Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer's disease risk and aging studies

Precise detection and quantification of white matter hyperintensities (WMH) observed in T2‐weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age‐related neurological disorders such as Alzheimer's disease (AD). This is m...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 35; no. 8; pp. 4219 - 4235
Main Authors Ithapu, Vamsi, Singh, Vikas, Lindner, Christopher, Austin, Benjamin P., Hinrichs, Chris, Carlsson, Cynthia M., Bendlin, Barbara B., Johnson, Sterling C.
Format Journal Article
LanguageEnglish
Published New York, NY Blackwell Publishing Ltd 01.08.2014
Wiley-Liss
John Wiley & Sons, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.22472

Cover

Abstract Precise detection and quantification of white matter hyperintensities (WMH) observed in T2‐weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age‐related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co‐morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle‐aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies. Hum Brain Mapp 35:4219–4235, 2014. © 2014 Wiley Periodicals, Inc.
AbstractList Precise detection and quantification of white matter hyperintensities (WMH) observed in T2‐weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age‐related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co‐morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle‐aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies. Hum Brain Mapp 35:4219–4235, 2014. © 2014 Wiley Periodicals, Inc.
Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle-aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies.
Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle-aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies.Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle-aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies.
Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle-aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies. Hum Brain Mapp 35:4219-4235, 2014. © 2014 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Author Carlsson, Cynthia M.
Bendlin, Barbara B.
Ithapu, Vamsi
Lindner, Christopher
Johnson, Sterling C.
Hinrichs, Chris
Austin, Benjamin P.
Singh, Vikas
AuthorAffiliation 3 Department of Biostatistics and Medical Informatics University of Wisconsin‐Madison Madison Wisconsin
1 Department of Computer Sciences University of Wisconsin‐Madison Madison Wisconsin
5 Department of Electrical and Computer Engineering University of Wisconsin‐Madison Madison Wisconsin
6 William S. Middleton Memorial Veterans Hospital Madison Wisconsin
2 Wisconsin Alzheimer's Disease Research Center Madison Wisconsin
4 Department of Medicine University of Wisconsin‐Madison Madison Wisconsin
AuthorAffiliation_xml – name: 5 Department of Electrical and Computer Engineering University of Wisconsin‐Madison Madison Wisconsin
– name: 3 Department of Biostatistics and Medical Informatics University of Wisconsin‐Madison Madison Wisconsin
– name: 2 Wisconsin Alzheimer's Disease Research Center Madison Wisconsin
– name: 1 Department of Computer Sciences University of Wisconsin‐Madison Madison Wisconsin
– name: 4 Department of Medicine University of Wisconsin‐Madison Madison Wisconsin
– name: 6 William S. Middleton Memorial Veterans Hospital Madison Wisconsin
Author_xml – sequence: 1
  givenname: Vamsi
  surname: Ithapu
  fullname: Ithapu, Vamsi
  email: ithapu@wisc.edu
  organization: Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin
– sequence: 2
  givenname: Vikas
  surname: Singh
  fullname: Singh, Vikas
  organization: Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin
– sequence: 3
  givenname: Christopher
  surname: Lindner
  fullname: Lindner, Christopher
  organization: Department of Computer Sciences, University of Wisconsin-Madison, Wisconsin, Madison
– sequence: 4
  givenname: Benjamin P.
  surname: Austin
  fullname: Austin, Benjamin P.
  organization: Wisconsin Alzheimer's Disease Research Center, Madison, Wisconsin
– sequence: 5
  givenname: Chris
  surname: Hinrichs
  fullname: Hinrichs, Chris
  organization: Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Wisconsin, Madison
– sequence: 6
  givenname: Cynthia M.
  surname: Carlsson
  fullname: Carlsson, Cynthia M.
  organization: Wisconsin Alzheimer's Disease Research Center, Madison, Wisconsin
– sequence: 7
  givenname: Barbara B.
  surname: Bendlin
  fullname: Bendlin, Barbara B.
  organization: Wisconsin Alzheimer's Disease Research Center, Madison, Wisconsin
– sequence: 8
  givenname: Sterling C.
  surname: Johnson
  fullname: Johnson, Sterling C.
  organization: Wisconsin Alzheimer's Disease Research Center, Madison, Wisconsin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28604511$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24510744$$D View this record in MEDLINE/PubMed
BookMark eNp9kdtu1DAQhi1URNuFC14ARUIVBymtnTinG6S26gGpFC6K4M5ynMnGbeIsHqfb7TPw0Di72xYq4Mqn7__H88822TC9AUJeMrrLKI32mrLbjSKeRU_IFqNFFlJWxBvjPk3Cgmdsk2wjXlLKWELZM7IZ8YTRjPMt8vPoxlmpnDbTQJoqwKHrpNW343neaAdBJ50DGzSLGVhtHBjUTgMGA44MDv76WiN4KUw7ME463ZugA9f0FQbaBPvtbQO6A_sGg8qTEiGwGq-W9eR06eKGyns-J09r2SK8WK8T8vX46OLwNDz7fPLxcP8sVEnOorCqeVxAlqZMSVmqVHHGaRnVEc15oSitq4IrYKrkQJOMQ5bTiJWsYoynQPM0npD3K9_BzORiLttWzKz2fS8Eo2KMVPhIxTJSD39YwbOh7KBSvkUrHwS91OLPF6MbMe2vBfcRs5R6g7drA9v_GACd6DQqaFtpoB9QsIRnSewbG2u9foRe9oM1PouRiuOC5n6yE_Lq9x_df-Vuqh7YWQMSlWxrK43S-MDlKfUo89zeilO2R7RQC6VX8_ON6PavYbx7pPhfcGv3uW5h8W9QnB58ulOEK4VGBzf3CmmvRJrFWSK-nZ-Ig_PjC5p84eJ7_Avg7fAQ
CitedBy_id crossref_primary_10_1155_2019_2305318
crossref_primary_10_1016_j_neucom_2019_12_050
crossref_primary_10_1109_TMI_2017_2693978
crossref_primary_10_1186_s12880_022_00769_7
crossref_primary_10_1118_1_4966029
crossref_primary_10_1016_j_procs_2016_07_003
crossref_primary_10_1038_s41598_020_65470_7
crossref_primary_10_1002_ana_25948
crossref_primary_10_1249_MSS_0000000000002946
crossref_primary_10_1002_mds_26137
crossref_primary_10_1016_j_neurobiolaging_2015_11_011
crossref_primary_10_1002_brb3_415
crossref_primary_10_1038_s41598_019_52966_0
crossref_primary_10_1111_jon_12646
crossref_primary_10_1161_STROKEAHA_119_028143
crossref_primary_10_1016_j_nicl_2019_101772
crossref_primary_10_1016_j_nicl_2018_02_033
crossref_primary_10_1016_j_neuroimage_2018_03_050
crossref_primary_10_1016_j_asoc_2019_105685
crossref_primary_10_1016_j_patcog_2017_12_016
crossref_primary_10_1038_s41440_018_0176_4
crossref_primary_10_1117_1_JMI_2_1_014002
crossref_primary_10_1007_s12539_020_00398_0
crossref_primary_10_1002_hbm_26109
crossref_primary_10_3389_fnagi_2014_00306
crossref_primary_10_3390_jimaging8100284
crossref_primary_10_1002_hbm_22622
crossref_primary_10_1016_j_neuroimage_2023_120237
crossref_primary_10_1016_j_compmedimag_2018_02_002
crossref_primary_10_1016_j_media_2020_101791
crossref_primary_10_1371_journal_pone_0189727
crossref_primary_10_1186_s13195_018_0460_1
crossref_primary_10_1016_j_mri_2018_06_009
crossref_primary_10_1093_braincomms_fcac061
crossref_primary_10_1080_09540091_2022_2123450
crossref_primary_10_3390_jimaging3040066
crossref_primary_10_1016_j_neuroimage_2021_117839
crossref_primary_10_1016_j_neuroimage_2020_116869
crossref_primary_10_1038_s41598_017_05300_5
crossref_primary_10_3389_fnagi_2017_00086
crossref_primary_10_1007_s11357_024_01306_w
crossref_primary_10_1016_j_nicl_2019_101859
crossref_primary_10_3233_JAD_200608
crossref_primary_10_3389_fnagi_2022_945645
crossref_primary_10_1016_j_nicl_2017_12_022
crossref_primary_10_3390_nu14173664
crossref_primary_10_1016_j_neuroimage_2017_06_009
crossref_primary_10_1007_s00592_020_01670_x
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1016_j_nicl_2019_102088
crossref_primary_10_1038_s41598_020_75074_w
crossref_primary_10_1016_j_nicl_2020_102357
crossref_primary_10_1186_s12877_023_04477_x
crossref_primary_10_1042_CS20170051
crossref_primary_10_1016_j_compmedimag_2018_05_001
crossref_primary_10_3389_fnagi_2022_934071
crossref_primary_10_1093_brain_awac484
Cites_doi 10.1212/01.wnl.0000249119.95747.1f
10.3174/ajnr.A3146
10.7551/mitpress/4175.001.0001
10.1016/j.neurobiolaging.2004.05.004
10.1136/bmj.c3666
10.1109/34.868688
10.1007/BF00994018
10.1023/A:1010933404324
10.1001/archneurol.2011.914
10.1186/cc3045
10.1001/archneurol.2010.284
10.1023/A:1011126920638
10.1145/258734.258882
10.1161/01.STR.0000068408.82115.D2
10.1017/S1355617712000227
10.1161/01.STR.0000150668.58689.f2
10.1016/j.acra.2007.10.012
10.1161/01.STR.0000054048.22626.B9
10.1016/j.jalz.2011.03.008
10.1016/j.mri.2012.01.007
10.1212/WNL.0b013e318217e7c8
10.1016/j.neuroimage.2003.10.012
10.1016/j.neuroimage.2007.09.058
10.1017/CBO9780511809071
10.1016/j.neuroimage.2010.01.064
10.1001/archneur.63.2.246
10.1109/ISBI.2010.5490407
10.1016/j.neuroimage.2011.03.080
10.1001/archneurol.2012.1527
10.1109/ICCV.1999.790346
10.1016/j.neuroimage.2010.09.013
10.1016/j.neurobiolaging.2009.10.013
10.1109/JRA.1987.1087088
10.1212/WNL.0b013e3181b1636a
10.1161/STROKEAHA.109.570044
10.1016/j.neuroimage.2011.11.032
10.1016/j.neuroimage.2009.01.011
10.1016/j.jalz.2011.03.005
10.1016/j.neuroimage.2005.06.061
10.1007/s007020200068
10.1109/TPAMI.2006.233
10.1109/TPAMI.2010.161
10.1001/archneurol.2007.23
10.31887/DCNS.2009.11.2/ambrickman
10.1111/j.1468-2982.2009.01904.x
10.1109/34.969114
10.1109/34.1000236
ContentType Journal Article
Copyright Copyright © 2014 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2014 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.22472
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate WMH in the Prediction of AD Risk and Aging Studies
EISSN 1097-0193
EndPage 4235
ExternalDocumentID oai:pubmedcentral.nih.gov:4107160
PMC4107160
3365169011
24510744
28604511
10_1002_hbm_22472
HBM22472
ark_67375_WNG_BNFT05P4_X
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: University of Wisconsin ICTR
  funderid: 1UL1RR025011
– fundername: Wisconsin Partnership Fund, University of Wisconsin ADRC
  funderid: P50 AG033514
– fundername: Veterans Administration Merit Review Grant
  funderid: I01CX000165
– fundername: NSF
  funderid: RI 1116584
– fundername: NIH
  funderid: R01 AG040396; R01 G021155)
– fundername: CIBM postdoctoral fellowship via grant NLM
  funderid: 2T15LM007359
– fundername: NLM NIH HHS
  grantid: T15 LM007359
– fundername: NLM NIH HHS
  grantid: 2T15LM007359
– fundername: CSRD VA
  grantid: I01 CX000165
– fundername: NCRR NIH HHS
  grantid: 1UL1RR025011
– fundername: NIA NIH HHS
  grantid: R01 AG027161
– fundername: NCRR NIH HHS
  grantid: UL1 RR025011
– fundername: NIA NIH HHS
  grantid: P50 AG033514
– fundername: NIA NIH HHS
  grantid: R01 AG021155
– fundername: PHS HHS
  grantid: R01 G021155
– fundername: NIA NIH HHS
  grantid: R01 AG037639
– fundername: ;
  grantid: R01 AG040396; R01 G021155
– fundername: Wisconsin Partnership Fund, University of Wisconsin ADRC
  grantid: P50 AG033514
– fundername: ;
  grantid: RI 1116584
– fundername: CIBM postdoctoral fellowship via grant NLM
  grantid: 2T15LM007359
– fundername: University of Wisconsin ICTR
  grantid: 1UL1RR025011
– fundername: Veterans Administration Merit Review Grant
  grantid: I01CX000165
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
33P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
C45
RWD
RWI
WRC
WUP
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c5812-df439e7661caabc6c4140b2f20849c00fd94ce1cb4e0574e78021b1d1146e0863
IEDL.DBID UNPAY
ISSN 1065-9471
1097-0193
IngestDate Wed Oct 29 11:56:44 EDT 2025
Tue Sep 30 16:53:20 EDT 2025
Wed Oct 01 13:46:28 EDT 2025
Tue Oct 07 06:02:29 EDT 2025
Thu Apr 03 07:07:20 EDT 2025
Wed Apr 02 07:46:47 EDT 2025
Wed Oct 01 06:26:33 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Jan 22 16:22:52 EST 2025
Sun Sep 21 06:20:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Nervous system diseases
Senescence
support vector machines
Radiodiagnosis
Segmentation
Image processing
Alzheimer disease
white matter hyperintensities
random forests
White matter
Cerebral disorder
Central nervous system disease
Risk factor
Degenerative disease
Vector
Hyperintensity
segmentation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5812-df439e7661caabc6c4140b2f20849c00fd94ce1cb4e0574e78021b1d1146e0863
Notes NSF - No. RI 1116584
University of Wisconsin ICTR - No. 1UL1RR025011
Veterans Administration Merit Review Grant - No. I01CX000165
NIH - No. R01 AG040396; No. R01 G021155
Wisconsin Partnership Fund, University of Wisconsin ADRC - No. P50 AG033514
CIBM postdoctoral fellowship via grant NLM - No. 2T15LM007359
ArticleID:HBM22472
istex:D2772D1C66A1172CF06B3171EE00F9A77E5EECB1
ark:/67375/WNG-BNFT05P4-X
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4107160
PMID 24510744
PQID 1543390819
PQPubID 996345
PageCount 17
ParticipantIDs unpaywall_primary_10_1002_hbm_22472
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107160
proquest_miscellaneous_1547538122
proquest_journals_1543390819
pubmed_primary_24510744
pascalfrancis_primary_28604511
crossref_citationtrail_10_1002_hbm_22472
crossref_primary_10_1002_hbm_22472
wiley_primary_10_1002_hbm_22472_HBM22472
istex_primary_ark_67375_WNG_BNFT05P4_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley-Liss
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Cortes C, Vapnik V (1995): Support vector networks. Machine Learn 20:273-297.
Grady L (2006): Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:1768-1783.
Jellinger KA (2002): Alzheimer disease and cerebrovascular pathology: An update. J Neural Transm 109:813-836.
Keihaninejad S, Heckemann RA, Fagiolo G, Symms MR, Hajnal JV, Hammers A (2010): A robust method to estimate the intracranial volume across MRI field strengths (1.5 T and 3T). Neuroimage 50:1427-1437.
Maillard P, Carmichael O, Harvey D, Fletcher E, Reed B, Mungas D, DeCarli C (2012): FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities. AJNR Am J Neuroradiol 34:54-61.
Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N (2011): Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage 57:378-390.
Filippi M, Rocca MA, De Stefano N, Enzinger C, Fisher E, Horsfield MA, Inglese M, Pelletier D, Comi G (2011): Magnetic resonance techniques in multiple sclerosis: The present and the future. Arch Neurol 68:1514.
Arbelaez P, Maire M, Fowlkes C, Malik J (2011): Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33:898-916.
Comaniciu D, Meer P (2002): Mean shift: A robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603-619.
Ramirez J, Gibson E, Quddus A, Lobaugh NJ, Feinstein A, Levine B, Scott CJM, Levy-Cooperman N, Gao FQ, Black SE (2011): Lesion explorer: A comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue. Neuroimage 54:963-973.
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011): The diagnosis of mild cognitive impairment due to Alzheimers disease: Recommendations from the National Institute on Aging-Alzheimers Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:270-279.
Forsyth DA, Ponce J (2011): Computer Vision: A Modern Approach. NJ, USA: Prentice Hall.
Ong KH, Ramachandram D, Mandava R, Shuaib IL (2012): Automatic white matter lesion segmentation using an adaptive outlier detection method. Magn Reson Imaging 30:807-823.
Luchsinger JA, Brickman AM, Reitz C, Cho SJ, Schupf N, Manly JJ, Tang MX, Small SA, Mayeux R, DeCarli C, Brown TR (2009): Subclinical cerebrovascular disease in mild cognitive impairment. Neurology 73:450-456.
Meier IB, Manly JJ, Provenzano FA, Louie KS, Wasserman BT, Griffth EY, Hector JT, Allocco E, Brickman AM (2012): White matter predictors of cognitive functioning in older adults. J Int Neuropsychol Soc 18:414.
Bewick V, Cheek L, Ball J (2005): Statistics review 14: Logistic regression. Crit Care 9:112-118.
de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MMB, Niessen WJ (2009): White matter lesion extension to automatic brain tissue segmentation on MRI. Neuroimage 45:1151-1161.
Lee J, Haralick R, Shapiro L (1987): Morphologic edge detection. IEEE Robot Automation 3:142-156,.
Smith EE, Egorova S, Blacker D, Killiany RJ, Muzikansky A, Dickerson BC, Tanzi RE, Albert MS, Greenberg SM, Guttmann CRG (2008): Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch Neurol 65:94-100.
Boykov Y, Veksler O, Zabih R (2001): Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23:1222-1239.
Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan RN, Davatzikos C (2008): Computerassisted segmentation of white matter lesions in 3D MR images, using support vector machine. Acad Radiol 15:300.
Brickman AM, Provenzano FA, Muraskin J, Manly JJ, Blum S, Apa Z, Stern Y, Brown TR, Luchsinger JA, Mayeux R (2012): Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community. Arch Neurol 69:1621-1627.
Admiraal-Behloul F, Van Den Heuvel DMJ, Olofsen H, Van Osch MJP, Van der Grond J, Van Buchem MA, Reiber JHC (2005): Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage 28:607-617.
Leung T, Malik J (2001): Representing and recognizing the visual appearance of materials using threedimensional textons. Int J Comput Vis 43:29-44.
Barber R, Scheltens P, Gholkar A, Ballard C, McKeith I, Ince P, Perry R, OBrien J (1999): White matter lesions on magnetic resonance imaging in dementia with lewy bodies, alzheimers disease, vascular dementia, and normal aging. J Neurol 67:66-72.
DeCarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ (2005a): Anatomical mapping of white matter hyperintensities (wmh) exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke 36:50-55.
Manning CD, Raghavan P, Schütze H (2008): Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press.
Kruggel F, Paul JS, Gertz HJ (2008): Texture-based segmentation of diffuse lesions of the brain's white matter. Neuroimage 39:987-996.
Schölkopf B, Smola AJ (2001): Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press.
Yoshita M, Fletcher E, Harvey D, Ortega M, Martinez O, Mungas DM, Reed BR, DeCarli CS (2006): Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology 67:2192-2198.
Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler M (2003): Silent brain infarcts and white matter lesions increase stroke risk in the general population. Stroke 34:1126-1129.
Kruit MC, Van Buchem MA, Launer LJ, Terwindt GM, Ferrari MD (2010): Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population-based MRI CAMERA study. Cephalalgia 30:129-136.
Au R, Massaro JM, Wolf PA, Young ME, Beiser A, Seshadri S, D'Agostino RB, DeCarli C (2006): Association of white matter hyperintensity volume with decreased cognitive functioning: The Framingham heart study. Arch Neurol 63:246.
Brickman AM, Muraskin J, Zimmerman ME (2009): Structural neuroimaging in Alzheimer's disease: do white matter hyperintensities matter? Dialogues Clin Neurosci 11:181.
Carmichael O, Schwarz C, Drucker D, Fletcher E, Harvey D, Beckett L, Jack CR Jr, Weiner M, DeCarli C; Alzheimer's Disease Neuroimaging Initiative (2010): Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Arch Neurol 67:1370.
Debette S, Beiser A, DeCarli C, Au R, Himali JJ, Kelly-Hayes M, Romero JR, Kase CS, Wolf PA, Seshadri S (2010): Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: The Framingham offspring study. Stroke 41:600-606.
Schmidt P, Gaser C, Arsic M, Buck D, Forschler A, Berthele A, Hoshi M, Ilg R, Schmid VJ, Zimmer C, Hemmer B, Muhlau M (2011): An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59:3774-3783.
Anbeek P, Vincken KL, van Osch MJP, Bisschops RHC, van der Grond J (2004): Probabilistic segmentation of white matter lesions in MR imaging. Neuroimage 21:1037-1044.
Goldberg MP, Ransom BR (2003): New light on white matter. Stroke 34:330-332.
DeCarli C, Massaro J, Harvey D, Hald J, Tullberg M, Au R, Beiser A, DAgostino R, Wolf PA (2005b): Measures of brain morphology and infarction in the Framingham Heart Study: Establishing what is normal. Neurobiol Aging 26:491-510.
Smith EE, Salat DH, Jeng J, McCreary CR, Fischl B, Schmahmann JD, Dickerson BC, Viswanathan A, Albert MS, Blacker D, Greenberg SM (2011): Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology 76:1492-1499.
Debette S, Markus HS (2010): The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. Br Med J 341:3666.
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Theis B, Weintraub S, Phelps CH (2011): The diagnosis of dementia due to Alzheimers disease: Recommendations from the National Institute on Aging-Alzheimers Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263-269.
Brickman AM, Siedlecki KL, Muraskin J, Manly JJ, Luchsinger JA, Yeung LK, Brown TR, DeCarli C, Stern Y (2011): White matter hyperintensities and cognition: Testing the reserve hypothesis. Neurobiol Aging 32:1588-1598.
Shi J, Malik J (2000): Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888-905.
Breiman L. (2001): Random forests. Mach Learn 45:5-32
2004; 21
2009; 45
2005a; 36
1987; 3
2011
2010
2000; 22
2008; 39
2010; 341
1999; 67
1997
2008; 15
2008
2011; 33
2011; 32
2011; 54
2011; 76
2011; 57
2012; 18
1999; 2
2011; 59
2001; 23
2001; 45
2005; 28
2012; 34
2010; 41
2011; 7
2012; 30
2003; 34
2001; 43
2010; 67
1995; 20
2009; 11
2006; 63
2009; 73
2001
2006; 67
2005; 9
2002; 24
2006; 28
2011; 68
2008; 65
2002; 109
2012; 69
2005b; 26
2010; 30
2010; 50
e_1_2_7_5_1
e_1_2_7_3_1
Barber R (e_1_2_7_7_1) 1999; 67
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_47_1
Forsyth DA (e_1_2_7_24_1) 2011
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Schölkopf B (e_1_2_7_45_1) 2001
20733228 - IEEE Trans Pattern Anal Mach Intell. 2011 May;33(5):898-916
22945686 - Arch Neurol. 2012 Dec;69(12):1621-7
15576652 - Stroke. 2005 Jan;36(1):50-5
21518999 - Neurology. 2011 Apr 26;76(17):1492-9
15006671 - Neuroimage. 2004 Mar;21(3):1037-44
22390883 - J Int Neuropsychol Soc. 2012 May;18(3):414-27
17190943 - Neurology. 2006 Dec 26;67(12):2192-8
21497655 - Neuroimage. 2011 Jul 15;57(2):378-90
18280928 - Acad Radiol. 2008 Mar;15(3):300-13
12111471 - J Neural Transm (Vienna). 2002 May;109(5-6):813-36
22159052 - Arch Neurol. 2011 Dec;68(12):1514-20
19585953 - Dialogues Clin Neurosci. 2009;11(2):181-90
15693993 - Crit Care. 2005 Feb;9(1):112-8
22700749 - AJNR Am J Neuroradiol. 2013 Jan;34(1):54-61
21514250 - Alzheimers Dement. 2011 May;7(3):263-9
16129626 - Neuroimage. 2005 Nov 15;28(3):607-17
17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83
18195145 - Arch Neurol. 2008 Jan;65(1):94-100
20114082 - Neuroimage. 2010 May 1;50(4):1427-37
21514249 - Alzheimers Dement. 2011 May;7(3):270-9
18006334 - Neuroimage. 2008 Feb 1;39(3):987-96
12574526 - Stroke. 2003 Feb;34(2):330-2
20660506 - BMJ. 2010;341:c3666
20849961 - Neuroimage. 2011 Jan 15;54(2):963-73
21060014 - Arch Neurol. 2010 Nov;67(11):1370-8
19515125 - Cephalalgia. 2010 Feb;30(2):129-36
15653178 - Neurobiol Aging. 2005 Apr;26(4):491-510
10369824 - J Neurol Neurosurg Psychiatry. 1999 Jul;67(1):66-72
22119648 - Neuroimage. 2012 Feb 15;59(4):3774-83
19667320 - Neurology. 2009 Aug 11;73(6):450-6
20167919 - Stroke. 2010 Apr;41(4):600-6
22578927 - Magn Reson Imaging. 2012 Jul;30(6):807-23
19926168 - Neurobiol Aging. 2011 Sep;32(9):1588-98
12690219 - Stroke. 2003 May;34(5):1126-9
16476813 - Arch Neurol. 2006 Feb;63(2):246-50
19344687 - Neuroimage. 2009 May 1;45(4):1151-61
References_xml – reference: Maillard P, Carmichael O, Harvey D, Fletcher E, Reed B, Mungas D, DeCarli C (2012): FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities. AJNR Am J Neuroradiol 34:54-61.
– reference: Geremia E, Clatz O, Menze BH, Konukoglu E, Criminisi A, Ayache N (2011): Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images. Neuroimage 57:378-390.
– reference: Keihaninejad S, Heckemann RA, Fagiolo G, Symms MR, Hajnal JV, Hammers A (2010): A robust method to estimate the intracranial volume across MRI field strengths (1.5 T and 3T). Neuroimage 50:1427-1437.
– reference: Smith EE, Salat DH, Jeng J, McCreary CR, Fischl B, Schmahmann JD, Dickerson BC, Viswanathan A, Albert MS, Blacker D, Greenberg SM (2011): Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology 76:1492-1499.
– reference: Arbelaez P, Maire M, Fowlkes C, Malik J (2011): Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33:898-916.
– reference: Goldberg MP, Ransom BR (2003): New light on white matter. Stroke 34:330-332.
– reference: Boykov Y, Veksler O, Zabih R (2001): Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23:1222-1239.
– reference: Brickman AM, Provenzano FA, Muraskin J, Manly JJ, Blum S, Apa Z, Stern Y, Brown TR, Luchsinger JA, Mayeux R (2012): Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community. Arch Neurol 69:1621-1627.
– reference: Schölkopf B, Smola AJ (2001): Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press.
– reference: Carmichael O, Schwarz C, Drucker D, Fletcher E, Harvey D, Beckett L, Jack CR Jr, Weiner M, DeCarli C; Alzheimer's Disease Neuroimaging Initiative (2010): Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Arch Neurol 67:1370.
– reference: Barber R, Scheltens P, Gholkar A, Ballard C, McKeith I, Ince P, Perry R, OBrien J (1999): White matter lesions on magnetic resonance imaging in dementia with lewy bodies, alzheimers disease, vascular dementia, and normal aging. J Neurol 67:66-72.
– reference: Anbeek P, Vincken KL, van Osch MJP, Bisschops RHC, van der Grond J (2004): Probabilistic segmentation of white matter lesions in MR imaging. Neuroimage 21:1037-1044.
– reference: de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MMB, Niessen WJ (2009): White matter lesion extension to automatic brain tissue segmentation on MRI. Neuroimage 45:1151-1161.
– reference: Lee J, Haralick R, Shapiro L (1987): Morphologic edge detection. IEEE Robot Automation 3:142-156,.
– reference: Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler M (2003): Silent brain infarcts and white matter lesions increase stroke risk in the general population. Stroke 34:1126-1129.
– reference: Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011): The diagnosis of mild cognitive impairment due to Alzheimers disease: Recommendations from the National Institute on Aging-Alzheimers Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:270-279.
– reference: Comaniciu D, Meer P (2002): Mean shift: A robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603-619.
– reference: Debette S, Beiser A, DeCarli C, Au R, Himali JJ, Kelly-Hayes M, Romero JR, Kase CS, Wolf PA, Seshadri S (2010): Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: The Framingham offspring study. Stroke 41:600-606.
– reference: Shi J, Malik J (2000): Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888-905.
– reference: Kruit MC, Van Buchem MA, Launer LJ, Terwindt GM, Ferrari MD (2010): Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population-based MRI CAMERA study. Cephalalgia 30:129-136.
– reference: McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Theis B, Weintraub S, Phelps CH (2011): The diagnosis of dementia due to Alzheimers disease: Recommendations from the National Institute on Aging-Alzheimers Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263-269.
– reference: DeCarli C, Massaro J, Harvey D, Hald J, Tullberg M, Au R, Beiser A, DAgostino R, Wolf PA (2005b): Measures of brain morphology and infarction in the Framingham Heart Study: Establishing what is normal. Neurobiol Aging 26:491-510.
– reference: Meier IB, Manly JJ, Provenzano FA, Louie KS, Wasserman BT, Griffth EY, Hector JT, Allocco E, Brickman AM (2012): White matter predictors of cognitive functioning in older adults. J Int Neuropsychol Soc 18:414.
– reference: Au R, Massaro JM, Wolf PA, Young ME, Beiser A, Seshadri S, D'Agostino RB, DeCarli C (2006): Association of white matter hyperintensity volume with decreased cognitive functioning: The Framingham heart study. Arch Neurol 63:246.
– reference: Breiman L. (2001): Random forests. Mach Learn 45:5-32
– reference: Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan RN, Davatzikos C (2008): Computerassisted segmentation of white matter lesions in 3D MR images, using support vector machine. Acad Radiol 15:300.
– reference: Ramirez J, Gibson E, Quddus A, Lobaugh NJ, Feinstein A, Levine B, Scott CJM, Levy-Cooperman N, Gao FQ, Black SE (2011): Lesion explorer: A comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue. Neuroimage 54:963-973.
– reference: Brickman AM, Muraskin J, Zimmerman ME (2009): Structural neuroimaging in Alzheimer's disease: do white matter hyperintensities matter? Dialogues Clin Neurosci 11:181.
– reference: Cortes C, Vapnik V (1995): Support vector networks. Machine Learn 20:273-297.
– reference: Filippi M, Rocca MA, De Stefano N, Enzinger C, Fisher E, Horsfield MA, Inglese M, Pelletier D, Comi G (2011): Magnetic resonance techniques in multiple sclerosis: The present and the future. Arch Neurol 68:1514.
– reference: Brickman AM, Siedlecki KL, Muraskin J, Manly JJ, Luchsinger JA, Yeung LK, Brown TR, DeCarli C, Stern Y (2011): White matter hyperintensities and cognition: Testing the reserve hypothesis. Neurobiol Aging 32:1588-1598.
– reference: Debette S, Markus HS (2010): The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. Br Med J 341:3666.
– reference: Grady L (2006): Random walks for image segmentation. IEEE Trans Pattern Anal Mach Intell 28:1768-1783.
– reference: Manning CD, Raghavan P, Schütze H (2008): Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press.
– reference: Ong KH, Ramachandram D, Mandava R, Shuaib IL (2012): Automatic white matter lesion segmentation using an adaptive outlier detection method. Magn Reson Imaging 30:807-823.
– reference: Leung T, Malik J (2001): Representing and recognizing the visual appearance of materials using threedimensional textons. Int J Comput Vis 43:29-44.
– reference: DeCarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ (2005a): Anatomical mapping of white matter hyperintensities (wmh) exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. Stroke 36:50-55.
– reference: Schmidt P, Gaser C, Arsic M, Buck D, Forschler A, Berthele A, Hoshi M, Ilg R, Schmid VJ, Zimmer C, Hemmer B, Muhlau M (2011): An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 59:3774-3783.
– reference: Yoshita M, Fletcher E, Harvey D, Ortega M, Martinez O, Mungas DM, Reed BR, DeCarli CS (2006): Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology 67:2192-2198.
– reference: Jellinger KA (2002): Alzheimer disease and cerebrovascular pathology: An update. J Neural Transm 109:813-836.
– reference: Kruggel F, Paul JS, Gertz HJ (2008): Texture-based segmentation of diffuse lesions of the brain's white matter. Neuroimage 39:987-996.
– reference: Smith EE, Egorova S, Blacker D, Killiany RJ, Muzikansky A, Dickerson BC, Tanzi RE, Albert MS, Greenberg SM, Guttmann CRG (2008): Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch Neurol 65:94-100.
– reference: Forsyth DA, Ponce J (2011): Computer Vision: A Modern Approach. NJ, USA: Prentice Hall.
– reference: Admiraal-Behloul F, Van Den Heuvel DMJ, Olofsen H, Van Osch MJP, Van der Grond J, Van Buchem MA, Reiber JHC (2005): Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage 28:607-617.
– reference: Luchsinger JA, Brickman AM, Reitz C, Cho SJ, Schupf N, Manly JJ, Tang MX, Small SA, Mayeux R, DeCarli C, Brown TR (2009): Subclinical cerebrovascular disease in mild cognitive impairment. Neurology 73:450-456.
– reference: Bewick V, Cheek L, Ball J (2005): Statistics review 14: Logistic regression. Crit Care 9:112-118.
– volume: 28
  start-page: 607
  year: 2005
  end-page: 617
  article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
  publication-title: Neuroimage
– year: 2011
– start-page: 361
  year: 1997
  end-page: 368
– volume: 7
  start-page: 270
  year: 2011
  end-page: 279
  article-title: The diagnosis of mild cognitive impairment due to Alzheimers disease: Recommendations from the National Institute on Aging‐Alzheimers Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 57
  start-page: 378
  year: 2011
  end-page: 390
  article-title: Spatial decision forests for MS lesion segmentation in multi‐channel magnetic resonance images
  publication-title: Neuroimage
– year: 2001
– volume: 341
  start-page: 3666
  year: 2010
  article-title: The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta‐analysis
  publication-title: Br Med J
– volume: 36
  start-page: 50
  year: 2005a
  end-page: 55
  article-title: Anatomical mapping of white matter hyperintensities (wmh) exploring the relationships between periventricular WMH, deep WMH, and total WMH burden
  publication-title: Stroke
– volume: 11
  start-page: 181
  year: 2009
  article-title: Structural neuroimaging in Alzheimer's disease: do white matter hyperintensities matter?
  publication-title: Dialogues Clin Neurosci
– volume: 9
  start-page: 112
  year: 2005
  end-page: 118
  article-title: Statistics review 14: Logistic regression
  publication-title: Crit Care
– volume: 50
  start-page: 1427
  year: 2010
  end-page: 1437
  article-title: A robust method to estimate the intracranial volume across MRI field strengths (1.5 T and 3T)
  publication-title: Neuroimage
– volume: 32
  start-page: 1588
  year: 2011
  end-page: 1598
  article-title: White matter hyperintensities and cognition: Testing the reserve hypothesis
  publication-title: Neurobiol Aging
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  article-title: Support vector networks
  publication-title: Machine Learn
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  article-title: Mean shift: A robust approach toward feature space analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 34
  start-page: 1126
  year: 2003
  end-page: 1129
  article-title: Silent brain infarcts and white matter lesions increase stroke risk in the general population
  publication-title: Stroke
– volume: 67
  start-page: 1370
  year: 2010
  article-title: Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative
  publication-title: Arch Neurol
– volume: 26
  start-page: 491
  year: 2005b
  end-page: 510
  article-title: Measures of brain morphology and infarction in the Framingham Heart Study: Establishing what is normal
  publication-title: Neurobiol Aging
– year: 2008
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 68
  start-page: 1514
  year: 2011
  article-title: Magnetic resonance techniques in multiple sclerosis: The present and the future
  publication-title: Arch Neurol
– volume: 76
  start-page: 1492
  year: 2011
  end-page: 1499
  article-title: Correlations between MRI white matter lesion location and executive function and episodic memory
  publication-title: Neurology
– volume: 18
  start-page: 414
  year: 2012
  article-title: White matter predictors of cognitive functioning in older adults
  publication-title: J Int Neuropsychol Soc
– volume: 34
  start-page: 330
  year: 2003
  end-page: 332
  article-title: New light on white matter
  publication-title: Stroke
– volume: 39
  start-page: 987
  year: 2008
  end-page: 996
  article-title: Texture‐based segmentation of diffuse lesions of the brain's white matter
  publication-title: Neuroimage
– volume: 54
  start-page: 963
  year: 2011
  end-page: 973
  article-title: Lesion explorer: A comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue
  publication-title: Neuroimage
– volume: 73
  start-page: 450
  year: 2009
  end-page: 456
  article-title: Subclinical cerebrovascular disease in mild cognitive impairment
  publication-title: Neurology
– start-page: 93
  year: 2010
  end-page: 96
– volume: 63
  start-page: 246
  year: 2006
  article-title: Association of white matter hyperintensity volume with decreased cognitive functioning: The Framingham heart study
  publication-title: Arch Neurol
– volume: 41
  start-page: 600
  year: 2010
  end-page: 606
  article-title: Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: The Framingham offspring study
  publication-title: Stroke
– volume: 3
  start-page: 142
  year: 1987
  end-page: 156
  article-title: Morphologic edge detection
  publication-title: IEEE Robot Automation
– volume: 2
  start-page: 918
  year: 1999
  end-page: 925
– volume: 33
  start-page: 898
  year: 2011
  end-page: 916
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 23
  start-page: 1222
  year: 2001
  end-page: 1239
  article-title: Fast approximate energy minimization via graph cuts
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 15
  start-page: 300
  year: 2008
  article-title: Computerassisted segmentation of white matter lesions in 3D MR images, using support vector machine
  publication-title: Acad Radiol
– volume: 43
  start-page: 29
  year: 2001
  end-page: 44
  article-title: Representing and recognizing the visual appearance of materials using threedimensional textons
  publication-title: Int J Comput Vis
– volume: 7
  start-page: 263
  year: 2011
  end-page: 269
  article-title: The diagnosis of dementia due to Alzheimers disease: Recommendations from the National Institute on Aging‐Alzheimers Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 67
  start-page: 66
  year: 1999
  end-page: 72
  article-title: White matter lesions on magnetic resonance imaging in dementia with lewy bodies, alzheimers disease, vascular dementia, and normal aging
  publication-title: J Neurol
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 28
  start-page: 1768
  year: 2006
  end-page: 1783
  article-title: Random walks for image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 30
  start-page: 807
  year: 2012
  end-page: 823
  article-title: Automatic white matter lesion segmentation using an adaptive outlier detection method
  publication-title: Magn Reson Imaging
– volume: 59
  start-page: 3774
  year: 2011
  end-page: 3783
  article-title: An automated tool for detection of FLAIR‐hyperintense white‐matter lesions in multiple sclerosis
  publication-title: Neuroimage
– volume: 69
  start-page: 1621
  year: 2012
  end-page: 1627
  article-title: Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community
  publication-title: Arch Neurol
– volume: 109
  start-page: 813
  year: 2002
  end-page: 836
  article-title: Alzheimer disease and cerebrovascular pathology: An update
  publication-title: J Neural Transm
– volume: 45
  start-page: 1151
  year: 2009
  end-page: 1161
  article-title: White matter lesion extension to automatic brain tissue segmentation on MRI
  publication-title: Neuroimage
– volume: 21
  start-page: 1037
  year: 2004
  end-page: 1044
  article-title: Probabilistic segmentation of white matter lesions in MR imaging
  publication-title: Neuroimage
– volume: 34
  start-page: 54
  year: 2012
  end-page: 61
  article-title: FLAIR and diffusion MRI signals are independent predictors of white matter hyperintensities
  publication-title: AJNR Am J Neuroradiol
– volume: 65
  start-page: 94
  year: 2008
  end-page: 100
  article-title: Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia
  publication-title: Arch Neurol
– volume: 67
  start-page: 2192
  year: 2006
  end-page: 2198
  article-title: Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD
  publication-title: Neurology
– volume: 30
  start-page: 129
  year: 2010
  end-page: 136
  article-title: Migraine is associated with an increased risk of deep white matter lesions, subclinical posterior circulation infarcts and brain iron accumulation: the population‐based MRI CAMERA study
  publication-title: Cephalalgia
– ident: e_1_2_7_50_1
  doi: 10.1212/01.wnl.0000249119.95747.1f
– ident: e_1_2_7_37_1
  doi: 10.3174/ajnr.A3146
– volume-title: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
  year: 2001
  ident: e_1_2_7_45_1
  doi: 10.7551/mitpress/4175.001.0001
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neurobiolaging.2004.05.004
– ident: e_1_2_7_19_1
  doi: 10.1136/bmj.c3666
– ident: e_1_2_7_46_1
  doi: 10.1109/34.868688
– ident: e_1_2_7_16_1
  doi: 10.1007/BF00994018
– ident: e_1_2_7_10_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_7_23_1
  doi: 10.1001/archneurol.2011.914
– volume-title: Computer Vision: A Modern Approach
  year: 2011
  ident: e_1_2_7_24_1
– ident: e_1_2_7_8_1
  doi: 10.1186/cc3045
– ident: e_1_2_7_14_1
  doi: 10.1001/archneurol.2010.284
– ident: e_1_2_7_35_1
  doi: 10.1023/A:1011126920638
– ident: e_1_2_7_18_1
  doi: 10.1145/258734.258882
– ident: e_1_2_7_49_1
  doi: 10.1161/01.STR.0000068408.82115.D2
– ident: e_1_2_7_41_1
  doi: 10.1017/S1355617712000227
– ident: e_1_2_7_21_1
  doi: 10.1161/01.STR.0000150668.58689.f2
– ident: e_1_2_7_33_1
  doi: 10.1016/j.acra.2007.10.012
– ident: e_1_2_7_27_1
  doi: 10.1161/01.STR.0000054048.22626.B9
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jalz.2011.03.008
– ident: e_1_2_7_42_1
  doi: 10.1016/j.mri.2012.01.007
– ident: e_1_2_7_48_1
  doi: 10.1212/WNL.0b013e318217e7c8
– ident: e_1_2_7_4_1
  doi: 10.1016/j.neuroimage.2003.10.012
– ident: e_1_2_7_31_1
  doi: 10.1016/j.neuroimage.2007.09.058
– ident: e_1_2_7_39_1
  doi: 10.1017/CBO9780511809071
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2010.01.064
– ident: e_1_2_7_6_1
  doi: 10.1001/archneur.63.2.246
– ident: e_1_2_7_25_1
  doi: 10.1109/ISBI.2010.5490407
– ident: e_1_2_7_26_1
  doi: 10.1016/j.neuroimage.2011.03.080
– ident: e_1_2_7_13_1
  doi: 10.1001/archneurol.2012.1527
– volume: 67
  start-page: 66
  year: 1999
  ident: e_1_2_7_7_1
  article-title: White matter lesions on magnetic resonance imaging in dementia with lewy bodies, alzheimers disease, vascular dementia, and normal aging
  publication-title: J Neurol
– ident: e_1_2_7_38_1
  doi: 10.1109/ICCV.1999.790346
– ident: e_1_2_7_43_1
  doi: 10.1016/j.neuroimage.2010.09.013
– ident: e_1_2_7_12_1
  doi: 10.1016/j.neurobiolaging.2009.10.013
– ident: e_1_2_7_34_1
  doi: 10.1109/JRA.1987.1087088
– ident: e_1_2_7_36_1
  doi: 10.1212/WNL.0b013e3181b1636a
– ident: e_1_2_7_20_1
  doi: 10.1161/STROKEAHA.109.570044
– ident: e_1_2_7_44_1
  doi: 10.1016/j.neuroimage.2011.11.032
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neuroimage.2009.01.011
– ident: e_1_2_7_40_1
  doi: 10.1016/j.jalz.2011.03.005
– ident: e_1_2_7_2_1
  doi: 10.1016/j.neuroimage.2005.06.061
– ident: e_1_2_7_29_1
  doi: 10.1007/s007020200068
– ident: e_1_2_7_28_1
  doi: 10.1109/TPAMI.2006.233
– ident: e_1_2_7_5_1
  doi: 10.1109/TPAMI.2010.161
– ident: e_1_2_7_47_1
  doi: 10.1001/archneurol.2007.23
– ident: e_1_2_7_11_1
  doi: 10.31887/DCNS.2009.11.2/ambrickman
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1468-2982.2009.01904.x
– ident: e_1_2_7_9_1
  doi: 10.1109/34.969114
– ident: e_1_2_7_15_1
  doi: 10.1109/34.1000236
– reference: 22119648 - Neuroimage. 2012 Feb 15;59(4):3774-83
– reference: 18280928 - Acad Radiol. 2008 Mar;15(3):300-13
– reference: 19585953 - Dialogues Clin Neurosci. 2009;11(2):181-90
– reference: 18006334 - Neuroimage. 2008 Feb 1;39(3):987-96
– reference: 15576652 - Stroke. 2005 Jan;36(1):50-5
– reference: 12574526 - Stroke. 2003 Feb;34(2):330-2
– reference: 22700749 - AJNR Am J Neuroradiol. 2013 Jan;34(1):54-61
– reference: 20733228 - IEEE Trans Pattern Anal Mach Intell. 2011 May;33(5):898-916
– reference: 20114082 - Neuroimage. 2010 May 1;50(4):1427-37
– reference: 19667320 - Neurology. 2009 Aug 11;73(6):450-6
– reference: 12111471 - J Neural Transm (Vienna). 2002 May;109(5-6):813-36
– reference: 15653178 - Neurobiol Aging. 2005 Apr;26(4):491-510
– reference: 22945686 - Arch Neurol. 2012 Dec;69(12):1621-7
– reference: 21518999 - Neurology. 2011 Apr 26;76(17):1492-9
– reference: 22578927 - Magn Reson Imaging. 2012 Jul;30(6):807-23
– reference: 22159052 - Arch Neurol. 2011 Dec;68(12):1514-20
– reference: 21514249 - Alzheimers Dement. 2011 May;7(3):270-9
– reference: 20660506 - BMJ. 2010;341:c3666
– reference: 21497655 - Neuroimage. 2011 Jul 15;57(2):378-90
– reference: 18195145 - Arch Neurol. 2008 Jan;65(1):94-100
– reference: 22390883 - J Int Neuropsychol Soc. 2012 May;18(3):414-27
– reference: 16129626 - Neuroimage. 2005 Nov 15;28(3):607-17
– reference: 20167919 - Stroke. 2010 Apr;41(4):600-6
– reference: 15006671 - Neuroimage. 2004 Mar;21(3):1037-44
– reference: 12690219 - Stroke. 2003 May;34(5):1126-9
– reference: 10369824 - J Neurol Neurosurg Psychiatry. 1999 Jul;67(1):66-72
– reference: 17190943 - Neurology. 2006 Dec 26;67(12):2192-8
– reference: 21514250 - Alzheimers Dement. 2011 May;7(3):263-9
– reference: 19926168 - Neurobiol Aging. 2011 Sep;32(9):1588-98
– reference: 21060014 - Arch Neurol. 2010 Nov;67(11):1370-8
– reference: 20849961 - Neuroimage. 2011 Jan 15;54(2):963-73
– reference: 19344687 - Neuroimage. 2009 May 1;45(4):1151-61
– reference: 17063682 - IEEE Trans Pattern Anal Mach Intell. 2006 Nov;28(11):1768-83
– reference: 16476813 - Arch Neurol. 2006 Feb;63(2):246-50
– reference: 15693993 - Crit Care. 2005 Feb;9(1):112-8
– reference: 19515125 - Cephalalgia. 2010 Feb;30(2):129-36
SSID ssj0011501
Score 2.4073043
Snippet Precise detection and quantification of white matter hyperintensities (WMH) observed in T2‐weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic...
Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4219
SubjectTerms Aged
Aged, 80 and over
Aging - pathology
Alzheimer Disease - pathology
Artificial Intelligence
Biological and medical sciences
Brain - pathology
Cognitive Dysfunction - pathology
Cohort Studies
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Female
Humans
Investigative techniques, diagnostic techniques (general aspects)
Linear Models
Magnetic Resonance Imaging - methods
Male
Medical sciences
Middle Aged
Nervous system
Neurology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
random forests
Risk
segmentation
Signal Processing, Computer-Assisted
Support Vector Machine
support vector machines
White Matter - pathology
white matter hyperintensities
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIQEvXDYugTGZi8Ze0uXi3MRTh1YqpFUIbaIPSJad2G21xquaVlv7G_jRHNtppsBAiLdUOU6ao5NzvhN__ozQu5hnIoXAcf0wEi7Ua89lsSRuxlNBpIwlZ4blO4j75-TzMBpuoQ-btTBWH6L54KbfDJOv9QvOeHV0Ixo65mUH6k-i868fxqad-tpIR2mgY5otKLFuBhl4oyrkBUfNyFYtuqPdeq25kawC90i7r8VtwPN3_uS9pZqx1RWbTtsY1xSp3kP0ffN4lpty0VkueCdf_6L8-J_P_wg9qMEr7tpoe4y2hNpBu10FjXu5wgfY0EnNd_oddPe0nrXfRT9OrhdmMZYaYaYKbBfMTdb695WexsClUfnE45XWXbakei30ijUrfwT2M53RKgFDxaisV0spbHe_rvBE4e50PRaTUszfV7iec8KaNW_uZzZiwpVlTD5B572Ts499t94Fws0jQB9uIQEziQRwRM4Yz-OcQE_IAxl4Kclyz5NFRnLh55wIwJ5EJCnAFu4Xerm1gIYtfIq21aUSzxGG1kj6IicsSUJS8AKwWcSgWieSCxYFnoMON_FA81oiXe_UMaVW3Dmg4HRqnO6gN43pzOqC3GZ0YIKqsWDzC02kSyL6bfCJHg96Z170hdChg_ZbUdcMCNJYCwD5DtrbhCGtk0xFAf2GYaYxnYNeN6chPeg5H6bE5dLYQEMKfoQ_88xG7c3F4cqAIImDklY8NwZaerx9Rk3GRoKcwEA_Boe9bSL_b244NIH8ZwvaPz41By_-3fQlug_glVgy5h7aXsyX4hUAxAXfN5ngJ4AzZEI
  priority: 102
  providerName: Wiley-Blackwell
Title Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer's disease risk and aging studies
URI https://api.istex.fr/ark:/67375/WNG-BNFT05P4-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.22472
https://www.ncbi.nlm.nih.gov/pubmed/24510744
https://www.proquest.com/docview/1543390819
https://www.proquest.com/docview/1547538122
https://pubmed.ncbi.nlm.nih.gov/PMC4107160
https://www.ncbi.nlm.nih.gov/pmc/articles/4107160
UnpaywallVersion submittedVersion
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: Medline (PubMed)
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9owFLUqkLa97KPdumwd8j7U9SUhCU5CHulUhiYVVVXR2FNkOw6gEhcRUAu_YT9613aSia2btjci3xhindjnco-PEfoQslh0ATi21wmEDeu1a9MwI3bMuoJkWZgxqlW-w3AwIl_GwXgPedVeGC3a52zmyHnuyNlUaysXOW9XOrE2gYTFCyFLb4YB0O8Gao6GF71vuqoZBnZcJlmuchkFdlK5Cbl-e8pyB1asyN9Zg5pqOO-UJpIWMCyZOc_iPsL5u27y4Vou6OaWzue73FYvTv0n6LJ6LKNJuXbWK-bw7S-Oj__13E_R45Kq4p5peob2hNxHBz0JaXq-wcdYi0f1v_L76MF5WaM_QN_P7lZ665WcYCpTbLbHzbbq-lYVLXCuPT3xdKNclo2EXtm6YqXBn0D8Qs1fhYBbxSQv90ZJbM66LvBM4t58OxWzXCw_FrisMGGlkdffp49dwoXRRz5Ho_7Z1aeBXZ75YPMAuIadZsCQRASsgVPKeMgJZIDMz3y3S2LuulkaEy48zogApklE1AWSwrxUba4WkJ51XqCGvJHiJcKQCGWe4IRGUYekLAUmFlBYm6OMCRr4roVOKhQkvDREV-dyzBNj5ewnAJhEA8ZC7-rQhXEBuS_oWEOpjqDLayWbi4Lk6_BzcjrsX7nBBUnGFmrtYK2-we-Gyu7Hs9BRBb6knFKKBLhupxMrBmeht3UzTAaqwkOluFnrGEg_YRzhxxwarP7sHHoGvkgsFO2guA5QRuO7LYBDbTheQs9C72u8_20YTvSb8OeIZHB6rj-8-qcOX6NHwFKJUV0eocZquRZvgAmuWAtyoEu_Vc4APwAaq2B7
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTWK8cNm4BMYwF429pMvFuUm8dGilwFoh1Gl9QZadOG21xquaVlv7G_jRHNtppsJAiLdWOU7To5NzvmN__ozQ25AnIobAsV0_EDbUa8dmYU7shMeC5HmYc6ZZvt2wfUY-94P-Bnq_2gtj9CHqCTf1Zuh8rV5wNSF9dKMaOuRFAwpQBAl4i4TQpyhI9K0Wj1JQR7dbUGTtBHLwSlfI8Y7qoWvVaEs59lqxI1kJDsrNyRa3Qc_fGZTbczlhiys2Hq-jXF2mWvfR99UfNOyUi8Z8xhvp8hftx__1wAN0r8KvuGkC7iHaEHIH7TYl9O7FAh9gzSjVU_U76E6nWrjfRT9Ormd6P5YcYCYzbPbMjZbq-5VaycCFFvrEw4WSXja8eqX1ihUxfwD2E5XUSgFDxaCoNkxJbA7ALvFI4uZ4ORSjQkzflbhadsKKOK9_T5_FhEtDmnyEzlonvQ9tuzoIwk4DACB2lgNsEhFAiZQxnoYpgbaQe7nnxCRJHSfPEpIKN-VEAPwkIooBuXA3UzuuBfRs_mO0KS-leIowdEe5K1LCosgnGc8AngUMCnaUc8ECz7HQ4SogaFqppKvDOsbU6Dt7FJxOtdMt9Lo2nRhpkNuMDnRU1RZseqG4dFFAz7sf6XG31XOCr4T2LbS_Fnb1AC8OlQaQa6G9VRzSKs-UFACw7ycK1lnoVX0ZMoRa9mFSXM61DfSk4Ed4mCcmbG9uDncGEEksFK0FdG2g1MfXr8jRUKuQExjohuCwN3Xo_80NhzqS_2xB28cd_eHZv5u-RNvtXueUnn7qfnmO7gKWJYabuYc2Z9O5eAF4ccb3dVr4CZOiaGM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYQSGwvY4NdwhjzLmK8pCSpc5P2UgZdd6FCE4i-TJad2G1Fa6qmFbS_YT96x3Ya1I1N095S5ThJj07O-U78-TNCbyOeigQCx_XroXChXnsuiyRxU54IImUkOTMs33bUOiefO2FnBb1frIWx-hDVBzf9Zph8rV9wMcrlwa1qaI8Pa1CAYkjAayRME03oO_pWiUdpqGPaLSiybgo5eKEr5AUH1dClarSmHXuj2ZGsAAdJu7PFXdDzdwblvakasdk1GwyWUa4pU80N9H3xBy075bI2nfBaNv9F-_F_PfAQPSjxK27YgHuEVoTaRFsNBb37cIb3sGGUmk_1m2j9pJy430I_jm8mZj2W6mKmcmzXzPXn-ve1nsnAQyP0iXszLb1sefVa6xVrYn4X7Ec6qRUChorusFwwpbDdALvAfYUbg3lP9Idi_K7A5bQT1sR5cz-zFxMuLGnyMTpvHp99aLnlRhBuFgIAcXMJsEnEACUyxngWZQTaQh7IwEtImnmezFOSCT_jRAD8JCJOALlwP9crrgX0bPUnaFVdKfEMYeiOpC8ywuK4TnKeAzwLGRTsWHLBwsBz0P4iIGhWqqTrzToG1Oo7BxScTo3THfS6Mh1ZaZC7jPZMVFUWbHypuXRxSC_aH-lhu3nmhaeEdhy0uxR21YAgibQGkO-gnUUc0jLPFBQAcL2ealjnoFfVacgQetqHKXE1NTbQk4If4WGe2rC9vThcGUAkcVC8FNCVgVYfXz6j-j2jQk5goB-Bw95Uof83N-ybSP6zBW0dnpiD7X83fYnWT4-a9Oun9pfn6D5AWWKpmTtodTKeihcAFyd812SFn7GuZ-c
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9owFD6qQNr2sku7S7au8i7q-hJIgpOQRzqVoUlF1VQ09hTZjgOoxEUE1MJv2I_esXOZ2LppewP5xBDri_2dnM-fAd4HPJJdBI7tdnxp43rt2CxIqR3xrqRpGqScGZXvMBiM6OexP94Dt9oLY0T7gs9aap611GxqtJWLTLQrnVibYsLiBpilNwMf6XcDmqPhRe-bqWoGvh2VSZajXUaRnVRuQo7XnvKshStW6O2sQU09nLdaE8lyHJa0OM_iLsL5u27y_lot2OaGzee73NYsTv1H8KW6rUKTctVar3hLbH9xfPyv-34MD0uqSnpF0xPYk2ofDnoK0_RsQ46JEY-at_L7cO-8rNEfwPez25XZeqUmhKmEFNvjZlv9_UYXLUhmPD3JdKNdlgsJvbZ1JVqDP8H4hZ6_comXyklW7o1SpDjrOiczRXrz7VTOMrn8kJOywkS0Rt78njl2ieSFPvIpjPpnlx8Hdnnmgy185Bp2kiJDkiGyBsEYF4GgmAFyL_WcLo2E46RJRIV0BacSmSaVYRdJCncTvblaYnrWeQYNda3kCyCYCKWuFJSFYYcmPEEm5jNcm8OUS-Z7jgUnFQpiURqi63M55nFh5ezFCJjYAMaCt3XoonABuSvo2ECpjmDLKy2bC_346_BTfDrsXzr-BY3HFhztYK2-wOsG2u7HteCwAl9cTil5jFy304k0g7PgTd2Mk4Gu8DAlr9cmBtNPHEf8M88LrP7sHHtGvkgtCHdQXAdoo_HdFsShMRwvoWfBuxrvfxuGE_Mk_DkiHpyemw8v_6nDV_AAWSotVJeH0Fgt1_I1MsEVPyqf_R_diF-S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+and+summarizing+white+matter+hyperintensities+using+supervised+segmentation+methods+in+Alzheimer%27s+disease+risk+and+aging+studies&rft.jtitle=Human+brain+mapping&rft.au=Ithapu%2C+Vamsi&rft.au=Singh%2C+Vikas&rft.au=Lindner%2C+Christopher&rft.au=Austin%2C+Benjamin+P.&rft.date=2014-08-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=35&rft.issue=8&rft.spage=4219&rft.epage=4235&rft_id=info:doi/10.1002%2Fhbm.22472&rft_id=info%3Apmid%2F24510744&rft.externalDocID=PMC4107160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon