Depot specific differences in the adipogenic potential of precursors are mediated by collagenous extracellular matrix and Flotillin 2 dependent signaling
Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remo...
Saved in:
Published in | Molecular metabolism (Germany) Vol. 5; no. 10; pp. 937 - 947 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Elsevier GmbH
01.10.2016
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2212-8778 2212-8778 |
DOI | 10.1016/j.molmet.2016.07.008 |
Cover
Abstract | Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM.
We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis.
We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling.
We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation.
•Different adipose tissue depots have different differentiation capacities.•Differentiation of preadipocytes is enhanced by vitamin c through formation of collagenous ECM.•Collagenous ECM is the main determinant of adipose depot specific differences in adipogenic potential.•FLOT2 plays a role in mediating collagenous-ECM specific effects. |
---|---|
AbstractList | Abstract Objective Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. Methods We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. Results We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. Conclusions We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation. Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation. Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation. •Different adipose tissue depots have different differentiation capacities.•Differentiation of preadipocytes is enhanced by vitamin c through formation of collagenous ECM.•Collagenous ECM is the main determinant of adipose depot specific differences in adipogenic potential.•FLOT2 plays a role in mediating collagenous-ECM specific effects. • Different adipose tissue depots have different differentiation capacities. • Differentiation of preadipocytes is enhanced by vitamin c through formation of collagenous ECM. • Collagenous ECM is the main determinant of adipose depot specific differences in adipogenic potential. • FLOT2 plays a role in mediating collagenous-ECM specific effects. OBJECTIVEAdipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM.METHODSWe studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis.RESULTSWe show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling.CONCLUSIONSWe show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation. Objective: Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots respond differently to an increased demand for lipid storage. Orchestrating cellular expansion in vivo requires extracellular matrix (ECM) remodeling and a high degree of interaction between cells and ECM. Methods: We studied decellularized primary adipose stromal cell derived ECM of different adipose depots and reseeded them with primary adipose precursors. We tested ECM effect on adipocyte differentiation and analyzed ECM composition using proteomic and immunohistochemical approaches to identify factors in the ECM influencing adipogenesis. Results: We show that the ECM of an adipose depot is the major determinant for the differentiation capacity of primary preadipocytes. Visceral adipose tissue stromal cells differentiate less than subcutaneous cells, which, in turn, are less adipogenic than BAT-derived cells. This effect is based on the ECM composition of the respective depot and not dependent on the precursor origin. Addition of vitamin C pronounces the pro-adipogenic effects of the ECM, indicating the importance of collagenous ECM in mediating the effect. Using a proteomic global and a targeted downstream analysis, we identify Flotillin 2 as a protein enriched in pro-adipogenic ECM, which is involved in orchestrating ECM to preadipocyte signaling. Conclusions: We show that adipose tissue SVF secretes collagenous ECM, which directly modulates terminal differentiation of adipocyte precursors in a depot specific manner. These data demonstrate the importance of the tissue microenvironment in preadipocyte differentiation. Keywords: Adipocyte precursors, Extracellular matrix, Collagen, Stem cell niche, Flotillin 2 |
Author | Müller, Sebastian Moest, Hansjörg Moser, Caroline Wollscheid, Bernd Wolfrum, Christian Grandl, Gerald |
AuthorAffiliation | 2 Institute of Molecular Systems Biology, ETH Zürich, Switzerland 1 Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland |
AuthorAffiliation_xml | – name: 1 Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland – name: 2 Institute of Molecular Systems Biology, ETH Zürich, Switzerland |
Author_xml | – sequence: 1 givenname: Gerald surname: Grandl fullname: Grandl, Gerald organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland – sequence: 2 givenname: Sebastian surname: Müller fullname: Müller, Sebastian organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland – sequence: 3 givenname: Hansjörg surname: Moest fullname: Moest, Hansjörg organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland – sequence: 4 givenname: Caroline surname: Moser fullname: Moser, Caroline organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland – sequence: 5 givenname: Bernd surname: Wollscheid fullname: Wollscheid, Bernd organization: Institute of Molecular Systems Biology, ETH Zürich, Switzerland – sequence: 6 givenname: Christian surname: Wolfrum fullname: Wolfrum, Christian email: christian-wolfrum@ethz.ch organization: Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27689006$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxiNUREvpGyDkI5dd7GzieBFCqgqFSpU4AGdrYo-3XrxxsL1V-yqceBaejAnbohYJ8MX_Zn6fZuZ7XO0NccCqeir4XHAhX6znmxg2WOY13ea8m3OuHlQHdS3qmeo6tXfnvF8d5bzmtJSUshWPqv26k2rJuTyovr3BMRaWRzTeecOsdw4TDgYz8wMrF8jA-jGucKBfCsWheAgsOjYmNNuUY8oMErINWg8FLeuvmYkhAKXEbWZ4VRIYDGEbILENlOSvGAyWnYZYfAikUv_4bnHEwRKcZb8agF5XT6qHDkLGo5v9sPp8-vbTyfvZ-Yd3ZyfH5zPTqrrMFm2rlGsXppdKKodL5-qGd1z0rQJpG7dw0HTSNG1tlbUGbderFnjbcyMQ28Vhdbbj2ghrPSa_gXStI3j96yGmlYZUvAmoFSw7qkWBE9h0poGOVAwotMuebpJYr3escdtTQwwVlCDcg97_GfyFXsVL3fJFIwUnwPMbQIpft5iL3vg8dQ8GpG5qoeq2FlLxKfTZXa3fIrfDpYCXuwCTYs4JnTa-QPFxkvZBC64nM-m13plJT2bSvNPkFEpu_ki-5f8n7aYBSBO79Ji0oVl6A-ELXmNex22i6VIdOtea64-TSyeTCrngE5UAr_4OoIn4f-v_BKBcAFQ |
CitedBy_id | crossref_primary_10_1186_s13075_019_2058_9 crossref_primary_10_3389_fendo_2019_00898 crossref_primary_10_1080_21623945_2018_1521229 crossref_primary_10_1039_D2LC00245K crossref_primary_10_1371_journal_pone_0167337 crossref_primary_10_1172_JCI129192 crossref_primary_10_1038_s41467_019_09992_3 crossref_primary_10_1146_annurev_physiol_060721_092930 crossref_primary_10_1039_D0LC00508H crossref_primary_10_1016_j_ijbiomac_2024_135376 crossref_primary_10_1016_j_mbplus_2021_100069 crossref_primary_10_1016_j_molmet_2025_102105 crossref_primary_10_1242_jeb_162958 crossref_primary_10_3390_biom11121906 crossref_primary_10_1007_s11695_020_04983_6 crossref_primary_10_1371_journal_pone_0233152 crossref_primary_10_1016_j_ghir_2017_12_010 crossref_primary_10_1016_j_molmet_2018_02_014 crossref_primary_10_1080_21623945_2017_1372871 crossref_primary_10_1096_fj_201601337R crossref_primary_10_1016_j_neo_2018_09_004 crossref_primary_10_1016_j_celrep_2019_08_092 crossref_primary_10_3390_cells8080831 crossref_primary_10_1084_jem_20211948 crossref_primary_10_3389_fmed_2021_751277 crossref_primary_10_3390_cells10040901 |
Cites_doi | 10.1038/nbt.2377 10.1038/ncb3122 10.1038/nature10137 10.1290/1071-2690(2000)036<0038:OOEMCD>2.0.CO;2 10.1016/j.cell.2006.02.050 10.1371/journal.pone.0084393 10.2337/db11-1753 10.2337/db06-0540 10.1016/j.bbalip.2016.06.010 10.1242/jcs.092015 10.1016/j.cmet.2014.05.005 10.1016/j.cmet.2012.03.009 10.1016/0092-8674(94)90006-X 10.1016/j.cmet.2013.03.008 10.1126/science.1156232 10.1002/emmm.201100172 10.1016/j.cell.2008.09.036 10.1038/ncb2696 10.1002/pmic.201200439 10.1016/j.cmet.2013.06.016 10.1002/stem.190 10.1002/pmic.200900375 10.1016/j.cub.2007.05.078 10.1016/j.cmet.2014.10.010 10.1038/nmat3960 10.1038/nrm3620 10.1016/j.cell.2015.09.053 10.1242/dev.124.2.577 10.1016/j.cmet.2013.08.003 10.1038/nm.3324 10.1128/MCB.01300-08 10.1038/nrm1890 10.1083/jcb.200805092 10.1038/nmat3339 10.1074/jbc.272.21.13793 10.1038/nprot.2013.092 10.1016/S0140-6736(16)30054-X 10.1016/j.cell.2013.12.012 10.1046/j.1432-0436.2002.700203.x |
ContentType | Journal Article |
Copyright | 2016 The Author(s) The Author(s) 2016 The Author(s) 2016 |
Copyright_xml | – notice: 2016 The Author(s) – notice: The Author(s) – notice: 2016 The Author(s) 2016 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.molmet.2016.07.008 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) [Open Access] DOAJ 오픈액세스 저널 디렉토리 |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2212-8778 |
EndPage | 947 |
ExternalDocumentID | oai_doaj_org_article_8a97ace8af1e47c4a71b5ca8ed9bc4a6 PMC5034610 27689006 10_1016_j_molmet_2016_07_008 1_s2_0_S2212877816301016 S2212877816301016 |
Genre | Journal Article |
GroupedDBID | -IN .1- .FO 0R~ 1P~ 457 4G. 53G 5VS 7-5 AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OB0 OK1 ON- RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c582t-35588f53cb6868fe9ff240701b58a6d4f3fa476c452d8ddced7b85a05b0c1ee53 |
IEDL.DBID | M48 |
ISSN | 2212-8778 |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Thu Aug 21 18:25:39 EDT 2025 Fri Sep 05 10:26:13 EDT 2025 Thu Jan 02 23:10:54 EST 2025 Tue Jul 01 04:29:45 EDT 2025 Thu Apr 24 22:56:05 EDT 2025 Tue Feb 25 20:08:45 EST 2025 Tue Aug 26 16:41:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Stem cell niche Extracellular matrix Flotillin 2 Adipocyte precursors Collagen |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c582t-35588f53cb6868fe9ff240701b58a6d4f3fa476c452d8ddced7b85a05b0c1ee53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.molmet.2016.07.008 |
PMID | 27689006 |
PQID | 1825216800 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a97ace8af1e47c4a71b5ca8ed9bc4a6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5034610 proquest_miscellaneous_1825216800 pubmed_primary_27689006 crossref_citationtrail_10_1016_j_molmet_2016_07_008 crossref_primary_10_1016_j_molmet_2016_07_008 elsevier_clinicalkeyesjournals_1_s2_0_S2212877816301016 elsevier_clinicalkey_doi_10_1016_j_molmet_2016_07_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Molecular metabolism (Germany) |
PublicationTitleAlternate | Mol Metab |
PublicationYear | 2016 |
Publisher | Elsevier GmbH Elsevier |
Publisher_xml | – name: Elsevier GmbH – name: Elsevier |
References | Tchkonia, Thomou, Zhu, Karagiannides, Pothoulakis, Jensen (bib12) 2013; 17 Watt, Huck (bib10) 2013; 14 Meissburger, Ukropec, Roeder, Beaton, Geiger, Teupser (bib13) 2011; 3 Lee, Petkova, Mottillo, Granneman (bib6) 2012; 15 Chun, Hotary, Sabeh, Saltiel, Allen, Weiss (bib9) 2006; 125 Khan, Muise, Iyengar, Wang, Chandalia, Abate (bib32) 2009; 29 Kubo, Kaidzu, Nakajima, Takenouchi, Nakamura (bib8) 2000; 36 Dupont, Morsut, Aragona, Enzo, Giulitti, Cordenonsi (bib33) 2011; 474 Vogel, Sheetz (bib34) 2006; 7 Joe, Yi, Even, Vogl, Rossi (bib23) 2009; 27 Rodeheffer, Birsoy, Friedman (bib4) 2008; 135 Bickel, Scherer, Schnitzer, Oh, Lisanti, Lodish (bib38) 1997; 272 Wang, Tao, Gupta, Scherer (bib28) 2013; 19 Kurrle, Völlner, Eming, Hertl, Banning, Tikkanen (bib41) 2013; 8 Tang, Zeve, Suh, Bosnakovski, Kyba, Hammer (bib3) 2008; 322 Kim, Lun, Wang, Senyo, Guillermier, Patwari (bib31) 2014; 20 Hazarika, Mccarty, Prieto, Bar-eli, Duvic (bib39) 2004 Eng, Jahan, Hoopmann (bib17) 2013; 13 Trappmann, Gautrot, Connelly, Strange, Li, Oyen (bib36) 2012; 11 Hein, Hubner, Poser, Cox, Nagaraj, Toyoda (bib42) 2015; 163 Deutsch, Mendoza, Shteynberg, Farrah, Lam, Tasman (bib18) 2010; 10 Nakajima, Muroya, Tanabe, Chikuni (bib24) 2002; 70 Mi, Muruganujan, Casagrande, Thomas (bib19) 2013; 8 Lee, Petkova, Granneman (bib30) 2013; 18 Jeffery, Church, Holtrup, Colman, Rodeheffer (bib27) 2015; 17 NCD Risk Factor Collaboration (bib1) 2016; 387 Tchkonia, Giorgadze, Pirtskhalava, Thomou, DePonte, Koo (bib21) 2006; 55 Elosegui-Artola, Bazellières, Allen, Andreu, Oria, Sunyer (bib35) 2014; 13 Rosen, Spiegelman (bib2) 2014; 156 Chambers, Maclean, Burke, Amodei, Ruderman, Neumann (bib16) 2012; 30 Meissburger, Perdikari, Moest, Müller, Geiger, Wolfrum (bib22) 2016 Choi, Larsen, Lin, Breitkreutz, Fermin, Qin (bib26) 2011; 8 Beacham, Amatangelo, Cukierman (bib14) 2007 Wernstedt Asterholm, Tao, Morley, Wang, Delgado-Lopez, Wang (bib29) 2014; 20 Berry, Rodeheffer (bib5) 2013; 15 Sun, Tordjman, Clément, Scherer (bib11) 2013; 18 Macotela, Emanuelli, Mori, Gesta, Schulz, Tseng (bib20) 2012; 61 Tontonoz, Hu, Spiegelman (bib7) 1994; 79 Otto, Nichols (bib40) 2011; 124 Frick, Bright, Riento, Bray, Merrified, Nichols (bib15) 2007; 17 Trinkle-Mulcahy, Boulon, Lam, Urcia, Boisvert, Vandermoere (bib25) 2008; 183 Schulte, Paschke, Laessing, Lottspeich, Stuermer (bib37) 1997; 124 Berry (10.1016/j.molmet.2016.07.008_bib5) 2013; 15 Vogel (10.1016/j.molmet.2016.07.008_bib34) 2006; 7 Bickel (10.1016/j.molmet.2016.07.008_bib38) 1997; 272 Trappmann (10.1016/j.molmet.2016.07.008_bib36) 2012; 11 Tontonoz (10.1016/j.molmet.2016.07.008_bib7) 1994; 79 Frick (10.1016/j.molmet.2016.07.008_bib15) 2007; 17 Joe (10.1016/j.molmet.2016.07.008_bib23) 2009; 27 Watt (10.1016/j.molmet.2016.07.008_bib10) 2013; 14 Hein (10.1016/j.molmet.2016.07.008_bib42) 2015; 163 Trinkle-Mulcahy (10.1016/j.molmet.2016.07.008_bib25) 2008; 183 Mi (10.1016/j.molmet.2016.07.008_bib19) 2013; 8 Meissburger (10.1016/j.molmet.2016.07.008_bib13) 2011; 3 Wang (10.1016/j.molmet.2016.07.008_bib28) 2013; 19 Rodeheffer (10.1016/j.molmet.2016.07.008_bib4) 2008; 135 Chun (10.1016/j.molmet.2016.07.008_bib9) 2006; 125 Kurrle (10.1016/j.molmet.2016.07.008_bib41) 2013; 8 Chambers (10.1016/j.molmet.2016.07.008_bib16) 2012; 30 Dupont (10.1016/j.molmet.2016.07.008_bib33) 2011; 474 Beacham (10.1016/j.molmet.2016.07.008_bib14) 2007 Khan (10.1016/j.molmet.2016.07.008_bib32) 2009; 29 Tchkonia (10.1016/j.molmet.2016.07.008_bib21) 2006; 55 Otto (10.1016/j.molmet.2016.07.008_bib40) 2011; 124 Macotela (10.1016/j.molmet.2016.07.008_bib20) 2012; 61 NCD Risk Factor Collaboration (10.1016/j.molmet.2016.07.008_bib1) 2016; 387 Tang (10.1016/j.molmet.2016.07.008_bib3) 2008; 322 Hazarika (10.1016/j.molmet.2016.07.008_bib39) 2004 Choi (10.1016/j.molmet.2016.07.008_bib26) 2011; 8 Elosegui-Artola (10.1016/j.molmet.2016.07.008_bib35) 2014; 13 Lee (10.1016/j.molmet.2016.07.008_bib6) 2012; 15 Jeffery (10.1016/j.molmet.2016.07.008_bib27) 2015; 17 Deutsch (10.1016/j.molmet.2016.07.008_bib18) 2010; 10 Wernstedt Asterholm (10.1016/j.molmet.2016.07.008_bib29) 2014; 20 Sun (10.1016/j.molmet.2016.07.008_bib11) 2013; 18 Tchkonia (10.1016/j.molmet.2016.07.008_bib12) 2013; 17 Meissburger (10.1016/j.molmet.2016.07.008_bib22) 2016 Rosen (10.1016/j.molmet.2016.07.008_bib2) 2014; 156 Eng (10.1016/j.molmet.2016.07.008_bib17) 2013; 13 Lee (10.1016/j.molmet.2016.07.008_bib30) 2013; 18 Kubo (10.1016/j.molmet.2016.07.008_bib8) 2000; 36 Nakajima (10.1016/j.molmet.2016.07.008_bib24) 2002; 70 Kim (10.1016/j.molmet.2016.07.008_bib31) 2014; 20 Schulte (10.1016/j.molmet.2016.07.008_bib37) 1997; 124 12076335 - Differentiation. 2002 May;70(2-3):84-91 20101611 - Proteomics. 2010 Mar;10(6):1150-9 25456741 - Cell Metab. 2014 Dec 2;20(6):1049-58 23839578 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):467-73 9153235 - J Biol Chem. 1997 May 23;272(21):13793-802 23051804 - Nat Biotechnol. 2012 Oct;30(10):918-20 17600709 - Curr Biol. 2007 Jul 3;17(13):1151-6 8001151 - Cell. 1994 Dec 30;79(7):1147-56 21853531 - EMBO Mol Med. 2011 Nov;3(11):637-51 15492257 - Cancer Res. 2004 Oct 15;64(20):7361-9 16607289 - Nat Rev Mol Cell Biol. 2006 Apr;7(4):265-75 23954640 - Cell Metab. 2013 Oct 1;18(4):470-7 16678100 - Cell. 2006 May 5;125(3):577-91 18228495 - Curr Protoc Cell Biol. 2007 Jan;Chapter 10:Unit 10.9 22596050 - Diabetes. 2012 Jul;61(7):1691-9 18801968 - Science. 2008 Oct 24;322(5901):583-6 16936206 - Diabetes. 2006 Sep;55(9):2571-8 24439368 - Cell. 2014 Jan 16;156(1-2):20-44 27317982 - Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1121-31 27115820 - Lancet. 2016 Apr 2;387(10026):1377-96 21131968 - Nat Methods. 2011 Jan;8(1):70-3 19658193 - Stem Cells. 2009 Oct;27(10):2563-70 24391950 - PLoS One. 2013 Dec 31;8(12):e84393 23995282 - Nat Med. 2013 Oct;19(10):1338-44 26496610 - Cell. 2015 Oct 22;163(3):712-23 18835024 - Cell. 2008 Oct 17;135(2):240-9 24930973 - Cell Metab. 2014 Jul 1;20(1):103-18 23868073 - Nat Protoc. 2013 Aug;8(8):1551-66 10691039 - In Vitro Cell Dev Biol Anim. 2000 Jan;36(1):38-44 22635042 - Nat Mater. 2012 May 27;11(7):642-9 19114551 - Mol Cell Biol. 2009 Mar;29(6):1575-91 23583168 - Cell Metab. 2013 May 7;17(5):644-56 24793358 - Nat Mater. 2014 Jun;13(6):631-7 23148064 - Proteomics. 2013 Jan;13(1):22-4 23434825 - Nat Cell Biol. 2013 Mar;15(3):302-8 24011071 - Cell Metab. 2013 Sep 3;18(3):355-67 25730471 - Nat Cell Biol. 2015 Apr;17(4):376-85 22194304 - J Cell Sci. 2011 Dec 1;124(Pt 23):3933-40 22482730 - Cell Metab. 2012 Apr 4;15(4):480-91 21654799 - Nature. 2011 Jun 08;474(7350):179-83 18936248 - J Cell Biol. 2008 Oct 20;183(2):223-39 9053333 - Development. 1997 Jan;124(2):577-87 |
References_xml | – volume: 30 start-page: 918 year: 2012 end-page: 920 ident: bib16 article-title: A cross-platform toolkit for mass spectrometry and proteomics publication-title: Nature Biotechnology – volume: 18 start-page: 470 year: 2013 end-page: 477 ident: bib11 article-title: Fibrosis and adipose tissue dysfunction publication-title: Cell Metabolism – volume: 474 start-page: 179 year: 2011 end-page: 183 ident: bib33 article-title: Role of YAP/TAZ in mechanotransduction publication-title: Nature – volume: 7 start-page: 265 year: 2006 end-page: 275 ident: bib34 article-title: Local force and geometry sensing regulate cell functions publication-title: Nature Reviews. Molecular Cell Biology – volume: 13 start-page: 22 year: 2013 end-page: 24 ident: bib17 article-title: Comet: an open-source MS/MS sequence database search tool publication-title: Proteomics – volume: 15 start-page: 480 year: 2012 end-page: 491 ident: bib6 article-title: In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding publication-title: Cell Metabolism – volume: 124 start-page: 577 year: 1997 end-page: 587 ident: bib37 article-title: Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration publication-title: Development (Cambridge, England) – volume: 36 start-page: 38 year: 2000 end-page: 44 ident: bib8 article-title: Organization of extracellular matrix components during differentiation of adipocytes in long-term culture publication-title: In Vitro Cellular & Developmental Biology. Animal – volume: 15 start-page: 302 year: 2013 end-page: 308 ident: bib5 article-title: Characterization of the adipocyte cellular lineage in vivo publication-title: Nature Cell Biology – volume: 61 start-page: 1691 year: 2012 end-page: 1699 ident: bib20 article-title: Intrinsic differences in adipocyte precursor cells from different white fat depots publication-title: Diabetes – volume: 387 start-page: 1377 year: 2016 end-page: 1396 ident: bib1 article-title: Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants publication-title: The Lancet – volume: 27 start-page: 2563 year: 2009 end-page: 2570 ident: bib23 article-title: Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet publication-title: Stem Cells (Dayton, Ohio) – volume: 13 start-page: 631 year: 2014 end-page: 637 ident: bib35 article-title: Rigidity sensing and adaptation through regulation of integrin types publication-title: Nature Materials – start-page: 7361 year: 2004 end-page: 7369 ident: bib39 article-title: Up-regulation of Flotillin-2 is associated with melanoma progression and modulates expression of the thrombin receptor protease activated receptor 1 – volume: 163 start-page: 712 year: 2015 end-page: 723 ident: bib42 article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances publication-title: Cell – volume: 17 start-page: 644 year: 2013 end-page: 656 ident: bib12 article-title: Mechanisms and metabolic implications of regional differences among fat depots publication-title: Cell Metabolism – volume: 156 start-page: 20 year: 2014 end-page: 44 ident: bib2 article-title: What we talk about when we talk about fat publication-title: Cell – volume: 79 start-page: 1147 year: 1994 end-page: 1156 ident: bib7 article-title: Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor publication-title: Cell – volume: 10 start-page: 1150 year: 2010 end-page: 1159 ident: bib18 article-title: A guided tour of the trans-proteomic pipeline publication-title: Proteomics – volume: 8 year: 2013 ident: bib41 article-title: Flotillins directly interact with γ-catenin and regulate epithelial cell-cell adhesion publication-title: PLoS One – volume: 14 start-page: 467 year: 2013 end-page: 473 ident: bib10 article-title: Role of the extracellular matrix in regulating stem cell fate publication-title: Nature Reviews. Molecular Cell Biology – year: 2007 ident: bib14 article-title: Preparation of extracellular matrices produced by cultured and primary fibroblasts publication-title: Current Protocols in Cell Biology/Editorial Board – volume: 8 start-page: 1551 year: 2013 end-page: 1566 ident: bib19 article-title: Large-scale gene function analysis with the PANTHER classification system publication-title: Nature Protocols – volume: 183 start-page: 223 year: 2008 end-page: 239 ident: bib25 article-title: Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes publication-title: Journal of Cell Biology – volume: 124 start-page: 3933 year: 2011 end-page: 3940 ident: bib40 article-title: The roles of flotillin microdomains - endocytosis and beyond publication-title: Journal of Cell Science – volume: 20 start-page: 1049 year: 2014 end-page: 1058 ident: bib31 article-title: Article loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance publication-title: Cell Metabolism – volume: 322 start-page: 583 year: 2008 end-page: 586 ident: bib3 article-title: White fat progenitor cells reside in the adipose vasculature publication-title: Science (New York, N.Y.) – volume: 17 start-page: 1151 year: 2007 end-page: 1156 ident: bib15 article-title: Coassembly of Flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding publication-title: Current Biology – volume: 70 start-page: 84 year: 2002 end-page: 91 ident: bib24 article-title: Positive effect of collagen V and VI on triglyceride accumulation during differentiation in cultures of bovine intramuscular adipocytes publication-title: Differentiation – volume: 8 start-page: 70 year: 2011 end-page: 73 ident: bib26 publication-title: NIH Public Access – volume: 11 start-page: 642 year: 2012 end-page: 649 ident: bib36 article-title: Extracellular-matrix tethering regulates stem-cell fate publication-title: Nature Materials – volume: 3 start-page: 637 year: 2011 end-page: 651 ident: bib13 article-title: Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma publication-title: EMBO Molecular Medicine – volume: 17 start-page: 376 year: 2015 end-page: 385 ident: bib27 article-title: Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity publication-title: Nature Cell Biology – volume: 55 start-page: 2571 year: 2006 end-page: 2578 ident: bib21 article-title: Fat depot-specific characteristics are retained in strains derived from single human preadipocytes publication-title: Diabetes – year: 2016 ident: bib22 article-title: Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences publication-title: Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids – volume: 272 start-page: 13793 year: 1997 end-page: 13802 ident: bib38 article-title: Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins publication-title: The Journal of Biological Chemistry – volume: 20 start-page: 103 year: 2014 end-page: 118 ident: bib29 article-title: Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling publication-title: Cell Metabolism – volume: 125 start-page: 577 year: 2006 end-page: 591 ident: bib9 article-title: A pericellular collagenase directs the 3-dimensional development of white adipose tissue publication-title: Cell – volume: 29 start-page: 1575 year: 2009 end-page: 1591 ident: bib32 article-title: Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI publication-title: Molecular and Cellular Biology – volume: 19 start-page: 1338 year: 2013 end-page: 1344 ident: bib28 article-title: Tracking adipogenesis during white adipose tissue development, expansion and regeneration publication-title: Nature Medicine – volume: 18 start-page: 355 year: 2013 end-page: 367 ident: bib30 article-title: Identification of an adipogenic niche for adipose tissue remodeling and restoration publication-title: Cell Metabolism – volume: 135 start-page: 240 year: 2008 end-page: 249 ident: bib4 article-title: Identification of white adipocyte progenitor cells in vivo publication-title: Cell – volume: 30 start-page: 918 issue: 10 year: 2012 ident: 10.1016/j.molmet.2016.07.008_bib16 article-title: A cross-platform toolkit for mass spectrometry and proteomics publication-title: Nature Biotechnology doi: 10.1038/nbt.2377 – volume: 17 start-page: 376 issue: 4 year: 2015 ident: 10.1016/j.molmet.2016.07.008_bib27 article-title: Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity publication-title: Nature Cell Biology doi: 10.1038/ncb3122 – volume: 474 start-page: 179 issue: 7350 year: 2011 ident: 10.1016/j.molmet.2016.07.008_bib33 article-title: Role of YAP/TAZ in mechanotransduction publication-title: Nature doi: 10.1038/nature10137 – volume: 36 start-page: 38 issue: January year: 2000 ident: 10.1016/j.molmet.2016.07.008_bib8 article-title: Organization of extracellular matrix components during differentiation of adipocytes in long-term culture publication-title: In Vitro Cellular & Developmental Biology. Animal doi: 10.1290/1071-2690(2000)036<0038:OOEMCD>2.0.CO;2 – start-page: 7361 year: 2004 ident: 10.1016/j.molmet.2016.07.008_bib39 – volume: 125 start-page: 577 issue: 3 year: 2006 ident: 10.1016/j.molmet.2016.07.008_bib9 article-title: A pericellular collagenase directs the 3-dimensional development of white adipose tissue publication-title: Cell doi: 10.1016/j.cell.2006.02.050 – volume: 8 issue: 12 year: 2013 ident: 10.1016/j.molmet.2016.07.008_bib41 article-title: Flotillins directly interact with γ-catenin and regulate epithelial cell-cell adhesion publication-title: PLoS One doi: 10.1371/journal.pone.0084393 – volume: 61 start-page: 1691 issue: 7 year: 2012 ident: 10.1016/j.molmet.2016.07.008_bib20 article-title: Intrinsic differences in adipocyte precursor cells from different white fat depots publication-title: Diabetes doi: 10.2337/db11-1753 – volume: 55 start-page: 2571 issue: 9 year: 2006 ident: 10.1016/j.molmet.2016.07.008_bib21 article-title: Fat depot-specific characteristics are retained in strains derived from single human preadipocytes publication-title: Diabetes doi: 10.2337/db06-0540 – year: 2016 ident: 10.1016/j.molmet.2016.07.008_bib22 article-title: Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences publication-title: Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids doi: 10.1016/j.bbalip.2016.06.010 – volume: 124 start-page: 3933 issue: 23 year: 2011 ident: 10.1016/j.molmet.2016.07.008_bib40 article-title: The roles of flotillin microdomains - endocytosis and beyond publication-title: Journal of Cell Science doi: 10.1242/jcs.092015 – volume: 20 start-page: 103 issue: 1 year: 2014 ident: 10.1016/j.molmet.2016.07.008_bib29 article-title: Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling publication-title: Cell Metabolism doi: 10.1016/j.cmet.2014.05.005 – volume: 15 start-page: 480 issue: 4 year: 2012 ident: 10.1016/j.molmet.2016.07.008_bib6 article-title: In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding publication-title: Cell Metabolism doi: 10.1016/j.cmet.2012.03.009 – volume: 79 start-page: 1147 issue: 7 year: 1994 ident: 10.1016/j.molmet.2016.07.008_bib7 article-title: Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor publication-title: Cell doi: 10.1016/0092-8674(94)90006-X – volume: 17 start-page: 644 issue: 5 year: 2013 ident: 10.1016/j.molmet.2016.07.008_bib12 article-title: Mechanisms and metabolic implications of regional differences among fat depots publication-title: Cell Metabolism doi: 10.1016/j.cmet.2013.03.008 – volume: 322 start-page: 583 issue: October year: 2008 ident: 10.1016/j.molmet.2016.07.008_bib3 article-title: White fat progenitor cells reside in the adipose vasculature publication-title: Science (New York, N.Y.) doi: 10.1126/science.1156232 – volume: 3 start-page: 637 issue: 11 year: 2011 ident: 10.1016/j.molmet.2016.07.008_bib13 article-title: Adipogenesis and insulin sensitivity in obesity are regulated by retinoid-related orphan receptor gamma publication-title: EMBO Molecular Medicine doi: 10.1002/emmm.201100172 – volume: 135 start-page: 240 issue: 2 year: 2008 ident: 10.1016/j.molmet.2016.07.008_bib4 article-title: Identification of white adipocyte progenitor cells in vivo publication-title: Cell doi: 10.1016/j.cell.2008.09.036 – volume: 15 start-page: 302 issue: 3 year: 2013 ident: 10.1016/j.molmet.2016.07.008_bib5 article-title: Characterization of the adipocyte cellular lineage in vivo publication-title: Nature Cell Biology doi: 10.1038/ncb2696 – year: 2007 ident: 10.1016/j.molmet.2016.07.008_bib14 article-title: Preparation of extracellular matrices produced by cultured and primary fibroblasts publication-title: Current Protocols in Cell Biology/Editorial Board – volume: 13 start-page: 22 issue: 1 year: 2013 ident: 10.1016/j.molmet.2016.07.008_bib17 article-title: Comet: an open-source MS/MS sequence database search tool publication-title: Proteomics doi: 10.1002/pmic.201200439 – volume: 18 start-page: 470 issue: 4 year: 2013 ident: 10.1016/j.molmet.2016.07.008_bib11 article-title: Fibrosis and adipose tissue dysfunction publication-title: Cell Metabolism doi: 10.1016/j.cmet.2013.06.016 – volume: 27 start-page: 2563 issue: 10 year: 2009 ident: 10.1016/j.molmet.2016.07.008_bib23 article-title: Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet publication-title: Stem Cells (Dayton, Ohio) doi: 10.1002/stem.190 – volume: 10 start-page: 1150 issue: 6 year: 2010 ident: 10.1016/j.molmet.2016.07.008_bib18 article-title: A guided tour of the trans-proteomic pipeline publication-title: Proteomics doi: 10.1002/pmic.200900375 – volume: 17 start-page: 1151 issue: 13 year: 2007 ident: 10.1016/j.molmet.2016.07.008_bib15 article-title: Coassembly of Flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding publication-title: Current Biology doi: 10.1016/j.cub.2007.05.078 – volume: 20 start-page: 1049 issue: 6 year: 2014 ident: 10.1016/j.molmet.2016.07.008_bib31 article-title: Article loss of white adipose hyperplastic potential is associated with enhanced susceptibility to insulin resistance publication-title: Cell Metabolism doi: 10.1016/j.cmet.2014.10.010 – volume: 13 start-page: 631 issue: 6 year: 2014 ident: 10.1016/j.molmet.2016.07.008_bib35 article-title: Rigidity sensing and adaptation through regulation of integrin types publication-title: Nature Materials doi: 10.1038/nmat3960 – volume: 14 start-page: 467 issue: 8 year: 2013 ident: 10.1016/j.molmet.2016.07.008_bib10 article-title: Role of the extracellular matrix in regulating stem cell fate publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/nrm3620 – volume: 163 start-page: 712 issue: 3 year: 2015 ident: 10.1016/j.molmet.2016.07.008_bib42 article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances publication-title: Cell doi: 10.1016/j.cell.2015.09.053 – volume: 124 start-page: 577 issue: 2 year: 1997 ident: 10.1016/j.molmet.2016.07.008_bib37 article-title: Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration publication-title: Development (Cambridge, England) doi: 10.1242/dev.124.2.577 – volume: 18 start-page: 355 issue: 3 year: 2013 ident: 10.1016/j.molmet.2016.07.008_bib30 article-title: Identification of an adipogenic niche for adipose tissue remodeling and restoration publication-title: Cell Metabolism doi: 10.1016/j.cmet.2013.08.003 – volume: 19 start-page: 1338 issue: 10 year: 2013 ident: 10.1016/j.molmet.2016.07.008_bib28 article-title: Tracking adipogenesis during white adipose tissue development, expansion and regeneration publication-title: Nature Medicine doi: 10.1038/nm.3324 – volume: 29 start-page: 1575 issue: 6 year: 2009 ident: 10.1016/j.molmet.2016.07.008_bib32 article-title: Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.01300-08 – volume: 7 start-page: 265 issue: 4 year: 2006 ident: 10.1016/j.molmet.2016.07.008_bib34 article-title: Local force and geometry sensing regulate cell functions publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/nrm1890 – volume: 183 start-page: 223 issue: 2 year: 2008 ident: 10.1016/j.molmet.2016.07.008_bib25 article-title: Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes publication-title: Journal of Cell Biology doi: 10.1083/jcb.200805092 – volume: 11 start-page: 642 issue: 7 year: 2012 ident: 10.1016/j.molmet.2016.07.008_bib36 article-title: Extracellular-matrix tethering regulates stem-cell fate publication-title: Nature Materials doi: 10.1038/nmat3339 – volume: 272 start-page: 13793 issue: 21 year: 1997 ident: 10.1016/j.molmet.2016.07.008_bib38 article-title: Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.272.21.13793 – volume: 8 start-page: 1551 issue: 8 year: 2013 ident: 10.1016/j.molmet.2016.07.008_bib19 article-title: Large-scale gene function analysis with the PANTHER classification system publication-title: Nature Protocols doi: 10.1038/nprot.2013.092 – volume: 387 start-page: 1377 issue: 10026 year: 2016 ident: 10.1016/j.molmet.2016.07.008_bib1 article-title: Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants publication-title: The Lancet doi: 10.1016/S0140-6736(16)30054-X – volume: 8 start-page: 70 issue: 1 year: 2011 ident: 10.1016/j.molmet.2016.07.008_bib26 publication-title: NIH Public Access – volume: 156 start-page: 20 issue: 1–2 year: 2014 ident: 10.1016/j.molmet.2016.07.008_bib2 article-title: What we talk about when we talk about fat publication-title: Cell doi: 10.1016/j.cell.2013.12.012 – volume: 70 start-page: 84 issue: 2–3 year: 2002 ident: 10.1016/j.molmet.2016.07.008_bib24 article-title: Positive effect of collagen V and VI on triglyceride accumulation during differentiation in cultures of bovine intramuscular adipocytes publication-title: Differentiation doi: 10.1046/j.1432-0436.2002.700203.x – reference: 20101611 - Proteomics. 2010 Mar;10(6):1150-9 – reference: 22194304 - J Cell Sci. 2011 Dec 1;124(Pt 23):3933-40 – reference: 26496610 - Cell. 2015 Oct 22;163(3):712-23 – reference: 24930973 - Cell Metab. 2014 Jul 1;20(1):103-18 – reference: 21654799 - Nature. 2011 Jun 08;474(7350):179-83 – reference: 23051804 - Nat Biotechnol. 2012 Oct;30(10):918-20 – reference: 16678100 - Cell. 2006 May 5;125(3):577-91 – reference: 22596050 - Diabetes. 2012 Jul;61(7):1691-9 – reference: 19658193 - Stem Cells. 2009 Oct;27(10):2563-70 – reference: 9153235 - J Biol Chem. 1997 May 23;272(21):13793-802 – reference: 21853531 - EMBO Mol Med. 2011 Nov;3(11):637-51 – reference: 22635042 - Nat Mater. 2012 May 27;11(7):642-9 – reference: 18835024 - Cell. 2008 Oct 17;135(2):240-9 – reference: 18801968 - Science. 2008 Oct 24;322(5901):583-6 – reference: 17600709 - Curr Biol. 2007 Jul 3;17(13):1151-6 – reference: 24011071 - Cell Metab. 2013 Sep 3;18(3):355-67 – reference: 27115820 - Lancet. 2016 Apr 2;387(10026):1377-96 – reference: 23995282 - Nat Med. 2013 Oct;19(10):1338-44 – reference: 9053333 - Development. 1997 Jan;124(2):577-87 – reference: 16607289 - Nat Rev Mol Cell Biol. 2006 Apr;7(4):265-75 – reference: 24391950 - PLoS One. 2013 Dec 31;8(12):e84393 – reference: 23868073 - Nat Protoc. 2013 Aug;8(8):1551-66 – reference: 23434825 - Nat Cell Biol. 2013 Mar;15(3):302-8 – reference: 18936248 - J Cell Biol. 2008 Oct 20;183(2):223-39 – reference: 24793358 - Nat Mater. 2014 Jun;13(6):631-7 – reference: 27317982 - Biochim Biophys Acta. 2016 Sep;1861(9 Pt A):1121-31 – reference: 24439368 - Cell. 2014 Jan 16;156(1-2):20-44 – reference: 23839578 - Nat Rev Mol Cell Biol. 2013 Aug;14(8):467-73 – reference: 16936206 - Diabetes. 2006 Sep;55(9):2571-8 – reference: 21131968 - Nat Methods. 2011 Jan;8(1):70-3 – reference: 15492257 - Cancer Res. 2004 Oct 15;64(20):7361-9 – reference: 8001151 - Cell. 1994 Dec 30;79(7):1147-56 – reference: 22482730 - Cell Metab. 2012 Apr 4;15(4):480-91 – reference: 19114551 - Mol Cell Biol. 2009 Mar;29(6):1575-91 – reference: 25730471 - Nat Cell Biol. 2015 Apr;17(4):376-85 – reference: 23148064 - Proteomics. 2013 Jan;13(1):22-4 – reference: 25456741 - Cell Metab. 2014 Dec 2;20(6):1049-58 – reference: 12076335 - Differentiation. 2002 May;70(2-3):84-91 – reference: 23954640 - Cell Metab. 2013 Oct 1;18(4):470-7 – reference: 10691039 - In Vitro Cell Dev Biol Anim. 2000 Jan;36(1):38-44 – reference: 18228495 - Curr Protoc Cell Biol. 2007 Jan;Chapter 10:Unit 10.9 – reference: 23583168 - Cell Metab. 2013 May 7;17(5):644-56 |
SSID | ssj0000866651 |
Score | 2.2071304 |
Snippet | Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose depots... Abstract Objective Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion.... OBJECTIVEAdipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different adipose... • Different adipose tissue depots have different differentiation capacities. • Differentiation of preadipocytes is enhanced by vitamin c through formation of... Objective: Adipose tissue shows a high degree of plasticity, and adipocyte hyperplasia is an important mechanism for adipose tissue expansion. Different... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 937 |
SubjectTerms | Adipocyte precursors Collagen Endocrinology & Metabolism Extracellular matrix Flotillin 2 Original Stem cell niche |
SummonAdditionalLinks | – databaseName: [Open Access] DOAJ 오픈액세스 저널 디렉토리 dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiJavQIuMxDXCceLEOVJgVSHBBSr1Zjn-KEFtskqCRP9KT_wWfhkzdrLaBaS9cMtunGTteRm_8Y7fEPKqdhxm-YqndRNKmFk4KpxNmRWFEV54bnBz8sdP5dl58eFCXGyV-sKcsCgPHAfutdR1pY2T2meuqEyhq6wRRktn6wY-BbFtVrOtYCr4YAm0PNRe5OCb4ZWv5LJvLiR3XWO-P6ZSZlG7E6tLbs1LQb5_Z3r6m37-mUW5NS2tHpD7M5-kb2I_Dskd1x2Ru7HC5M1DcvsOCPZEcT8l5gTRpR4KeAfadhTYH9W2XfcAIzgLTTF5CO7Xe7oecCl-7IeR6sHRsMUE6CltbmgAT1R3peDcB43L_5jPSq9R8f8H1Z2lq6t-wsWcjvJfP5dau_BT2kvk_t3lI3K-ev_l7Vk6l2NIjZB8SlGIXXqRm6aUpfSu9h7DQQb2kLq0hc-9LqrSFIJbaWFYbNVIoZlomMmcE_ljctD1nXtKaA40x5TOA7csID50muVwnGE1LAsBEUtIvhhDmVmrHEtmXKklKe2biiZUaELF8E90mZB0c9U6anXsaX-Kdt60RaXt8AXgT834U_vwlxCxoEQtm1nB_cKN2j0Pr_51nRtnHzKqTI1cMfUZEYwAhncqCAIm5OUCRgW-AC2sOwcWVxArAhsrIQZIyJMIzk3nOMSVNbhYeO4ObHd6v3uma78GvXHBclTlf_Y_hus5uYeDENMhj8nBNHx3J0DrpuZFeIN_AyD_UKI priority: 102 providerName: Directory of Open Access Journals |
Title | Depot specific differences in the adipogenic potential of precursors are mediated by collagenous extracellular matrix and Flotillin 2 dependent signaling |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2212877816301016 https://www.clinicalkey.es/playcontent/1-s2.0-S2212877816301016 https://www.ncbi.nlm.nih.gov/pubmed/27689006 https://www.proquest.com/docview/1825216800 https://pubmed.ncbi.nlm.nih.gov/PMC5034610 https://doaj.org/article/8a97ace8af1e47c4a71b5ca8ed9bc4a6 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLaqVkhcEDvDMjIS16BsTpwDQmUZVVRwAEb0ZjlepkHTZEiC1PkrnPgt_DLec-KBQFHFLZk4zthv8ffstxDypDAxrPJ5HBSlK2Gm4So1Ogg1SxWzzMYKg5PfvsuOlumbE3ayR3zN1nECuwtNO6wntWzXT8-_bJ-DwD_75at1hu776BkZDak4Mfr3wJ0YoTPfCPidbuYA111Nxhh0NqiCnPt4un90NFmvXFr_ybL1Nyz907vyt-VqcZ1cG3EmPRwY4wbZM_VNcmWoPLm9Rb69AuDdU4yzRF8h6uukgNagVU0BFVKpq00D7AVPoSk6FUF_jaWbFrfou6btqGwNdaEnAFtpuaWOqYasrxSUfivxWAD9XOkZVgI4p7LWdLFuetzkqWn847uvwQt_pVqhTVCvbpPl4vXHl0fBWKYhUIzHfYAJ2rlliSoznnFrCmvRTAyjknGZ6dQmVqZ5plIWa65hWnReciZDVoYqMoYld8h-3dTmHqEJwB-VGQuYMwW70cgwgesIq2RpMJTCGUk8MYQac5hjKY218M5qn8VAQoEkFCEervMZCXZvbYYcHpe0f4F03rXFDNzuh6ZdiVGgBZdFDrPIpY1MmqtU5jBeJbnRRQl32YwwzyXCB7mCWoaOqks-nl_0num8aIhIdLEIxQfkYGRgkDWXKHBGHntmFKAjkMKyNkBxATYkoLQMbIMZuTsw525wMdibBahe-O6EbSejnz6pq1OXh5yFCWbrv_-f0_uAXMW7wSPyIdnv26_mESC7vpyTg8Pj95-O525nZO5E9yfFpVMt |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depot+specific+differences+in+the+adipogenic+potential+of+precursors+are+mediated+by+collagenous+extracellular+matrix+and+Flotillin+2%C2%A0dependent+signaling&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Grandl%2C+Gerald&rft.au=M%C3%BCller%2C+Sebastian&rft.au=Moest%2C+Hansj%C3%B6rg&rft.au=Moser%2C+Caroline&rft.date=2016-10-01&rft.issn=2212-8778&rft.eissn=2212-8778&rft.volume=5&rft.issue=10&rft.spage=937&rft.epage=947&rft_id=info:doi/10.1016%2Fj.molmet.2016.07.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molmet_2016_07_008 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22128778%2FS2212877816X00105%2Fcov150h.gif |