基于形态特征与因果岭回归的股市态势预测算法

基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法。根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模型。利用马尔科夫毯算法和非对称信息熵,得到M形态的局部因果结构。采用因果强度的度量标准,将M形态因果关系引入到岭回归模型中,对股市态势进行预测。该模型通过将股票形成和能量波动的因果关系相结合,可以有效地发现股市的突变点。真实数据集上的实验结果表明,相比标准的岭回归算法和基于径向基的神经网络算法,该算法具有更好的预测效果。...

Full description

Saved in:
Bibliographic Details
Published in计算机工程 Vol. 42; no. 2; pp. 175 - 183
Main Author 姚宏亮 马晓琴 王浩 李俊照
Format Journal Article
LanguageChinese
Published 合肥工业大学计算机与信息学院,合肥,230009 2016
Subjects
Online AccessGet full text
ISSN1000-3428
DOI10.3969/j.issn.1000-3428.2016.02.032

Cover

Abstract 基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法。根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模型。利用马尔科夫毯算法和非对称信息熵,得到M形态的局部因果结构。采用因果强度的度量标准,将M形态因果关系引入到岭回归模型中,对股市态势进行预测。该模型通过将股票形成和能量波动的因果关系相结合,可以有效地发现股市的突变点。真实数据集上的实验结果表明,相比标准的岭回归算法和基于径向基的神经网络算法,该算法具有更好的预测效果。
AbstractList TP301.6; 基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法.根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模型.利用马尔科夫毯算法和非对称信息熵,得到M形态的局部因果结构.采用因果强度的度量标准,将M形态因果关系引入到岭回归模型中,对股市态势进行预测.该模型通过将股票形成和能量波动的因果关系相结合,可以有效地发现股市的突变点.真实数据集上的实验结果表明,相比标准的岭回归算法和基于径向基的神经网络算法,该算法具有更好的预测效果.
基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法。根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模型。利用马尔科夫毯算法和非对称信息熵,得到M形态的局部因果结构。采用因果强度的度量标准,将M形态因果关系引入到岭回归模型中,对股市态势进行预测。该模型通过将股票形成和能量波动的因果关系相结合,可以有效地发现股市的突变点。真实数据集上的实验结果表明,相比标准的岭回归算法和基于径向基的神经网络算法,该算法具有更好的预测效果。
Author 姚宏亮 马晓琴 王浩 李俊照
AuthorAffiliation 合肥工业大学计算机与信息学院,合肥230009
AuthorAffiliation_xml – name: 合肥工业大学计算机与信息学院,合肥,230009
Author_FL MA Xiaoqin
YAO Hongliang
WANG Hao
LI Junzhao
Author_FL_xml – sequence: 1
  fullname: YAO Hongliang
– sequence: 2
  fullname: MA Xiaoqin
– sequence: 3
  fullname: WANG Hao
– sequence: 4
  fullname: LI Junzhao
Author_xml – sequence: 1
  fullname: 姚宏亮 马晓琴 王浩 李俊照
BookMark eNo9j8tKw0AYhWdRwVr7EiLuEv-ZyUySlUjxBgU33YfJrSboVBtE3NnSjQpdCCJYqdq9LhShFqov00n1LRypuDpw-DiXBVSQDRkhtIzBpC53V1MzyTJpYgAwqEUckwDmJhATKCmg4r8_j8pZlvjAMLWZTZ0iWlP3o8moq8aD_Kw1PX9XH63JsKt6D3n_Tr08qV5fja-mt52v9qMatjWjLj6_B5387XL6fJO_Xi-iuVjsZ1H5T0uotrlRq2wb1d2tncp61QiYQwxmUc45tl3LD5jvM-ICjzkGIhj4sU9iHEauJfQwG1hEWRCGgrKIUxJGOAZOS2hlFnsiZCxk3Usbx02pC700S-vB710g-qwGl2ZgsNeQ9aNEo4fN5EA0Tz3ObRfbegP9AQEWb6A
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1000-3428.2016.02.032
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Stock Market Trend Prediction Algorithm Based on Morphological Characteristics and Causal Ridge Regression
DocumentTitle_FL Stock Market Trend Prediction Algorithm Based on Morphological Characteristics and Causal Ridge Regression
EndPage 183
ExternalDocumentID jsjgc201602032
667917794
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (61175051,61070131,61175033)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c582-5436661794bc5bb52906f6102a50bfb2f1de94ab05705e35cdda35e632de1f063
ISSN 1000-3428
IngestDate Thu May 29 04:21:01 EDT 2025
Wed Feb 14 10:23:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords causal analysis
贝叶斯网络
岭回归模型
prediction algorithm
energy model
因果分析
预测算法
ridge regression model
Bayesian network
能量模型
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c582-5436661794bc5bb52906f6102a50bfb2f1de94ab05705e35cdda35e632de1f063
Notes 31-1289/TP
Based on the typical M form of the block volatility,this paper puts forward a ridge regression stock market trend prediction algorithm based on causality. Stock form reflects the stock fluctuations of energy change. According to the characteristics of the fluctuations in the form of M introducing energy ideas,based on edge,peaks and troughs in the form of M nodes,it builds a Bayesian netw ork structure model in the form of M. By using Markov blanket algorithm and asymmetric information entropy,it gets a local causal structure in the form of M. The introduction of the strength of causal metrics is introduced to the M shape causality in ridge regression model for its stock market trend prediction of the model through stock form and causation of energy fluctuations,which can effectively find the abrupt change point of the stock market. Results on real data sets show that,compared with ridge regression algorithm and radial basis neural netw ork algorithm,the proposed algorithm has better prediction effe
PageCount 9
ParticipantIDs wanfang_journals_jsjgc201602032
chongqing_primary_667917794
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 计算机工程
PublicationTitleAlternate Computer Engineering
PublicationTitle_FL Computer Engineering
PublicationYear 2016
Publisher 合肥工业大学计算机与信息学院,合肥,230009
Publisher_xml – name: 合肥工业大学计算机与信息学院,合肥,230009
SSID ssib051375738
ssib017479294
ssj0042200
ssib001102934
ssib023646288
Score 2.0477378
Snippet 基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法。根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模...
TP301.6; 基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法.根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 175
SubjectTerms 因果分析
岭回归模型
能量模型
贝叶斯网络
预测算法
Title 基于形态特征与因果岭回归的股市态势预测算法
URI http://lib.cqvip.com/qk/95200X/201602/667917794.html
https://d.wanfangdata.com.cn/periodical/jsjgc201602032
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1000-3428
  databaseCode: DOA
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0042200
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAcEJ9ijI8d5lPVkTh2Ep9Q0qaaOHAq0m5VnCaddugG6y47sWkXQNoBCSExNGB3OICQxqTBX8JtaeG_4D3H7TKEJkCqouT52e_lvdT-2YnfI2TG7wBG8GVaA3Ssaty2ZM1PYugMlZJ24sCAE-ton_fduQf83ryYr1S-l75aWu2r2WTtj_tK_serQAO_4i7Zf_DsuFEgwDn4F47gYTj-lY9pJKhs0jCgEcejHyElbNCA0cjFjxh8m0Ye9SUNpS6KNAWYfcMsQxpYyCwjKuuah9GgYYrkqEHJsB0JIjiNoC7w2LpInx_JEtQPaNikkUQdkNmlIRBDrB6ACE9THFrkvBzBYmwTSgP7GBvog7cGUoAodBGIG78jwpJAK4UncGdNY4YgqmoF4FfX7UgqHa2_RUNe1RaJtE5auUBWNVdDm4Sj-nATyITtl5dFiv2apg_HzfION3vOTSfPWelhZqUe2y4St5jB3y6y6vw-rjjSlXpcQQGzYwH4ZaCrQ76aNdrjkbtd14PJMHR4p8hp5gEQKs34NVoFcCePovPB3NADsDq-xtD-mAx6dC1sxxM6Wl4BNDhjVhFsw6hzhswYXe-cpClGEVlY6nUfAjbSW9V6WdzrllBV6wI5b6ZD00HxbF8klbWFS-RcKUjmZXI3f7N_uL-VH-wOHq8Pn3zJv64f7m3l228HO6_zj-_z7Z384Pnw1eaPjXf53gbw5E-__dzdHHx-NvzwcvDpxRXSakat-lzNpP2oJcLHxBwOTKlxnFCJUEpgPoIMQD6LhaUyxTK7k0oegz08S6SOSDqd2BGp67BOameAuK-Sid5SL71Gpl2uWMISFcsUwygpmTnS4jZPcOmfczFJpsaWaC8X0V3aY69NktvGNm3zn19pL64sdhO0Jb7AZ9dPrD9FziJnsV53g0z0H62mNwHB9tUt_Rz8Agv0d8M
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%BD%A2%E6%80%81%E7%89%B9%E5%BE%81%E4%B8%8E%E5%9B%A0%E6%9E%9C%E5%B2%AD%E5%9B%9E%E5%BD%92%E7%9A%84%E8%82%A1%E5%B8%82%E6%80%81%E5%8A%BF%E9%A2%84%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E5%A7%9A%E5%AE%8F%E4%BA%AE+%E9%A9%AC%E6%99%93%E7%90%B4+%E7%8E%8B%E6%B5%A9+%E6%9D%8E%E4%BF%8A%E7%85%A7&rft.date=2016&rft.issn=1000-3428&rft.volume=42&rft.issue=2&rft.spage=175&rft.epage=183&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2016.02.032&rft.externalDocID=667917794
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg