基于形态特征与因果岭回归的股市态势预测算法
基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法。根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模型。利用马尔科夫毯算法和非对称信息熵,得到M形态的局部因果结构。采用因果强度的度量标准,将M形态因果关系引入到岭回归模型中,对股市态势进行预测。该模型通过将股票形成和能量波动的因果关系相结合,可以有效地发现股市的突变点。真实数据集上的实验结果表明,相比标准的岭回归算法和基于径向基的神经网络算法,该算法具有更好的预测效果。...
Saved in:
Published in | 计算机工程 Vol. 42; no. 2; pp. 175 - 183 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
合肥工业大学计算机与信息学院,合肥,230009
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-3428 |
DOI | 10.3969/j.issn.1000-3428.2016.02.032 |
Cover
Abstract | 基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法。根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模型。利用马尔科夫毯算法和非对称信息熵,得到M形态的局部因果结构。采用因果强度的度量标准,将M形态因果关系引入到岭回归模型中,对股市态势进行预测。该模型通过将股票形成和能量波动的因果关系相结合,可以有效地发现股市的突变点。真实数据集上的实验结果表明,相比标准的岭回归算法和基于径向基的神经网络算法,该算法具有更好的预测效果。 |
---|---|
AbstractList | TP301.6; 基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法.根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模型.利用马尔科夫毯算法和非对称信息熵,得到M形态的局部因果结构.采用因果强度的度量标准,将M形态因果关系引入到岭回归模型中,对股市态势进行预测.该模型通过将股票形成和能量波动的因果关系相结合,可以有效地发现股市的突变点.真实数据集上的实验结果表明,相比标准的岭回归算法和基于径向基的神经网络算法,该算法具有更好的预测效果. 基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法。根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模型。利用马尔科夫毯算法和非对称信息熵,得到M形态的局部因果结构。采用因果强度的度量标准,将M形态因果关系引入到岭回归模型中,对股市态势进行预测。该模型通过将股票形成和能量波动的因果关系相结合,可以有效地发现股市的突变点。真实数据集上的实验结果表明,相比标准的岭回归算法和基于径向基的神经网络算法,该算法具有更好的预测效果。 |
Author | 姚宏亮 马晓琴 王浩 李俊照 |
AuthorAffiliation | 合肥工业大学计算机与信息学院,合肥230009 |
AuthorAffiliation_xml | – name: 合肥工业大学计算机与信息学院,合肥,230009 |
Author_FL | MA Xiaoqin YAO Hongliang WANG Hao LI Junzhao |
Author_FL_xml | – sequence: 1 fullname: YAO Hongliang – sequence: 2 fullname: MA Xiaoqin – sequence: 3 fullname: WANG Hao – sequence: 4 fullname: LI Junzhao |
Author_xml | – sequence: 1 fullname: 姚宏亮 马晓琴 王浩 李俊照 |
BookMark | eNo9j8tKw0AYhWdRwVr7EiLuEv-ZyUySlUjxBgU33YfJrSboVBtE3NnSjQpdCCJYqdq9LhShFqov00n1LRypuDpw-DiXBVSQDRkhtIzBpC53V1MzyTJpYgAwqEUckwDmJhATKCmg4r8_j8pZlvjAMLWZTZ0iWlP3o8moq8aD_Kw1PX9XH63JsKt6D3n_Tr08qV5fja-mt52v9qMatjWjLj6_B5387XL6fJO_Xi-iuVjsZ1H5T0uotrlRq2wb1d2tncp61QiYQwxmUc45tl3LD5jvM-ICjzkGIhj4sU9iHEauJfQwG1hEWRCGgrKIUxJGOAZOS2hlFnsiZCxk3Usbx02pC700S-vB710g-qwGl2ZgsNeQ9aNEo4fN5EA0Tz3ObRfbegP9AQEWb6A |
ClassificationCodes | TP301.6 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1000-3428.2016.02.032 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Stock Market Trend Prediction Algorithm Based on Morphological Characteristics and Causal Ridge Regression |
DocumentTitle_FL | Stock Market Trend Prediction Algorithm Based on Morphological Characteristics and Causal Ridge Regression |
EndPage | 183 |
ExternalDocumentID | jsjgc201602032 667917794 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目 funderid: (61175051,61070131,61175033) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c582-5436661794bc5bb52906f6102a50bfb2f1de94ab05705e35cdda35e632de1f063 |
ISSN | 1000-3428 |
IngestDate | Thu May 29 04:21:01 EDT 2025 Wed Feb 14 10:23:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | causal analysis 贝叶斯网络 岭回归模型 prediction algorithm energy model 因果分析 预测算法 ridge regression model Bayesian network 能量模型 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c582-5436661794bc5bb52906f6102a50bfb2f1de94ab05705e35cdda35e632de1f063 |
Notes | 31-1289/TP Based on the typical M form of the block volatility,this paper puts forward a ridge regression stock market trend prediction algorithm based on causality. Stock form reflects the stock fluctuations of energy change. According to the characteristics of the fluctuations in the form of M introducing energy ideas,based on edge,peaks and troughs in the form of M nodes,it builds a Bayesian netw ork structure model in the form of M. By using Markov blanket algorithm and asymmetric information entropy,it gets a local causal structure in the form of M. The introduction of the strength of causal metrics is introduced to the M shape causality in ridge regression model for its stock market trend prediction of the model through stock form and causation of energy fluctuations,which can effectively find the abrupt change point of the stock market. Results on real data sets show that,compared with ridge regression algorithm and radial basis neural netw ork algorithm,the proposed algorithm has better prediction effe |
PageCount | 9 |
ParticipantIDs | wanfang_journals_jsjgc201602032 chongqing_primary_667917794 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 计算机工程 |
PublicationTitleAlternate | Computer Engineering |
PublicationTitle_FL | Computer Engineering |
PublicationYear | 2016 |
Publisher | 合肥工业大学计算机与信息学院,合肥,230009 |
Publisher_xml | – name: 合肥工业大学计算机与信息学院,合肥,230009 |
SSID | ssib051375738 ssib017479294 ssj0042200 ssib001102934 ssib023646288 |
Score | 2.0477378 |
Snippet | 基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法。根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网络结构模... TP301.6; 基于股票波动典型的M形态,提出一种基于因果关系的岭回归股市态势预测算法.根据M形态的波动特征,引入能量思想,以M形态的边、波峰和波谷为结点,构建M形态的贝叶斯网... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 175 |
SubjectTerms | 因果分析 岭回归模型 能量模型 贝叶斯网络 预测算法 |
Title | 基于形态特征与因果岭回归的股市态势预测算法 |
URI | http://lib.cqvip.com/qk/95200X/201602/667917794.html https://d.wanfangdata.com.cn/periodical/jsjgc201602032 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1000-3428 databaseCode: DOA dateStart: 20160101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0042200 providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAcEJ9ijI8d5lPVkTh2Ep9Q0qaaOHAq0m5VnCaddugG6y47sWkXQNoBCSExNGB3OICQxqTBX8JtaeG_4D3H7TKEJkCqouT52e_lvdT-2YnfI2TG7wBG8GVaA3Ssaty2ZM1PYugMlZJ24sCAE-ton_fduQf83ryYr1S-l75aWu2r2WTtj_tK_serQAO_4i7Zf_DsuFEgwDn4F47gYTj-lY9pJKhs0jCgEcejHyElbNCA0cjFjxh8m0Ye9SUNpS6KNAWYfcMsQxpYyCwjKuuah9GgYYrkqEHJsB0JIjiNoC7w2LpInx_JEtQPaNikkUQdkNmlIRBDrB6ACE9THFrkvBzBYmwTSgP7GBvog7cGUoAodBGIG78jwpJAK4UncGdNY4YgqmoF4FfX7UgqHa2_RUNe1RaJtE5auUBWNVdDm4Sj-nATyITtl5dFiv2apg_HzfION3vOTSfPWelhZqUe2y4St5jB3y6y6vw-rjjSlXpcQQGzYwH4ZaCrQ76aNdrjkbtd14PJMHR4p8hp5gEQKs34NVoFcCePovPB3NADsDq-xtD-mAx6dC1sxxM6Wl4BNDhjVhFsw6hzhswYXe-cpClGEVlY6nUfAjbSW9V6WdzrllBV6wI5b6ZD00HxbF8klbWFS-RcKUjmZXI3f7N_uL-VH-wOHq8Pn3zJv64f7m3l228HO6_zj-_z7Z384Pnw1eaPjXf53gbw5E-__dzdHHx-NvzwcvDpxRXSakat-lzNpP2oJcLHxBwOTKlxnFCJUEpgPoIMQD6LhaUyxTK7k0oegz08S6SOSDqd2BGp67BOameAuK-Sid5SL71Gpl2uWMISFcsUwygpmTnS4jZPcOmfczFJpsaWaC8X0V3aY69NktvGNm3zn19pL64sdhO0Jb7AZ9dPrD9FziJnsV53g0z0H62mNwHB9tUt_Rz8Agv0d8M |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%BD%A2%E6%80%81%E7%89%B9%E5%BE%81%E4%B8%8E%E5%9B%A0%E6%9E%9C%E5%B2%AD%E5%9B%9E%E5%BD%92%E7%9A%84%E8%82%A1%E5%B8%82%E6%80%81%E5%8A%BF%E9%A2%84%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E5%A7%9A%E5%AE%8F%E4%BA%AE+%E9%A9%AC%E6%99%93%E7%90%B4+%E7%8E%8B%E6%B5%A9+%E6%9D%8E%E4%BF%8A%E7%85%A7&rft.date=2016&rft.issn=1000-3428&rft.volume=42&rft.issue=2&rft.spage=175&rft.epage=183&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2016.02.032&rft.externalDocID=667917794 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg |