Structural perspective on the formation of ribonucleoprotein complex in negative-sense single-stranded RNA viruses
•Ribonucleoprotein (RNP) plays essential roles in the life cycles of negative-sense single-stranded RNA viruses (NSRVs).•RNP formation in NSRVs has different molecular mechanisms.•Viral nucleoprotein can have enzymatic activities beyond RNA encapsidation.•Blockage of RNP formation provides great pot...
Saved in:
Published in | Trends in microbiology (Regular ed.) Vol. 21; no. 9; pp. 475 - 484 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0966-842X 1878-4380 1878-4380 |
DOI | 10.1016/j.tim.2013.07.006 |
Cover
Abstract | •Ribonucleoprotein (RNP) plays essential roles in the life cycles of negative-sense single-stranded RNA viruses (NSRVs).•RNP formation in NSRVs has different molecular mechanisms.•Viral nucleoprotein can have enzymatic activities beyond RNA encapsidation.•Blockage of RNP formation provides great potential for antiviral development.
Negative-sense single-stranded RNA viruses (NSRVs) possess a ribonucleoprotein (RNP) complex composed of viral polymerase and genomic RNA surrounded by viral nucleoprotein. The RNP facilitates virus replication, transcription, and assembly. To date, a large body of structural work, through crystallography and electron microscopy (EM) analysis, has been performed to aid understanding the molecular mechanism of RNP formation in NSRVs, and provides great potential for the discovery of antiviral agents targeting viral RNP formation. |
---|---|
AbstractList | Negative-sense single-stranded RNA viruses (NSRVs) possess a ribonucleoprotein (RNP) complex composed of viral polymerase and genomic RNA surrounded by viral nucleoprotein. The RNP facilitates virus replication, transcription, and assembly. To date, a large body of structural work, through crystallography and electron microscopy (EM) analysis, has been performed to aid understanding the molecular mechanism of RNP formation in NSRVs, and provides great potential for the discovery of antiviral agents targeting viral RNP formation.Negative-sense single-stranded RNA viruses (NSRVs) possess a ribonucleoprotein (RNP) complex composed of viral polymerase and genomic RNA surrounded by viral nucleoprotein. The RNP facilitates virus replication, transcription, and assembly. To date, a large body of structural work, through crystallography and electron microscopy (EM) analysis, has been performed to aid understanding the molecular mechanism of RNP formation in NSRVs, and provides great potential for the discovery of antiviral agents targeting viral RNP formation. Highlights • Ribonucleoprotein (RNP) plays essential roles in the life cycles of negative-sense single-stranded RNA viruses (NSRVs). • RNP formation in NSRVs has different molecular mechanisms. • Viral nucleoprotein can have enzymatic activities beyond RNA encapsidation. • Blockage of RNP formation provides great potential for antiviral development. Negative-sense single-stranded RNA viruses (NSRVs) possess a ribonucleoprotein (RNP) complex composed of viral polymerase and genomic RNA surrounded by viral nucleoprotein. The RNP facilitates virus replication, transcription, and assembly. To date, a large body of structural work, through crystallography and electron microscopy (EM) analysis, has been performed to aid understanding the molecular mechanism of RNP formation in NSRVs, and provides great potential for the discovery of antiviral agents targeting viral RNP formation. •Ribonucleoprotein (RNP) plays essential roles in the life cycles of negative-sense single-stranded RNA viruses (NSRVs).•RNP formation in NSRVs has different molecular mechanisms.•Viral nucleoprotein can have enzymatic activities beyond RNA encapsidation.•Blockage of RNP formation provides great potential for antiviral development. Negative-sense single-stranded RNA viruses (NSRVs) possess a ribonucleoprotein (RNP) complex composed of viral polymerase and genomic RNA surrounded by viral nucleoprotein. The RNP facilitates virus replication, transcription, and assembly. To date, a large body of structural work, through crystallography and electron microscopy (EM) analysis, has been performed to aid understanding the molecular mechanism of RNP formation in NSRVs, and provides great potential for the discovery of antiviral agents targeting viral RNP formation. |
Author | Guo, Yu Zhou, Honggang Lou, Zhiyong Sun, Yuna |
Author_xml | – sequence: 1 givenname: Honggang surname: Zhou fullname: Zhou, Honggang organization: State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China – sequence: 2 givenname: Yuna surname: Sun fullname: Sun, Yuna organization: National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China – sequence: 3 givenname: Yu surname: Guo fullname: Guo, Yu organization: State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China – sequence: 4 givenname: Zhiyong surname: Lou fullname: Lou, Zhiyong email: louzy@mail.tsinghua.edu.cn organization: Laboratory of Structural Biology and Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Medicine, Tsinghua University, Beijing 100084, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23953596$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkuLFDEUhYOMOA_9AW60lm6qvXlVqhCEYfAFg4LtgLuQTm61aauSnqSqcf69aXt0MeDMKgl85-Ryzj0lRyEGJOQ5hQUF2rzeLCY_LhhQvgC1AGgekRPaqrYWvIUjcgJd09StYN-PyWnOGwCQkskn5JjxTnLZNSckLac022lOZqi2mPIW7eR3WMVQTT-w6mMazeTLK_ZV8qsYZjtg3KY4oQ-VjeN2wF9VuQZcm72yzhgyVtmH9VAeUzLBoau-fj6vdj7NGfNT8rg3Q8Znt-cZuXr_7tvFx_ryy4dPF-eXtZUtnepVzygFDtIo5IqjAJTScSeYs4pLtEoq53pBOyVXIKDDVasa54RAKjqq-Bl5dfAt017PmCc9-mxxGEzAOGdN2-LeMdXAw6jglHVKyK6gL27ReTWi09vkR5Nu9N9IC0APgE0x54T9P4SC3temN7rUpve1aVC61FY06o7G-ulP7iU_P9yrfHlQ9iZqs04-66tlARoAyiiTbSHeHAgsWe88Jp2tx2DR-VTK1i76e_3f3lHbwQdvzfATbzBv4pxCKVFTnZkGvdyv3H7jKC8D8EYUg-7_Bg98_huNIOQU |
CitedBy_id | crossref_primary_10_1128_AAC_04698_14 crossref_primary_10_3389_fmicb_2021_641484 crossref_primary_10_1128_JVI_02156_20 crossref_primary_10_1099_jgv_0_000524 crossref_primary_10_1371_journal_ppat_1004422 crossref_primary_10_1007_s13238_016_0314_1 crossref_primary_10_1007_s13238_016_0352_8 crossref_primary_10_1016_j_jsb_2016_09_013 crossref_primary_10_1016_j_antiviral_2014_10_009 crossref_primary_10_1128_JVI_02523_15 crossref_primary_10_1080_1040841X_2018_1446901 crossref_primary_10_1186_s12859_018_2387_8 crossref_primary_10_1016_j_jtos_2017_05_007 crossref_primary_10_1016_j_antiviral_2018_06_003 crossref_primary_10_1128_spectrum_05018_22 crossref_primary_10_1007_s00726_018_2560_4 crossref_primary_10_1007_s41048_015_0006_z crossref_primary_10_1128_AEM_01871_15 crossref_primary_10_1128_JVI_01680_15 crossref_primary_10_3390_v13122479 crossref_primary_10_1128_JVI_00825_17 crossref_primary_10_1016_j_antiviral_2013_12_008 crossref_primary_10_1128_AAC_00049_15 crossref_primary_10_1107_S2059798317008774 crossref_primary_10_7554_eLife_45057 crossref_primary_10_1093_ve_veae058 crossref_primary_10_1134_S0006297917130041 crossref_primary_10_1016_j_antiviral_2015_12_010 crossref_primary_10_1016_j_jviromet_2024_114904 crossref_primary_10_1016_j_jaut_2019_102375 crossref_primary_10_1128_AAC_02274_15 crossref_primary_10_1038_s41598_021_01985_x crossref_primary_10_1016_j_csbj_2021_09_034 crossref_primary_10_1080_07391102_2017_1307143 crossref_primary_10_1007_s13238_015_0163_3 crossref_primary_10_3389_fmicb_2021_772802 crossref_primary_10_7554_eLife_11795 crossref_primary_10_18632_oncotarget_18498 crossref_primary_10_2174_1389203720666190311142747 crossref_primary_10_3390_v14030521 crossref_primary_10_1016_j_jviromet_2019_113796 crossref_primary_10_1038_s41564_020_0712_2 crossref_primary_10_1128_JVI_00892_17 crossref_primary_10_1007_s11030_023_10753_0 crossref_primary_10_3390_biom6010002 crossref_primary_10_1016_j_pep_2015_07_008 crossref_primary_10_1016_j_antiviral_2021_105161 crossref_primary_10_1016_j_biopha_2017_09_117 crossref_primary_10_1016_j_abb_2019_06_005 crossref_primary_10_1016_j_ejmech_2022_114942 |
Cites_doi | 10.1074/jbc.M112.420521 10.1128/JVI.00672-13 10.1073/pnas.1001760107 10.1128/JVI.02562-10 10.1126/science.1177634 10.1038/nature07120 10.1261/rna.039057.113 10.1073/pnas.1200808109 10.1093/nar/gkt268 10.1096/fj.08-112110 10.1073/pnas.1302298110 10.1038/nature09605 10.4161/rna.20345 10.1016/j.virusres.2011.09.028 10.1073/pnas.1222552110 10.1073/pnas.1107906108 10.1073/pnas.1213553109 10.1128/JVI.00073-12 10.1126/science.1125280 10.1073/pnas.1112742108 10.1073/pnas.1300035110 10.1016/j.coviro.2013.03.008 10.1073/pnas.1016404108 10.1016/j.mib.2011.07.011 10.1371/journal.ppat.1002030 10.1371/journal.ppat.1003275 10.1073/pnas.1108515108 10.1056/NEJMoa1010095 10.1016/j.jhep.2009.01.004 10.1007/978-1-4614-0980-9_11 10.1007/s11427-009-0060-1 10.1074/jbc.M111.278838 10.1128/JVI.00223-13 10.1126/science.1181766 10.1128/JVI.00882-07 10.1074/jbc.M110.205534 10.1128/JVI.00911-09 10.1371/journal.pone.0007517 10.1128/JVI.01627-12 10.1126/science.1228172 10.1038/nature05379 10.1128/JVI.01555-12 10.1371/journal.pone.0044211 10.1128/AAC.01419-10 10.1038/ncomms2435 10.1126/science.1126953 10.3390/v4091515 10.1038/nbt.1638 10.1128/JVI.78.15.8281-8288.2004 10.1126/science.1227270 10.1007/s13238-013-3901-4 10.1038/nature07720 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.tim.2013.07.006 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-4380 |
EndPage | 484 |
ExternalDocumentID | 23953596 10_1016_j_tim_2013_07_006 US201600121258 S0966842X13001364 1_s2_0_S0966842X13001364 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -DZ .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CNWQP CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEJ HMG HMK HMO HVGLF HZ~ H~9 IHE J1W KOM LUGTX M29 M41 MO0 N9A O-L O9- OAUVE OD- OO. OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K WUQ XPP Y6R Z5R ZCA ZY4 ~G- AACTN ABTAH AFCTW AFKWA AJOXV AMFUW RCE RIG AAIAV ZA5 ABLVK ABPIF ABPTK ABYKQ AJBFU FBQ LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFLBG ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c581t-bf2110305a7e373e40e55d3d42dc735ec757ddf41975b0409eb876dd44e149173 |
IEDL.DBID | .~1 |
ISSN | 0966-842X 1878-4380 |
IngestDate | Sun Sep 28 11:58:30 EDT 2025 Sat Sep 27 19:50:05 EDT 2025 Mon Jul 21 06:04:03 EDT 2025 Tue Jul 01 03:03:07 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Wed Dec 27 19:26:24 EST 2023 Thu Jun 13 11:13:39 EDT 2024 Sun Feb 23 10:19:30 EST 2025 Tue Aug 26 17:00:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | antiviral drugs formation ribonucleoprotein complex structure negative-sense single-stranded RNA virus |
Language | English |
License | Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-bf2110305a7e373e40e55d3d42dc735ec757ddf41975b0409eb876dd44e149173 |
Notes | http://dx.doi.org/10.1016/j.tim.2013.07.006 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 23953596 |
PQID | 1431297459 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1803092760 proquest_miscellaneous_1431297459 pubmed_primary_23953596 crossref_primary_10_1016_j_tim_2013_07_006 crossref_citationtrail_10_1016_j_tim_2013_07_006 fao_agris_US201600121258 elsevier_sciencedirect_doi_10_1016_j_tim_2013_07_006 elsevier_clinicalkeyesjournals_1_s2_0_S0966842X13001364 elsevier_clinicalkey_doi_10_1016_j_tim_2013_07_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in microbiology (Regular ed.) |
PublicationTitleAlternate | Trends Microbiol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Robb (bib0250) 2011; 85 Martinez-Sobrido (bib0120) 2007; 81 Kranzusch, Whelan (bib0240) 2011; 108 Kao (bib0205) 2010; 28 Brunotte (bib0125) 2011; 286 Ye (bib0070) 2006; 444 Yuan (bib0170) 2009; 458 Guo (bib0040) 2012; 109 Wang (bib0150) 2012; 86 Niu (bib0055) 2013; 110 Ariza (bib0165) 2013; 41 Reguera (bib0155) 2013; 110 Dong (bib0160) 2013; 19 Raymond (bib0060) 2010; 107 Wunderlich (bib0225) 2009; 4 Kormelink (bib0265) 2011; 162 Yu (bib0135) 2011; 364 Tawar (bib0100) 2009; 326 Rizzetto (bib0255) 2009; 50 Ruigrok (bib0235) 2011; 14 Carter (bib0145) 2012; 86 Moeller (bib0085) 2013; 338 Kranzusch, Whelan (bib0010) 2012; 9 Hastie (bib0200) 2012; 7 Buchmeier (bib0115) 2007 Ng (bib0190) 2012; 86 Ferron (bib0035) 2011; 7 Qi (bib0025) 2011; 468 Raymond (bib0130) 2012; 109 Wunderlich (bib0220) 2011; 55 Arranz (bib0075) 2013; 338 Ge (bib0105) 2010; 327 Hastie (bib0020) 2011; 108 (bib0005) 2012 Morin (bib0185) 2013; 3 Mir, Panganiban (bib0270) 2004; 78 Zhao (bib0175) 2009; 83 Jiao (bib0045) 2013; 87 Green (bib0090) 2006; 313 Desfosses (bib0110) 2013; 4 Hastie (bib0015) 2011; 108 Ng (bib0065) 2008; 22 Liu (bib0180) 2009; 52 Chenavas (bib0080) 2013; 9 Gerritz (bib0210) 2011; 108 Manz (bib0230) 2011; 286 Jiang (bib0195) 2013; 288 Li (bib0050) 2013; 110 Zhou (bib0140) 2013; 4 Dong (bib0030) 2013; 87 He (bib0215) 2008; 454 Mielke-Ehret, Muhlbach (bib0260) 2012; 4 Albertini (bib0095) 2006; 313 Guu (bib0245) 2012; 726 Morin (10.1016/j.tim.2013.07.006_bib0185) 2013; 3 Kao (10.1016/j.tim.2013.07.006_bib0205) 2010; 28 Li (10.1016/j.tim.2013.07.006_bib0050) 2013; 110 Guo (10.1016/j.tim.2013.07.006_bib0040) 2012; 109 Ruigrok (10.1016/j.tim.2013.07.006_bib0235) 2011; 14 Buchmeier (10.1016/j.tim.2013.07.006_bib0115) 2007 Chenavas (10.1016/j.tim.2013.07.006_bib0080) 2013; 9 Ye (10.1016/j.tim.2013.07.006_bib0070) 2006; 444 Wunderlich (10.1016/j.tim.2013.07.006_bib0225) 2009; 4 Ge (10.1016/j.tim.2013.07.006_bib0105) 2010; 327 He (10.1016/j.tim.2013.07.006_bib0215) 2008; 454 Kormelink (10.1016/j.tim.2013.07.006_bib0265) 2011; 162 Tawar (10.1016/j.tim.2013.07.006_bib0100) 2009; 326 Kranzusch (10.1016/j.tim.2013.07.006_bib0010) 2012; 9 Albertini (10.1016/j.tim.2013.07.006_bib0095) 2006; 313 Robb (10.1016/j.tim.2013.07.006_bib0250) 2011; 85 Hastie (10.1016/j.tim.2013.07.006_bib0200) 2012; 7 Wunderlich (10.1016/j.tim.2013.07.006_bib0220) 2011; 55 Carter (10.1016/j.tim.2013.07.006_bib0145) 2012; 86 Reguera (10.1016/j.tim.2013.07.006_bib0155) 2013; 110 Qi (10.1016/j.tim.2013.07.006_bib0025) 2011; 468 Yuan (10.1016/j.tim.2013.07.006_bib0170) 2009; 458 Green (10.1016/j.tim.2013.07.006_bib0090) 2006; 313 Mir (10.1016/j.tim.2013.07.006_bib0270) 2004; 78 Dong (10.1016/j.tim.2013.07.006_bib0160) 2013; 19 Kranzusch (10.1016/j.tim.2013.07.006_bib0240) 2011; 108 Gerritz (10.1016/j.tim.2013.07.006_bib0210) 2011; 108 Ng (10.1016/j.tim.2013.07.006_bib0065) 2008; 22 Raymond (10.1016/j.tim.2013.07.006_bib0130) 2012; 109 Manz (10.1016/j.tim.2013.07.006_bib0230) 2011; 286 Hastie (10.1016/j.tim.2013.07.006_bib0015) 2011; 108 Liu (10.1016/j.tim.2013.07.006_bib0180) 2009; 52 Ariza (10.1016/j.tim.2013.07.006_bib0165) 2013; 41 Desfosses (10.1016/j.tim.2013.07.006_bib0110) 2013; 4 Hastie (10.1016/j.tim.2013.07.006_bib0020) 2011; 108 Jiao (10.1016/j.tim.2013.07.006_bib0045) 2013; 87 Brunotte (10.1016/j.tim.2013.07.006_bib0125) 2011; 286 Yu (10.1016/j.tim.2013.07.006_bib0135) 2011; 364 Jiang (10.1016/j.tim.2013.07.006_bib0195) 2013; 288 Dong (10.1016/j.tim.2013.07.006_bib0030) 2013; 87 Zhao (10.1016/j.tim.2013.07.006_bib0175) 2009; 83 Niu (10.1016/j.tim.2013.07.006_bib0055) 2013; 110 Raymond (10.1016/j.tim.2013.07.006_bib0060) 2010; 107 Martinez-Sobrido (10.1016/j.tim.2013.07.006_bib0120) 2007; 81 Wang (10.1016/j.tim.2013.07.006_bib0150) 2012; 86 Zhou (10.1016/j.tim.2013.07.006_bib0140) 2013; 4 Arranz (10.1016/j.tim.2013.07.006_bib0075) 2013; 338 (10.1016/j.tim.2013.07.006_bib0005) 2012 Ng (10.1016/j.tim.2013.07.006_bib0190) 2012; 86 Mielke-Ehret (10.1016/j.tim.2013.07.006_bib0260) 2012; 4 Guu (10.1016/j.tim.2013.07.006_bib0245) 2012; 726 Moeller (10.1016/j.tim.2013.07.006_bib0085) 2013; 338 Rizzetto (10.1016/j.tim.2013.07.006_bib0255) 2009; 50 Ferron (10.1016/j.tim.2013.07.006_bib0035) 2011; 7 |
References_xml | – volume: 107 start-page: 11769 year: 2010 end-page: 11774 ident: bib0060 article-title: Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 110 start-page: 9054 year: 2013 end-page: 9059 ident: bib0055 article-title: Structure of the Leanyer orthobunyavirus nucleoprotein–RNA complex reveals unique architecture for RNA encapsidation publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 286 start-page: 8414 year: 2011 end-page: 8424 ident: bib0230 article-title: Disruption of the viral polymerase complex assembly as a novel approach to attenuate influenza A virus publication-title: J. Biol. Chem. – volume: 110 start-page: 9048 year: 2013 end-page: 9053 ident: bib0050 article-title: Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 468 start-page: 779 year: 2011 end-page: 783 ident: bib0025 article-title: Cap binding and immune evasion revealed by Lassa nucleoprotein structure publication-title: Nature – volume: 78 start-page: 8281 year: 2004 end-page: 8288 ident: bib0270 article-title: Trimeric hantavirus nucleocapsid protein binds specifically to the viral RNA panhandle publication-title: J. Virol. – volume: 364 start-page: 1523 year: 2011 end-page: 1532 ident: bib0135 article-title: Fever with thrombocytopenia associated with a novel bunyavirus in China publication-title: N. Engl. J. Med. – volume: 108 start-page: 15366 year: 2011 end-page: 15371 ident: bib0210 article-title: Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 52 start-page: 450 year: 2009 end-page: 458 ident: bib0180 article-title: Structure–function studies of the influenza virus RNA polymerase PA subunit publication-title: Sci. China C: Life Sci. – volume: 327 start-page: 689 year: 2010 end-page: 693 ident: bib0105 article-title: Cryo-EM model of the bullet-shaped vesicular stomatitis virus publication-title: Science – volume: 85 start-page: 5228 year: 2011 end-page: 5231 ident: bib0250 article-title: The influenza A virus NS1 protein interacts with the nucleoprotein of viral ribonucleoprotein complexes publication-title: J. Virol. – volume: 313 start-page: 360 year: 2006 end-page: 363 ident: bib0095 article-title: Crystal structure of the rabies virus nucleoprotein–RNA complex publication-title: Science – volume: 108 start-page: 19743 year: 2011 end-page: 19748 ident: bib0240 article-title: Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: e1003275 year: 2013 ident: bib0080 article-title: Monomeric nucleoprotein of influenza a virus publication-title: PLoS Pathog. – volume: 458 start-page: 909 year: 2009 end-page: 913 ident: bib0170 article-title: Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site publication-title: Nature – volume: 162 start-page: 184 year: 2011 end-page: 202 ident: bib0265 article-title: Negative-strand RNA viruses: the plant-infecting counterparts publication-title: Virus Res. – volume: 338 start-page: 1631 year: 2013 end-page: 1634 ident: bib0085 article-title: Organization of the influenza virus replication machinery publication-title: Science – volume: 81 start-page: 12696 year: 2007 end-page: 12703 ident: bib0120 article-title: Differential inhibition of type I interferon induction by arenavirus nucleoproteins publication-title: J. Virol. – volume: 41 start-page: 5912 year: 2013 end-page: 5926 ident: bib0165 article-title: Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization publication-title: Nucleic Acids Res. – volume: 726 start-page: 245 year: 2012 end-page: 266 ident: bib0245 article-title: Bunyavirus: structure and replication publication-title: Adv. Exp. Med. Biol. – volume: 288 start-page: 16949 year: 2013 end-page: 16959 ident: bib0195 article-title: Structures of arenaviral nucleoproteins with triphosphate dsRNA reveal a unique mechanism of immune suppression publication-title: J. Biol. Chem. – volume: 4 start-page: e7517 year: 2009 ident: bib0225 article-title: Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication publication-title: PLoS ONE – volume: 109 start-page: 5046 year: 2012 end-page: 5051 ident: bib0040 article-title: Crimean-Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses publication-title: Proc. Natl. Acad. Sci. U.S.A. – year: 2012 ident: bib0005 publication-title: Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses – volume: 55 start-page: 696 year: 2011 end-page: 702 ident: bib0220 article-title: Identification of high-affinity PB1-derived peptides with enhanced affinity to the PA protein of influenza A virus polymerase publication-title: Antimicrob. Agents Chemother. – volume: 87 start-page: 5593 year: 2013 end-page: 5601 ident: bib0030 article-title: Structure of Schmallenberg orthobunyavirus nucleoprotein suggests a novel mechanism of genome encapsidation publication-title: J. Virol. – volume: 313 start-page: 357 year: 2006 end-page: 360 ident: bib0090 article-title: Structure of the vesicular stomatitis virus nucleoprotein–RNA complex publication-title: Science – volume: 286 start-page: 38748 year: 2011 end-page: 38756 ident: bib0125 article-title: Structure of the Lassa virus nucleoprotein revealed by X-ray crystallography, small-angle X-ray scattering, and electron microscopy publication-title: J. Biol. Chem. – volume: 86 start-page: 6758 year: 2012 end-page: 6767 ident: bib0190 article-title: Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein publication-title: J. Virol. – volume: 83 start-page: 9024 year: 2009 end-page: 9030 ident: bib0175 article-title: Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center publication-title: J. Virol. – volume: 108 start-page: 2396 year: 2011 end-page: 2401 ident: bib0015 article-title: Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 4 start-page: 1429 year: 2013 ident: bib0110 article-title: Self-organization of the vesicular stomatitis virus nucleocapsid into a bullet shape publication-title: Nat. Commun. – volume: 7 start-page: e44211 year: 2012 ident: bib0200 article-title: Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease publication-title: PLoS ONE – volume: 326 start-page: 1279 year: 2009 end-page: 1283 ident: bib0100 article-title: Crystal structure of a nucleocapsid-like nucleoprotein–RNA complex of respiratory syncytial virus publication-title: Science – volume: 22 start-page: 3638 year: 2008 end-page: 3647 ident: bib0065 article-title: Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design publication-title: FASEB J. – volume: 28 start-page: 600 year: 2010 end-page: 605 ident: bib0205 article-title: Identification of influenza A nucleoprotein as an antiviral target publication-title: Nat. Biotechnol. – start-page: 1791 year: 2007 end-page: 1827 ident: bib0115 article-title: Arenaviridae: the viruses and their replication publication-title: Fields Virology – volume: 87 start-page: 6829 year: 2013 end-page: 6839 ident: bib0045 article-title: Structure of severe Fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential publication-title: J. Virol. – volume: 86 start-page: 12294 year: 2012 end-page: 12303 ident: bib0150 article-title: Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein: superhelical homo-oligomers and the role of caspase-3 cleavage publication-title: J. Virol. – volume: 7 start-page: e1002030 year: 2011 ident: bib0035 article-title: The hexamer structure of Rift Valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes publication-title: PLoS Pathog. – volume: 19 start-page: 1129 year: 2013 end-page: 1136 ident: bib0160 article-title: Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism publication-title: RNA – volume: 454 start-page: 1123 year: 2008 end-page: 1126 ident: bib0215 article-title: Crystal structure of the polymerase PA(C)–PB1(N) complex from an avian influenza H5N1 virus publication-title: Nature – volume: 4 start-page: 1515 year: 2012 end-page: 1536 ident: bib0260 article-title: Emaravirus: a novel genus of multipartite, negative strand RNA plant viruses publication-title: Viruses – volume: 14 start-page: 504 year: 2011 end-page: 510 ident: bib0235 article-title: Nucleoproteins and nucleocapsids of negative-strand RNA viruses publication-title: Curr. Opin. Microbiol. – volume: 86 start-page: 10914 year: 2012 end-page: 10923 ident: bib0145 article-title: Structure, function, and evolution of the Crimean-Congo hemorrhagic Fever virus nucleocapsid protein publication-title: J. Virol. – volume: 50 start-page: 1043 year: 2009 end-page: 1050 ident: bib0255 article-title: Hepatitis D: thirty years after publication-title: J. Hepatol. – volume: 109 start-page: 19208 year: 2012 end-page: 19213 ident: bib0130 article-title: Phleboviruses encapsidate their genomes by sequestering RNA bases publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 4 start-page: 445 year: 2013 end-page: 455 ident: bib0140 article-title: The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation publication-title: Protein Cell – volume: 444 start-page: 1078 year: 2006 end-page: 1082 ident: bib0070 article-title: The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA publication-title: Nature – volume: 338 start-page: 1634 year: 2013 end-page: 1637 ident: bib0075 article-title: The structure of native influenza virion ribonucleoproteins publication-title: Science – volume: 3 start-page: 103 year: 2013 end-page: 110 ident: bib0185 article-title: The polymerase of negative-stranded RNA viruses publication-title: Curr. Opin. Virol. – volume: 9 start-page: 941 year: 2012 end-page: 948 ident: bib0010 article-title: Architecture and regulation of negative-strand viral enzymatic machinery publication-title: RNA Biol. – volume: 110 start-page: 7246 year: 2013 end-page: 7251 ident: bib0155 article-title: Structural basis for encapsidation of genomic RNA by La Crosse Orthobunyavirus nucleoprotein publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 108 start-page: 19365 year: 2011 end-page: 19370 ident: bib0020 article-title: Crystal structure of the Lassa virus nucleoprotein–RNA complex reveals a gating mechanism for RNA binding publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 288 start-page: 16949 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0195 article-title: Structures of arenaviral nucleoproteins with triphosphate dsRNA reveal a unique mechanism of immune suppression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.420521 – year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0005 – volume: 87 start-page: 6829 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0045 article-title: Structure of severe Fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential publication-title: J. Virol. doi: 10.1128/JVI.00672-13 – volume: 107 start-page: 11769 year: 2010 ident: 10.1016/j.tim.2013.07.006_bib0060 article-title: Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1001760107 – volume: 85 start-page: 5228 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0250 article-title: The influenza A virus NS1 protein interacts with the nucleoprotein of viral ribonucleoprotein complexes publication-title: J. Virol. doi: 10.1128/JVI.02562-10 – volume: 326 start-page: 1279 year: 2009 ident: 10.1016/j.tim.2013.07.006_bib0100 article-title: Crystal structure of a nucleocapsid-like nucleoprotein–RNA complex of respiratory syncytial virus publication-title: Science doi: 10.1126/science.1177634 – volume: 454 start-page: 1123 year: 2008 ident: 10.1016/j.tim.2013.07.006_bib0215 article-title: Crystal structure of the polymerase PA(C)–PB1(N) complex from an avian influenza H5N1 virus publication-title: Nature doi: 10.1038/nature07120 – volume: 19 start-page: 1129 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0160 article-title: Crystal structure of Schmallenberg orthobunyavirus nucleoprotein-RNA complex reveals a novel RNA sequestration mechanism publication-title: RNA doi: 10.1261/rna.039057.113 – volume: 109 start-page: 5046 year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0040 article-title: Crimean-Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in bunyaviruses publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1200808109 – volume: 41 start-page: 5912 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0165 article-title: Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt268 – volume: 22 start-page: 3638 year: 2008 ident: 10.1016/j.tim.2013.07.006_bib0065 article-title: Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design publication-title: FASEB J. doi: 10.1096/fj.08-112110 – volume: 110 start-page: 7246 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0155 article-title: Structural basis for encapsidation of genomic RNA by La Crosse Orthobunyavirus nucleoprotein publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1302298110 – volume: 468 start-page: 779 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0025 article-title: Cap binding and immune evasion revealed by Lassa nucleoprotein structure publication-title: Nature doi: 10.1038/nature09605 – volume: 9 start-page: 941 year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0010 article-title: Architecture and regulation of negative-strand viral enzymatic machinery publication-title: RNA Biol. doi: 10.4161/rna.20345 – volume: 162 start-page: 184 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0265 article-title: Negative-strand RNA viruses: the plant-infecting counterparts publication-title: Virus Res. doi: 10.1016/j.virusres.2011.09.028 – volume: 110 start-page: 9048 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0050 article-title: Bunyamwera virus possesses a distinct nucleocapsid protein to facilitate genome encapsidation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1222552110 – volume: 108 start-page: 15366 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0210 article-title: Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1107906108 – volume: 109 start-page: 19208 year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0130 article-title: Phleboviruses encapsidate their genomes by sequestering RNA bases publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1213553109 – volume: 86 start-page: 6758 year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0190 article-title: Structural basis for RNA binding and homo-oligomer formation by influenza B virus nucleoprotein publication-title: J. Virol. doi: 10.1128/JVI.00073-12 – volume: 313 start-page: 360 year: 2006 ident: 10.1016/j.tim.2013.07.006_bib0095 article-title: Crystal structure of the rabies virus nucleoprotein–RNA complex publication-title: Science doi: 10.1126/science.1125280 – volume: 108 start-page: 19743 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0240 article-title: Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1112742108 – volume: 110 start-page: 9054 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0055 article-title: Structure of the Leanyer orthobunyavirus nucleoprotein–RNA complex reveals unique architecture for RNA encapsidation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1300035110 – volume: 3 start-page: 103 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0185 article-title: The polymerase of negative-stranded RNA viruses publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2013.03.008 – volume: 108 start-page: 2396 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0015 article-title: Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1016404108 – start-page: 1791 year: 2007 ident: 10.1016/j.tim.2013.07.006_bib0115 article-title: Arenaviridae: the viruses and their replication – volume: 14 start-page: 504 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0235 article-title: Nucleoproteins and nucleocapsids of negative-strand RNA viruses publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2011.07.011 – volume: 7 start-page: e1002030 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0035 article-title: The hexamer structure of Rift Valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002030 – volume: 9 start-page: e1003275 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0080 article-title: Monomeric nucleoprotein of influenza a virus publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003275 – volume: 108 start-page: 19365 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0020 article-title: Crystal structure of the Lassa virus nucleoprotein–RNA complex reveals a gating mechanism for RNA binding publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1108515108 – volume: 364 start-page: 1523 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0135 article-title: Fever with thrombocytopenia associated with a novel bunyavirus in China publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1010095 – volume: 50 start-page: 1043 year: 2009 ident: 10.1016/j.tim.2013.07.006_bib0255 article-title: Hepatitis D: thirty years after publication-title: J. Hepatol. doi: 10.1016/j.jhep.2009.01.004 – volume: 726 start-page: 245 year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0245 article-title: Bunyavirus: structure and replication publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4614-0980-9_11 – volume: 52 start-page: 450 year: 2009 ident: 10.1016/j.tim.2013.07.006_bib0180 article-title: Structure–function studies of the influenza virus RNA polymerase PA subunit publication-title: Sci. China C: Life Sci. doi: 10.1007/s11427-009-0060-1 – volume: 286 start-page: 38748 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0125 article-title: Structure of the Lassa virus nucleoprotein revealed by X-ray crystallography, small-angle X-ray scattering, and electron microscopy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.278838 – volume: 87 start-page: 5593 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0030 article-title: Structure of Schmallenberg orthobunyavirus nucleoprotein suggests a novel mechanism of genome encapsidation publication-title: J. Virol. doi: 10.1128/JVI.00223-13 – volume: 327 start-page: 689 year: 2010 ident: 10.1016/j.tim.2013.07.006_bib0105 article-title: Cryo-EM model of the bullet-shaped vesicular stomatitis virus publication-title: Science doi: 10.1126/science.1181766 – volume: 81 start-page: 12696 year: 2007 ident: 10.1016/j.tim.2013.07.006_bib0120 article-title: Differential inhibition of type I interferon induction by arenavirus nucleoproteins publication-title: J. Virol. doi: 10.1128/JVI.00882-07 – volume: 286 start-page: 8414 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0230 article-title: Disruption of the viral polymerase complex assembly as a novel approach to attenuate influenza A virus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.205534 – volume: 83 start-page: 9024 year: 2009 ident: 10.1016/j.tim.2013.07.006_bib0175 article-title: Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center publication-title: J. Virol. doi: 10.1128/JVI.00911-09 – volume: 4 start-page: e7517 year: 2009 ident: 10.1016/j.tim.2013.07.006_bib0225 article-title: Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication publication-title: PLoS ONE doi: 10.1371/journal.pone.0007517 – volume: 86 start-page: 12294 year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0150 article-title: Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein: superhelical homo-oligomers and the role of caspase-3 cleavage publication-title: J. Virol. doi: 10.1128/JVI.01627-12 – volume: 338 start-page: 1634 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0075 article-title: The structure of native influenza virion ribonucleoproteins publication-title: Science doi: 10.1126/science.1228172 – volume: 444 start-page: 1078 year: 2006 ident: 10.1016/j.tim.2013.07.006_bib0070 article-title: The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA publication-title: Nature doi: 10.1038/nature05379 – volume: 86 start-page: 10914 year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0145 article-title: Structure, function, and evolution of the Crimean-Congo hemorrhagic Fever virus nucleocapsid protein publication-title: J. Virol. doi: 10.1128/JVI.01555-12 – volume: 7 start-page: e44211 year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0200 article-title: Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease publication-title: PLoS ONE doi: 10.1371/journal.pone.0044211 – volume: 55 start-page: 696 year: 2011 ident: 10.1016/j.tim.2013.07.006_bib0220 article-title: Identification of high-affinity PB1-derived peptides with enhanced affinity to the PA protein of influenza A virus polymerase publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01419-10 – volume: 4 start-page: 1429 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0110 article-title: Self-organization of the vesicular stomatitis virus nucleocapsid into a bullet shape publication-title: Nat. Commun. doi: 10.1038/ncomms2435 – volume: 313 start-page: 357 year: 2006 ident: 10.1016/j.tim.2013.07.006_bib0090 article-title: Structure of the vesicular stomatitis virus nucleoprotein–RNA complex publication-title: Science doi: 10.1126/science.1126953 – volume: 4 start-page: 1515 year: 2012 ident: 10.1016/j.tim.2013.07.006_bib0260 article-title: Emaravirus: a novel genus of multipartite, negative strand RNA plant viruses publication-title: Viruses doi: 10.3390/v4091515 – volume: 28 start-page: 600 year: 2010 ident: 10.1016/j.tim.2013.07.006_bib0205 article-title: Identification of influenza A nucleoprotein as an antiviral target publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1638 – volume: 78 start-page: 8281 year: 2004 ident: 10.1016/j.tim.2013.07.006_bib0270 article-title: Trimeric hantavirus nucleocapsid protein binds specifically to the viral RNA panhandle publication-title: J. Virol. doi: 10.1128/JVI.78.15.8281-8288.2004 – volume: 338 start-page: 1631 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0085 article-title: Organization of the influenza virus replication machinery publication-title: Science doi: 10.1126/science.1227270 – volume: 4 start-page: 445 year: 2013 ident: 10.1016/j.tim.2013.07.006_bib0140 article-title: The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation publication-title: Protein Cell doi: 10.1007/s13238-013-3901-4 – volume: 458 start-page: 909 year: 2009 ident: 10.1016/j.tim.2013.07.006_bib0170 article-title: Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site publication-title: Nature doi: 10.1038/nature07720 |
SSID | ssj0005525 |
Score | 2.3212368 |
SecondaryResourceType | review_article |
Snippet | •Ribonucleoprotein (RNP) plays essential roles in the life cycles of negative-sense single-stranded RNA viruses (NSRVs).•RNP formation in NSRVs has different... Highlights • Ribonucleoprotein (RNP) plays essential roles in the life cycles of negative-sense single-stranded RNA viruses (NSRVs). • RNP formation in NSRVs... Negative-sense single-stranded RNA viruses (NSRVs) possess a ribonucleoprotein (RNP) complex composed of viral polymerase and genomic RNA surrounded by viral... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 475 |
SubjectTerms | Animals antiviral agents antiviral drugs crystallography electron microscopy formation Humans Internal Medicine negative-sense single-stranded RNA virus nucleoproteins ribonucleoprotein complex ribonucleoproteins Ribonucleoproteins - chemistry Ribonucleoproteins - genetics Ribonucleoproteins - metabolism RNA RNA Viruses - chemistry RNA Viruses - genetics RNA Viruses - metabolism RNA, Viral - chemistry RNA, Viral - genetics RNA, Viral - metabolism structure Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism Virus Diseases - drug therapy Virus Diseases - virology virus replication viruses |
Title | Structural perspective on the formation of ribonucleoprotein complex in negative-sense single-stranded RNA viruses |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966842X13001364 https://www.clinicalkey.es/playcontent/1-s2.0-S0966842X13001364 https://dx.doi.org/10.1016/j.tim.2013.07.006 https://www.ncbi.nlm.nih.gov/pubmed/23953596 https://www.proquest.com/docview/1431297459 https://www.proquest.com/docview/1803092760 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-4380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005525 issn: 0966-842X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-4380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005525 issn: 0966-842X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1878-4380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005525 issn: 0966-842X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1878-4380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005525 issn: 0966-842X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-4380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005525 issn: 0966-842X databaseCode: AKRWK dateStart: 19930401 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddx2Avo_usu65osKeBF1myLPsxlJVsYXloFpY3YVlycSl2iNPRvvRv351sZxvrMtiTP9BhId2XfHe_I-SdSyOVMIWpOJaFsUptaKSUYebA2TAMTCzDAucvs2SyiD8v5XKPnA61MJhW2ev-Tqd7bd2_GfWrOVpV1WgOzjcGkZYYkIlEgpigiP4FPP3h7pc0D-kbr-LgEEcPkU2f47WpsBg9Eh6_E5se3W-bHpR583cP1FuiswPypHch6bib5VOy5-pn5FHXVPL2OVnPPSQswmnQ1c9SStrUFJw9uq1WpE1J15VpakQ0bjxeQ1VTn2Lubijc1u7Co4KHLRx1HcWfClfwsFnjf2dLz2dj-r1aX7eufUEWZx-_nk7CvrNCWMg02oSmxHMfiHqunFDCxcxJaYWNuS2UkK5QUllbxlGmpAExz5wBrWltHDs4UUVKvCT7dVO7Q0ILoZhNmQG_o4gjY7I8L0F_FqV0ZSmjPCBsWFNd9LDj2P3iSg_5ZZcatkHjNmiGwfAkIO-3JKsOc2PXYD5slB6KSUH9abAIu4jUfUSu7QW41ZFuuWb6DyYLSLyl_I1P__XBQ-AhnV-A5taLOUdcP0TT4zINyNuBsTSINsZr8to11zAHcO44nPdktmNMijEyDvIWkFcdV27XjItMCpklR_8359fkMfe9PzCh7pjsA_O6N-CBbcyJF7ET8nD8aTqZ4XV6_m36A76GLtI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdtythexr7rfWqwp4GJbEmW_RjKSrq2eVgayJuwLLm4FDvE6Vj_-97JdspYl8HebKPDQrov6e5-R8gXl0YqYQpTcSwLhUptaKSUYebA2TAMTCzDAufzWTJdiO9LudwjR0MtDKZV9rq_0-leW_dfxv1qjldVNZ6D841BpCUGZCKeiH1yICTo5BE5mJycTmf3mR7S917F8SESDMFNn-a1qbAePeIewhP7Hj1snvbLvPm7E-qN0fEz8rT3Iumkm-hzsufqF-RR11fy9iVZzz0qLCJq0NV9NSVtagr-Ht0WLNKmpOvKNDWCGjcesqGqqc8yd78oPNbu0gODhy2cdh3Fe4VreNms8erZ0h-zCf1ZrW9a174ii-NvF0fTsG-uEBYyjTahKfHoB9KeK8cVd4I5KS23IraF4tIVSiprSxFlShqQ9MwZUJzWCuHgUBUp_pqM6qZ2h4QWXDGbMgOuRyEiY7I8L0GFFqV0ZSmjPCBsWFNd9Mjj2ADjWg8pZlcatkHjNmiG8fAkIF-3JKsOdmPX4HjYKD3Uk4IG1GAUdhGph4hc28twqyPdxprpP_gsIGJL-Rur_uuHh8BDOr8E5a0X8xih_RBQL5ZpQD4PjKVBujFkk9euuYE5gH8Xw5FPZjvGpBgmi0HkAvKm48rtmsU8k1xmydv_m_Mn8nh6cX6mz05mp-_Ik9i3AsH8uvdkBIzsPoBDtjEfe4G7A3cEL9o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+perspective+on+the+formation+of+ribonucleoprotein+complex+in+negative-sense+single-stranded+RNA+viruses&rft.jtitle=Trends+in+microbiology+%28Regular+ed.%29&rft.au=Zhou%2C+Honggang&rft.au=Sun%2C+Yuna&rft.au=Guo%2C+Yu&rft.au=Lou%2C+Zhiyong&rft.date=2013-09-01&rft.issn=0966-842X&rft.volume=21&rft.issue=9&rft.spage=475&rft.epage=484&rft_id=info:doi/10.1016%2Fj.tim.2013.07.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tim_2013_07_006 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0966842X%2FS0966842X13X00083%2Fcov150h.gif |