Computational Dysfunctions in Anxiety: Failure to Differentiate Signal From Noise

Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This i...

Full description

Saved in:
Bibliographic Details
Published inBiological psychiatry (1969) Vol. 82; no. 6; pp. 440 - 446
Main Authors Huang, He, Thompson, Wesley, Paulus, Martin P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.09.2017
Subjects
Online AccessGet full text
ISSN0006-3223
1873-2402
1873-2402
DOI10.1016/j.biopsych.2017.07.007

Cover

Abstract Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety. One hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups. High anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model. Anxious subjects’ exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models.
AbstractList AbstractBackgroundDifferentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety. MethodsOne hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups. ResultsHigh anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model. ConclusionsAnxious subjects’ exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models.
Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety. One hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups. High anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model. Anxious subjects’ exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models.
Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety.BACKGROUNDDifferentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety.One hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups.METHODSOne hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups.High anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model.RESULTSHigh anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model.Anxious subjects' exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models.CONCLUSIONSAnxious subjects' exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models.
Author Paulus, Martin P.
Huang, He
Thompson, Wesley
AuthorAffiliation 1 Laureate Institute for Brain Research, Tulsa, OK
2 Psychiatry, University of California San Diego, La Jolla, CA
AuthorAffiliation_xml – name: 2 Psychiatry, University of California San Diego, La Jolla, CA
– name: 1 Laureate Institute for Brain Research, Tulsa, OK
Author_xml – sequence: 1
  givenname: He
  surname: Huang
  fullname: Huang, He
  organization: Laureate Institute for Brain Research, Tulsa, Oklahoma
– sequence: 2
  givenname: Wesley
  surname: Thompson
  fullname: Thompson, Wesley
  organization: Laureate Institute for Brain Research, Tulsa, Oklahoma
– sequence: 3
  givenname: Martin P.
  surname: Paulus
  fullname: Paulus, Martin P.
  email: mpaulus@laureateinstitute.org
  organization: Laureate Institute for Brain Research, Tulsa, Oklahoma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28838468$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFuEzEQtVARTQu_UO2RywZ7vWt7EaqoUtIiVXAInC3XGbcTNnawdyvyN_2Wfhlepa2gB4r0JGvk996M5s0B2fPBAyFHjE4ZZeLdanqJYZO29npaUSanNIPKF2TClORlVdNqj0wopaLkVcX3yUFKq1zKqmKvyH6lFFe1UBOymIX1ZuhNj8GbrjjdJjd4O1apQF-c-F8I_fZ9MTfYDRHubvtwd3uKzkEE36PpoVjg1Sidx7AuvgRM8Jq8dKZL8Ob-PSTf55--zc7Li69nn2cnF6VtFOtLXrdsqVTLnMwQRklQjjPnnKi5bES7VK42qraGt0BZ65SQsq1r3tgaeMP4ITne-W6GyzUsbR4omk5vIq5N3OpgUP_94_FaX4Ub3TRSNLLJBm_vDWL4OUDq9RqTha4zHsKQNGt5pWrKqcjUoz97PTZ52GQmiB3BxpBSBPdIYVSPkemVfohMj5FpmkFlFn54IrS4yyPPjN3z8o87OeRN3yBEnSyCt7DECLbXy4DPWxw_sbAderSm-wFbSKswxBxwXodOlaZ6MZ7VeFVMcqaoYP82-J8JfgP5R-OF
CitedBy_id crossref_primary_10_3389_fnbeh_2021_615796
crossref_primary_10_1016_j_conb_2019_03_011
crossref_primary_10_1038_s41467_024_53459_z
crossref_primary_10_1038_s41598_021_89047_0
crossref_primary_10_1038_s41598_021_91308_x
crossref_primary_10_1038_s41598_022_10813_9
crossref_primary_10_1177_2167702619858425
crossref_primary_10_1016_j_neuroimage_2020_117424
crossref_primary_10_1016_j_biopsych_2023_02_004
crossref_primary_10_1146_annurev_neuro_080317_062007
crossref_primary_10_7554_eLife_66169
crossref_primary_10_1177_21677026211051324
crossref_primary_10_3389_fpsyg_2024_1372769
crossref_primary_10_1001_jamapsychiatry_2022_0051
crossref_primary_10_1002_hbm_26230
crossref_primary_10_1038_s42003_023_04628_1
crossref_primary_10_1007_s00422_025_01006_4
crossref_primary_10_1002_jts_22595
crossref_primary_10_1016_j_cogdev_2024_101432
crossref_primary_10_1002_mhs2_49
crossref_primary_10_1016_j_nicl_2021_102751
crossref_primary_10_1016_j_bpsc_2019_12_011
crossref_primary_10_1016_j_schres_2021_01_023
crossref_primary_10_1177_0963721418818441
crossref_primary_10_1016_j_janxdis_2022_102588
crossref_primary_10_1016_j_neubiorev_2022_104959
crossref_primary_10_1038_s41386_020_0746_4
crossref_primary_10_1038_s41467_021_26731_9
crossref_primary_10_7554_eLife_50654
crossref_primary_10_1016_j_jbtep_2022_101810
crossref_primary_10_1016_j_celrep_2021_110232
crossref_primary_10_1192_bjp_2022_175
crossref_primary_10_1038_s41467_020_17977_w
crossref_primary_10_1016_j_neubiorev_2023_105123
crossref_primary_10_1016_j_neubiorev_2023_105321
crossref_primary_10_1212_CON_0000000000000607
crossref_primary_10_1007_s44192_023_00058_x
crossref_primary_10_1016_j_neubiorev_2023_105087
crossref_primary_10_1016_j_neuroimage_2022_118895
crossref_primary_10_3390_brainsci14121278
crossref_primary_10_1016_j_biopsycho_2021_108152
crossref_primary_10_1038_s44184_022_00009_4
crossref_primary_10_1371_journal_pcbi_1008484
crossref_primary_10_1016_j_cobeha_2018_03_013
crossref_primary_10_1016_j_biopsycho_2024_108825
crossref_primary_10_1016_j_jad_2024_07_066
crossref_primary_10_1126_sciadv_add2976
crossref_primary_10_1038_s41386_021_01109_z
crossref_primary_10_1016_j_jad_2020_02_012
crossref_primary_10_1038_s41562_022_01455_y
crossref_primary_10_1038_s42003_024_05907_1
crossref_primary_10_1038_s41562_023_01640_7
crossref_primary_10_1371_journal_pcbi_1007341
crossref_primary_10_1016_j_biopsych_2017_07_016
crossref_primary_10_5334_cpsy_64
crossref_primary_10_1371_journal_pone_0233761
crossref_primary_10_1016_j_jpsychires_2023_06_030
crossref_primary_10_1016_j_bpsgos_2021_09_006
crossref_primary_10_1016_j_neubiorev_2024_105940
crossref_primary_10_1016_j_jad_2023_05_021
Cites_doi 10.1016/j.janxdis.2010.04.003
10.1001/archpsyc.1994.03950010008002
10.1016/S0005-7967(99)00146-1
10.1017/S0033291713003243
10.1016/j.brat.2004.08.008
10.1016/j.beth.2010.09.002
10.1016/0005-7967(90)90027-G
10.3389/fnhum.2011.00039
10.1037/a0020684
10.1177/2167702614562040
10.1038/35006062
10.1016/j.janxdis.2009.07.006
10.1097/00005053-199705000-00005
10.1038/nn.3961
10.1016/S0005-7967(97)00070-3
10.1016/j.tics.2006.05.003
10.1016/j.jad.2008.03.014
10.1016/j.cpr.2015.08.004
10.3389/fnhum.2014.00825
10.1016/S0005-7967(99)00133-3
10.1523/JNEUROSCI.2978-14.2015
10.1037/dec0000013
10.1002/mpr.1359
ContentType Journal Article
Copyright 2017 Society of Biological Psychiatry
Society of Biological Psychiatry
Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Society of Biological Psychiatry
– notice: Society of Biological Psychiatry
– notice: Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.biopsych.2017.07.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1873-2402
EndPage 446
ExternalDocumentID PMC5576575
28838468
10_1016_j_biopsych_2017_07_007
S0006322317318061
1_s2_0_S0006322317318061
Genre Journal Article
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH101453
– fundername: NIDA NIH HHS
  grantid: R01 DA027797
– fundername: NIDA NIH HHS
  grantid: R01 DA016663
– fundername: NIDA NIH HHS
  grantid: R01 DA018307
– fundername: NIDA NIH HHS
  grantid: U01 DA041089
GroupedDBID ---
--K
--M
-DZ
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABCQX
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ACDAQ
ACGFO
ACIEU
ACIUM
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
L7B
M29
M2V
M39
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OH0
OU-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSN
SSZ
T5K
UNMZH
UPT
UV1
WH7
Z5R
ZCA
~G-
.GJ
3O-
53G
AAQXK
ABDPE
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
AHHHB
AIGII
APXCP
ASPBG
AVWKF
AZFZN
EFLBG
FEDTE
FGOYB
G-2
HEG
HMK
HMO
HMQ
HVGLF
HZ~
H~9
R2-
SNS
UAP
WUQ
XJT
XOL
ZGI
ZKB
ZXP
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
5PM
ID FETCH-LOGICAL-c581t-3491d8891f71f76a87e8f31fff6437569d8f4a84ca39e019f867794435c4e3513
IEDL.DBID AIKHN
ISSN 0006-3223
1873-2402
IngestDate Thu Aug 21 14:10:58 EDT 2025
Sat Sep 27 21:19:34 EDT 2025
Wed Feb 19 02:43:43 EST 2025
Thu Apr 24 23:07:37 EDT 2025
Tue Jul 01 03:38:28 EDT 2025
Fri Feb 23 02:14:59 EST 2024
Sun Sep 14 23:55:44 EDT 2025
Tue Aug 26 16:58:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Bayesian models
Anxiety
Computational psychiatry
Change point detection
Decision making
Reinforcement learning
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c581t-3491d8891f71f76a87e8f31fff6437569d8f4a84ca39e019f867794435c4e3513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5576575
PMID 28838468
PQID 1932840306
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576575
proquest_miscellaneous_1932840306
pubmed_primary_28838468
crossref_primary_10_1016_j_biopsych_2017_07_007
crossref_citationtrail_10_1016_j_biopsych_2017_07_007
elsevier_sciencedirect_doi_10_1016_j_biopsych_2017_07_007
elsevier_clinicalkeyesjournals_1_s2_0_S0006322317318061
elsevier_clinicalkey_doi_10_1016_j_biopsych_2017_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-15
PublicationDateYYYYMMDD 2017-09-15
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biological psychiatry (1969)
PublicationTitleAlternate Biol Psychiatry
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mennin, Heimberg, Turk, Fresco (bib7) 2005; 43
Campbell-Sills, Norman, Craske, Sullivan, Lang, Chavira (bib18) 2009; 112
Browning, Behrens, Jocham, O’Reilly, Bishop (bib16) 2015; 18
Luhmann, Ishida, Hajcak (bib13) 2011; 42
Kessler, McGonagle, Zhao, Nelson, Hughes, Eshleman (bib1) 1994; 51
Wells, Papageorgiou (bib6) 2001; 39
Yu, Huang (bib20) 2014; 1
Huys, Guitart-Masip, Dolan, Dayan (bib11) 2015; 3
Gold, Shadlen (bib19) 2000; 404
Mathys, Daunizeau, Friston, Stephan (bib26) 2011; 5
Behar, DiMarco, Hekler, Mohlman, Staples (bib10) 2009; 23
Huang (bib25) 2016; 29
Mathys, Lomakina, Daunizeau, Iglesias, Brodersen, Friston (bib27) 2014; 8
Dugas, Gagnon, Ladouceur, Freeston (bib5) 1998; 36
Kessler, Petukhova, Sampson, Zaslavsky, Wittchen (bib2) 2012; 21
Kording, Wolpert (bib12) 2006; 10
Yook, Kim, Suh, Lee (bib14) 2010; 24
Loerinc, Meuret, Twohig, Rosenfield, Bluett, Craske (bib4) 2015; 42
Baxter, Vos, Scott, Ferrari, Whiteford (bib3) 2014; 44
Ladouceur, Gosselin, Dugas (bib15) 2000; 38
Sutton, Barto (bib17) 1998
Ahn, Krawitz, Kim, Busemeyer, Brown (bib23) 2011; 4
Roemer, Molina, Borkovec (bib8) 1997; 185
Rescorla RA, Wagner AW (1972): A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF, editors. Classical Conditioning II: Current Research and Theory: Appleton-Century-Crofts; 1972:64–99.
Daw (bib24) 2011; 23
Niv, Daniel, Geana, Gershman, Leong, Radulescu (bib22) 2015; 35
Borkovec, Inz (bib9) 1990; 28
Ladouceur (10.1016/j.biopsych.2017.07.007_bib15) 2000; 38
Yu (10.1016/j.biopsych.2017.07.007_bib20) 2014; 1
Roemer (10.1016/j.biopsych.2017.07.007_bib8) 1997; 185
Borkovec (10.1016/j.biopsych.2017.07.007_bib9) 1990; 28
Campbell-Sills (10.1016/j.biopsych.2017.07.007_bib18) 2009; 112
Browning (10.1016/j.biopsych.2017.07.007_bib16) 2015; 18
Loerinc (10.1016/j.biopsych.2017.07.007_bib4) 2015; 42
Mathys (10.1016/j.biopsych.2017.07.007_bib27) 2014; 8
Gold (10.1016/j.biopsych.2017.07.007_bib19) 2000; 404
Kessler (10.1016/j.biopsych.2017.07.007_bib2) 2012; 21
10.1016/j.biopsych.2017.07.007_bib21
Dugas (10.1016/j.biopsych.2017.07.007_bib5) 1998; 36
Huang (10.1016/j.biopsych.2017.07.007_bib25) 2016; 29
Behar (10.1016/j.biopsych.2017.07.007_bib10) 2009; 23
Mennin (10.1016/j.biopsych.2017.07.007_bib7) 2005; 43
Ahn (10.1016/j.biopsych.2017.07.007_bib23) 2011; 4
Mathys (10.1016/j.biopsych.2017.07.007_bib26) 2011; 5
Huys (10.1016/j.biopsych.2017.07.007_bib11) 2015; 3
Kording (10.1016/j.biopsych.2017.07.007_bib12) 2006; 10
Niv (10.1016/j.biopsych.2017.07.007_bib22) 2015; 35
Baxter (10.1016/j.biopsych.2017.07.007_bib3) 2014; 44
Wells (10.1016/j.biopsych.2017.07.007_bib6) 2001; 39
Daw (10.1016/j.biopsych.2017.07.007_bib24) 2011; 23
Luhmann (10.1016/j.biopsych.2017.07.007_bib13) 2011; 42
Sutton (10.1016/j.biopsych.2017.07.007_bib17) 1998
Kessler (10.1016/j.biopsych.2017.07.007_bib1) 1994; 51
Yook (10.1016/j.biopsych.2017.07.007_bib14) 2010; 24
16807063 - Trends Cogn Sci. 2006 Jul;10(7):319-26
10746726 - Nature. 2000 Mar 23;404(6776):390-4
8279933 - Arch Gen Psychiatry. 1994 Jan;51(1):8-19
26019331 - J Neurosci. 2015 May 27;35(21):8145-57
19700258 - J Anxiety Disord. 2009 Dec;23(8):1011-23
26319194 - Clin Psychol Rev. 2015 Dec;42:72-82
20439149 - J Anxiety Disord. 2010 Aug;24(6):623-8
25477800 - Front Hum Neurosci. 2014 Nov 19;8:825
23795233 - J Neurosci Psychol Econ. 2011 May;4(2):95-110
9613027 - Behav Res Ther. 1998 Feb;36(2):215-26
9171808 - J Nerv Ment Dis. 1997 May;185(5):314-9
2183759 - Behav Res Ther. 1990;28(2):153-8
22865617 - Int J Methods Psychiatr Res. 2012 Sep;21(3):169-84
21629826 - Front Hum Neurosci. 2011 May 02;5:39
16086981 - Behav Res Ther. 2005 Oct;43(10):1281-310
18486238 - J Affect Disord. 2009 Jan;112(1-3):92-101
24451993 - Psychol Med. 2014 Aug;44(11):2363-74
10957827 - Behav Res Ther. 2000 Sep;38(9):933-41
25730669 - Nat Neurosci. 2015 Apr;18(4):590-6
11125718 - Behav Res Ther. 2001 Jan;39(1):1-11
21658521 - Behav Ther. 2011 Sep;42(3):378-86
References_xml – volume: 36
  start-page: 215
  year: 1998
  end-page: 226
  ident: bib5
  article-title: Generalized anxiety disorder: A preliminary test of a conceptual model
  publication-title: Behav Res Ther
– volume: 42
  start-page: 72
  year: 2015
  end-page: 82
  ident: bib4
  article-title: Response rates for CBT for anxiety disorders: Need for standardized criteria
  publication-title: Clin Psychol Rev
– volume: 4
  start-page: 95
  year: 2011
  end-page: 110
  ident: bib23
  article-title: A model-based fMRI analysis with hierarchical Bayesian parameter estimation
  publication-title: J Neurosci Psychol Econ
– volume: 1
  start-page: 275
  year: 2014
  end-page: 287
  ident: bib20
  article-title: Maximizing masquerading as matching in human visual search choice behavior
  publication-title: Decision
– volume: 28
  start-page: 153
  year: 1990
  end-page: 158
  ident: bib9
  article-title: The nature of worry in generalized anxiety disorder: A predominance of thought activity
  publication-title: Behav Res Ther
– volume: 24
  start-page: 623
  year: 2010
  end-page: 628
  ident: bib14
  article-title: Intolerance of uncertainty, worry, and rumination in major depressive disorder and generalized anxiety disorder
  publication-title: J Anxiety Disord
– year: 1998
  ident: bib17
  article-title: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning)
– volume: 18
  start-page: 590
  year: 2015
  end-page: 596
  ident: bib16
  article-title: Anxious individuals have difficulty learning the causal statistics of aversive environments
  publication-title: Nat Neurosci
– volume: 404
  start-page: 390
  year: 2000
  end-page: 394
  ident: bib19
  article-title: Representation of a perceptual decision in developing oculomotor commands
  publication-title: Nature
– volume: 185
  start-page: 314
  year: 1997
  end-page: 319
  ident: bib8
  article-title: An investigation of worry content among generally anxious individuals
  publication-title: J Nerv Ment Dis
– volume: 112
  start-page: 92
  year: 2009
  end-page: 101
  ident: bib18
  article-title: Validation of a brief measure of anxiety-related severity and impairment: The Overall Anxiety Severity and Impairment Scale (OASIS)
  publication-title: J Affect Disord
– volume: 8
  start-page: 825
  year: 2014
  ident: bib27
  article-title: Uncertainty in perception and the Hierarchical Gaussian Filter
  publication-title: Front Hum Neurosci
– volume: 3
  start-page: 400
  year: 2015
  end-page: 421
  ident: bib11
  article-title: Decision-theoretic psychiatry
  publication-title: Clin Psychol Sci
– volume: 35
  start-page: 8145
  year: 2015
  end-page: 8157
  ident: bib22
  article-title: Reinforcement learning in multidimensional environments relies on attention mechanisms
  publication-title: J Neurosci
– volume: 23
  start-page: 3
  year: 2011
  end-page: 38
  ident: bib24
  article-title: Trial-by-trial data analysis using computational models. Decision making, affect, and learning
  publication-title: Attention and Performance XXIII
– volume: 5
  start-page: 39
  year: 2011
  ident: bib26
  article-title: A bayesian foundation for individual learning under uncertainty
  publication-title: Front Hum Neurosci
– volume: 42
  start-page: 378
  year: 2011
  end-page: 386
  ident: bib13
  article-title: Intolerance of uncertainty and decisions about delayed, probabilistic rewards
  publication-title: Behav Ther
– volume: 21
  start-page: 169
  year: 2012
  end-page: 184
  ident: bib2
  article-title: Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States
  publication-title: Int J Methods Psychiatr Res
– volume: 38
  start-page: 933
  year: 2000
  end-page: 941
  ident: bib15
  article-title: Experimental manipulation of intolerance of uncertainty: A study of a theoretical model of worry
  publication-title: Behav Res Ther
– volume: 29
  start-page: 2730
  year: 2016
  end-page: 2738
  ident: bib25
  article-title: Learning under uncertainty: A comparison between R-W and Bayesian approach
  publication-title: Neural Information Processing Systems
– volume: 10
  start-page: 319
  year: 2006
  end-page: 326
  ident: bib12
  article-title: Bayesian decision theory in sensorimotor control
  publication-title: Trends Cogn Sci
– reference: Rescorla RA, Wagner AW (1972): A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF, editors. Classical Conditioning II: Current Research and Theory: Appleton-Century-Crofts; 1972:64–99.
– volume: 51
  start-page: 8
  year: 1994
  end-page: 19
  ident: bib1
  article-title: Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey
  publication-title: Arch Gen Psychiatry
– volume: 23
  start-page: 1011
  year: 2009
  end-page: 1023
  ident: bib10
  article-title: Current theoretical models of generalized anxiety disorder (GAD): Conceptual review and treatment implications
  publication-title: J Anxiety Disord
– volume: 39
  start-page: 1
  year: 2001
  end-page: 11
  ident: bib6
  article-title: Social phobic interoception: Effects of bodily information on anxiety, beliefs and self-processing
  publication-title: Behav Res Ther
– volume: 44
  start-page: 2363
  year: 2014
  end-page: 2674
  ident: bib3
  article-title: The global burden of anxiety disorders in 2010
  publication-title: Psychol Med
– volume: 43
  start-page: 1281
  year: 2005
  end-page: 1310
  ident: bib7
  article-title: Preliminary evidence for an emotion dysregulation model of generalized anxiety disorder
  publication-title: Behav Res Ther
– volume: 24
  start-page: 623
  year: 2010
  ident: 10.1016/j.biopsych.2017.07.007_bib14
  article-title: Intolerance of uncertainty, worry, and rumination in major depressive disorder and generalized anxiety disorder
  publication-title: J Anxiety Disord
  doi: 10.1016/j.janxdis.2010.04.003
– volume: 51
  start-page: 8
  year: 1994
  ident: 10.1016/j.biopsych.2017.07.007_bib1
  article-title: Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1994.03950010008002
– volume: 39
  start-page: 1
  year: 2001
  ident: 10.1016/j.biopsych.2017.07.007_bib6
  article-title: Social phobic interoception: Effects of bodily information on anxiety, beliefs and self-processing
  publication-title: Behav Res Ther
  doi: 10.1016/S0005-7967(99)00146-1
– volume: 44
  start-page: 2363
  year: 2014
  ident: 10.1016/j.biopsych.2017.07.007_bib3
  article-title: The global burden of anxiety disorders in 2010
  publication-title: Psychol Med
  doi: 10.1017/S0033291713003243
– volume: 43
  start-page: 1281
  year: 2005
  ident: 10.1016/j.biopsych.2017.07.007_bib7
  article-title: Preliminary evidence for an emotion dysregulation model of generalized anxiety disorder
  publication-title: Behav Res Ther
  doi: 10.1016/j.brat.2004.08.008
– volume: 42
  start-page: 378
  year: 2011
  ident: 10.1016/j.biopsych.2017.07.007_bib13
  article-title: Intolerance of uncertainty and decisions about delayed, probabilistic rewards
  publication-title: Behav Ther
  doi: 10.1016/j.beth.2010.09.002
– volume: 28
  start-page: 153
  year: 1990
  ident: 10.1016/j.biopsych.2017.07.007_bib9
  article-title: The nature of worry in generalized anxiety disorder: A predominance of thought activity
  publication-title: Behav Res Ther
  doi: 10.1016/0005-7967(90)90027-G
– volume: 5
  start-page: 39
  year: 2011
  ident: 10.1016/j.biopsych.2017.07.007_bib26
  article-title: A bayesian foundation for individual learning under uncertainty
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2011.00039
– volume: 4
  start-page: 95
  year: 2011
  ident: 10.1016/j.biopsych.2017.07.007_bib23
  article-title: A model-based fMRI analysis with hierarchical Bayesian parameter estimation
  publication-title: J Neurosci Psychol Econ
  doi: 10.1037/a0020684
– ident: 10.1016/j.biopsych.2017.07.007_bib21
– volume: 3
  start-page: 400
  year: 2015
  ident: 10.1016/j.biopsych.2017.07.007_bib11
  article-title: Decision-theoretic psychiatry
  publication-title: Clin Psychol Sci
  doi: 10.1177/2167702614562040
– volume: 404
  start-page: 390
  year: 2000
  ident: 10.1016/j.biopsych.2017.07.007_bib19
  article-title: Representation of a perceptual decision in developing oculomotor commands
  publication-title: Nature
  doi: 10.1038/35006062
– volume: 23
  start-page: 1011
  year: 2009
  ident: 10.1016/j.biopsych.2017.07.007_bib10
  article-title: Current theoretical models of generalized anxiety disorder (GAD): Conceptual review and treatment implications
  publication-title: J Anxiety Disord
  doi: 10.1016/j.janxdis.2009.07.006
– volume: 185
  start-page: 314
  year: 1997
  ident: 10.1016/j.biopsych.2017.07.007_bib8
  article-title: An investigation of worry content among generally anxious individuals
  publication-title: J Nerv Ment Dis
  doi: 10.1097/00005053-199705000-00005
– volume: 18
  start-page: 590
  year: 2015
  ident: 10.1016/j.biopsych.2017.07.007_bib16
  article-title: Anxious individuals have difficulty learning the causal statistics of aversive environments
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3961
– volume: 36
  start-page: 215
  year: 1998
  ident: 10.1016/j.biopsych.2017.07.007_bib5
  article-title: Generalized anxiety disorder: A preliminary test of a conceptual model
  publication-title: Behav Res Ther
  doi: 10.1016/S0005-7967(97)00070-3
– volume: 10
  start-page: 319
  year: 2006
  ident: 10.1016/j.biopsych.2017.07.007_bib12
  article-title: Bayesian decision theory in sensorimotor control
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2006.05.003
– year: 1998
  ident: 10.1016/j.biopsych.2017.07.007_bib17
– volume: 112
  start-page: 92
  year: 2009
  ident: 10.1016/j.biopsych.2017.07.007_bib18
  article-title: Validation of a brief measure of anxiety-related severity and impairment: The Overall Anxiety Severity and Impairment Scale (OASIS)
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2008.03.014
– volume: 42
  start-page: 72
  year: 2015
  ident: 10.1016/j.biopsych.2017.07.007_bib4
  article-title: Response rates for CBT for anxiety disorders: Need for standardized criteria
  publication-title: Clin Psychol Rev
  doi: 10.1016/j.cpr.2015.08.004
– volume: 8
  start-page: 825
  year: 2014
  ident: 10.1016/j.biopsych.2017.07.007_bib27
  article-title: Uncertainty in perception and the Hierarchical Gaussian Filter
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00825
– volume: 29
  start-page: 2730
  year: 2016
  ident: 10.1016/j.biopsych.2017.07.007_bib25
  article-title: Learning under uncertainty: A comparison between R-W and Bayesian approach
  publication-title: Neural Information Processing Systems
– volume: 38
  start-page: 933
  year: 2000
  ident: 10.1016/j.biopsych.2017.07.007_bib15
  article-title: Experimental manipulation of intolerance of uncertainty: A study of a theoretical model of worry
  publication-title: Behav Res Ther
  doi: 10.1016/S0005-7967(99)00133-3
– volume: 23
  start-page: 3
  year: 2011
  ident: 10.1016/j.biopsych.2017.07.007_bib24
  article-title: Trial-by-trial data analysis using computational models. Decision making, affect, and learning
  publication-title: Attention and Performance XXIII
– volume: 35
  start-page: 8145
  year: 2015
  ident: 10.1016/j.biopsych.2017.07.007_bib22
  article-title: Reinforcement learning in multidimensional environments relies on attention mechanisms
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2978-14.2015
– volume: 1
  start-page: 275
  year: 2014
  ident: 10.1016/j.biopsych.2017.07.007_bib20
  article-title: Maximizing masquerading as matching in human visual search choice behavior
  publication-title: Decision
  doi: 10.1037/dec0000013
– volume: 21
  start-page: 169
  year: 2012
  ident: 10.1016/j.biopsych.2017.07.007_bib2
  article-title: Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.1359
– reference: 26019331 - J Neurosci. 2015 May 27;35(21):8145-57
– reference: 26319194 - Clin Psychol Rev. 2015 Dec;42:72-82
– reference: 25477800 - Front Hum Neurosci. 2014 Nov 19;8:825
– reference: 24451993 - Psychol Med. 2014 Aug;44(11):2363-74
– reference: 9171808 - J Nerv Ment Dis. 1997 May;185(5):314-9
– reference: 8279933 - Arch Gen Psychiatry. 1994 Jan;51(1):8-19
– reference: 11125718 - Behav Res Ther. 2001 Jan;39(1):1-11
– reference: 23795233 - J Neurosci Psychol Econ. 2011 May;4(2):95-110
– reference: 25730669 - Nat Neurosci. 2015 Apr;18(4):590-6
– reference: 2183759 - Behav Res Ther. 1990;28(2):153-8
– reference: 9613027 - Behav Res Ther. 1998 Feb;36(2):215-26
– reference: 10746726 - Nature. 2000 Mar 23;404(6776):390-4
– reference: 19700258 - J Anxiety Disord. 2009 Dec;23(8):1011-23
– reference: 21658521 - Behav Ther. 2011 Sep;42(3):378-86
– reference: 18486238 - J Affect Disord. 2009 Jan;112(1-3):92-101
– reference: 20439149 - J Anxiety Disord. 2010 Aug;24(6):623-8
– reference: 10957827 - Behav Res Ther. 2000 Sep;38(9):933-41
– reference: 16807063 - Trends Cogn Sci. 2006 Jul;10(7):319-26
– reference: 16086981 - Behav Res Ther. 2005 Oct;43(10):1281-310
– reference: 22865617 - Int J Methods Psychiatr Res. 2012 Sep;21(3):169-84
– reference: 21629826 - Front Hum Neurosci. 2011 May 02;5:39
SSID ssj0007221
Score 2.5100603
Snippet Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects...
AbstractBackgroundDifferentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 440
SubjectTerms Adult
Anxiety
Anxiety Disorders - drug therapy
Anxiety Disorders - psychology
Bayesian models
Change point detection
Computational psychiatry
Computer Simulation
Decision Making
Discrimination (Psychology)
Female
Humans
Male
Models, Psychological
Neuropsychological Tests
Psychiatric Status Rating Scales
Psychiatric/Mental Health
Psychotropic Drugs - therapeutic use
Reinforcement (Psychology)
Reinforcement learning
Uncertainty
Title Computational Dysfunctions in Anxiety: Failure to Differentiate Signal From Noise
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006322317318061
https://www.clinicalkey.es/playcontent/1-s2.0-S0006322317318061
https://dx.doi.org/10.1016/j.biopsych.2017.07.007
https://www.ncbi.nlm.nih.gov/pubmed/28838468
https://www.proquest.com/docview/1932840306
https://pubmed.ncbi.nlm.nih.gov/PMC5576575
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB61qWi5IAjQhp_KSFzdeL1re80tSokCqLmUSr2tnO0uOKJ2VbsSvfAsfZY-GTP22mooEgikXBJ74tXu7Px4v5kP4K2V1IbOxD4VafpimQU-ejnrW0J8Mx0y3bzKPlrE8xPx8TQ63YBpVwtDsEpn-1ub3lhr98vYzeb4Is-pxhfdK3o3lqBeBpQCbYXo7eUAtiYfPs0XvUFOwtAR58U-CdwpFF4dLPOywRUTyitp-ngSs-zvfdT9GPRXKOUd3zR7DI9cUOlN2nE_gQ1TDOFBSzN5PYSdacfqNoTtI3eY_hSOW0YH9zbQO7yuyMk1eujlhTcpvhOe8503y3LCrt_e1OXtzaEjVEHDUBvvOP9CorPL8txblHllnsHJ7P3n6dx3HAu-jiSrfS5SdiZlymyCnziTiZGWM2stnehFcXomrcik0BlPDYaDlvrfpQKDLC0Mjxh_DoOiLMweeCgvggzvzgIutND4x5yZWHNMwDkmZiOIullV2jUgJx6Mb6pDmq1UtxqKVkMFdDaOcuNe7qJtwfFHiaRbNNUVmKJJVOgl_k3SVG5nV4qpKlSBuqd9I0h7yTUF_qunvuk0S6E60JFNVpjyCp-G4TWm4JjXjWC31bR-DognGveVxDGv6WB_A3UOX79S5F-bDuIRZpkYp7_4jzG_hIf0jaAzLHoFg_ryyrzG-Kxe7sPmwQ-273bhT7IKPFs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hoBYuVZs-SOnDlXp1482u7TW3KDQKheQCSNxWzrJLjcBG2Ejl3_Bb-GWdsdcWKZVatVJOtide7c7Ow_vNfACfraQ2dCbyqUjTF8s08NHLWd8S4pvpEdP1p-z5Ipodi28n4ckaTNpaGIJVOtvf2PTaWrsrQzebw6ssoxpfdK_o3ViMehlQCrQuiNS6B-vjvf3ZojPI8WjkiPMinwQeFAqff1lmRY0rJpRXXPfxJGbZ3_uoxzHor1DKB75p-hyeuaDSGzfjfgFrJu_Dk4Zm8rYPG5OW1a0PT-fuMP0lHDaMDu5roLd7W5KTq_XQy3JvnP8gPOeON00zwq7f31XF_d2uI1RBw1AZ7zA7I9HpdXHpLYqsNK_gePr1aDLzHceCr0PJKp-LhJ1KmTAb4y9KZWyk5cxaSyd6YZScSitSKXTKE4PhoKX-d4nAIEsLw0PGX0MvL3KzBR7KiyDFp9OACy00_jFnJtIcE3COidkAwnZWlXYNyIkH40K1SLNz1a6GotVQAZ2No9ywk7tqWnD8USJuF021BaZoEhV6iX-TNKXb2aViqhypQD3SvgEkneSKAv_VWz-1mqVQHejIJs1NcYNvw_AaU3DM6wbwptG0bg6IJxr3lcQxr-hg9wB1Dl-9k2ff6w7iIWaZGKe__Y8xf4SN2dH8QB3sLfa3YZPuEIyGhe-gV13fmPcYq1XLD24v_gQfNj5B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Dysfunctions+in+Anxiety%3A+Failure+to+Differentiate+Signal+From+Noise&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Huang%2C+He&rft.au=Thompson%2C+Wesley&rft.au=Paulus%2C+Martin+P&rft.date=2017-09-15&rft.issn=1873-2402&rft.eissn=1873-2402&rft.volume=82&rft.issue=6&rft.spage=440&rft_id=info:doi/10.1016%2Fj.biopsych.2017.07.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322316X0039X%2Fcov150h.gif