Imaging chromophores with undetectable fluorescence by stimulated emission microscopy

Super-resolution microscopy For imaging beyond the diffraction limit, to resolve tiny features in cells for example, researchers have so far had to rely on tagging the imaged object with fluorescent chromophores or on other microscopy techniques that do not exploit fluorescence but are much less sen...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 461; no. 7267; pp. 1105 - 1109
Main Authors Min, Wei, Lu, Sijia, Chong, Shasha, Roy, Rahul, Holtom, Gary R., Xie, X. Sunney
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.10.2009
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/nature08438

Cover

Abstract Super-resolution microscopy For imaging beyond the diffraction limit, to resolve tiny features in cells for example, researchers have so far had to rely on tagging the imaged object with fluorescent chromophores or on other microscopy techniques that do not exploit fluorescence but are much less sensitive. A team from the Department of Chemistry and Chemical Biology at Harvard has now developed an alternative approach known as stimulated emission microscopy, incorporating experimental techniques previously used in other multiphoton microscopies. The sensitivity of the method was demonstrated in applications including label-free microvascular imaging and monitoring lacZ gene expression with a chromogenic reporter. The technique is orders of magnitude more sensitive than absorption, is not subject to interference from other chromophores in the sample, and is amenable to three-dimensional sectioning. Importantly, all molecules are potential targets for stimulated emission microscopy, so it can be used to image non-fluorescing substances such as haemoglobin previously inaccessible to super-resolution microscopy. Imaging beyond the diffraction limit — to resolve tiny features in cells, for example — has had to rely on tagging the imaged substance with fluorescent chromophores or other techniques that are much less sensitive, like absorption. The use of stimulated emission (a property, unlike fluorescence, which all molecules can have) is now reported; sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, and fluorescence is not used. Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging 1 , 2 . However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay 3 . Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump–probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.
AbstractList Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.
Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.
Super-resolution microscopy For imaging beyond the diffraction limit, to resolve tiny features in cells for example, researchers have so far had to rely on tagging the imaged object with fluorescent chromophores or on other microscopy techniques that do not exploit fluorescence but are much less sensitive. A team from the Department of Chemistry and Chemical Biology at Harvard has now developed an alternative approach known as stimulated emission microscopy, incorporating experimental techniques previously used in other multiphoton microscopies. The sensitivity of the method was demonstrated in applications including label-free microvascular imaging and monitoring lacZ gene expression with a chromogenic reporter. The technique is orders of magnitude more sensitive than absorption, is not subject to interference from other chromophores in the sample, and is amenable to three-dimensional sectioning. Importantly, all molecules are potential targets for stimulated emission microscopy, so it can be used to image non-fluorescing substances such as haemoglobin previously inaccessible to super-resolution microscopy. Imaging beyond the diffraction limit — to resolve tiny features in cells, for example — has had to rely on tagging the imaged substance with fluorescent chromophores or other techniques that are much less sensitive, like absorption. The use of stimulated emission (a property, unlike fluorescence, which all molecules can have) is now reported; sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, and fluorescence is not used. Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging 1 , 2 . However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay 3 . Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump–probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.
Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting non-fluorescent reporters for molecular imaging. [PUBLICATION ABSTRACT]
Audience Academic
Author Xie, X. Sunney
Holtom, Gary R.
Min, Wei
Chong, Shasha
Lu, Sijia
Roy, Rahul
Author_xml – sequence: 1
  givenname: Wei
  surname: Min
  fullname: Min, Wei
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
– sequence: 2
  givenname: Sijia
  surname: Lu
  fullname: Lu, Sijia
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
– sequence: 3
  givenname: Shasha
  surname: Chong
  fullname: Chong, Shasha
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
– sequence: 4
  givenname: Rahul
  surname: Roy
  fullname: Roy, Rahul
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
– sequence: 5
  givenname: Gary R.
  surname: Holtom
  fullname: Holtom, Gary R.
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
– sequence: 6
  givenname: X. Sunney
  surname: Xie
  fullname: Xie, X. Sunney
  email: xie@chemistry.harvard.edu
  organization: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22020608$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19847261$$D View this record in MEDLINE/PubMed
BookMark eNp90t9r2zAQB3AxOtY029Peh-kY3djcSbIjKY-l7EegMNjWZyHLJ0fFllJJZst_X4Vka1OyoQeD_LlDx31P0JHzDhB6SfA5wZX46FQaA2BRV-IJmpCas7Jmgh-hCcZUlFhU7BidxHiDMZ4RXj9Dx2Quak4ZmaDrxaA667pCL4Mf_GrpA8Til03LYnQtJNBJNT0Uph83fzQ4DUWzLmKyw9irBG0Bg43RelcMVgcftV-tn6OnRvURXuy-U3T9-dPPy6_l1bcvi8uLq1LPBEnl3NQYV5hwRoTSqjGEAzNtY2jd0kZXhhtGqxmnbUsMVYwqTJQAQQW0uMGzaorOtn1Xwd-OEJPMb9HQ98qBH6PkVY3nnBCe5dv_SsI4qSmbY5Lp6SN648fg8hyS4nrGMJtv0Ost6lQP0jrjU1B601NeUEJoxQhjWZUHVAcOgurzFo3N13v-9IDXK3srH6LzAyifNm9CH-z6bq8gmwS_U6fGGOXix_d9-2o3_NgM0MpVsIMKa_knMRm82QEVtepNUE7b-NdRiilmOXNT9H7rNpmIAcx9Kyw3uZUPcps1eaS1TSrlVOXZbP-Pmg_bmpg7uw7C_Z4O8TueePxF
CODEN NATUAS
CitedBy_id crossref_primary_10_1002_cphc_201500987
crossref_primary_10_1021_acs_jpcc_0c07501
crossref_primary_10_1038_nphoton_2010_290
crossref_primary_10_1038_nnano_2011_210
crossref_primary_10_1364_BOE_6_002522
crossref_primary_10_1038_nphoton_2010_294
crossref_primary_10_1088_0957_4484_27_11_114002
crossref_primary_10_1364_OPTICA_4_000044
crossref_primary_10_1103_PhysRevLett_105_217401
crossref_primary_10_1038_nmeth1209_866
crossref_primary_10_1364_OE_20_014090
crossref_primary_10_1002_jrs_4600
crossref_primary_10_1021_acs_jpclett_6b02387
crossref_primary_10_1063_1_4943211
crossref_primary_10_1021_acs_nanolett_0c00196
crossref_primary_10_1038_ncomms9513
crossref_primary_10_1088_2050_6120_ab7c36
crossref_primary_10_7498_aps_66_140702
crossref_primary_10_1021_nl1027638
crossref_primary_10_1002_adma_201605637
crossref_primary_10_1002_anie_201007297
crossref_primary_10_1364_BOE_2_001576
crossref_primary_10_1002_jbio_201200071
crossref_primary_10_1021_nl504992h
crossref_primary_10_1007_s12551_021_00832_7
crossref_primary_10_1063_1_4955474
crossref_primary_10_1002_cyto_a_20977
crossref_primary_10_1021_acs_analchem_7b05046
crossref_primary_10_1038_srep18845
crossref_primary_10_1038_s41467_022_29204_9
crossref_primary_10_1364_JOSAB_33_001421
crossref_primary_10_1364_OL_35_000532
crossref_primary_10_1021_acsnano_8b07292
crossref_primary_10_1021_ac101131p
crossref_primary_10_1073_pnas_1005653107
crossref_primary_10_1002_ange_201007297
crossref_primary_10_1039_C5FD00147A
crossref_primary_10_1103_PhysRevA_83_031801
crossref_primary_10_1364_OL_39_004219
crossref_primary_10_1364_OE_18_013708
crossref_primary_10_1364_OL_36_000834
crossref_primary_10_1039_c0an00252f
crossref_primary_10_1021_acs_jpcc_5c00655
crossref_primary_10_1016_j_molliq_2020_114722
crossref_primary_10_1002_lpor_201200014
crossref_primary_10_7567_JJAP_51_022702
crossref_primary_10_1364_OE_20_028216
crossref_primary_10_1021_jp407645k
crossref_primary_10_1002_adma_200904387
crossref_primary_10_1103_PhysRevB_82_155302
crossref_primary_10_1088_1752_7155_6_2_021001
crossref_primary_10_1063_1_4967516
crossref_primary_10_1002_smll_202001215
crossref_primary_10_1007_s00216_012_5890_1
crossref_primary_10_1063_1_3308485
crossref_primary_10_1364_JOSAA_396701
crossref_primary_10_1364_OE_22_009024
crossref_primary_10_1021_acs_jpclett_5b01200
crossref_primary_10_1088_0253_6102_58_3_07
crossref_primary_10_1016_j_optcom_2018_03_058
crossref_primary_10_1038_s41566_017_0056_5
crossref_primary_10_1088_0031_9155_60_17_6881
crossref_primary_10_1103_PhysRevLett_117_193902
crossref_primary_10_1002_adom_202101711
crossref_primary_10_1038_nphoton_2016_94
crossref_primary_10_1364_BOE_3_001465
crossref_primary_10_1364_OE_20_011445
crossref_primary_10_1038_ncomms10411
crossref_primary_10_1146_annurev_bioeng_071114_040554
crossref_primary_10_1146_annurev_matsci_071312_121652
crossref_primary_10_1038_asiamat_2011_145
crossref_primary_10_1111_jmi_13033
crossref_primary_10_1021_acs_chemrev_5b00008
crossref_primary_10_1038_4611069a
crossref_primary_10_1364_OE_18_024019
crossref_primary_10_1134_S0006350911050186
crossref_primary_10_1016_S1369_7021_11_70141_9
crossref_primary_10_1021_jz1014289
crossref_primary_10_1103_PhysRevA_90_043813
crossref_primary_10_1364_OE_19_011463
crossref_primary_10_1146_annurev_physchem_012809_103512
crossref_primary_10_1038_srep40496
crossref_primary_10_1364_BOE_7_003449
crossref_primary_10_1021_jz101426x
crossref_primary_10_1039_C2AN36097G
crossref_primary_10_1002_lpor_201500181
crossref_primary_10_1134_S1054660X10090318
crossref_primary_10_1002_lpor_201000027
crossref_primary_10_1088_2040_8986_ab4dc2
crossref_primary_10_1016_j_neuron_2010_12_010
crossref_primary_10_1016_j_ajpath_2012_02_032
crossref_primary_10_1126_science_1197236
crossref_primary_10_1364_OE_24_006126
crossref_primary_10_1038_nature09232
crossref_primary_10_1088_1054_660X_23_3_035401
crossref_primary_10_1117_1_JBO_25_1_014507
crossref_primary_10_1038_nphoton_2011_99
crossref_primary_10_1007_s10043_017_0358_3
crossref_primary_10_1364_BOE_8_002807
crossref_primary_10_1039_c2cc31845h
crossref_primary_10_1021_jp109652s
crossref_primary_10_1126_science_1195475
crossref_primary_10_1143_JJAP_51_022702
crossref_primary_10_1371_journal_pone_0123338
crossref_primary_10_34133_ultrafastscience_0086
crossref_primary_10_1007_s11433_012_4845_z
crossref_primary_10_35848_1882_0786_abdc9d
crossref_primary_10_1002_cphc_201100671
crossref_primary_10_1364_AO_59_000622
crossref_primary_10_1016_j_coelec_2017_06_009
crossref_primary_10_1039_c0sc00637h
crossref_primary_10_1109_TBME_2024_3490454
crossref_primary_10_7498_aps_67_20171738
crossref_primary_10_1002_cphc_201402012
crossref_primary_10_1038_nmeth_2805
crossref_primary_10_1364_BOE_2_000071
crossref_primary_10_7567_JJAP_52_062403
crossref_primary_10_1364_AO_57_000757
crossref_primary_10_1039_c0sc00243g
crossref_primary_10_1007_s00340_011_4465_8
crossref_primary_10_1080_0144235X_2011_603237
crossref_primary_10_1364_OL_43_001750
crossref_primary_10_1002_cphc_200900979
crossref_primary_10_1021_acsphotonics_5b00716
crossref_primary_10_1364_OE_19_026486
crossref_primary_10_1002_jbio_201700233
crossref_primary_10_1109_JPHOTOV_2018_2882185
crossref_primary_10_1364_JOSAA_32_000809
crossref_primary_10_1002_lapl_201110014
crossref_primary_10_1002_lpor_201900084
crossref_primary_10_1364_BOE_4_002477
crossref_primary_10_3390_photonics4020032
crossref_primary_10_1039_C4FD00177J
crossref_primary_10_1088_1612_202X_ad4854
crossref_primary_10_1002_advs_201900030
crossref_primary_10_1364_OPTICA_515226
crossref_primary_10_1088_0953_8984_23_50_503101
crossref_primary_10_1364_AO_54_006919
crossref_primary_10_1517_17530059_2010_525634
crossref_primary_10_1007_s10043_018_0416_5
crossref_primary_10_1063_5_0009681
crossref_primary_10_3390_cells9030579
crossref_primary_10_1021_acs_jpca_1c07713
crossref_primary_10_1038_nphys1858
crossref_primary_10_1364_OPTICA_440013
crossref_primary_10_1142_S1793545822300105
crossref_primary_10_1021_ja909168e
crossref_primary_10_1088_0034_4885_76_8_086402
crossref_primary_10_1016_j_cbpa_2011_10_005
crossref_primary_10_1088_2040_8978_18_12_125303
crossref_primary_10_1016_j_talanta_2023_124253
crossref_primary_10_1111_odi_13334
crossref_primary_10_1021_acs_nanolett_5b04135
crossref_primary_10_1016_j_micron_2010_03_006
crossref_primary_10_1364_BOE_5_000653
crossref_primary_10_1021_acs_nanolett_9b04354
crossref_primary_10_1038_s41566_019_0396_4
crossref_primary_10_1126_scitranslmed_3001604
crossref_primary_10_1364_AO_397499
crossref_primary_10_1117_1_JBO_17_1_011009
crossref_primary_10_1364_OE_23_018786
crossref_primary_10_1364_BOE_5_002390
crossref_primary_10_1063_1_5129123
crossref_primary_10_1039_C5NR04118J
crossref_primary_10_1007_s11307_010_0373_2
crossref_primary_10_1021_acsphotonics_4c01187
crossref_primary_10_1126_science_1213504
crossref_primary_10_1063_1_4895832
crossref_primary_10_1038_nrm2808
crossref_primary_10_1038_nphoton_2013_97
crossref_primary_10_1002_jrs_4539
crossref_primary_10_1126_science_1166135
crossref_primary_10_1364_AOP_4_000322
crossref_primary_10_1364_JOSAA_500167
crossref_primary_10_1021_acsnano_1c04470
crossref_primary_10_1021_acsphotonics_5b00638
crossref_primary_10_1002_cbic_201000593
crossref_primary_10_1117_1_JBO_20_10_105014
crossref_primary_10_1126_sciadv_aav0561
crossref_primary_10_1364_OE_476970
crossref_primary_10_7567_JJAP_53_092704
crossref_primary_10_1016_j_optcom_2016_12_074
crossref_primary_10_1039_c1fd00087j
crossref_primary_10_1364_OE_27_006976
crossref_primary_10_1146_annurev_physchem_042018_052605
crossref_primary_10_1364_OL_42_000294
crossref_primary_10_1021_ar400325y
crossref_primary_10_1364_BOE_6_001021
crossref_primary_10_1111_nyas_12079
crossref_primary_10_1063_1_4967948
crossref_primary_10_1371_journal_pone_0125733
crossref_primary_10_1126_science_aay1821
crossref_primary_10_1039_c3nr00308f
crossref_primary_10_1117_1_3645082
crossref_primary_10_1039_C3CS60269A
Cites_doi 10.1038/nm0603-713
10.1016/S0014-5793(01)02930-1
10.1038/nature04599
10.1364/OL.19.000780
10.1126/science.1165758
10.1016/j.cplett.2007.06.017
10.1016/S0165-0270(96)00155-0
10.1016/S0006-3495(95)80148-7
10.1103/PhysRevLett.62.2535
10.1146/annurev.anchem.1.031207.112754
10.1146/annurev.pc.37.100186.002425
10.1364/OL.32.002641
10.1073/pnas.95.26.15741
10.1021/jp0008602
10.1007/978-1-4615-7658-7
10.1039/b204385h
10.1038/nrm976
10.1038/324361a0
10.1126/science.2321027
10.1007/978-0-387-45524-2
10.1364/JOSAB.15.000006
10.1063/1.2404678
10.1074/jbc.M606921200
ContentType Journal Article
Copyright Macmillan Publishers Limited. All rights reserved 2009
2009 INIST-CNRS
COPYRIGHT 2009 Nature Publishing Group
Copyright Nature Publishing Group Oct 22, 2009
Copyright_xml – notice: Macmillan Publishers Limited. All rights reserved 2009
– notice: 2009 INIST-CNRS
– notice: COPYRIGHT 2009 Nature Publishing Group
– notice: Copyright Nature Publishing Group Oct 22, 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7SC
7SP
7SR
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
7X8
DOI 10.1038/nature08438
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
Materials Research Database
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
MEDLINE - Academic

Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 1109
ExternalDocumentID 1890389711
A211236166
19847261
22020608
10_1038_nature08438
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
00M
07C
0R~
0WA
123
186
1VR
29M
2KS
2XV
39C
3O-
3V.
4.4
41X
4R4
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYOK
AAYZH
ABAWZ
ABDBF
ABDQB
ABEFU
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7L
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YYP
YZZ
Z5M
ZCA
ZHY
ZKB
~02
~7V
~88
~8M
~G0
~KM
08P
1CY
1OL
1VW
354
3EH
41~
42X
663
79B
AAJYS
AARCD
AAVBQ
AAYXX
ABDPE
ABFSG
ACBNA
ACBTR
ACMFV
ACSTC
ACTDY
ADGHP
ADRHT
ADXHL
AETEA
AEZWR
AFANA
AFBBN
AFHIU
AFHKK
AGQPQ
AHWEU
AIXLP
AJUXI
ALPWD
ATHPR
CITATION
FA8
FAC
HG6
J5H
LGEZI
LOTEE
N4W
NADUK
NFIDA
NXXTH
ODYON
PHGZM
PHGZT
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZE2
ZGI
ZY4
IQODW
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7SC
7SP
7SR
7TB
7U5
8BQ
ESTFP
F28
JG9
JQ2
KR7
L7M
L~C
L~D
PUEGO
7X8
ID FETCH-LOGICAL-c581t-9f4003017618acabf17e6fdbf24d2bc3f7f623572dd1f2a62a01a8e828ed0b053
IEDL.DBID BENPR
ISSN 0028-0836
1476-4687
IngestDate Sat Sep 27 18:27:37 EDT 2025
Fri Sep 05 08:32:44 EDT 2025
Fri Jul 25 09:10:25 EDT 2025
Tue Jun 17 22:07:07 EDT 2025
Fri Jun 13 00:07:08 EDT 2025
Tue Jun 10 15:39:02 EDT 2025
Tue Jun 10 21:01:43 EDT 2025
Fri Jun 27 05:47:47 EDT 2025
Wed Feb 19 01:46:17 EST 2025
Mon Jul 21 09:14:21 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Tue Jul 01 02:00:13 EDT 2025
Fri Feb 21 02:37:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7267
Keywords Cytochrome
Stimulated emission microscopy
Fluorescence
Hemoglobin
Hemoprotein
Imaging
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-9f4003017618acabf17e6fdbf24d2bc3f7f623572dd1f2a62a01a8e828ed0b053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 19847261
PQID 204560691
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_734097117
proquest_miscellaneous_1671426901
proquest_journals_204560691
gale_infotracmisc_A211236166
gale_infotracgeneralonefile_A211236166
gale_infotraccpiq_211236166
gale_infotracacademiconefile_A211236166
gale_incontextgauss_ISR_A211236166
pubmed_primary_19847261
pascalfrancis_primary_22020608
crossref_primary_10_1038_nature08438
crossref_citationtrail_10_1038_nature08438
springer_journals_10_1038_nature08438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-10-22
PublicationDateYYYYMMDD 2009-10-22
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-22
  day: 22
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2009
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References EinsteinAOn the quantum theory of radiationPhys. Z.1917181211:CAS:528:DyaC2sXhsFOksQ%3D%3D
KleinfeldDMitraPPHelmchenFDenkWFluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortexProc. Natl Acad. Sci. USA19989515741157461998PNAS...9515741K1:CAS:528:DyaK1MXhvFegsg%3D%3D10.1073/pnas.95.26.15741
WangWFemtosecond multicolor pump-probe spectroscopy of ferrous cytochrome cJ. Phys. Chem. B200010410789108011:CAS:528:DC%2BD3cXksFejs7o%3D10.1021/jp0008602
DuHPhotochemCAD: A computer-aided design and research tool in photochemistryPhotochem. Photobiol.1998681411421:CAS:528:DyaK1cXlsFCqsL8%3D
GurskayaNGGFP-like chromoproteins as a source of far-red fluorescent proteinsFEBS Lett.200150716201:CAS:528:DC%2BD3MXnslWrtrs%3D10.1016/S0014-5793(01)02930-1
ChelvanayagamDKBeazleyLDToluidine blue-O is a Nissl bright-field counterstain for lipophilic fluorescent tracers Di-ASP, DiI and DiOJ. Neurosci. Methods19977249551:CAS:528:DyaK2sXjtVCjs7g%3D10.1016/S0165-0270(96)00155-0
HamiltonCEKinseyJLFieldRWStimulated emission pumping: new methods in spectroscopy and molecular dynamicsAnnu. Rev. Phys. Chem.1986374935241986ARPC...37..493H1:CAS:528:DyaL2sXisFSisg%3D%3D10.1146/annurev.pc.37.100186.002425
MillerJHExperiments in Molecular Genetics1972171224
GrinvaldALiekeEFrostigRDGilbertCDWieselTNFunctional architecture of cortex revealed by optical imaging of intrinsic signalsNature19863243613641986Natur.324..361G1:STN:280:DyaL2s%2FmsFSrtA%3D%3D10.1038/324361a0
FuDHigh-resolution in vivo imaging of blood vessels without labelingOpt. Lett.200732264126432007OptL...32.2641F10.1364/OL.32.002641
TurroNJModern Molecular Photochemistry1991
DenkWStricklerJHWebbWWTwo-photon laser scanning fluorescence microscopyScience199024873761990Sci...248...73D1:CAS:528:DyaK3cXktVaktb8%3D10.1126/science.2321027
CantorCRSchimmelPRBiophysical Chemistry1980361374
FreudigerCWLabel-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopyScience2008322185718612008Sci...322.1857F1:CAS:528:DC%2BD1cXhsFSmtrbP10.1126/science.1165758
PawleyJBHandbook of Biological Confocal Microscopy200610.1007/978-0-387-45524-2
RittwegerERankinBRWestphalVHellSWFluorescence depletion mechanisms in super-resolving STED microscopyChem. Phys. Lett.20074424834872007CPL...442..483R1:CAS:528:DC%2BD2sXnsVSrsbY%3D10.1016/j.cplett.2007.06.017
ClayGOSchafferCBKleinfeldDLarge two-photon absorptivity of hemoglobin in the infrared range of 780–880 nmJ. Chem. Phys.20071260251022007JChPh.126b5102C10.1063/1.2404678
EvansCLXieXSCoherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicineAnnu. Rev. Anal. Chem.200818839091:CAS:528:DC%2BD1cXhtFygsL3K10.1146/annurev.anchem.1.031207.112754
YeJMaLSHallJLUltrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopyJ. Opt. Soc. Am. B1998156151998OSAJB..15....6Y1:CAS:528:DyaK1cXksVOnuw%3D%3D10.1364/JOSAB.15.000006
TremblayJFPhotodynamic therapy with toluidine blue in Jurkat cells: cytotoxicity, subcellular localization and apoptosis inductionPhotochem. Photobiol. Sci.200218528561:CAS:528:DC%2BD38Xos1emtb4%3D10.1039/b204385h
SeigmanAELaser1986264307
DongCYSoPTFrenchTGrattonEFluorescence lifetime imaging by asynchronous pump-probe microscopyBiophys. J.199569223422421995BpJ....69.2234D1:CAS:528:DyaK2MXpslOgsL8%3D10.1016/S0006-3495(95)80148-7
ZhangJCampbellRETingAYTsienRYCreating new fluorescent probes for cell biologyNature Rev. Mol. Biol.200239069181:CAS:528:DC%2BD38XptFKnt7Y%3D10.1038/nrm976
McDonaldDMChoykePLImaging of angiogenesis: from microscope to clinicNature Med.200397137251:CAS:528:DC%2BD3sXktFOnurs%3D10.1038/nm0603-713
MoernerWEKadorLOptical detection and spectroscopy of single molecules in a solidPhys. Rev. Lett.198962253525381989PhRvL..62.2535M1:CAS:528:DyaL1MXktlSgur8%3D10.1103/PhysRevLett.62.2535
CaiLFriedmanNXieXSStochastic protein expression in individual cells at the single molecule levelNature20064403583622006Natur.440..358C1:CAS:528:DC%2BD28XitlKgu7k%3D10.1038/nature04599
LakowiczJRPrinciples of Fluorescence Spectroscopy198310.1007/978-1-4615-7658-7
HellSWWichmannJBreaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopyOpt. Lett.1994197807821994OptL...19..780H1:CAS:528:DC%2BC2cXhslWnsr7N10.1364/OL.19.000780
ChanMCYStructural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicusJ. Biol. Chem.200628137813378191:CAS:528:DC%2BD28Xht1Kit77I10.1074/jbc.M606921200
H Du (BFnature08438_CR17) 1998; 68
DK Chelvanayagam (BFnature08438_CR24) 1997; 72
AE Seigman (BFnature08438_CR5) 1986
J Ye (BFnature08438_CR11) 1998; 15
CE Hamilton (BFnature08438_CR6) 1986; 37
SW Hell (BFnature08438_CR7) 1994; 19
W Denk (BFnature08438_CR14) 1990; 248
A Einstein (BFnature08438_CR4) 1917; 18
JH Miller (BFnature08438_CR21) 1972
NG Gurskaya (BFnature08438_CR18) 2001; 507
CY Dong (BFnature08438_CR8) 1995; 69
JB Pawley (BFnature08438_CR1) 2006
CW Freudiger (BFnature08438_CR12) 2008; 322
E Rittweger (BFnature08438_CR16) 2007; 442
D Kleinfeld (BFnature08438_CR27) 1998; 95
MCY Chan (BFnature08438_CR19) 2006; 281
A Grinvald (BFnature08438_CR26) 1986; 324
JF Tremblay (BFnature08438_CR23) 2002; 1
GO Clay (BFnature08438_CR28) 2007; 126
D Fu (BFnature08438_CR13) 2007; 32
L Cai (BFnature08438_CR22) 2006; 440
J Zhang (BFnature08438_CR20) 2002; 3
NJ Turro (BFnature08438_CR3) 1991
CL Evans (BFnature08438_CR15) 2008; 1
W Wang (BFnature08438_CR29) 2000; 104
JR Lakowicz (BFnature08438_CR2) 1983
DM McDonald (BFnature08438_CR25) 2003; 9
CR Cantor (BFnature08438_CR9) 1980
WE Moerner (BFnature08438_CR10) 1989; 62
12461557 - Nat Rev Mol Cell Biol. 2002 Dec;3(12):906-18
8599631 - Biophys J. 1995 Dec;69(6):2234-42
19844443 - Opt Lett. 1994 Jun 1;19(11):780-2
17228976 - J Chem Phys. 2007 Jan 14;126(2):025102
16541077 - Nature. 2006 Mar 16;440(7082):358-62
17028187 - J Biol Chem. 2006 Dec 8;281(49):37813-9
20636101 - Annu Rev Anal Chem (Palo Alto Calif). 2008;1:883-909
3785405 - Nature. 1986 Nov 27-Dec 3;324(6095):361-4
9861040 - Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15741-6
19095943 - Science. 2008 Dec 19;322(5909):1857-61
11682051 - FEBS Lett. 2001 Oct 19;507(1):16-20
17873920 - Opt Lett. 2007 Sep 15;32(18):2641-3
2321027 - Science. 1990 Apr 6;248(4951):73-6
9128168 - J Neurosci Methods. 1997 Mar;72(1):49-55
12778170 - Nat Med. 2003 Jun;9(6):713-25
10040013 - Phys Rev Lett. 1989 May 22;62(21):2535-2538
19847257 - Nature. 2009 Oct 22;461(7267):1069-70
12659523 - Photochem Photobiol Sci. 2002 Nov;1(11):852-6
References_xml – reference: DuHPhotochemCAD: A computer-aided design and research tool in photochemistryPhotochem. Photobiol.1998681411421:CAS:528:DyaK1cXlsFCqsL8%3D
– reference: FuDHigh-resolution in vivo imaging of blood vessels without labelingOpt. Lett.200732264126432007OptL...32.2641F10.1364/OL.32.002641
– reference: CaiLFriedmanNXieXSStochastic protein expression in individual cells at the single molecule levelNature20064403583622006Natur.440..358C1:CAS:528:DC%2BD28XitlKgu7k%3D10.1038/nature04599
– reference: EvansCLXieXSCoherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicineAnnu. Rev. Anal. Chem.200818839091:CAS:528:DC%2BD1cXhtFygsL3K10.1146/annurev.anchem.1.031207.112754
– reference: DongCYSoPTFrenchTGrattonEFluorescence lifetime imaging by asynchronous pump-probe microscopyBiophys. J.199569223422421995BpJ....69.2234D1:CAS:528:DyaK2MXpslOgsL8%3D10.1016/S0006-3495(95)80148-7
– reference: DenkWStricklerJHWebbWWTwo-photon laser scanning fluorescence microscopyScience199024873761990Sci...248...73D1:CAS:528:DyaK3cXktVaktb8%3D10.1126/science.2321027
– reference: HellSWWichmannJBreaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopyOpt. Lett.1994197807821994OptL...19..780H1:CAS:528:DC%2BC2cXhslWnsr7N10.1364/OL.19.000780
– reference: KleinfeldDMitraPPHelmchenFDenkWFluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortexProc. Natl Acad. Sci. USA19989515741157461998PNAS...9515741K1:CAS:528:DyaK1MXhvFegsg%3D%3D10.1073/pnas.95.26.15741
– reference: ChelvanayagamDKBeazleyLDToluidine blue-O is a Nissl bright-field counterstain for lipophilic fluorescent tracers Di-ASP, DiI and DiOJ. Neurosci. Methods19977249551:CAS:528:DyaK2sXjtVCjs7g%3D10.1016/S0165-0270(96)00155-0
– reference: MillerJHExperiments in Molecular Genetics1972171224
– reference: McDonaldDMChoykePLImaging of angiogenesis: from microscope to clinicNature Med.200397137251:CAS:528:DC%2BD3sXktFOnurs%3D10.1038/nm0603-713
– reference: LakowiczJRPrinciples of Fluorescence Spectroscopy198310.1007/978-1-4615-7658-7
– reference: TurroNJModern Molecular Photochemistry1991
– reference: ZhangJCampbellRETingAYTsienRYCreating new fluorescent probes for cell biologyNature Rev. Mol. Biol.200239069181:CAS:528:DC%2BD38XptFKnt7Y%3D10.1038/nrm976
– reference: ClayGOSchafferCBKleinfeldDLarge two-photon absorptivity of hemoglobin in the infrared range of 780–880 nmJ. Chem. Phys.20071260251022007JChPh.126b5102C10.1063/1.2404678
– reference: CantorCRSchimmelPRBiophysical Chemistry1980361374
– reference: WangWFemtosecond multicolor pump-probe spectroscopy of ferrous cytochrome cJ. Phys. Chem. B200010410789108011:CAS:528:DC%2BD3cXksFejs7o%3D10.1021/jp0008602
– reference: EinsteinAOn the quantum theory of radiationPhys. Z.1917181211:CAS:528:DyaC2sXhsFOksQ%3D%3D
– reference: ChanMCYStructural characterization of a blue chromoprotein and its yellow mutant from the sea anemone Cnidopus japonicusJ. Biol. Chem.200628137813378191:CAS:528:DC%2BD28Xht1Kit77I10.1074/jbc.M606921200
– reference: TremblayJFPhotodynamic therapy with toluidine blue in Jurkat cells: cytotoxicity, subcellular localization and apoptosis inductionPhotochem. Photobiol. Sci.200218528561:CAS:528:DC%2BD38Xos1emtb4%3D10.1039/b204385h
– reference: GrinvaldALiekeEFrostigRDGilbertCDWieselTNFunctional architecture of cortex revealed by optical imaging of intrinsic signalsNature19863243613641986Natur.324..361G1:STN:280:DyaL2s%2FmsFSrtA%3D%3D10.1038/324361a0
– reference: SeigmanAELaser1986264307
– reference: RittwegerERankinBRWestphalVHellSWFluorescence depletion mechanisms in super-resolving STED microscopyChem. Phys. Lett.20074424834872007CPL...442..483R1:CAS:528:DC%2BD2sXnsVSrsbY%3D10.1016/j.cplett.2007.06.017
– reference: HamiltonCEKinseyJLFieldRWStimulated emission pumping: new methods in spectroscopy and molecular dynamicsAnnu. Rev. Phys. Chem.1986374935241986ARPC...37..493H1:CAS:528:DyaL2sXisFSisg%3D%3D10.1146/annurev.pc.37.100186.002425
– reference: MoernerWEKadorLOptical detection and spectroscopy of single molecules in a solidPhys. Rev. Lett.198962253525381989PhRvL..62.2535M1:CAS:528:DyaL1MXktlSgur8%3D10.1103/PhysRevLett.62.2535
– reference: PawleyJBHandbook of Biological Confocal Microscopy200610.1007/978-0-387-45524-2
– reference: YeJMaLSHallJLUltrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopyJ. Opt. Soc. Am. B1998156151998OSAJB..15....6Y1:CAS:528:DyaK1cXksVOnuw%3D%3D10.1364/JOSAB.15.000006
– reference: FreudigerCWLabel-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopyScience2008322185718612008Sci...322.1857F1:CAS:528:DC%2BD1cXhsFSmtrbP10.1126/science.1165758
– reference: GurskayaNGGFP-like chromoproteins as a source of far-red fluorescent proteinsFEBS Lett.200150716201:CAS:528:DC%2BD3MXnslWrtrs%3D10.1016/S0014-5793(01)02930-1
– volume: 9
  start-page: 713
  year: 2003
  ident: BFnature08438_CR25
  publication-title: Nature Med.
  doi: 10.1038/nm0603-713
– start-page: 361
  volume-title: Biophysical Chemistry
  year: 1980
  ident: BFnature08438_CR9
– volume: 507
  start-page: 16
  year: 2001
  ident: BFnature08438_CR18
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02930-1
– volume: 440
  start-page: 358
  year: 2006
  ident: BFnature08438_CR22
  publication-title: Nature
  doi: 10.1038/nature04599
– volume: 19
  start-page: 780
  year: 1994
  ident: BFnature08438_CR7
  publication-title: Opt. Lett.
  doi: 10.1364/OL.19.000780
– volume: 322
  start-page: 1857
  year: 2008
  ident: BFnature08438_CR12
  publication-title: Science
  doi: 10.1126/science.1165758
– volume: 442
  start-page: 483
  year: 2007
  ident: BFnature08438_CR16
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.06.017
– volume: 72
  start-page: 49
  year: 1997
  ident: BFnature08438_CR24
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(96)00155-0
– volume: 69
  start-page: 2234
  year: 1995
  ident: BFnature08438_CR8
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(95)80148-7
– volume: 62
  start-page: 2535
  year: 1989
  ident: BFnature08438_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.2535
– volume-title: Modern Molecular Photochemistry
  year: 1991
  ident: BFnature08438_CR3
– volume: 1
  start-page: 883
  year: 2008
  ident: BFnature08438_CR15
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev.anchem.1.031207.112754
– volume: 37
  start-page: 493
  year: 1986
  ident: BFnature08438_CR6
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.37.100186.002425
– start-page: 171
  volume-title: Experiments in Molecular Genetics
  year: 1972
  ident: BFnature08438_CR21
– volume: 32
  start-page: 2641
  year: 2007
  ident: BFnature08438_CR13
  publication-title: Opt. Lett.
  doi: 10.1364/OL.32.002641
– volume: 95
  start-page: 15741
  year: 1998
  ident: BFnature08438_CR27
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.26.15741
– volume: 104
  start-page: 10789
  year: 2000
  ident: BFnature08438_CR29
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0008602
– volume-title: Principles of Fluorescence Spectroscopy
  year: 1983
  ident: BFnature08438_CR2
  doi: 10.1007/978-1-4615-7658-7
– volume: 1
  start-page: 852
  year: 2002
  ident: BFnature08438_CR23
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b204385h
– volume: 3
  start-page: 906
  year: 2002
  ident: BFnature08438_CR20
  publication-title: Nature Rev. Mol. Biol.
  doi: 10.1038/nrm976
– volume: 324
  start-page: 361
  year: 1986
  ident: BFnature08438_CR26
  publication-title: Nature
  doi: 10.1038/324361a0
– volume: 248
  start-page: 73
  year: 1990
  ident: BFnature08438_CR14
  publication-title: Science
  doi: 10.1126/science.2321027
– start-page: 264
  volume-title: Laser
  year: 1986
  ident: BFnature08438_CR5
– volume-title: Handbook of Biological Confocal Microscopy
  year: 2006
  ident: BFnature08438_CR1
  doi: 10.1007/978-0-387-45524-2
– volume: 68
  start-page: 141
  year: 1998
  ident: BFnature08438_CR17
  publication-title: Photochem. Photobiol.
– volume: 18
  start-page: 121
  year: 1917
  ident: BFnature08438_CR4
  publication-title: Phys. Z.
– volume: 15
  start-page: 6
  year: 1998
  ident: BFnature08438_CR11
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.15.000006
– volume: 126
  start-page: 025102
  year: 2007
  ident: BFnature08438_CR28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404678
– volume: 281
  start-page: 37813
  year: 2006
  ident: BFnature08438_CR19
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606921200
– reference: 19844443 - Opt Lett. 1994 Jun 1;19(11):780-2
– reference: 10040013 - Phys Rev Lett. 1989 May 22;62(21):2535-2538
– reference: 17228976 - J Chem Phys. 2007 Jan 14;126(2):025102
– reference: 2321027 - Science. 1990 Apr 6;248(4951):73-6
– reference: 19847257 - Nature. 2009 Oct 22;461(7267):1069-70
– reference: 3785405 - Nature. 1986 Nov 27-Dec 3;324(6095):361-4
– reference: 11682051 - FEBS Lett. 2001 Oct 19;507(1):16-20
– reference: 9128168 - J Neurosci Methods. 1997 Mar;72(1):49-55
– reference: 20636101 - Annu Rev Anal Chem (Palo Alto Calif). 2008;1:883-909
– reference: 16541077 - Nature. 2006 Mar 16;440(7082):358-62
– reference: 17873920 - Opt Lett. 2007 Sep 15;32(18):2641-3
– reference: 8599631 - Biophys J. 1995 Dec;69(6):2234-42
– reference: 19095943 - Science. 2008 Dec 19;322(5909):1857-61
– reference: 9861040 - Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15741-6
– reference: 12778170 - Nat Med. 2003 Jun;9(6):713-25
– reference: 17028187 - J Biol Chem. 2006 Dec 8;281(49):37813-9
– reference: 12659523 - Photochem Photobiol Sci. 2002 Nov;1(11):852-6
– reference: 12461557 - Nat Rev Mol Cell Biol. 2002 Dec;3(12):906-18
SSID ssj0005174
Score 2.4583974
Snippet Super-resolution microscopy For imaging beyond the diffraction limit, to resolve tiny features in cells for example, researchers have so far had to rely on...
Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1105
SubjectTerms Absorption
Analysis
Animals
Biological and medical sciences
Blood vessels
Chromophores
Decay
Diverse techniques
Ear
Emission measurements
Emission spectra
Escherichia coli - metabolism
Fluorescence
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
Genes, Reporter - genetics
Haemoglobin
Hemoglobins - analysis
Humanities and Social Sciences
Imaging
Indigo Carmine
Indoles - metabolism
Lac Operon - genetics
Lasers
letter
Light microscopy
Medical imaging
Methods
Mice
Microscope and microscopy
Microscopy
Microscopy - methods
Molecular and cellular biology
Molecular Imaging - methods
Molecules
multidisciplinary
Noise
Photosensitizing Agents - analysis
Properties
Science
Science (multidisciplinary)
Sensitivity and Specificity
Spectra
Spontaneous emission
Stimulated emission
Three dimensional
Tomography
Title Imaging chromophores with undetectable fluorescence by stimulated emission microscopy
URI https://link.springer.com/article/10.1038/nature08438
https://www.ncbi.nlm.nih.gov/pubmed/19847261
https://www.proquest.com/docview/204560691
https://www.proquest.com/docview/1671426901
https://www.proquest.com/docview/734097117
Volume 461
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_ahMFgjLX7ctMFbXQfHZhatmMpD2MkXbN20DK6BfJmZH20heajc_LQ_346W07iLduLX-6Qbel0utPd_Q7gQBvFqA4jX2WxdVBCrX3OO11fRyJT9kChzGCh8PlFcjqMv406oy04r2phMK2y0omFolZTiXfkRwibbo3tLv08u_OxaRQGV6sOGsJ1VlCfCoSxbWhajdwJGtDsn1x8v1zlfPwBy-wK9oKIH5U4mgGPsVJl7YhyivrRTOR20kzZ7WKTOfpXKLU4oQZP4LEzLUmvlIUd2NKTXXhQpHjKfBd23DbOyQeHNX34FIZn46JNEZHXmJc3u55a95vg5SzB6jKMMGBtFTG3C6RIHIBk98QqhjE2_tKKYMM4vHIjY8ztwyqX-2cwHJz8PD71XacFX3Y4nftdExe-EUsoF1JkhjKdGJWZMFZhJiPDTIK4OKFS1IQiCUVABdfWW9MqyOw-fg6NyXSiXwKhIuNacy2snxLzWGCYL46Z6YooEBGNPfhYTW4qHQw5dsO4TYtweMTTtZXw4GDJPCvRNzazvcFVShHPYoIJM1dikefp2Y_LtGcdXMSXSRIP3jsmM7UvlMLVH9jPRgisGmerxilnN3fpGvVdjXpVLtmmYfZrjHY1ZI3crsnU8gfD0JrwSWD_qlUJWeoUS54ut4EHr5dUHBlz5SZ6ushTmjCKBcqB5SH_4GER4pxRyjx4UYrvan671mCxfrUHbyt5Xr1-w-Tv_fczW_CwiL_Z0z4M96Ex_7XQr6wZN8_asM1GzD75McXn4Gsbmr3-l_6g7bbtb2YISyw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELemTQgkhNh4hY5h0MZLihY7bpJ-mNCATS3bKjRWad-ME9sb0voYaYX6x_G_cZc4bQOFb_vsk5P4Lvfw3f2OkG1jdcwMD32dCghQuDF-kjRbvglVqsGgsNhio_BJN2r3xOfz5vkK-VX1wmBZZaUTC0Wthxneke8ibDo42y32fnTt49AoTK5WEzSUm6yg9wqEMdfXcWSmPyGCy_c6n4DdO5wfHpx9bPtuyICfNRM29ltWFGEBhPOJylRqWWwiq1PLheZpFtrYRggJw7VmlquIq4CpxECgYnSQBjg0AizAmsD7k1Wy9uGg--V0XmPyBwy0axAMwmS3xO0MEoGdMQsm0RmGuyOVA5NsOV1jmfv7V-q2sIiH98k958rS_VL21smKGWyQW0VJaZZvkHWnNnL6xmFbv31Aep1-MRaJZpdYBzi6HEK4T_EymGI3G2Y0sJeL2qsJrmS4AU2nFBRRHweNGU1xQB1e8dE-1hJiV830IendyKE_IquD4cA8IZSpNDEmMQriIpEIhWlFIWLbUmGgQiY88q46XJk52HOcvnEli_R7mMgFTnhke0Y8KtE-lpO9RC5JxM8YYIHOhZrkuex8PZX7EFAjnk0UeeS1I7JDeGCmXL8DvDZCbtUoGzXKbPT9Wi6svqqtXpQsW7bNZo0QuJHVlrdqMjX7QM4hZIgC-KpGJWTSKbJczn47j7yYreLOWJs3MMNJLlkUM2yIDoCG_oMmDhFXjbHYI49L8Z2fbwscJIjjPbJTyfP88UsO_-l_X_M5ud0-OzmWx53uUYPcKXJ_4GlwvklWxz8m5hm4kON0y_2olHy7ad3wG-ZMhF8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRASQmx8hY5h0MaXFDV23MR9QGhiVCuDCcEq9S04jr0hrU1HWqH-afx33CVO20Dhbc8-2YnvfL7z3f2OkD1js5gZHvpZKsBB4cb4Una6vglVmsGFwmKLhcKfTqKjgfgw7Aw3yK-6FgbTKmudWCrqLNf4Rt5G2HQwtrusbV1WxOfD3tvJpY8NpDDQWnfTqCTk2Mx_gvdWvOkfAqv3Oe-9P3135LsGA77uSDb1u1aULgG48lJplVoWm8hmqeUi46kObWwjhIPhWcYsVxFXAVPSgJNisiANsGEEaP9rcSgEdo2Ih_Eyu-QPAGhXGhiEsl0hdgZSYE3MymXoroRbE1UAe2zVV2Od4ftX0La8C3t3yG1nxNKDSuq2yIYZb5PrZTKpLrbJllMYBX3pUK1f3SWD_qhsiET1OWYATs5zcPQpPgNTrGPDWAZWcVF7McMRjRPQdE5BBY2wxZjJKLamw8c9OsIsQqynmd8jgyvZ8vtkc5yPzUNCmUqlMdIo8IiEFAoDikLEtqvCQIVMeOR1vbmJdoDn2HfjIikD76FMVjjhkb0F8aTC-VhP9gy5lCByxhiF8EzNiiLpf_2SHIArjUg2UeSRF47I5rCgVq7SAT4bwbYalK0GpZ58v0xWRp83Rs8qlq2bZqdBCNzQjeHdhkwtfpBzcBaiAP6qVQtZ4lRYkSwOnEeeLkZxZszKG5t8ViQsihmWQgdAQ_9BA4cDYcpY7JEHlfgu97cLphF48B7Zr-V5ufyazX_03898Qm6ARkg-9k-OW-RmGfQDE4PzHbI5_TEzj8F2nKa75Sml5NtVq4XfTJ6B-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imaging+chromophores+with+undetectable+fluorescence+by+stimulated+emission+microscopy&rft.jtitle=Nature+%28London%29&rft.au=Min%2C+Wei&rft.au=Lu%2C+Sijia&rft.au=Chong%2C+Shasha&rft.au=Roy%2C+Rahul&rft.date=2009-10-22&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=461&rft.issue=7267&rft.spage=1105&rft_id=info:doi/10.1038%2Fnature08438&rft.externalDocID=A211236166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon