复杂系统可靠控制中的潜在问题互连神经网络分析方法

潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%....

Full description

Saved in:
Bibliographic Details
Published inZi dong hua xue bao Vol. 34; no. 2; pp. 188 - 194
Main Author 胡昌华 刘丙杰
Format Journal Article
LanguageChinese
Published 第二炮兵工程学院302教研室,西安,710025 2008
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.3724/SP.J.1004.2008.00188

Cover

Abstract 潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%.
AbstractList TP301; 潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%.
潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural network model based on circuit architecture,CArNN),将CArNN作为个体进行集成,形成神经网络集成用于潜在问题分析.对CArNN模型的鲁棒性进行了分析,提出了两个保证模型鲁棒性的约束条件.利用此方法对一个经典电路进行了分析,结果显示,此方法对潜在电路的正确识别率达到94%.
Author 胡昌华 刘丙杰
AuthorAffiliation 第二炮兵工程学院302教研室,西安710025
AuthorAffiliation_xml – name: 第二炮兵工程学院302教研室,西安,710025
Author_FL HU Chang-Hua
LIU Bing-Jie
Author_FL_xml – sequence: 1
  fullname: HU Chang-Hua
– sequence: 2
  fullname: LIU Bing-Jie
Author_xml – sequence: 1
  fullname: 胡昌华 刘丙杰
BookMark eNotkM1Kw0AcxBdRsNa-gScP3hL_u9lNNkcpapWCgr2XTbJpqyVFiygeRaQXrQp-IG0VUfSiHgqihuLLNFn7FqbU08zhxwwzU2g8qAUSoRkMumEROr-xrq_qGIDqBIDrAJjzMZTC3KIaBmKPoxQQRjWKmTmJMvV6xQFsUcsmBqRQLno8iduHqhuq8C5qvg_a9_Hpc9T46H--qtujuNeKWi-D67fBw03_--L3p6OeOipsqt65CltR4zjunMVXX3H3chpN-KJal5l_TaPC0mIhm9Pya8sr2YW85jKONZcz6UthAjAupcWJ4zHbYdwDShwmuTSF54uh94hLCPfsZIcpiGtzin3MjTSaG8XuicAXQam4WdvdCZLC4oFX3neGFwABjBNwdgS65VpQ2q4kqCPcLb9SlUViUmYzxo0_RwB21Q
ClassificationCodes TP301
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3724/SP.J.1004.2008.00188
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Sneak Circuit Analysis Based on Novel Coadjacent Neural Network Model for Reliability Control of Complex System
DocumentTitle_FL Sneak Circuit Analysis Based on Novel Coadjacent Neural Network Model for Reliability Control of Complex System
EISSN 1874-1029
EndPage 194
ExternalDocumentID zdhxb200802011
26459558
GrantInformation_xml – fundername: 国家自然科学基金; 教育部跨世纪优秀人才培养计划
  funderid: (60736026); 教育部跨世纪优秀人才培养计划
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CDYEO
CJLMK
CQIGP
CS3
CUBFJ
CW9
EBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c581-c85efea60058ee782bd59b58d042b5e8e6adfa42b5d2c228d91876a2c9841f183
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Thu Nov 24 20:35:13 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 潜在问题分析
神经网络集成
可靠控制
鲁棒性分析
克隆选择算法
泛化性能
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581-c85efea60058ee782bd59b58d042b5e8e6adfa42b5d2c228d91876a2c9841f183
Notes Sneak circuit analysis, reliability control, neural network ensemble, clonal selection algorithm, robustness analysis, generalization performance
TP301
11-2109/TP
PageCount 7
ParticipantIDs wanfang_journals_zdhxb200802011
chongqing_backfile_26459558
PublicationCentury 2000
PublicationDate 2008
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationTitle Zi dong hua xue bao
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL ACTA AUTOMATICA SINICA
PublicationYear 2008
Publisher 第二炮兵工程学院302教研室,西安,710025
Publisher_xml – name: 第二炮兵工程学院302教研室,西安,710025
SSID ssib017479230
ssib001102911
ssib006576350
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
ssib051375349
Score 1.8359075
Snippet 潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模型(Neural...
TP301; 潜在问题是影响大型复杂系统安全性、可靠性的重要因素.神经网络是一种新的潜在问题分析方法,但是其分析结果难以解释.本文提出了一种基于电路结构的神经网络模...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 188
SubjectTerms 克隆选择算法
可靠控制
泛化性能
潜在问题分析
神经网络集成
鲁棒性分析
Title 复杂系统可靠控制中的潜在问题互连神经网络分析方法
URI http://lib.cqvip.com/qk/90250X/20082/26459558.html
https://d.wanfangdata.com.cn/periodical/zdhxb200802011
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1874-1029
  dateEnd: 20151031
  omitProxy: true
  ssIdentifier: ssj0059721
  issn: 0254-4156
  databaseCode: .~1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKj1ogfxE2v96ME5piaTTDJznOxmKQXFQ4XipSSz2VaELWoL0oMHEelFq4IfSFtFFL2oh4KoS_HPdDf2X_jeZHabSsEPWMLL5H3MvJedeW8y84aQ8xwCNBYy4ejA1Q72kk4a6MhxW1q7GlyGlsYNzhcvhRNXgslpPj2072pl1dLiQjaul_bcV_I_VoUysCvukv0Hyw6YQgHAYF-4goXh-lc2pgmnCpzBOk1CKutUMJpENPZpHBsgprKBOKJBFQAScZSLyCKhKjKPBI1DmgQ0FlTVkUoqKgLEietU1hAHrkoY8oiqBAHFqBSGSlEJQoFJg8oEyRW3AEgHuQgAH69fn5oVKkJT54RKUx8J4qQR6tPyOMy-x4zMBbBVhlCZmgBQQxJsPrTIsMJHvP_6GCKfKs_wFoiORKChZAfF1MM2AwBplRi7u2ZCxOCtNa2r4a9sODKNUOeoE2DGacwRiI0SEBkEx5VKShSiIBpjRhQ3MiO0iAwMWoLWZDWsPXCIG7ZQSCjE_Ejl5m3bb0PM7WBcXB1k7IzttUqsX44YXnmqoXU-vPLE59_HNT9iAX5Zvzw-ictagv4a4AHxrozhS8252xkzu6hd3Pa-n0XghUFfP36nmurPZbLSt3MJ3XfFFQw5pircuY_wg3vlCznc-_5O6InnEISVqQXu-RAIY2hfekUcs0SZ-U6rnHIbKzbswl7NwlQnc_Pt2RvgwJn9dO1W2p6tuH5Th8khG7ONqfIPeIQMLc0dJQcrmTyPkYnu2we9tbvFRqfovOqufN5ee917-L67_GXr68fi5b3e5mp39cP280_bb15sfX_y88d68W696KwUm4-Lzmp3-X5v_VHv2bfextPjZKqRTNUmHHtIiaO58BwteN7K0xCP58xzcLezJpcZF03QZsZzkYdps5Ui3GSaMdGUHvgfKdNSBF4LxtMTZLg9385PkjHM6quF4JmAMCHNAonnyjGW-2A-0DwfIaMDlYCPq69j5rYZhtmgOBcj5JxV0oztoW7N7H4RTv0RY5QcKJdD4QzjaTK8cHMxPwM-90J21rw8vwBilqUt
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%8D%E6%9D%82%E7%B3%BB%E7%BB%9F%E5%8F%AF%E9%9D%A0%E6%8E%A7%E5%88%B6%E4%B8%AD%E7%9A%84%E6%BD%9C%E5%9C%A8%E9%97%AE%E9%A2%98%E4%BA%92%E8%BF%9E%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%88%86%E6%9E%90%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E8%83%A1%E6%98%8C%E5%8D%8E&rft.au=%E5%88%98%E4%B8%99%E6%9D%B0&rft.date=2008&rft.pub=%E7%AC%AC%E4%BA%8C%E7%82%AE%E5%85%B5%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2302%E6%95%99%E7%A0%94%E5%AE%A4%2C%E8%A5%BF%E5%AE%89%2C710025&rft.issn=0254-4156&rft.volume=34&rft.issue=2&rft.spage=188&rft.epage=194&rft_id=info:doi/10.3724%2FSP.J.1004.2008.00188&rft.externalDocID=zdhxb200802011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg