基于表示学习的知识库问答研究进展与展望

面向知识库的问答(Question answering over knowledge base,KBQA)是问答系统的重要组成.近些年,随着以深度学习为代表的表示学习技术在多个领域的成功应用,许多研究者开始着手研究基于表示学习的知识库问答技术.其基本假设是把知识库问答看做是一个语义匹配的过程.通过表示学习知识库以及用户问题的语义表示,将知识库中的实体、关系以及问句文本转换为一个低维语义空间中的数值向量,在此基础上,利用数值计算,直接匹配与用户问句语义最相似的答案.从目前的结果看,基于表示学习的知识库问答系统在性能上已经超过传统知识库问答方法.本文将对现有基于表示学习的知识库问答的研究进展进行综...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 42; no. 6; pp. 807 - 818
Main Author 刘康 张元哲 纪国良 来斯惟 赵军
Format Journal Article
LanguageChinese
Published 中国科学院自动化研究所模式识别国家重点实验室 北京 100190 2016
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2016.c150674

Cover

Abstract 面向知识库的问答(Question answering over knowledge base,KBQA)是问答系统的重要组成.近些年,随着以深度学习为代表的表示学习技术在多个领域的成功应用,许多研究者开始着手研究基于表示学习的知识库问答技术.其基本假设是把知识库问答看做是一个语义匹配的过程.通过表示学习知识库以及用户问题的语义表示,将知识库中的实体、关系以及问句文本转换为一个低维语义空间中的数值向量,在此基础上,利用数值计算,直接匹配与用户问句语义最相似的答案.从目前的结果看,基于表示学习的知识库问答系统在性能上已经超过传统知识库问答方法.本文将对现有基于表示学习的知识库问答的研究进展进行综述,包括知识库表示学习和问句(文本)表示学习的代表性工作,同时对于其中存在难点以及仍存在的研究问题进行分析和讨论.
AbstractList 面向知识库的问答(Question answering over knowledge base, KBQA)是问答系统的重要组成。近些年,随着以深度学习为代表的表示学习技术在多个领域的成功应用,许多研究者开始着手研究基于表示学习的知识库问答技术。其基本假设是把知识库问答看做是一个语义匹配的过程。通过表示学习知识库以及用户问题的语义表示,将知识库中的实体、关系以及问句文本转换为一个低维语义空间中的数值向量,在此基础上,利用数值计算,直接匹配与用户问句语义最相似的答案。从目前的结果看,基于表示学习的知识库问答系统在性能上已经超过传统知识库问答方法。本文将对现有基于表示学习的知识库问答的研究进展进行综述,包括知识库表示学习和问句(文本)表示学习的代表性工作,同时对于其中存在难点以及仍存在的研究问题进行分析和讨论。
面向知识库的问答(Question answering over knowledge base,KBQA)是问答系统的重要组成.近些年,随着以深度学习为代表的表示学习技术在多个领域的成功应用,许多研究者开始着手研究基于表示学习的知识库问答技术.其基本假设是把知识库问答看做是一个语义匹配的过程.通过表示学习知识库以及用户问题的语义表示,将知识库中的实体、关系以及问句文本转换为一个低维语义空间中的数值向量,在此基础上,利用数值计算,直接匹配与用户问句语义最相似的答案.从目前的结果看,基于表示学习的知识库问答系统在性能上已经超过传统知识库问答方法.本文将对现有基于表示学习的知识库问答的研究进展进行综述,包括知识库表示学习和问句(文本)表示学习的代表性工作,同时对于其中存在难点以及仍存在的研究问题进行分析和讨论.
Abstract_FL Question answering over knowledge base (KBQA) is an important direction for the research of question answering. Recently, with the drastic development of deep learning, researchers and developers have paid more attentions to KBQA from this angle. They regarded this problem as a task of semantic matching. The semantics of knowledge base and users0 questions are learned through representation learning under the framework of deep learning. The entities and relations in knowledge base and the texts in questions could be represented as numerical vectors. Then, the answer could be figured out through similarity computation between the vectors of knowledge base and the vectors of the given question. From reported results, KBQA based on representation learning has obtained the best performance. This paper introduces the mainstream methods in this area. It further induces the typical approaches of representation learning on knowledge base and texts (questions), respectively. Finally, the current research challenges are discussed.
Author 刘康 张元哲 纪国良 来斯惟 赵军
AuthorAffiliation 中国科学院自动化研究所模式识别国家重点实验室,北京100190
AuthorAffiliation_xml – name: 中国科学院自动化研究所模式识别国家重点实验室 北京 100190
Author_FL JI Guo-Liang
ZHAO Jun
LAI Si-Wei
ZHANG Yuan-Zhe
LIU Kang
Author_FL_xml – sequence: 1
  fullname: LIU Kang
– sequence: 2
  fullname: ZHANG Yuan-Zhe
– sequence: 3
  fullname: JI Guo-Liang
– sequence: 4
  fullname: LAI Si-Wei
– sequence: 5
  fullname: ZHAO Jun
Author_xml – sequence: 1
  fullname: 刘康 张元哲 纪国良 来斯惟 赵军
BookMark eNotjztLw1AYhg9SwVr7C9wc3BK_c86XcxmleIOCS_dwkia9oKk2iJdZHLtYEazQCio6VHERzeKfaUz9F0bq8r7Lw_PyLpJC1IkCQpYp2FRwxdfatjGxzYAK26cOCIlzpEiVRIsC0wVSBOaghdQRC6Qcxy0PqESpGYci0ekwmSS96d1Tdp-k48fJ5yi7Oc-GD9PXizS5_Ll-ycb9bNTPnt-nX4P07Wry0cvz-3awROZDsxcH5f8ukdrmRq2ybVV3t3Yq61XLdxSz0DHS4Qw1GE4RdRBoCRggUuULCNH3mOHceAhGGI514VPhcSXCEJknheYlsjrTHpsoNFHDbXeOulE-6J7Vmyfe32sQACwHV2ag3-xEjcNWjh50W_ume-oKoRlVVHH-Czqja8k
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2016.c150674
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Representation Learning for Question Answering over Knowledge Base:An Overview
DocumentTitle_FL Representation Learning for Question Answering over Knowledge Base:An Overview
EISSN 1874-1029
EndPage 818
ExternalDocumentID zdhxb201606002
669218183
GrantInformation_xml – fundername: 国家重点基础研究发展计划(973计划); 国家自然科学基金; “CCF-腾讯”犀牛鸟基金资助Supported by National Basic Research Program of China (973 Program); National Natural Science Founda-tion of China; CCF-Tencent Open Research Fund
  funderid: (2014CB340503); (61533018); (2014CB340503); (61533018); CCF-Tencent Open Research Fund
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c582-45a7532490a31449ee9704e4418c60f4cb2a33ab40a6a34d6c16b386ff42b7693
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:18:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
representation learning
深度学习
表示学习
Question answering over knowledge base (KBQA)
semantic analysis
语义分析
知识库问答
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c582-45a7532490a31449ee9704e4418c60f4cb2a33ab40a6a34d6c16b386ff42b7693
Notes Question answering over knowledge base(KBQA); deep learning; representation learning; semantic analysis
Question answering over knowledge base(KBQA) is an important direction for the research of question answering. Recently, with the drastic development of deep learning, researchers and developers have paid more attentions to KBQA from this angle. They regarded this problem as a task of semantic matching. The semantics of knowledge base and users questions are learned through representation learning under the framework of deep learning. The entities and relations in knowledge base and the texts in questions could be represented as numerical vectors. Then, the answer could be figured out through similarity computation between the vectors of knowledge base and the vectors of the given question. From reported results, KBQA based on representation learning has obtained the best performance. This paper introduces the mainstream methods in this area. It further induces the typical approaches of representation learni
PageCount 12
ParticipantIDs wanfang_journals_zdhxb201606002
chongqing_primary_669218183
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationYear 2016
Publisher 中国科学院自动化研究所模式识别国家重点实验室 北京 100190
Publisher_xml – name: 中国科学院自动化研究所模式识别国家重点实验室 北京 100190
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.1528392
Snippet 面向知识库的问答(Question answering over knowledge base,KBQA)是问答系统的重要组成.近些年,随着以深度学习为代表的表示学习技术在多个领域的成功应用,许多研究者开...
面向知识库的问答(Question answering over knowledge base, KBQA)是问答系统的重要组成。近些年,随着以深度学习为代表的表示学习技术在多个领域的成功应用,许多研究者开始...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 807
SubjectTerms 深度学习
知识库问答
表示学习
语义分析
Title 基于表示学习的知识库问答研究进展与展望
URI http://lib.cqvip.com/qk/90250X/201606/669218183.html
https://d.wanfangdata.com.cn/periodical/zdhxb201606002
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-1029
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059721
  issn: 0254-4156
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0ArpBQ6Ipyjl0QM-RVt214-1j7vJhgoBp4B6i3Y32eaU8kgllDPi2AtFSBSpRQIEh4K4IMiFn0lI-xfMeN10RRECpJVle2fsGc9mPGPHY0KucZh0PJZJp5vzwOFc5E4KhoeTald3cNtImKA-t-_I5bv85opYqVT2S_9aWh-kS9nwt-dK_keqUAdyxVOy_yDZWaNQAXmQL6QgYUj_SsY0FlQ3aRTSmGOqYhorGno0VDQOaGgqASZs0FAaGE1DF19pAOYm06ShMFhNqiQCA4pmNNZUQwuxaadBtQEGXJvRNJKIFTWpjgyWR7UwXShDxqxGUl0HmLIRjIgKGjG0qdBQCxkAkyVqpXklDr4IA6KoVpbGKKiZXN1wBO_gYWZAGI38GlIJUEUfQGLUML0C_82aIaph-JbYJ7COvTEYjJphSuCDbcoDyu26SHFg0ypOcHoddEyLOa5Q7CrgMOXY1RWr-blf-sLLalwVN_EeWATFDHFksgHVxcxskyQY-N2TSxnGayxuHfolireUGo0pxY6ROT8Ao6hK5m5Et-6Fh7YrUldStkKDPi3ZZlJg7MDDcoA74KUtaygzdugLgqeJoSFnZbwoQJZ8f-Ex8FTR9y7MFoFhnMyCpB08G6ILmbx-lEUMRdJb668-AAPLnHfr50l_tWSatU6Rk9anWgyLH8hpUhn2zpATpUibZ4mebI_Go4291--nb0aT3XfjbzvTl0-m22_3Pj2djJ7tv_g43d2c7mxOP3zZ-741-fx8_HUD0h-vts6RVjNu1Zcde2uIkwnwFrlIgC-fazdhHue629WBy7tg9atMujnPUj9hLEm5m8iE8Y7MPJkyJfOc-yleDHqeVPtr_e4Fshj4LM86SQqVPheBTngg0g7PvA44AaD65snCbAza94vgMO2ZoOfJVTsqbasyHrWHnd7jFIfRxe3wi3_EXyDHEbJY7rtEqoOH693LYAAP0iv20_kJKa6F9g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%A1%A8%E7%A4%BA%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%9F%A5%E8%AF%86%E5%BA%93%E9%97%AE%E7%AD%94%E7%A0%94%E7%A9%B6%E8%BF%9B%E5%B1%95%E4%B8%8E%E5%B1%95%E6%9C%9B&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E5%BA%B7+%E5%BC%A0%E5%85%83%E5%93%B2+%E7%BA%AA%E5%9B%BD%E8%89%AF+%E6%9D%A5%E6%96%AF%E6%83%9F+%E8%B5%B5%E5%86%9B&rft.date=2016&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=42&rft.issue=6&rft.spage=807&rft.epage=818&rft_id=info:doi/10.16383%2Fj.aas.2016.c150674&rft.externalDocID=669218183
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg