基于Kriging估计误差的县域耕地等级监测布样方法

为了监测耕地的质量等级,通常采取抽样调查的方法。由于空间样本间存在不独立性等原因,传统抽样方法效率低、精度不高。为此,该文提出基于Kriging估计误差的布样方法,定义了反映Kriging估计情况的统计量作为评估监测网的标准,通过分析样本量与抽样精度的变化趋势确定最优样本容量,将调整过的方形格网作为监测网的基础,在泰森多边形限制下对监测网优化增密,并选用部分标准样地作为监测点。以北京市大兴区为例对该方法进行验证,结果表明,当监测点数同为48时,该文方法均方根误差小于简单随机抽样、分层抽样以及单一使用格网布样的方法,预测总体均值的相对误差为0.07%。因此,该文方法使用较少的监测点反映县域耕地等...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 29; no. 9; pp. 223 - 230
Main Author 杨建宇 汤赛 郧文聚 张超 朱德海 陈彦清
Format Journal Article
LanguageChinese
Published 中国农业大学信息与电气工程学院,北京 100083%国土资源部土地整治中心,北京 100035%国土资源部农用地质量与监控重点实验室,北京 100035 2013
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2013.09.029

Cover

Abstract 为了监测耕地的质量等级,通常采取抽样调查的方法。由于空间样本间存在不独立性等原因,传统抽样方法效率低、精度不高。为此,该文提出基于Kriging估计误差的布样方法,定义了反映Kriging估计情况的统计量作为评估监测网的标准,通过分析样本量与抽样精度的变化趋势确定最优样本容量,将调整过的方形格网作为监测网的基础,在泰森多边形限制下对监测网优化增密,并选用部分标准样地作为监测点。以北京市大兴区为例对该方法进行验证,结果表明,当监测点数同为48时,该文方法均方根误差小于简单随机抽样、分层抽样以及单一使用格网布样的方法,预测总体均值的相对误差为0.07%。因此,该文方法使用较少的监测点反映县域耕地等级的分布状况和变化趋势,能够满足县域耕地等级监测的需求。
AbstractList F301.21%S126; 为了监测耕地的质量等级,通常采取抽样调查的方法.由于空间样本间存在不独立性等原因,传统抽样方法效率低、精度不高.为此,该文提出基于Kriging估计误差的布样方法,定义了反映Kriging估计情况的统计量作为评估监测网的标准,通过分析样本量与抽样精度的变化趋势确定最优样本容量,将调整过的方形格网作为监测网的基础,在泰森多边形限制下对监测网优化增密,并选用部分标准样地作为监测点.以北京市大兴区为例对该方法进行验证,结果表明,当监测点数同为48时,该文方法均方根误差小于简单随机抽样、分层抽样以及单一使用格网布样的方法,预测总体均值的相对误差为0.07%.因此,该文方法使用较少的监测点反映县域耕地等级的分布状况和变化趋势,能够满足县域耕地等级监测的需求.
为了监测耕地的质量等级,通常采取抽样调查的方法。由于空间样本间存在不独立性等原因,传统抽样方法效率低、精度不高。为此,该文提出基于Kriging估计误差的布样方法,定义了反映Kriging估计情况的统计量作为评估监测网的标准,通过分析样本量与抽样精度的变化趋势确定最优样本容量,将调整过的方形格网作为监测网的基础,在泰森多边形限制下对监测网优化增密,并选用部分标准样地作为监测点。以北京市大兴区为例对该方法进行验证,结果表明,当监测点数同为48时,该文方法均方根误差小于简单随机抽样、分层抽样以及单一使用格网布样的方法,预测总体均值的相对误差为0.07%。因此,该文方法使用较少的监测点反映县域耕地等级的分布状况和变化趋势,能够满足县域耕地等级监测的需求。
Abstract_FL China, an agricultural country, has a large population but not enough cultivated land. Until 2011, the cultivated land per capita was 1.38 mu (0.09 ha), only 40% of the world average, and it is getting worse with industrialization and urbanization. The next task for the Ministry of Land and Resources:Dynamic monitoring of cultivated land classification in which a number of counties will be sampled; in each county, a sample-based monitoring network would be established that reflects the distribution and its tendency of cultivated land classification in county area and estimates of non-sampled locations. Due to the correlation among samples, traditional methods such as simple random sampling, stratified sampling, and systematic sampling are insufficient to achieve the goal. Therefore, in this paper we introduced a spatial sampling method based on the Kriging estimation error. For our case, natural classifications of cultivated land identified from the last Land Resource Survey and Cultivated Land Evaluation are regarded as the true value and classifications of non-sampled cultivated lands would be predicted by interpolating the sample data. Finally, RMSE (root-mean-square error) of Kriging interpolation is redefined to measure the performance of the network. To be specific, five steps are needed for the monitoring network. First, the optimal sample size is determined by analyzing the variation trend between the number and the accuracy of samples. Then, set up the basic monitoring network using square grids. The suitable grid size can be chosen by comparing the grid sizes and the corresponding RMSEs from the Kriging interpolation of the samples data. Because some centers of grids do not overlap the area of cultivated land, the third step is to add some points near the centers of grids to create the global monitoring network. These points are selected from centroids of cultivated land spots which are closest to the centers and inside the searching circles around the centers by a loop algorithm. The fourth step is a procedure of densification, which is needed to build Thiessen polygons through global sampling points. Then, add the point of maximum Kriging estimation error inside polygons whose RMSEs are relatively high to the network only if it makes the global RMSE smaller. This procedure stops when the count of sampling points reaches the optimal sample size. The final step is to replace several monitoring points by standard plots to reduce the sampling cost. Finally, estimate the population mean of cultivated land classification through Kriging interpolation. Experiments in Beijing Daxing district that compared this method to traditional sampling methods in cost (count of sampling points), estimation accuracy (measured by RMSE), and prediction accuracy of the population mean illustrate that the estimation accuracy of this method is higher than simple random sampling, stratified sampling, or traditional grids when the number of sampling points is 48. Besides, the prediction accuracy of population mean stays in an accurate level with the relative error of 0.07%. Therefore, this method can meet the needs of monitoring the classification of cultivated land in county area.
Author 杨建宇 汤赛 郧文聚 张超 朱德海 陈彦清
AuthorAffiliation 中国农业大学信息与电气工程学院,北京100083 国土资源部土地整治中心,北京100035 国土资源部农用地质量与监控重点实验室,北京100035
AuthorAffiliation_xml – name: 中国农业大学信息与电气工程学院,北京 100083%国土资源部土地整治中心,北京 100035%国土资源部农用地质量与监控重点实验室,北京 100035
Author_xml – sequence: 1
  fullname: 杨建宇 汤赛 郧文聚 张超 朱德海 陈彦清
BookMark eNo9j81Kw0AcxPdQwVr7EILgKfG_u_nam1L8woKX3kOy2Y0putUE0d4EvRSh4KEeVKiePNkWRKpF8GWapI9hpOJpYObHDLOESqqlBEKrGHTKLLbe1KMkUToGIJrlYKYTwFQHpgNhJVT-9xdRNUkiH0xMbQADl9FG2p9MJ939OAojFU6_RrPB82w4TMeD_P467X6n_f7sspc-jvLXTj55yR9us_eb9OMqexpnd5_ZW28ZLUjvKBHVP62gxvZWo7ar1Q929mqbdY2bDtaYJQLgxSImQLiJpSNl4HPOTcunwgJiM0whkIHtO6ZFCBiOhwUXzClSWwpaQWvz2nNPSU-FbrN1Fqti0FXtkF_4v4eBAcUFuTIn-WFLhafFK_ckjo69uO0aJsOMUYP-ANxQb9o
ClassificationCodes F301.21%S126
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2013.09.029
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Sampling method for monitoring classification of cultivated land in county area based on Kriging estimation error
DocumentTitle_FL Sampling method for monitoring classification of cultivated land in county area based on Kriging estimation error
EndPage 230
ExternalDocumentID nygcxb201309031
45919934
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c581-96ed0c0411202c51f8ffdbccc56b3e60279130dfd7b85622048a1ece983e67fe3
ISSN 1002-6819
IngestDate Thu May 29 04:04:17 EDT 2025
Wed Feb 14 10:43:10 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords grading
monitoring
Kriging
等级
land use
监测
耕地
泰森多边形
空间抽样
cultivated land
Thiessen polygon
土地利用
spatial sampling
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581-96ed0c0411202c51f8ffdbccc56b3e60279130dfd7b85622048a1ece983e67fe3
Notes Yang Jianyu, Tang Sai, Yun Wenju, Zhang Chao, Zhu Dehai, Chen Yanqing(1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 2. Land Consolidation and Rehabilitation Center, Ministry of Land and Resources, Beijing 100035, China; 3. Key Laboratory for Agricultural Land Quality, Monitoring and Control of the Ministry of Land and Resources, Beijing 100035, China)
11-2047/S
land use; grading; monitoring; cultivated land; spatial sampling; Thiessen polygon; Kriging
China, an agricultural country, has a large population but not enough cultivated land. Until 2011, the cultivated land per capita was 1.38 mu (0.09 ha), only 40% of the world average, and it is getting worse with industrialization and urbanization. The next task for the Ministry of Land and Resources: Dynamic monitoring of cultivated land classification in which a number of counties will be sampled; in each county, a sample-based monitoring network would be established that reflects the distribution and
PageCount 8
ParticipantIDs wanfang_journals_nygcxb201309031
chongqing_primary_45919934
PublicationCentury 2000
PublicationDate 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2013
Publisher 中国农业大学信息与电气工程学院,北京 100083%国土资源部土地整治中心,北京 100035%国土资源部农用地质量与监控重点实验室,北京 100035
Publisher_xml – name: 中国农业大学信息与电气工程学院,北京 100083%国土资源部土地整治中心,北京 100035%国土资源部农用地质量与监控重点实验室,北京 100035
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.013428
Snippet 为了监测耕地的质量等级,通常采取抽样调查的方法。由于空间样本间存在不独立性等原因,传统抽样方法效率低、精度不高。为此,该文提出基于Kriging估计误差的布样方法,定义了反...
F301.21%S126; 为了监测耕地的质量等级,通常采取抽样调查的方法.由于空间样本间存在不独立性等原因,传统抽样方法效率低、精度不高.为此,该文提出基于Kriging估计误差的布样...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 223
SubjectTerms Kriging
土地利用
泰森多边形
监测
空间抽样
等级
耕地
Title 基于Kriging估计误差的县域耕地等级监测布样方法
URI http://lib.cqvip.com/qk/90712X/201309/45919934.html
https://d.wanfangdata.com.cn/periodical/nygcxb201309031
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  issn: 1002-6819
  databaseCode: FIJ
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 20151231
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: Ingenta
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA-1guhB_MTWD3poTrJ1vjKT3MzszlIreqrQ2zKf29NWawvak6AXEQoe6kGF6smTbUGkWgT_A_-K7m7_DN9LsrPTUqsWhiGTvLz3y3vZfG3yQshkHNtx4Pt5LXZ4UvMgWBMJOrzkWcGyFL2M4UTx3n1_-oE3M8fmRkZ_VXYtLS8lU-nKoedKjmNViAO74inZ_7BsyRQiIAz2hTdYGN7_ZGMaMSqaNJQ08vDNo7vqnqu2-q7T0KIRpzKi0laBJj6QJwwwMgqogDwexvCIhk3DDh4gxh0QTMVoPpClQbnAAEiSgcoeUgGcfRoCh1BxhowuxkgLpUBAQKpQNC7VF10OxsJKro_8ES1HMAYbU-K44QlypY8cOMhlgxqieDeQCjOFSgkMizXsWZVUm0oPywMQRThMEYhTDhDyQBXZBgxDEoYqlEqFIZCw6gKJPtmqKrNBDyhRWQCkcXjBAAbKK8vjocalUh8IRsMoYq4N4yFgxG9h-Ci9CCoElQ78VpTcOhWBqQ6yftNWo1_qsH3gAJk2MtrNU2IkFdZAK7xCU9rfx-oQamIHFV4tNpQEpfwJgcuOg8CoUCmjxKSrdKhjBBqOH9DcoE7CJ-pb0zQwiTuqKqpaIiJMkhLh6hiwzxEFqHTe2Lv73HTBut0S1c5Zn2w34zxH_x94cAjhCl-oIQSynCpZ4iZQV3lENgt0-520d5620ycJ0uC6p32CnHRwfRDdzt6ZGU5PbFyBKftPB71Q-MPpPrNdvGyi3KKGGzSY2q1hQJwikwbhraPwoZuY-YVO-xG0N-osYqeIO-3KsHn2HDlr5rsTUjde58nIyvwFcka2F43Pn_wiud1d39ndWTVN1-6Prb2Nj3ubm93tjf7bF93Vn9319b1na933W_3PL_s7n_rvXve-vup-e977sN178733Ze0SmW1Gs_XpmrnYpZYybteEn2dWCsWzHctJmV3wosiSNE2Zn7i5bzmBAD1mRRYkHKZn6Fo8tvM0FxxSgyJ3L5PRzkInv0Im7CTwYQgRZ3YRe4FVJEWcO5mIXZjKBZ4VjJHxUhWth9p_T8tjArcte2NkwuimZRr1x60Dhhz_O8lVctpRV-Tgsuw1Mrq0uJxfh4nKUnJDWf83D6rijw
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EKriging%E4%BC%B0%E8%AE%A1%E8%AF%AF%E5%B7%AE%E7%9A%84%E5%8E%BF%E5%9F%9F%E8%80%95%E5%9C%B0%E7%AD%89%E7%BA%A7%E7%9B%91%E6%B5%8B%E5%B8%83%E6%A0%B7%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%A8%E5%BB%BA%E5%AE%87&rft.au=%E6%B1%A4%E8%B5%9B&rft.au=%E9%83%A7%E6%96%87%E8%81%9A&rft.au=%E5%BC%A0%E8%B6%85&rft.date=2013&rft.pub=%E4%B8%AD%E5%9B%BD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100083%25%E5%9B%BD%E5%9C%9F%E8%B5%84%E6%BA%90%E9%83%A8%E5%9C%9F%E5%9C%B0%E6%95%B4%E6%B2%BB%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100035%25%E5%9B%BD%E5%9C%9F%E8%B5%84%E6%BA%90%E9%83%A8%E5%86%9C%E7%94%A8%E5%9C%B0%E8%B4%A8%E9%87%8F%E4%B8%8E%E7%9B%91%E6%8E%A7%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%8C%97%E4%BA%AC+100035&rft.issn=1002-6819&rft.issue=9&rft.spage=223&rft.epage=230&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2013.09.029&rft.externalDocID=nygcxb201309031
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg