bib9) 2006; 125
Kurrle (10.1016/j.molmet.2016.07.008_bib41) 2013; 8
Chambers (10.1016/j.molmet.2016.07.008_bib16) 2012; 30
Dupont (10.1016/j.molmet.2016.07.008_bib33) 2011; 474
Beacham (10.1016/j.molmet.2016.07.008_bib14) 2007
Khan (10.1016/j.molmet.2016.07.008_bib32) 2009; 29
Tchkonia (10.1016/j.molmet.2016.07.008_bib21) 2006; 55
Otto (10.1016/j.molmet.2016.07.008_bib40) 2011; 124
Macotela (10.1016/j.molmet.2016.07.008_bib20) 2012; 61
NCD Risk Factor Collaboration (10.1016/j.molmet.2016.07.008_bib1) 2016; 387
Tang (10.1016/j.molmet.2016.07.008_bib3) 2008; 322
Hazarika (10.1016/j.molmet.2016.07.008_bib39) 2004
Choi (10.1016/j.molmet.2016.07.008_bib26) 2011; 8
Elosegui-Artola (10.1016/j.molmet.2016.07.008_bib35) 2014; 13
Lee (10.1016/j.molmet.2016.07.008_bib6) 2012; 15
Jeffery (10.1016/j.molmet.2016.07.008_bib27) 2015; 17
Deutsch (10.1016/j.molmet.2016.07.008_bib18) 2010; 10
Wernstedt Asterholm (10.1016/j.molmet.2016.07.008_bib29) 2014; 20
Sun (10.1016/j.molmet.2016.07.008_bib11) 2013; 18
Tchkonia (10.1016/j.molmet.2016.07.008_bib12) 2013; 17
Meissburger (10.1016/j.molmet.2016.07.008_bib22) 2016
Rosen (10.1016/j.molmet.2016.07.008_bib2) 2014; 156
Eng (10.1016/j.molmet.2016.07.008_bib17) 2013; 13
Lee (10.1016/j.molmet.2016.07.008_bib30) 2013; 18
Kubo (10.1016/j.molmet.2016.07.008_bib8) 2000; 36
Nakajima (10.1016/j.molmet.2016.07.008_bib24) 2002; 70
Kim (10.1016/j.molmet.2016.07.008_bib31) 2014; 20
Schulte (10.1016/j.molmet.2016.07.008_bib37) 1997; 124
12076335 - Differentiation. 2002 May;70(2-3):84-91
20101611 - Proteomics. 2010 Mar;10(6):1150-9
25456741 - Cell Metab. 2014 Dec 2;20(6):1049-58
23839578 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):467-73
9153235 - J Biol Chem. 1997 May 23;272(21):13793-802
23051804 - Nat Biotechnol. 2012 Oct;30(10):918-20
17600709 - Curr Biol. 2007 Jul 3;17(13):1151-6
8001151 - Cell. 1994 Dec 30;79(7):1147-56
21853531 - EMBO Mol Med. 2011 Nov;3(11):637-51
15492257 - Cancer Res. 2004 Oct 15;64(20):7361-9
16607289 - Nat Rev Mol Cell Biol. 2006 Apr;7(4):265-75
23954640 - Cell Metab. 2013 Oct 1;18(4):470-7
16678100 - Cell. 2006 May 5;125(3):577-91
18228495 - Curr Protoc Cell Biol. 2007 Jan;Chapter 10:Unit 10.9
22596050 - Diabetes. 2012 Jul;61(7):1691-9
18801968 - Science. 2008 Oct 24;322(5901):583-6
16936206 - Diabetes. 2006 Sep;55(9):2571-8
24439368 - Cell. 2014 Jan 16;156(1-2):20-44
27317982 - Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1121-31
27115820 - Lancet. 2016 Apr 2;387(10026):1377-96
21131968 - Nat Methods. 2011 Jan;8(1):70-3
19658193 - Stem Cells. 2009 Oct;27(10):2563-70
24391950 - PLoS One. 2013 Dec 31;8(12):e84393
23995282 - Nat Med. 2013 Oct;19(10):1338-44
26496610 - Cell. 2015 Oct 22;163(3):712-23
18835024 - Cell. 2008 Oct 17;135(2):240-9
24930973 - Cell Metab. 2014 Jul 1;20(1):103-18
23868073 - Nat Protoc. 2013 Aug;8(8):1551-66
10691039 - In Vitro Cell Dev Biol Anim. 2000 Jan;36(1):38-44
22635042 - Nat Mater. 2012 May 27;11(7):642-9
19114551 - Mol Cell Biol. 2009 Mar;29(6):1575-91
23583168 - Cell Metab. 2013 May 7;17(5):644-56
24793358 - Nat Mater. 2014 Jun;13(6):631-7
23148064 - Proteomics. 2013 Jan;13(1):22-4
23434825 - Nat Cell Biol. 2013 Mar;15(3):302-8
24011071 - Cell Metab. 2013 Sep 3;18(3):355-67
25730471 - Nat Cell Biol. 2015 Apr;17(4):376-85
22194304 - J Cell Sci. 2011 Dec 1;124(Pt 23):3933-40
22482730 - Cell Metab. 2012 Apr 4;15(4):480-91
21654799 - Nature. 2011 Jun 08;474(7350):179-83
18936248 - J Cell Biol. 2008 Oct 20;183(2):223-39
9053333 - Development. 1997 Jan;124(2):577-87
References_xml – volume: 30
  start-page: 918
  year: 2012
  end-page: 920
  ident: bib16
  article-title: A cross-platform toolkit for mass spectrometry and proteomics
  publication-title: Nature Biotechnology
– volume: 18
  start-page: 470
  year: 2013
  end-page: 477
  ident: bib11
  article-title: Fibrosis and adipose tissue dysfunction
  publication-title: Cell Metabolism
– volume: 474
  start-page: 179
  year: 2011
  end-page: 183
  ident: bib33
  article-title: Role of YAP/TAZ in mechanotransduction
  publication-title: Nature
– volume: 7
  start-page: 265
  year: 2006
  end-page: 275
  ident: bib34
  article-title: Local force and geometry sensing regulate cell functions
  publication-title: Nature Reviews. Molecular Cell Biology
– volume: 13
  start-page: 22
  year: 2013
  end-page: 24
  ident: bib17
  article-title: Comet: an open-source MS/MS sequence database search tool
  publication-title: Proteomics
– volume: 15
  start-page: 480
  year: 2012
  end-page: 491
  ident: bib6
  article-title: In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding
  publication-title: Cell Metabolism
– volume: 124
  start-page: 577
  year: 1997
  end-page: 587
  ident: bib37
  article-title: Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration
  publication-title: Development (Cambridge, England)
– volume: 36
  start-page: 38
  year: 2000
  end-page: 44
  ident: bib8
  article-title: Organization of extracellular matrix components during differentiation of adipocytes in long-term culture
  publication-title: In Vitro Cellular & Developmental Biology. Animal
– volume: 15
  start-page: 302
  year: 2013
  end-page: 308
  ident: bib5
  article-title: Characterization of the adipocyte cellular lineage in vivo
  publication-title: Nature Cell Biology
– volume: 61
  start-page: 1691
  year: 2012
  end-page: 1699
  ident: bib20
  article-title: Intrinsic differences in adipocyte precursor cells from different white fat depots
  publication-title: Diabetes
– volume: 387
  start-page: 1377
  year: 2016
  end-page: 1396
  ident: bib1
  article-title: Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants
  publication-title: The Lancet
– volume: 27
  start-page: 2563
  year: 2009
  end-page: 2570
  ident: bib23
  article-title: Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet
  publication-title: Stem Cells (Dayton, Ohio)
– volume: 13
  start-page: 631
  year: 2014
  end-page: 637
  ident: bib35
  article-title: Rigidity sensing and adaptation through regulation of integrin types
  publication-title: Nature Materials
– start-page: 7361
  year: 2004
  end-page: 7369
  ident: bib39
  article-title: Up-regulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1
– volume: 163
  start-page: 712
  year: 2015
  end-page: 723
  ident: bib42
  article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances
  publication-title: Cell
– volume: 17
  start-page: 644
  year: 2013
  end-page: 656
  ident: bib12
  article-title: Mechanisms and metabolic implications of regional differences among fat depots
  publication-title: Cell Metabolism
– volume: 156
  start-page: 20
  year: 2014
  end-page: 44
  ident: bib2
  article-title: What we talk about when we talk about fat
  publication-title: Cell
– volume: 79
  start-page: 1147
  year: 1994
  end-page: 1156
  ident: bib7
  article-title: Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor
  publication-title: Cell
– volume: 10
  start-page: 1150
  year: 2010
  end-page: 1159
  ident: bib18
  article-title: A guided tour of the trans-proteomic pipeline
  publication-title: Proteomics
– volume: 8
  year: 2013
  ident: bib41
  article-title: Flotillins directly interact with γ-catenin and regulate epithelial cell-cell adhesion
  publication-title: PLoS One
– volume: 14
  start-page: 467
  year: 2013
  end-page: 473
  ident: bib10
  article-title: Role of the extracellular matrix in regulating stem cell fate
  publication-title: Nature Reviews. Molecular Cell Biology
– year: 2007
  ident: bib14
  article-title: Preparation of extracellular matrices produced by cultured and primary fibroblasts
  publication-title: Current Protocols in Cell Biology/Editorial Board
– volume: 8
  start-page: 1551
  year: 2013
  end-page: 1566
  ident: bib19
  article-title: Large-scale gene function analysis with the PANTHER classification system
  publication-title: Nature Protocols
– volume: 183
  start-page: 223
  year: 2008
  end-page: 239
  ident: bib25
  article-title: Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes
  publication-title: Journal of Cell Biology
– volume: 124
  start-page: 3933
  year: 2011
  end-page: 3940
  ident: bib40
  article-title: The roles of flotillin microdomains - endocytosis and beyond
  publication-title: Journal of Cell Science
– volume: 20
  start-page: 1049
  year: 2014
  end-page: 1058
  ident: bib31
  article-title: Article loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance
  publication-title: Cell Metabolism
– volume: 322
  start-page: 583
  year: 2008
  end-page: 586
  ident: bib3
  article-title: White fat progenitor cells reside in the adipose vasculature
  publication-title: Science (New York, N.Y.)
– volume: 17
  start-page: 1151
  year: 2007
  end-page: 1156
  ident: bib15
  article-title: Coassembly of Flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding
  publication-title: Current Biology
– volume: 70
  start-page: 84
  year: 2002
  end-page: 91
  ident: bib24
  article-title: Positive effect of collagen V and VI on triglyceride accumulation during differentiation in cultures of bovine intramuscular adipocytes
  publication-title: Differentiation
– volume: 8
  start-page: 70
  year: 2011
  end-page: 73
  ident: bib26
  publication-title: NIH Public Access
– volume: 11
  start-page: 642
  year: 2012
  end-page: 649
  ident: bib36
  article-title: Extracellular-matrix tethering regulates stem-cell fate
  publication-title: Nature Materials
– volume: 3
  start-page: 637
  year: 2011
  end-page: 651
  ident: bib13
  article-title: Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma
  publication-title: EMBO Molecular Medicine
– volume: 17
  start-page: 376
  year: 2015
  end-page: 385
  ident: bib27
  article-title: Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity
  publication-title: Nature Cell Biology
– volume: 55
  start-page: 2571
  year: 2006
  end-page: 2578
  ident: bib21
  article-title: Fat depot-specific characteristics are retained in strains derived from single human preadipocytes
  publication-title: Diabetes
– year: 2016
  ident: bib22
  article-title: Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences
  publication-title: Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids
– volume: 272
  start-page: 13793
  year: 1997
  end-page: 13802
  ident: bib38
  article-title: Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins
  publication-title: The Journal of Biological Chemistry
– volume: 20
  start-page: 103
  year: 2014
  end-page: 118
  ident: bib29
  article-title: Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling
  publication-title: Cell Metabolism
– volume: 125
  start-page: 577
  year: 2006
  end-page: 591
  ident: bib9
  article-title: A pericellular collagenase directs the 3-dimensional development of white adipose tissue
  publication-title: Cell
– volume: 29
  start-page: 1575
  year: 2009
  end-page: 1591
  ident: bib32
  article-title: Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI
  publication-title: Molecular and Cellular Biology
– volume: 19
  start-page: 1338
  year: 2013
  end-page: 1344
  ident: bib28
  article-title: Tracking adipogenesis during white adipose tissue development, expansion and regeneration
  publication-title: Nature Medicine
– volume: 18
  start-page: 355
  year: 2013
  end-page: 367
  ident: bib30
  article-title: Identification of an adipogenic niche for adipose tissue remodeling and restoration
  publication-title: Cell Metabolism
– volume: 135
  start-page: 240
  year: 2008
  end-page: 249
  ident: bib4
  article-title: Identification of white adipocyte progenitor cells in vivo
  publication-title: Cell
– volume: 30
  start-page: 918
  issue: 10
  year: 2012
  ident: 10.1016/j.molmet.2016.07.008_bib16
  article-title: A cross-platform toolkit for mass spectrometry and proteomics
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2377
– volume: 17
  start-page: 376
  issue: 4
  year: 2015
  ident: 10.1016/j.molmet.2016.07.008_bib27
  article-title: Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb3122
– volume: 474
  start-page: 179
  issue: 7350
  year: 2011
  ident: 10.1016/j.molmet.2016.07.008_bib33
  article-title: Role of YAP/TAZ in mechanotransduction
  publication-title: Nature
  doi: 10.1038/nature10137
– volume: 36
  start-page: 38
  issue: January
  year: 2000
  ident: 10.1016/j.molmet.2016.07.008_bib8
  article-title: Organization of extracellular matrix components during differentiation of adipocytes in long-term culture
  publication-title: In Vitro Cellular & Developmental Biology. Animal
  doi: 10.1290/1071-2690(2000)036<0038:OOEMCD>2.0.CO;2
– start-page: 7361
  year: 2004
  ident: 10.1016/j.molmet.2016.07.008_bib39
– volume: 125
  start-page: 577
  issue: 3
  year: 2006
  ident: 10.1016/j.molmet.2016.07.008_bib9
  article-title: A pericellular collagenase directs the 3-dimensional development of white adipose tissue
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.050
– volume: 8
  issue: 12
  year: 2013
  ident: 10.1016/j.molmet.2016.07.008_bib41
  article-title: Flotillins directly interact with γ-catenin and regulate epithelial cell-cell adhesion
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0084393
– volume: 61
  start-page: 1691
  issue: 7
  year: 2012
  ident: 10.1016/j.molmet.2016.07.008_bib20
  article-title: Intrinsic differences in adipocyte precursor cells from different white fat depots
  publication-title: Diabetes
  doi: 10.2337/db11-1753
– volume: 55
  start-page: 2571
  issue: 9
  year: 2006
  ident: 10.1016/j.molmet.2016.07.008_bib21
  article-title: Fat depot-specific characteristics are retained in strains derived from single human preadipocytes
  publication-title: Diabetes
  doi: 10.2337/db06-0540
– year: 2016
  ident: 10.1016/j.molmet.2016.07.008_bib22
  article-title: Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences
  publication-title: Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids
  doi: 10.1016/j.bbalip.2016.06.010
– volume: 124
  start-page: 3933
  issue: 23
  year: 2011
  ident: 10.1016/j.molmet.2016.07.008_bib40
  article-title: The roles of flotillin microdomains - endocytosis and beyond
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.092015
– volume: 20
  start-page: 103
  issue: 1
  year: 2014
  ident: 10.1016/j.molmet.2016.07.008_bib29
  article-title: Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2014.05.005
– volume: 15
  start-page: 480
  issue: 4
  year: 2012
  ident: 10.1016/j.molmet.2016.07.008_bib6
  article-title: In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2012.03.009
– volume: 79
  start-page: 1147
  issue: 7
  year: 1994
  ident: 10.1016/j.molmet.2016.07.008_bib7
  article-title: Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90006-X
– volume: 17
  start-page: 644
  issue: 5
  year: 2013
  ident: 10.1016/j.molmet.2016.07.008_bib12
  article-title: Mechanisms and metabolic implications of regional differences among fat depots
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2013.03.008
– volume: 322
  start-page: 583
  issue: October
  year: 2008
  ident: 10.1016/j.molmet.2016.07.008_bib3
  article-title: White fat progenitor cells reside in the adipose vasculature
  publication-title: Science (New York, N.Y.)
  doi: 10.1126/science.1156232
– volume: 3
  start-page: 637
  issue: 11
  year: 2011
  ident: 10.1016/j.molmet.2016.07.008_bib13
  article-title: Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma
  publication-title: EMBO Molecular Medicine
  doi: 10.1002/emmm.201100172
– volume: 135
  start-page: 240
  issue: 2
  year: 2008
  ident: 10.1016/j.molmet.2016.07.008_bib4
  article-title: Identification of white adipocyte progenitor cells in vivo
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.036
– volume: 15
  start-page: 302
  issue: 3
  year: 2013
  ident: 10.1016/j.molmet.2016.07.008_bib5
  article-title: Characterization of the adipocyte cellular lineage in vivo
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2696
– year: 2007
  ident: 10.1016/j.molmet.2016.07.008_bib14
  article-title: Preparation of extracellular matrices produced by cultured and primary fibroblasts
  publication-title: Current Protocols in Cell Biology/Editorial Board
– volume: 13
  start-page: 22
  issue: 1
  year: 2013
  ident: 10.1016/j.molmet.2016.07.008_bib17
  article-title: Comet: an open-source MS/MS sequence database search tool
  publication-title: Proteomics
  doi: 10.1002/pmic.201200439
– volume: 18
  start-page: 470
  issue: 4
  year: 2013
  ident: 10.1016/j.molmet.2016.07.008_bib11
  article-title: Fibrosis and adipose tissue dysfunction
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2013.06.016
– volume: 27
  start-page: 2563
  issue: 10
  year: 2009
  ident: 10.1016/j.molmet.2016.07.008_bib23
  article-title: Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet
  publication-title: Stem Cells (Dayton, Ohio)
  doi: 10.1002/stem.190
– volume: 10
  start-page: 1150
  issue: 6
  year: 2010
  ident: 10.1016/j.molmet.2016.07.008_bib18
  article-title: A guided tour of the trans-proteomic pipeline
  publication-title: Proteomics
  doi: 10.1002/pmic.200900375
– volume: 17
  start-page: 1151
  issue: 13
  year: 2007
  ident: 10.1016/j.molmet.2016.07.008_bib15
  article-title: Coassembly of Flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding
  publication-title: Current Biology
  doi: 10.1016/j.cub.2007.05.078
– volume: 20
  start-page: 1049
  issue: 6
  year: 2014
  ident: 10.1016/j.molmet.2016.07.008_bib31
  article-title: Article loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2014.10.010
– volume: 13
  start-page: 631
  issue: 6
  year: 2014
  ident: 10.1016/j.molmet.2016.07.008_bib35
  article-title: Rigidity sensing and adaptation through regulation of integrin types
  publication-title: Nature Materials
  doi: 10.1038/nmat3960
– volume: 14
  start-page: 467
  issue: 8
  year: 2013
  ident: 10.1016/j.molmet.2016.07.008_bib10
  article-title: Role of the extracellular matrix in regulating stem cell fate
  publication-title: Nature Reviews. Molecular Cell Biology
  doi: 10.1038/nrm3620
– volume: 163
  start-page: 712
  issue: 3
  year: 2015
  ident: 10.1016/j.molmet.2016.07.008_bib42
  article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.053
– volume: 124
  start-page: 577
  issue: 2
  year: 1997
  ident: 10.1016/j.molmet.2016.07.008_bib37
  article-title: Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration
  publication-title: Development (Cambridge, England)
  doi: 10.1242/dev.124.2.577
– volume: 18
  start-page: 355
  issue: 3
  year: 2013
  ident: 10.1016/j.molmet.2016.07.008_bib30
  article-title: Identification of an adipogenic niche for adipose tissue remodeling and restoration
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2013.08.003
– volume: 19
  start-page: 1338
  issue: 10
  year: 2013
  ident: 10.1016/j.molmet.2016.07.008_bib28
  article-title: Tracking adipogenesis during white adipose tissue development, expansion and regeneration
  publication-title: Nature Medicine
  doi: 10.1038/nm.3324
– volume: 29
  start-page: 1575
  issue: 6
  year: 2009
  ident: 10.1016/j.molmet.2016.07.008_bib32
  article-title: Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.01300-08
– volume: 7
  start-page: 265
  issue: 4
  year: 2006
  ident: 10.1016/j.molmet.2016.07.008_bib34
  article-title: Local force and geometry sensing regulate cell functions
  publication-title: Nature Reviews. Molecular Cell Biology
  doi: 10.1038/nrm1890
– volume: 183
  start-page: 223
  issue: 2
  year: 2008
  ident: 10.1016/j.molmet.2016.07.008_bib25
  article-title: Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes
  publication-title: Journal of Cell Biology
  doi: 10.1083/jcb.200805092
– volume: 11
  start-page: 642
  issue: 7
  year: 2012
  ident: 10.1016/j.molmet.2016.07.008_bib36
  article-title: Extracellular-matrix tethering regulates stem-cell fate
  publication-title: Nature Materials
  doi: 10.1038/nmat3339
– volume: 272
  start-page: 13793
  issue: 21
  year: 1997
  ident: 10.1016/j.molmet.2016.07.008_bib38
  article-title: Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.272.21.13793
– volume: 8
  start-page: 1551
  issue: 8
  year: 2013
  ident: 10.1016/j.molmet.2016.07.008_bib19
  article-title: Large-scale gene function analysis with the PANTHER classification system
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2013.092
– volume: 387
  start-page: 1377
  issue: 10026
  year: 2016
  ident: 10.1016/j.molmet.2016.07.008_bib1
  article-title: Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(16)30054-X
– volume: 8
  start-page: 70
  issue: 1
  year: 2011
  ident: 10.1016/j.molmet.2016.07.008_bib26
  publication-title: NIH Public Access
– volume: 156
  start-page: 20
  issue: 1–2
  year: 2014
  ident: 10.1016/j.molmet.2016.07.008_bib2
  article-title: What we talk about when we talk about fat
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.012
– volume: 70
  start-page: 84
  issue: 2–3
  year: 2002
  ident: 10.1016/j.molmet.2016.07.008_bib24
  article-title: Positive effect of collagen V and VI on triglyceride accumulation during differentiation in cultures of bovine intramuscular adipocytes
  publication-title: Differentiation
  doi: 10.1046/j.1432-0436.2002.700203.x
– reference: 20101611 - Proteomics. 2010 Mar;10(6):1150-9
– reference: 22194304 - J Cell Sci. 2011 Dec 1;124(Pt 23):3933-40
– reference: 26496610 - Cell. 2015 Oct 22;163(3):712-23
– reference: 24930973 - Cell Metab. 2014 Jul 1;20(1):103-18
– reference: 21654799 - Nature. 2011 Jun 08;474(7350):179-83
– reference: 23051804 - Nat Biotechnol. 2012 Oct;30(10):918-20
– reference: 16678100 - Cell. 2006 May 5;125(3):577-91
– reference: 22596050 - Diabetes. 2012 Jul;61(7):1691-9
– reference: 19658193 - Stem Cells. 2009 Oct;27(10):2563-70
– reference: 9153235 - J Biol Chem. 1997 May 23;272(21):13793-802
– reference: 21853531 - EMBO Mol Med. 2011 Nov;3(11):637-51
– reference: 22635042 - Nat Mater. 2012 May 27;11(7):642-9
– reference: 18835024 - Cell. 2008 Oct 17;135(2):240-9
– reference: 18801968 - Science. 2008 Oct 24;322(5901):583-6
– reference: 17600709 - Curr Biol. 2007 Jul 3;17(13):1151-6
– reference: 24011071 - Cell Metab. 2013 Sep 3;18(3):355-67
– reference: 27115820 - Lancet. 2016 Apr 2;387(10026):1377-96
– reference: 23995282 - Nat Med. 2013 Oct;19(10):1338-44
– reference: 9053333 - Development. 1997 Jan;124(2):577-87
– reference: 16607289 - Nat Rev Mol Cell Biol. 2006 Apr;7(4):265-75
– reference: 24391950 - PLoS One. 2013 Dec 31;8(12):e84393
– reference: 23868073 - Nat Protoc. 2013 Aug;8(8):1551-66
– reference: 23434825 - Nat Cell Biol. 2013 Mar;15(3):302-8
– reference: 18936248 - J Cell Biol. 2008 Oct 20;183(2):223-39
– reference: 24793358 - Nat Mater. 2014 Jun;13(6):631-7
– reference: 27317982 - Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1121-31
– reference: 24439368 - Cell. 2014 Jan 16;156(1-2):20-44
– reference: 23839578 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):467-73
– reference: 16936206 - Diabetes. 2006 Sep;55(9):2571-8
– reference: 21131968 - Nat Methods. 2011 Jan;8(1):70-3
– reference: 15492257 - Cancer Res. 2004 Oct 15;64(20):7361-9
– reference: 8001151 - Cell. 1994 Dec 30;79(7):1147-56
– reference: 22482730 - Cell Metab. 2012 Apr 4;15(4):480-91
– reference: 19114551 - Mol Cell Biol. 2009 Mar;29(6):1575-91
– reference: 25730471 - Nat Cell Biol. 2015 Apr;17(4):376-85
– reference: 23148064 - Proteomics. 2013 Jan;13(1):22-4
– reference: 25456741 - Cell Metab. 2014 Dec 2;20(6):1049-58
– reference: 12076335 - Differentiation. 2002 May;70(2-3):84-91
– reference: 23954640 - Cell Metab. 2013 Oct 1;18(4):470-7
– reference: 10691039 - In Vitro Cell Dev Biol Anim. 2000 Jan;36(1):38-44
– reference: 18228495 - Curr Protoc Cell Biol. 2007 Jan;Chapter 10:Unit 10.9
– reference: 23583168 - Cell Metab. 2013 May 7;17(5):644-56
SSID ssj0000866651
Score 2.2071304
Snippet Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots...
Abstract Objective Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion....
OBJECTIVEAdipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose...
• Different adipose tissue depots have different differentiation capacities. • Differentiation of preadipocytes is enhanced by vitamin c through formation of...
Objective: Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 937
SubjectTerms Adipocyte precursors
Collagen
Endocrinology & Metabolism
Extracellular matrix
Flotillin 2
Original
Stem cell niche
SummonAdditionalLinks – databaseName: [Open Access] DOAJ 오픈액세스 저널 디렉토리
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiJavQIuMxDXCceLEOVJgVSHBBSr1Zjn-KEFtskqCRP9KT_wWfhkzdrLaBaS9cMtunGTteRm_8Y7fEPKqdhxm-YqndRNKmFk4KpxNmRWFEV54bnBz8sdP5dl58eFCXGyV-sKcsCgPHAfutdR1pY2T2meuqEyhq6wRRktn6wY-BbFtVrOtYCr4YAm0PNRe5OCb4ZWv5LJvLiR3XWO-P6ZSZlG7E6tLbs1LQb5_Z3r6m37-mUW5NS2tHpD7M5-kb2I_Dskd1x2Ru7HC5M1DcvsOCPZEcT8l5gTRpR4KeAfadhTYH9W2XfcAIzgLTTF5CO7Xe7oecCl-7IeR6sHRsMUE6CltbmgAT1R3peDcB43L_5jPSq9R8f8H1Z2lq6t-wsWcjvJfP5dau_BT2kvk_t3lI3K-ev_l7Vk6l2NIjZB8SlGIXXqRm6aUpfSu9h7DQQb2kLq0hc-9LqrSFIJbaWFYbNVIoZlomMmcE_ljctD1nXtKaA40x5TOA7csID50muVwnGE1LAsBEUtIvhhDmVmrHEtmXKklKe2biiZUaELF8E90mZB0c9U6anXsaX-Kdt60RaXt8AXgT834U_vwlxCxoEQtm1nB_cKN2j0Pr_51nRtnHzKqTI1cMfUZEYwAhncqCAIm5OUCRgW-AC2sOwcWVxArAhsrIQZIyJMIzk3nOMSVNbhYeO4ObHd6v3uma78GvXHBclTlf_Y_hus5uYeDENMhj8nBNHx3J0DrpuZFeIN_AyD_UKI
  priority: 102
  providerName: Directory of Open Access Journals
Title Depot specific differences in the adipogenic potential of precursors are mediated by collagenous extracellular matrix and Flotillin 2 dependent signaling
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2212877816301016
https://www.clinicalkey.es/playcontent/1-s2.0-S2212877816301016
https://www.ncbi.nlm.nih.gov/pubmed/27689006
https://www.proquest.com/docview/1825216800
https://pubmed.ncbi.nlm.nih.gov/PMC5034610
https://doaj.org/article/8a97ace8af1e47c4a71b5ca8ed9bc4a6
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLaqVkhcEDvDMjIS16BsTpwDQmUZVVRwAEb0ZjlepkHTZEiC1PkrnPgt_DLec-KBQFHFLZk4zthv8ffstxDypDAxrPJ5HBSlK2Gm4So1Ogg1SxWzzMYKg5PfvsuOlumbE3ayR3zN1nECuwtNO6wntWzXT8-_bJ-DwD_75at1hu776BkZDak4Mfr3wJ0YoTPfCPidbuYA111Nxhh0NqiCnPt4un90NFmvXFr_ybL1Nyz907vyt-VqcZ1cG3EmPRwY4wbZM_VNcmWoPLm9Rb69AuDdU4yzRF8h6uukgNagVU0BFVKpq00D7AVPoSk6FUF_jaWbFrfou6btqGwNdaEnAFtpuaWOqYasrxSUfivxWAD9XOkZVgI4p7LWdLFuetzkqWn847uvwQt_pVqhTVCvbpPl4vXHl0fBWKYhUIzHfYAJ2rlliSoznnFrCmvRTAyjknGZ6dQmVqZ5plIWa65hWnReciZDVoYqMoYld8h-3dTmHqEJwB-VGQuYMwW70cgwgesIq2RpMJTCGUk8MYQac5hjKY218M5qn8VAQoEkFCEervMZCXZvbYYcHpe0f4F03rXFDNzuh6ZdiVGgBZdFDrPIpY1MmqtU5jBeJbnRRQl32YwwzyXCB7mCWoaOqks-nl_0num8aIhIdLEIxQfkYGRgkDWXKHBGHntmFKAjkMKyNkBxATYkoLQMbIMZuTsw525wMdibBahe-O6EbSejnz6pq1OXh5yFCWbrv_-f0_uAXMW7wSPyIdnv26_mESC7vpyTg8Pj95-O525nZO5E9yfFpVMt
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depot+specific+differences+in+the+adipogenic+potential+of+precursors+are+mediated+by+collagenous+extracellular+matrix+and+Flotillin+2%C2%A0dependent+signaling&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Grandl%2C+Gerald&rft.au=M%C3%BCller%2C+Sebastian&rft.au=Moest%2C+Hansj%C3%B6rg&rft.au=Moser%2C+Caroline&rft.date=2016-10-01&rft.issn=2212-8778&rft.eissn=2212-8778&rft.volume=5&rft.issue=10&rft.spage=937&rft.epage=947&rft_id=info:doi/10.1016%2Fj.molmet.2016.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molmet_2016_07_008
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22128778%2FS2212877816X00105%2Fcov150h.gif