复杂系统可靠控制中的潜在问题互连神经网络分析方法
潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%....
Saved in:
Published in | Zi dong hua xue bao Vol. 34; no. 2; pp. 188 - 194 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
第二炮兵工程学院302教研室,西安,710025
2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.3724/SP.J.1004.2008.00188 |
Cover
Abstract | 潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%. |
---|---|
AbstractList | TP301; 潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%. 潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%. |
Author | 胡昌华 刘丙杰 |
AuthorAffiliation | 第二炮兵工程学院302教研室,西安710025 |
AuthorAffiliation_xml | – name: 第二炮兵工程学院302教研室,西安,710025 |
Author_FL | HU Chang-Hua LIU Bing-Jie |
Author_FL_xml | – sequence: 1 fullname: HU Chang-Hua – sequence: 2 fullname: LIU Bing-Jie |
Author_xml | – sequence: 1 fullname: 胡昌华 刘丙杰 |
BookMark | eNotkM1Kw0AcxBdRsNa-gScP3hL_u9lNNkcpapWCgr2XTbJpqyVFiygeRaQXrQp-IG0VUfSiHgqihuLLNFn7FqbU08zhxwwzU2g8qAUSoRkMumEROr-xrq_qGIDqBIDrAJjzMZTC3KIaBmKPoxQQRjWKmTmJMvV6xQFsUcsmBqRQLno8iduHqhuq8C5qvg_a9_Hpc9T46H--qtujuNeKWi-D67fBw03_--L3p6OeOipsqt65CltR4zjunMVXX3H3chpN-KJal5l_TaPC0mIhm9Pya8sr2YW85jKONZcz6UthAjAupcWJ4zHbYdwDShwmuTSF54uh94hLCPfsZIcpiGtzin3MjTSaG8XuicAXQam4WdvdCZLC4oFX3neGFwABjBNwdgS65VpQ2q4kqCPcLb9SlUViUmYzxo0_RwB21Q |
ClassificationCodes | TP301 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3724/SP.J.1004.2008.00188 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Sneak Circuit Analysis Based on Novel Coadjacent Neural Network Model for Reliability Control of Complex System |
DocumentTitle_FL | Sneak Circuit Analysis Based on Novel Coadjacent Neural Network Model for Reliability Control of Complex System |
EISSN | 1874-1029 |
EndPage | 194 |
ExternalDocumentID | zdhxb200802011 26459558 |
GrantInformation_xml | – fundername: 国家自然科学基金; 教育部跨世纪优秀人才培养计划 funderid: (60736026); 教育部跨世纪优秀人才培养计划 |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CDYEO CJLMK CQIGP CS3 CUBFJ CW9 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c581-c85efea60058ee782bd59b58d042b5e8e6adfa42b5d2c228d91876a2c9841f183 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Thu Nov 24 20:35:13 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 潜在问题分析 神经网络集成 可靠控制 鲁棒性分析 克隆选择算法 泛化性能 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c581-c85efea60058ee782bd59b58d042b5e8e6adfa42b5d2c228d91876a2c9841f183 |
Notes | Sneak circuit analysis, reliability control, neural network ensemble, clonal selection algorithm, robustness analysis, generalization performance TP301 11-2109/TP |
PageCount | 7 |
ParticipantIDs | wanfang_journals_zdhxb200802011 chongqing_backfile_26459558 |
PublicationCentury | 2000 |
PublicationDate | 2008 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008 |
PublicationDecade | 2000 |
PublicationTitle | Zi dong hua xue bao |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | ACTA AUTOMATICA SINICA |
PublicationYear | 2008 |
Publisher | 第二炮兵工程学院302教研室,西安,710025 |
Publisher_xml | – name: 第二炮兵工程学院302教研室,西安,710025 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 ssib051375349 |
Score | 1.8359075 |
Snippet | 潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural... TP301; 潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 188 |
SubjectTerms | 克隆选择算法 可靠控制 泛化性能 潜在问题分析 神经网络集成 鲁棒性分析 |
Title | 复杂系统可靠控制中的潜在问题互连神经网络分析方法 |
URI | http://lib.cqvip.com/qk/90250X/20082/26459558.html https://d.wanfangdata.com.cn/periodical/zdhxb200802011 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1874-1029 dateEnd: 20151031 omitProxy: true ssIdentifier: ssj0059721 issn: 0254-4156 databaseCode: .~1 dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKj1ogfxE2v96ME5piaTTDJznOxmKQXFQ4XipSSz2VaELWoL0oMHEelFq4IfSFtFFL2oh4KoS_HPdDf2X_jeZHabSsEPWMLL5H3MvJedeW8y84aQ8xwCNBYy4ejA1Q72kk4a6MhxW1q7GlyGlsYNzhcvhRNXgslpPj2072pl1dLiQjaul_bcV_I_VoUysCvukv0Hyw6YQgHAYF-4goXh-lc2pgmnCpzBOk1CKutUMJpENPZpHBsgprKBOKJBFQAScZSLyCKhKjKPBI1DmgQ0FlTVkUoqKgLEietU1hAHrkoY8oiqBAHFqBSGSlEJQoFJg8oEyRW3AEgHuQgAH69fn5oVKkJT54RKUx8J4qQR6tPyOMy-x4zMBbBVhlCZmgBQQxJsPrTIsMJHvP_6GCKfKs_wFoiORKChZAfF1MM2AwBplRi7u2ZCxOCtNa2r4a9sODKNUOeoE2DGacwRiI0SEBkEx5VKShSiIBpjRhQ3MiO0iAwMWoLWZDWsPXCIG7ZQSCjE_Ejl5m3bb0PM7WBcXB1k7IzttUqsX44YXnmqoXU-vPLE59_HNT9iAX5Zvzw-ictagv4a4AHxrozhS8252xkzu6hd3Pa-n0XghUFfP36nmurPZbLSt3MJ3XfFFQw5pircuY_wg3vlCznc-_5O6InnEISVqQXu-RAIY2hfekUcs0SZ-U6rnHIbKzbswl7NwlQnc_Pt2RvgwJn9dO1W2p6tuH5Th8khG7ONqfIPeIQMLc0dJQcrmTyPkYnu2we9tbvFRqfovOqufN5ee917-L67_GXr68fi5b3e5mp39cP280_bb15sfX_y88d68W696KwUm4-Lzmp3-X5v_VHv2bfextPjZKqRTNUmHHtIiaO58BwteN7K0xCP58xzcLezJpcZF03QZsZzkYdps5Ui3GSaMdGUHvgfKdNSBF4LxtMTZLg9385PkjHM6quF4JmAMCHNAonnyjGW-2A-0DwfIaMDlYCPq69j5rYZhtmgOBcj5JxV0oztoW7N7H4RTv0RY5QcKJdD4QzjaTK8cHMxPwM-90J21rw8vwBilqUt |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%8D%E6%9D%82%E7%B3%BB%E7%BB%9F%E5%8F%AF%E9%9D%A0%E6%8E%A7%E5%88%B6%E4%B8%AD%E7%9A%84%E6%BD%9C%E5%9C%A8%E9%97%AE%E9%A2%98%E4%BA%92%E8%BF%9E%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%88%86%E6%9E%90%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E8%83%A1%E6%98%8C%E5%8D%8E&rft.au=%E5%88%98%E4%B8%99%E6%9D%B0&rft.date=2008&rft.pub=%E7%AC%AC%E4%BA%8C%E7%82%AE%E5%85%B5%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2302%E6%95%99%E7%A0%94%E5%AE%A4%2C%E8%A5%BF%E5%AE%89%2C710025&rft.issn=0254-4156&rft.volume=34&rft.issue=2&rft.spage=188&rft.epage=194&rft_id=info:doi/10.3724%2FSP.J.1004.2008.00188&rft.externalDocID=zdhxb200802011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |