Computational Dysfunctions in Anxiety: Failure to Differentiate Signal From Noise
Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This i...
Saved in:
Published in | Biological psychiatry (1969) Vol. 82; no. 6; pp. 440 - 446 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-3223 1873-2402 1873-2402 |
DOI | 10.1016/j.biopsych.2017.07.007 |
Cover
Abstract | Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety.
One hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups.
High anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model.
Anxious subjects’ exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models. |
---|---|
AbstractList | AbstractBackgroundDifferentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety. MethodsOne hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups. ResultsHigh anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model. ConclusionsAnxious subjects’ exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models. Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety. One hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups. High anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model. Anxious subjects’ exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models. Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety.BACKGROUNDDifferentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects adaptive behavior. Previous studies have shown that anxious individuals may not appropriately differentiate between these situations. This investigation aims to precisely quantify the process deficit in anxious individuals and determine the degree to which these process dysfunctions are specific to anxiety.One hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups.METHODSOne hundred twenty-two subjects recruited as part of an ongoing large clinical population study completed a change point detection task. Reinforcement learning models were used to explicate observed behavioral differences in low anxiety (Overall Anxiety Severity and Impairment Scale score ≤ 8) and high anxiety (Overall Anxiety Severity and Impairment Scale score ≥ 9) groups.High anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model.RESULTSHigh anxiety individuals used a suboptimal decision strategy characterized by a higher lose-shift rate. Computational models and simulations revealed that this difference was related to a higher base learning rate. These findings are better explained in a context-dependent reinforcement learning model.Anxious subjects' exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models.CONCLUSIONSAnxious subjects' exaggerated response to uncertainty leads to a suboptimal decision strategy that makes it difficult for these individuals to determine whether an action is associated with an outcome by chance or by some statistical regularity. These findings have important implications for developing new behavioral intervention strategies using learning models. |
Author | Paulus, Martin P. Huang, He Thompson, Wesley |
AuthorAffiliation | 1 Laureate Institute for Brain Research, Tulsa, OK 2 Psychiatry, University of California San Diego, La Jolla, CA |
AuthorAffiliation_xml | – name: 2 Psychiatry, University of California San Diego, La Jolla, CA – name: 1 Laureate Institute for Brain Research, Tulsa, OK |
Author_xml | – sequence: 1 givenname: He surname: Huang fullname: Huang, He organization: Laureate Institute for Brain Research, Tulsa, Oklahoma – sequence: 2 givenname: Wesley surname: Thompson fullname: Thompson, Wesley organization: Laureate Institute for Brain Research, Tulsa, Oklahoma – sequence: 3 givenname: Martin P. surname: Paulus fullname: Paulus, Martin P. email: mpaulus@laureateinstitute.org organization: Laureate Institute for Brain Research, Tulsa, Oklahoma |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28838468$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsFuEzEQtVARTQu_UO2RywZ7vWt7EaqoUtIiVXAInC3XGbcTNnawdyvyN_2Wfhlepa2gB4r0JGvk996M5s0B2fPBAyFHjE4ZZeLdanqJYZO29npaUSanNIPKF2TClORlVdNqj0wopaLkVcX3yUFKq1zKqmKvyH6lFFe1UBOymIX1ZuhNj8GbrjjdJjd4O1apQF-c-F8I_fZ9MTfYDRHubvtwd3uKzkEE36PpoVjg1Sidx7AuvgRM8Jq8dKZL8Ob-PSTf55--zc7Li69nn2cnF6VtFOtLXrdsqVTLnMwQRklQjjPnnKi5bES7VK42qraGt0BZ65SQsq1r3tgaeMP4ITne-W6GyzUsbR4omk5vIq5N3OpgUP_94_FaX4Ub3TRSNLLJBm_vDWL4OUDq9RqTha4zHsKQNGt5pWrKqcjUoz97PTZ52GQmiB3BxpBSBPdIYVSPkemVfohMj5FpmkFlFn54IrS4yyPPjN3z8o87OeRN3yBEnSyCt7DECLbXy4DPWxw_sbAderSm-wFbSKswxBxwXodOlaZ6MZ7VeFVMcqaoYP82-J8JfgP5R-OF |
CitedBy_id | crossref_primary_10_3389_fnbeh_2021_615796 crossref_primary_10_1016_j_conb_2019_03_011 crossref_primary_10_1038_s41467_024_53459_z crossref_primary_10_1038_s41598_021_89047_0 crossref_primary_10_1038_s41598_021_91308_x crossref_primary_10_1038_s41598_022_10813_9 crossref_primary_10_1177_2167702619858425 crossref_primary_10_1016_j_neuroimage_2020_117424 crossref_primary_10_1016_j_biopsych_2023_02_004 crossref_primary_10_1146_annurev_neuro_080317_062007 crossref_primary_10_7554_eLife_66169 crossref_primary_10_1177_21677026211051324 crossref_primary_10_3389_fpsyg_2024_1372769 crossref_primary_10_1001_jamapsychiatry_2022_0051 crossref_primary_10_1002_hbm_26230 crossref_primary_10_1038_s42003_023_04628_1 crossref_primary_10_1007_s00422_025_01006_4 crossref_primary_10_1002_jts_22595 crossref_primary_10_1016_j_cogdev_2024_101432 crossref_primary_10_1002_mhs2_49 crossref_primary_10_1016_j_nicl_2021_102751 crossref_primary_10_1016_j_bpsc_2019_12_011 crossref_primary_10_1016_j_schres_2021_01_023 crossref_primary_10_1177_0963721418818441 crossref_primary_10_1016_j_janxdis_2022_102588 crossref_primary_10_1016_j_neubiorev_2022_104959 crossref_primary_10_1038_s41386_020_0746_4 crossref_primary_10_1038_s41467_021_26731_9 crossref_primary_10_7554_eLife_50654 crossref_primary_10_1016_j_jbtep_2022_101810 crossref_primary_10_1016_j_celrep_2021_110232 crossref_primary_10_1192_bjp_2022_175 crossref_primary_10_1038_s41467_020_17977_w crossref_primary_10_1016_j_neubiorev_2023_105123 crossref_primary_10_1016_j_neubiorev_2023_105321 crossref_primary_10_1212_CON_0000000000000607 crossref_primary_10_1007_s44192_023_00058_x crossref_primary_10_1016_j_neubiorev_2023_105087 crossref_primary_10_1016_j_neuroimage_2022_118895 crossref_primary_10_3390_brainsci14121278 crossref_primary_10_1016_j_biopsycho_2021_108152 crossref_primary_10_1038_s44184_022_00009_4 crossref_primary_10_1371_journal_pcbi_1008484 crossref_primary_10_1016_j_cobeha_2018_03_013 crossref_primary_10_1016_j_biopsycho_2024_108825 crossref_primary_10_1016_j_jad_2024_07_066 crossref_primary_10_1126_sciadv_add2976 crossref_primary_10_1038_s41386_021_01109_z crossref_primary_10_1016_j_jad_2020_02_012 crossref_primary_10_1038_s41562_022_01455_y crossref_primary_10_1038_s42003_024_05907_1 crossref_primary_10_1038_s41562_023_01640_7 crossref_primary_10_1371_journal_pcbi_1007341 crossref_primary_10_1016_j_biopsych_2017_07_016 crossref_primary_10_5334_cpsy_64 crossref_primary_10_1371_journal_pone_0233761 crossref_primary_10_1016_j_jpsychires_2023_06_030 crossref_primary_10_1016_j_bpsgos_2021_09_006 crossref_primary_10_1016_j_neubiorev_2024_105940 crossref_primary_10_1016_j_jad_2023_05_021 |
Cites_doi | 10.1016/j.janxdis.2010.04.003 10.1001/archpsyc.1994.03950010008002 10.1016/S0005-7967(99)00146-1 10.1017/S0033291713003243 10.1016/j.brat.2004.08.008 10.1016/j.beth.2010.09.002 10.1016/0005-7967(90)90027-G 10.3389/fnhum.2011.00039 10.1037/a0020684 10.1177/2167702614562040 10.1038/35006062 10.1016/j.janxdis.2009.07.006 10.1097/00005053-199705000-00005 10.1038/nn.3961 10.1016/S0005-7967(97)00070-3 10.1016/j.tics.2006.05.003 10.1016/j.jad.2008.03.014 10.1016/j.cpr.2015.08.004 10.3389/fnhum.2014.00825 10.1016/S0005-7967(99)00133-3 10.1523/JNEUROSCI.2978-14.2015 10.1037/dec0000013 10.1002/mpr.1359 |
ContentType | Journal Article |
Copyright | 2017 Society of Biological Psychiatry Society of Biological Psychiatry Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Society of Biological Psychiatry – notice: Society of Biological Psychiatry – notice: Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.biopsych.2017.07.007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1873-2402 |
EndPage | 446 |
ExternalDocumentID | PMC5576575 28838468 10_1016_j_biopsych_2017_07_007 S0006322317318061 1_s2_0_S0006322317318061 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH101453 – fundername: NIDA NIH HHS grantid: R01 DA027797 – fundername: NIDA NIH HHS grantid: R01 DA016663 – fundername: NIDA NIH HHS grantid: R01 DA018307 – fundername: NIDA NIH HHS grantid: U01 DA041089 |
GroupedDBID | --- --K --M -DZ .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABCQX ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ACDAQ ACGFO ACIEU ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM L7B M29 M2V M39 M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SEL SES SPCBC SSH SSN SSZ T5K UNMZH UPT UV1 WH7 Z5R ZCA ~G- .GJ 3O- 53G AAQXK ABDPE ABWVN ABXDB ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AHHHB AIGII APXCP ASPBG AVWKF AZFZN EFLBG FEDTE FGOYB G-2 HEG HMK HMO HMQ HVGLF HZ~ H~9 R2- SNS UAP WUQ XJT XOL ZGI ZKB ZXP ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR RIG ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 ACLOT 5PM |
ID | FETCH-LOGICAL-c581t-3491d8891f71f76a87e8f31fff6437569d8f4a84ca39e019f867794435c4e3513 |
IEDL.DBID | AIKHN |
ISSN | 0006-3223 1873-2402 |
IngestDate | Thu Aug 21 14:10:58 EDT 2025 Sat Sep 27 21:19:34 EDT 2025 Wed Feb 19 02:43:43 EST 2025 Thu Apr 24 23:07:37 EDT 2025 Tue Jul 01 03:38:28 EDT 2025 Fri Feb 23 02:14:59 EST 2024 Sun Sep 14 23:55:44 EDT 2025 Tue Aug 26 16:58:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Bayesian models Anxiety Computational psychiatry Change point detection Decision making Reinforcement learning |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c581t-3491d8891f71f76a87e8f31fff6437569d8f4a84ca39e019f867794435c4e3513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5576575 |
PMID | 28838468 |
PQID | 1932840306 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576575 proquest_miscellaneous_1932840306 pubmed_primary_28838468 crossref_primary_10_1016_j_biopsych_2017_07_007 crossref_citationtrail_10_1016_j_biopsych_2017_07_007 elsevier_sciencedirect_doi_10_1016_j_biopsych_2017_07_007 elsevier_clinicalkeyesjournals_1_s2_0_S0006322317318061 elsevier_clinicalkey_doi_10_1016_j_biopsych_2017_07_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-15 |
PublicationDateYYYYMMDD | 2017-09-15 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biological psychiatry (1969) |
PublicationTitleAlternate | Biol Psychiatry |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mennin, Heimberg, Turk, Fresco (bib7) 2005; 43 Campbell-Sills, Norman, Craske, Sullivan, Lang, Chavira (bib18) 2009; 112 Browning, Behrens, Jocham, O’Reilly, Bishop (bib16) 2015; 18 Luhmann, Ishida, Hajcak (bib13) 2011; 42 Kessler, McGonagle, Zhao, Nelson, Hughes, Eshleman (bib1) 1994; 51 Wells, Papageorgiou (bib6) 2001; 39 Yu, Huang (bib20) 2014; 1 Huys, Guitart-Masip, Dolan, Dayan (bib11) 2015; 3 Gold, Shadlen (bib19) 2000; 404 Mathys, Daunizeau, Friston, Stephan (bib26) 2011; 5 Behar, DiMarco, Hekler, Mohlman, Staples (bib10) 2009; 23 Huang (bib25) 2016; 29 Mathys, Lomakina, Daunizeau, Iglesias, Brodersen, Friston (bib27) 2014; 8 Dugas, Gagnon, Ladouceur, Freeston (bib5) 1998; 36 Kessler, Petukhova, Sampson, Zaslavsky, Wittchen (bib2) 2012; 21 Kording, Wolpert (bib12) 2006; 10 Yook, Kim, Suh, Lee (bib14) 2010; 24 Loerinc, Meuret, Twohig, Rosenfield, Bluett, Craske (bib4) 2015; 42 Baxter, Vos, Scott, Ferrari, Whiteford (bib3) 2014; 44 Ladouceur, Gosselin, Dugas (bib15) 2000; 38 Sutton, Barto (bib17) 1998 Ahn, Krawitz, Kim, Busemeyer, Brown (bib23) 2011; 4 Roemer, Molina, Borkovec (bib8) 1997; 185 Rescorla RA, Wagner AW (1972): A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF, editors. Classical Conditioning II: Current Research and Theory: Appleton-Century-Crofts; 1972:64–99. Daw (bib24) 2011; 23 Niv, Daniel, Geana, Gershman, Leong, Radulescu (bib22) 2015; 35 Borkovec, Inz (bib9) 1990; 28 Ladouceur (10.1016/j.biopsych.2017.07.007_bib15) 2000; 38 Yu (10.1016/j.biopsych.2017.07.007_bib20) 2014; 1 Roemer (10.1016/j.biopsych.2017.07.007_bib8) 1997; 185 Borkovec (10.1016/j.biopsych.2017.07.007_bib9) 1990; 28 Campbell-Sills (10.1016/j.biopsych.2017.07.007_bib18) 2009; 112 Browning (10.1016/j.biopsych.2017.07.007_bib16) 2015; 18 Loerinc (10.1016/j.biopsych.2017.07.007_bib4) 2015; 42 Mathys (10.1016/j.biopsych.2017.07.007_bib27) 2014; 8 Gold (10.1016/j.biopsych.2017.07.007_bib19) 2000; 404 Kessler (10.1016/j.biopsych.2017.07.007_bib2) 2012; 21 10.1016/j.biopsych.2017.07.007_bib21 Dugas (10.1016/j.biopsych.2017.07.007_bib5) 1998; 36 Huang (10.1016/j.biopsych.2017.07.007_bib25) 2016; 29 Behar (10.1016/j.biopsych.2017.07.007_bib10) 2009; 23 Mennin (10.1016/j.biopsych.2017.07.007_bib7) 2005; 43 Ahn (10.1016/j.biopsych.2017.07.007_bib23) 2011; 4 Mathys (10.1016/j.biopsych.2017.07.007_bib26) 2011; 5 Huys (10.1016/j.biopsych.2017.07.007_bib11) 2015; 3 Kording (10.1016/j.biopsych.2017.07.007_bib12) 2006; 10 Niv (10.1016/j.biopsych.2017.07.007_bib22) 2015; 35 Baxter (10.1016/j.biopsych.2017.07.007_bib3) 2014; 44 Wells (10.1016/j.biopsych.2017.07.007_bib6) 2001; 39 Daw (10.1016/j.biopsych.2017.07.007_bib24) 2011; 23 Luhmann (10.1016/j.biopsych.2017.07.007_bib13) 2011; 42 Sutton (10.1016/j.biopsych.2017.07.007_bib17) 1998 Kessler (10.1016/j.biopsych.2017.07.007_bib1) 1994; 51 Yook (10.1016/j.biopsych.2017.07.007_bib14) 2010; 24 16807063 - Trends Cogn Sci. 2006 Jul;10(7):319-26 10746726 - Nature. 2000 Mar 23;404(6776):390-4 8279933 - Arch Gen Psychiatry. 1994 Jan;51(1):8-19 26019331 - J Neurosci. 2015 May 27;35(21):8145-57 19700258 - J Anxiety Disord. 2009 Dec;23(8):1011-23 26319194 - Clin Psychol Rev. 2015 Dec;42:72-82 20439149 - J Anxiety Disord. 2010 Aug;24(6):623-8 25477800 - Front Hum Neurosci. 2014 Nov 19;8:825 23795233 - J Neurosci Psychol Econ. 2011 May;4(2):95-110 9613027 - Behav Res Ther. 1998 Feb;36(2):215-26 9171808 - J Nerv Ment Dis. 1997 May;185(5):314-9 2183759 - Behav Res Ther. 1990;28(2):153-8 22865617 - Int J Methods Psychiatr Res. 2012 Sep;21(3):169-84 21629826 - Front Hum Neurosci. 2011 May 02;5:39 16086981 - Behav Res Ther. 2005 Oct;43(10):1281-310 18486238 - J Affect Disord. 2009 Jan;112(1-3):92-101 24451993 - Psychol Med. 2014 Aug;44(11):2363-74 10957827 - Behav Res Ther. 2000 Sep;38(9):933-41 25730669 - Nat Neurosci. 2015 Apr;18(4):590-6 11125718 - Behav Res Ther. 2001 Jan;39(1):1-11 21658521 - Behav Ther. 2011 Sep;42(3):378-86 |
References_xml | – volume: 36 start-page: 215 year: 1998 end-page: 226 ident: bib5 article-title: Generalized anxiety disorder: A preliminary test of a conceptual model publication-title: Behav Res Ther – volume: 42 start-page: 72 year: 2015 end-page: 82 ident: bib4 article-title: Response rates for CBT for anxiety disorders: Need for standardized criteria publication-title: Clin Psychol Rev – volume: 4 start-page: 95 year: 2011 end-page: 110 ident: bib23 article-title: A model-based fMRI analysis with hierarchical Bayesian parameter estimation publication-title: J Neurosci Psychol Econ – volume: 1 start-page: 275 year: 2014 end-page: 287 ident: bib20 article-title: Maximizing masquerading as matching in human visual search choice behavior publication-title: Decision – volume: 28 start-page: 153 year: 1990 end-page: 158 ident: bib9 article-title: The nature of worry in generalized anxiety disorder: A predominance of thought activity publication-title: Behav Res Ther – volume: 24 start-page: 623 year: 2010 end-page: 628 ident: bib14 article-title: Intolerance of uncertainty, worry, and rumination in major depressive disorder and generalized anxiety disorder publication-title: J Anxiety Disord – year: 1998 ident: bib17 article-title: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning) – volume: 18 start-page: 590 year: 2015 end-page: 596 ident: bib16 article-title: Anxious individuals have difficulty learning the causal statistics of aversive environments publication-title: Nat Neurosci – volume: 404 start-page: 390 year: 2000 end-page: 394 ident: bib19 article-title: Representation of a perceptual decision in developing oculomotor commands publication-title: Nature – volume: 185 start-page: 314 year: 1997 end-page: 319 ident: bib8 article-title: An investigation of worry content among generally anxious individuals publication-title: J Nerv Ment Dis – volume: 112 start-page: 92 year: 2009 end-page: 101 ident: bib18 article-title: Validation of a brief measure of anxiety-related severity and impairment: The Overall Anxiety Severity and Impairment Scale (OASIS) publication-title: J Affect Disord – volume: 8 start-page: 825 year: 2014 ident: bib27 article-title: Uncertainty in perception and the Hierarchical Gaussian Filter publication-title: Front Hum Neurosci – volume: 3 start-page: 400 year: 2015 end-page: 421 ident: bib11 article-title: Decision-theoretic psychiatry publication-title: Clin Psychol Sci – volume: 35 start-page: 8145 year: 2015 end-page: 8157 ident: bib22 article-title: Reinforcement learning in multidimensional environments relies on attention mechanisms publication-title: J Neurosci – volume: 23 start-page: 3 year: 2011 end-page: 38 ident: bib24 article-title: Trial-by-trial data analysis using computational models. Decision making, affect, and learning publication-title: Attention and Performance XXIII – volume: 5 start-page: 39 year: 2011 ident: bib26 article-title: A bayesian foundation for individual learning under uncertainty publication-title: Front Hum Neurosci – volume: 42 start-page: 378 year: 2011 end-page: 386 ident: bib13 article-title: Intolerance of uncertainty and decisions about delayed, probabilistic rewards publication-title: Behav Ther – volume: 21 start-page: 169 year: 2012 end-page: 184 ident: bib2 article-title: Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States publication-title: Int J Methods Psychiatr Res – volume: 38 start-page: 933 year: 2000 end-page: 941 ident: bib15 article-title: Experimental manipulation of intolerance of uncertainty: A study of a theoretical model of worry publication-title: Behav Res Ther – volume: 29 start-page: 2730 year: 2016 end-page: 2738 ident: bib25 article-title: Learning under uncertainty: A comparison between R-W and Bayesian approach publication-title: Neural Information Processing Systems – volume: 10 start-page: 319 year: 2006 end-page: 326 ident: bib12 article-title: Bayesian decision theory in sensorimotor control publication-title: Trends Cogn Sci – reference: Rescorla RA, Wagner AW (1972): A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF, editors. Classical Conditioning II: Current Research and Theory: Appleton-Century-Crofts; 1972:64–99. – volume: 51 start-page: 8 year: 1994 end-page: 19 ident: bib1 article-title: Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey publication-title: Arch Gen Psychiatry – volume: 23 start-page: 1011 year: 2009 end-page: 1023 ident: bib10 article-title: Current theoretical models of generalized anxiety disorder (GAD): Conceptual review and treatment implications publication-title: J Anxiety Disord – volume: 39 start-page: 1 year: 2001 end-page: 11 ident: bib6 article-title: Social phobic interoception: Effects of bodily information on anxiety, beliefs and self-processing publication-title: Behav Res Ther – volume: 44 start-page: 2363 year: 2014 end-page: 2674 ident: bib3 article-title: The global burden of anxiety disorders in 2010 publication-title: Psychol Med – volume: 43 start-page: 1281 year: 2005 end-page: 1310 ident: bib7 article-title: Preliminary evidence for an emotion dysregulation model of generalized anxiety disorder publication-title: Behav Res Ther – volume: 24 start-page: 623 year: 2010 ident: 10.1016/j.biopsych.2017.07.007_bib14 article-title: Intolerance of uncertainty, worry, and rumination in major depressive disorder and generalized anxiety disorder publication-title: J Anxiety Disord doi: 10.1016/j.janxdis.2010.04.003 – volume: 51 start-page: 8 year: 1994 ident: 10.1016/j.biopsych.2017.07.007_bib1 article-title: Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1994.03950010008002 – volume: 39 start-page: 1 year: 2001 ident: 10.1016/j.biopsych.2017.07.007_bib6 article-title: Social phobic interoception: Effects of bodily information on anxiety, beliefs and self-processing publication-title: Behav Res Ther doi: 10.1016/S0005-7967(99)00146-1 – volume: 44 start-page: 2363 year: 2014 ident: 10.1016/j.biopsych.2017.07.007_bib3 article-title: The global burden of anxiety disorders in 2010 publication-title: Psychol Med doi: 10.1017/S0033291713003243 – volume: 43 start-page: 1281 year: 2005 ident: 10.1016/j.biopsych.2017.07.007_bib7 article-title: Preliminary evidence for an emotion dysregulation model of generalized anxiety disorder publication-title: Behav Res Ther doi: 10.1016/j.brat.2004.08.008 – volume: 42 start-page: 378 year: 2011 ident: 10.1016/j.biopsych.2017.07.007_bib13 article-title: Intolerance of uncertainty and decisions about delayed, probabilistic rewards publication-title: Behav Ther doi: 10.1016/j.beth.2010.09.002 – volume: 28 start-page: 153 year: 1990 ident: 10.1016/j.biopsych.2017.07.007_bib9 article-title: The nature of worry in generalized anxiety disorder: A predominance of thought activity publication-title: Behav Res Ther doi: 10.1016/0005-7967(90)90027-G – volume: 5 start-page: 39 year: 2011 ident: 10.1016/j.biopsych.2017.07.007_bib26 article-title: A bayesian foundation for individual learning under uncertainty publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2011.00039 – volume: 4 start-page: 95 year: 2011 ident: 10.1016/j.biopsych.2017.07.007_bib23 article-title: A model-based fMRI analysis with hierarchical Bayesian parameter estimation publication-title: J Neurosci Psychol Econ doi: 10.1037/a0020684 – ident: 10.1016/j.biopsych.2017.07.007_bib21 – volume: 3 start-page: 400 year: 2015 ident: 10.1016/j.biopsych.2017.07.007_bib11 article-title: Decision-theoretic psychiatry publication-title: Clin Psychol Sci doi: 10.1177/2167702614562040 – volume: 404 start-page: 390 year: 2000 ident: 10.1016/j.biopsych.2017.07.007_bib19 article-title: Representation of a perceptual decision in developing oculomotor commands publication-title: Nature doi: 10.1038/35006062 – volume: 23 start-page: 1011 year: 2009 ident: 10.1016/j.biopsych.2017.07.007_bib10 article-title: Current theoretical models of generalized anxiety disorder (GAD): Conceptual review and treatment implications publication-title: J Anxiety Disord doi: 10.1016/j.janxdis.2009.07.006 – volume: 185 start-page: 314 year: 1997 ident: 10.1016/j.biopsych.2017.07.007_bib8 article-title: An investigation of worry content among generally anxious individuals publication-title: J Nerv Ment Dis doi: 10.1097/00005053-199705000-00005 – volume: 18 start-page: 590 year: 2015 ident: 10.1016/j.biopsych.2017.07.007_bib16 article-title: Anxious individuals have difficulty learning the causal statistics of aversive environments publication-title: Nat Neurosci doi: 10.1038/nn.3961 – volume: 36 start-page: 215 year: 1998 ident: 10.1016/j.biopsych.2017.07.007_bib5 article-title: Generalized anxiety disorder: A preliminary test of a conceptual model publication-title: Behav Res Ther doi: 10.1016/S0005-7967(97)00070-3 – volume: 10 start-page: 319 year: 2006 ident: 10.1016/j.biopsych.2017.07.007_bib12 article-title: Bayesian decision theory in sensorimotor control publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2006.05.003 – year: 1998 ident: 10.1016/j.biopsych.2017.07.007_bib17 – volume: 112 start-page: 92 year: 2009 ident: 10.1016/j.biopsych.2017.07.007_bib18 article-title: Validation of a brief measure of anxiety-related severity and impairment: The Overall Anxiety Severity and Impairment Scale (OASIS) publication-title: J Affect Disord doi: 10.1016/j.jad.2008.03.014 – volume: 42 start-page: 72 year: 2015 ident: 10.1016/j.biopsych.2017.07.007_bib4 article-title: Response rates for CBT for anxiety disorders: Need for standardized criteria publication-title: Clin Psychol Rev doi: 10.1016/j.cpr.2015.08.004 – volume: 8 start-page: 825 year: 2014 ident: 10.1016/j.biopsych.2017.07.007_bib27 article-title: Uncertainty in perception and the Hierarchical Gaussian Filter publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2014.00825 – volume: 29 start-page: 2730 year: 2016 ident: 10.1016/j.biopsych.2017.07.007_bib25 article-title: Learning under uncertainty: A comparison between R-W and Bayesian approach publication-title: Neural Information Processing Systems – volume: 38 start-page: 933 year: 2000 ident: 10.1016/j.biopsych.2017.07.007_bib15 article-title: Experimental manipulation of intolerance of uncertainty: A study of a theoretical model of worry publication-title: Behav Res Ther doi: 10.1016/S0005-7967(99)00133-3 – volume: 23 start-page: 3 year: 2011 ident: 10.1016/j.biopsych.2017.07.007_bib24 article-title: Trial-by-trial data analysis using computational models. Decision making, affect, and learning publication-title: Attention and Performance XXIII – volume: 35 start-page: 8145 year: 2015 ident: 10.1016/j.biopsych.2017.07.007_bib22 article-title: Reinforcement learning in multidimensional environments relies on attention mechanisms publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2978-14.2015 – volume: 1 start-page: 275 year: 2014 ident: 10.1016/j.biopsych.2017.07.007_bib20 article-title: Maximizing masquerading as matching in human visual search choice behavior publication-title: Decision doi: 10.1037/dec0000013 – volume: 21 start-page: 169 year: 2012 ident: 10.1016/j.biopsych.2017.07.007_bib2 article-title: Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States publication-title: Int J Methods Psychiatr Res doi: 10.1002/mpr.1359 – reference: 26019331 - J Neurosci. 2015 May 27;35(21):8145-57 – reference: 26319194 - Clin Psychol Rev. 2015 Dec;42:72-82 – reference: 25477800 - Front Hum Neurosci. 2014 Nov 19;8:825 – reference: 24451993 - Psychol Med. 2014 Aug;44(11):2363-74 – reference: 9171808 - J Nerv Ment Dis. 1997 May;185(5):314-9 – reference: 8279933 - Arch Gen Psychiatry. 1994 Jan;51(1):8-19 – reference: 11125718 - Behav Res Ther. 2001 Jan;39(1):1-11 – reference: 23795233 - J Neurosci Psychol Econ. 2011 May;4(2):95-110 – reference: 25730669 - Nat Neurosci. 2015 Apr;18(4):590-6 – reference: 2183759 - Behav Res Ther. 1990;28(2):153-8 – reference: 9613027 - Behav Res Ther. 1998 Feb;36(2):215-26 – reference: 10746726 - Nature. 2000 Mar 23;404(6776):390-4 – reference: 19700258 - J Anxiety Disord. 2009 Dec;23(8):1011-23 – reference: 21658521 - Behav Ther. 2011 Sep;42(3):378-86 – reference: 18486238 - J Affect Disord. 2009 Jan;112(1-3):92-101 – reference: 20439149 - J Anxiety Disord. 2010 Aug;24(6):623-8 – reference: 10957827 - Behav Res Ther. 2000 Sep;38(9):933-41 – reference: 16807063 - Trends Cogn Sci. 2006 Jul;10(7):319-26 – reference: 16086981 - Behav Res Ther. 2005 Oct;43(10):1281-310 – reference: 22865617 - Int J Methods Psychiatr Res. 2012 Sep;21(3):169-84 – reference: 21629826 - Front Hum Neurosci. 2011 May 02;5:39 |
SSID | ssj0007221 |
Score | 2.5100603 |
Snippet | Differentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change profoundly affects... AbstractBackgroundDifferentiating whether an action leads to an outcome by chance or by an underlying statistical regularity that signals environmental change... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 440 |
SubjectTerms | Adult Anxiety Anxiety Disorders - drug therapy Anxiety Disorders - psychology Bayesian models Change point detection Computational psychiatry Computer Simulation Decision Making Discrimination (Psychology) Female Humans Male Models, Psychological Neuropsychological Tests Psychiatric Status Rating Scales Psychiatric/Mental Health Psychotropic Drugs - therapeutic use Reinforcement (Psychology) Reinforcement learning Uncertainty |
Title | Computational Dysfunctions in Anxiety: Failure to Differentiate Signal From Noise |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006322317318061 https://www.clinicalkey.es/playcontent/1-s2.0-S0006322317318061 https://dx.doi.org/10.1016/j.biopsych.2017.07.007 https://www.ncbi.nlm.nih.gov/pubmed/28838468 https://www.proquest.com/docview/1932840306 https://pubmed.ncbi.nlm.nih.gov/PMC5576575 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB61qWi5IAjQhp_KSFzdeL1re80tSokCqLmUSr2tnO0uOKJ2VbsSvfAsfZY-GTP22mooEgikXBJ74tXu7Px4v5kP4K2V1IbOxD4VafpimQU-ejnrW0J8Mx0y3bzKPlrE8xPx8TQ63YBpVwtDsEpn-1ub3lhr98vYzeb4Is-pxhfdK3o3lqBeBpQCbYXo7eUAtiYfPs0XvUFOwtAR58U-CdwpFF4dLPOywRUTyitp-ngSs-zvfdT9GPRXKOUd3zR7DI9cUOlN2nE_gQ1TDOFBSzN5PYSdacfqNoTtI3eY_hSOW0YH9zbQO7yuyMk1eujlhTcpvhOe8503y3LCrt_e1OXtzaEjVEHDUBvvOP9CorPL8txblHllnsHJ7P3n6dx3HAu-jiSrfS5SdiZlymyCnziTiZGWM2stnehFcXomrcik0BlPDYaDlvrfpQKDLC0Mjxh_DoOiLMweeCgvggzvzgIutND4x5yZWHNMwDkmZiOIullV2jUgJx6Mb6pDmq1UtxqKVkMFdDaOcuNe7qJtwfFHiaRbNNUVmKJJVOgl_k3SVG5nV4qpKlSBuqd9I0h7yTUF_qunvuk0S6E60JFNVpjyCp-G4TWm4JjXjWC31bR-DognGveVxDGv6WB_A3UOX79S5F-bDuIRZpkYp7_4jzG_hIf0jaAzLHoFg_ryyrzG-Kxe7sPmwQ-273bhT7IKPFs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hoBYuVZs-SOnDlXp1482u7TW3KDQKheQCSNxWzrJLjcBG2Ejl3_Bb-GWdsdcWKZVatVJOtide7c7Ow_vNfACfraQ2dCbyqUjTF8s08NHLWd8S4pvpEdP1p-z5Ipodi28n4ckaTNpaGIJVOtvf2PTaWrsrQzebw6ssoxpfdK_o3ViMehlQCrQuiNS6B-vjvf3ZojPI8WjkiPMinwQeFAqff1lmRY0rJpRXXPfxJGbZ3_uoxzHor1DKB75p-hyeuaDSGzfjfgFrJu_Dk4Zm8rYPG5OW1a0PT-fuMP0lHDaMDu5roLd7W5KTq_XQy3JvnP8gPOeON00zwq7f31XF_d2uI1RBw1AZ7zA7I9HpdXHpLYqsNK_gePr1aDLzHceCr0PJKp-LhJ1KmTAb4y9KZWyk5cxaSyd6YZScSitSKXTKE4PhoKX-d4nAIEsLw0PGX0MvL3KzBR7KiyDFp9OACy00_jFnJtIcE3COidkAwnZWlXYNyIkH40K1SLNz1a6GotVQAZ2No9ywk7tqWnD8USJuF021BaZoEhV6iX-TNKXb2aViqhypQD3SvgEkneSKAv_VWz-1mqVQHejIJs1NcYNvw_AaU3DM6wbwptG0bg6IJxr3lcQxr-hg9wB1Dl-9k2ff6w7iIWaZGKe__Y8xf4SN2dH8QB3sLfa3YZPuEIyGhe-gV13fmPcYq1XLD24v_gQfNj5B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Dysfunctions+in+Anxiety%3A+Failure+to+Differentiate+Signal+From+Noise&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Huang%2C+He&rft.au=Thompson%2C+Wesley&rft.au=Paulus%2C+Martin+P&rft.date=2017-09-15&rft.issn=1873-2402&rft.eissn=1873-2402&rft.volume=82&rft.issue=6&rft.spage=440&rft_id=info:doi/10.1016%2Fj.biopsych.2017.07.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322316X0039X%2Fcov150h.gif |