基于自适应增强的图像二值描述子
针对经典的尺度不变特征变换和快速鲁棒特征描述子存在空间占用和参数自适应学习能力较差的问题,提出一种基于自适应增强的图像二值描述子,采用优化学习的思路获取图像描述子。使用学习方法得到图像描述子的通用框架,在基于阈值响应的相似度函数上,给出一种改进的相似度函数,通过该函数可快速学习图像的描述子及二值描述子。运用图像的梯度特征构建弱学习器,通过自适应增强方法寻找弱学习器的最优权重和非线性特征响应,得到区分性强且鲁棒性好的局部特征描述子。图像匹配实验结果表明,该图像二值描述子占用存储空间少、匹配性能好。...
Saved in:
Published in | 计算机工程 Vol. 42; no. 6; pp. 230 - 234 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
广东海洋大学寸金学院,广东湛江,524094%广东海洋大学信息学院,广东湛江,524088
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-3428 |
DOI | 10.3969/j.issn.1000-3428.2016.06.041 |
Cover
Abstract | 针对经典的尺度不变特征变换和快速鲁棒特征描述子存在空间占用和参数自适应学习能力较差的问题,提出一种基于自适应增强的图像二值描述子,采用优化学习的思路获取图像描述子。使用学习方法得到图像描述子的通用框架,在基于阈值响应的相似度函数上,给出一种改进的相似度函数,通过该函数可快速学习图像的描述子及二值描述子。运用图像的梯度特征构建弱学习器,通过自适应增强方法寻找弱学习器的最优权重和非线性特征响应,得到区分性强且鲁棒性好的局部特征描述子。图像匹配实验结果表明,该图像二值描述子占用存储空间少、匹配性能好。 |
---|---|
AbstractList | TP391; 针对经典的尺度不变特征变换和快速鲁棒特征描述子存在空间占用和参数自适应学习能力较差的问题,提出一种基于自适应增强的图像二值描述子,采用优化学习的思路获取图像描述子.使用学习方法得到图像描述子的通用框架,在基于阈值响应的相似度函数上,给出一种改进的相似度函数,通过该函数可快速学习图像的描述子及二值描述子.运用图像的梯度特征构建弱学习器,通过自适应增强方法寻找弱学习器的最优权重和非线性特征响应,得到区分性强且鲁棒性好的局部特征描述子.图像匹配实验结果表明,该图像二值描述子占用存储空间少、匹配性能好. 针对经典的尺度不变特征变换和快速鲁棒特征描述子存在空间占用和参数自适应学习能力较差的问题,提出一种基于自适应增强的图像二值描述子,采用优化学习的思路获取图像描述子。使用学习方法得到图像描述子的通用框架,在基于阈值响应的相似度函数上,给出一种改进的相似度函数,通过该函数可快速学习图像的描述子及二值描述子。运用图像的梯度特征构建弱学习器,通过自适应增强方法寻找弱学习器的最优权重和非线性特征响应,得到区分性强且鲁棒性好的局部特征描述子。图像匹配实验结果表明,该图像二值描述子占用存储空间少、匹配性能好。 |
Author | 卢来 王军民 范锐 |
AuthorAffiliation | 广东海洋大学寸金学院,广东湛江524094 广东海洋大学信息学院,广东湛江524088 |
AuthorAffiliation_xml | – name: 广东海洋大学寸金学院,广东湛江,524094%广东海洋大学信息学院,广东湛江,524088 |
Author_FL | LU Lai WANG Junmin FAN Rui |
Author_FL_xml | – sequence: 1 fullname: LU Lai – sequence: 2 fullname: WANG Junmin – sequence: 3 fullname: FAN Rui |
Author_xml | – sequence: 1 fullname: 卢来 王军民 范锐 |
BookMark | eNo9j8tKw0AYhWdRwVr7EiLuEueSmUyWUrxBwU33IXNJTNCJJoi4Kyq4EePClYKCS0FwHYq-TEfrWzhSEQ4cOHyc_z9LoGNKowFYRdAnEYvWCz-va-MjCKFHAsx9DBHzoVOAOqD7ny-Cfl3nAlJEQhoS3gWefWqn7c3s6uV7fG7bO_v8aCft1_2lfXi3F820vbbjyWfTzD7e7OvtMlhIk4Na9_-8B0Zbm6PBjjfc294dbAw9STnySBhpqgKCsAxToqlgaYpE4L5IhFQaExEhEgisAhEphrhSCeJcQCw5FhJq0gNr89rTxKSJyeKiPKmMOxgXdZHJ33GQuWkOXJmDcr802XHu0KMqP0yqs5ixCFPCYUh-AJZHY7M |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1000-3428.2016.06.041 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Binary Descriptor for Images Based on Adaboost |
DocumentTitle_FL | Binary Descriptor for Images Based on Adaboost |
EndPage | 234 |
ExternalDocumentID | jsjgc201606041 669253807 |
GrantInformation_xml | – fundername: 广东省教育厅2014年特色创新基金资助项目 funderid: (2014GXJK181) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c581-379e5d4312c7f3e5b6ff1b4100abcde23b9134b2d4b9d618dda188b02c82bc0e3 |
ISSN | 1000-3428 |
IngestDate | Thu May 29 04:21:01 EDT 2025 Wed Feb 14 10:18:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 图像匹配 weak learner 快速鲁棒特征 Speeded up Robust Feature(SURF) 自适应增强 描述子 descriptor 局部特征 image matching Scale Invariant Feature Transform (SIFT) 尺度不变特征变换 图像描述 image description local feature 弱学习器 Adaboost |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c581-379e5d4312c7f3e5b6ff1b4100abcde23b9134b2d4b9d618dda188b02c82bc0e3 |
Notes | 31-1289/TP descriptor;image description;Adaboost;image matching;Scale Invariant Feature Transform(SIFT);Speeded up Robust Feature(SURF);local feature;weak learner LU Lai,WANG Junmin,FAN Rui(1.Cunjin College,Guangdong Ocean University,Zhanjiang,Guangdong 524094,China;2.School of Information,Guangdong Ocean University,Zhanjiang,Guangdong 524088,China) Classic descriptors such as Scale Invariant Feature Transform(SIFT) and Speeded up Robust Feature(SURF) have some drawbacks in storage capacity and parameter adaptive learning,so a binary descriptor for images based on Adaboost is proposed,which can obtain image descriptor from optimal learning.A general framework using the learning method to obtain the image descriptor is developed,and a modified similarity function is presented on the basis of similarity function based on threshold response,by which the image descriptors and binary descriptors can be quickly learned.Weak learners are constructed by using the gradient features of the image,and the optimal weights an |
PageCount | 5 |
ParticipantIDs | wanfang_journals_jsjgc201606041 chongqing_primary_669253807 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 计算机工程 |
PublicationTitleAlternate | Computer Engineering |
PublicationTitle_FL | Computer Engineering |
PublicationYear | 2016 |
Publisher | 广东海洋大学寸金学院,广东湛江,524094%广东海洋大学信息学院,广东湛江,524088 |
Publisher_xml | – name: 广东海洋大学寸金学院,广东湛江,524094%广东海洋大学信息学院,广东湛江,524088 |
SSID | ssib051375738 ssib017479294 ssj0042200 ssib001102934 ssib023646288 |
Score | 2.0475473 |
Snippet | 针对经典的尺度不变特征变换和快速鲁棒特征描述子存在空间占用和参数自适应学习能力较差的问题,提出一种基于自适应增强的图像二值描述子,采用优化学习的思路获取图像描述... TP391; 针对经典的尺度不变特征变换和快速鲁棒特征描述子存在空间占用和参数自适应学习能力较差的问题,提出一种基于自适应增强的图像二值描述子,采用优化学习的思路获取图... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 230 |
SubjectTerms | 图像匹配 图像描述 尺度不变特征变换 局部特征 弱学习器 快速鲁棒特征 描述子 自适应增强 |
Title | 基于自适应增强的图像二值描述子 |
URI | http://lib.cqvip.com/qk/95200X/201606/669253807.html https://d.wanfangdata.com.cn/periodical/jsjgc201606041 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1000-3428 databaseCode: DOA dateStart: 20160101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0042200 providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07bxQxELaSICEoEE8RwiNFXG5Ye22vXe5d9hQhQXVI6U77uotSXAK5NKkiQKJBHAUVSCBRIiHR0Jwi-DNZCP-CGa_vbhPxDI015xl7Pnt2z7O7njEhSyqDqyZhBg93CTwRaumlSRZ4kuV5GJjMcI3ByXfvqdX74s6aXJuZ_VTbtbQzSJez3Z_GlZzEqlAHdsUo2X-w7KRTqAAa7AslWBjKv7IxjSU1LdqIaCyw1DGNNYXH-whqDG5i0BxlgGUEEhGnJrY1TdsqpAZaWZZp0IZl6YDq1rjDpq3xUT5WWI8sTRug1LcdrtDqHM6xg4vcKKYRw86BMCE2NJU60AuV0rIA5-Rrj1WyguhQFgg55YQ4Kt2wIgpRggjoNmwqohEnwIYhwzAdHvcmowqxtFed1W8QOw5OIyjsy4JCQjg1kaBR6AYXKUu0UB5nFCaM1Vig0CBs3vxF52aMmKGheFNyfNKlXJ4UjMAmOLtgDYbA_hOMri9LGP8fCBdG79YtwWv355FFyH3pqvwZXqXDOr5UBkYZu1SiguWJAtzsqGxG2yof2bFk5BvbG70MRTDnEpslp3gIDl7tTYb1wsFpNdOsg3hEAR5qPf4tWRBKm_WvcpgE536VNMRhOE2WHMDbv4OH2VDWN_u9B-Dj2ZC7fjfp92reYfs8Oece6xaj6h69QGZ21y-Ss7Vkn5eIV74dHYyeHz59_33vUTl6Wb57U-6Pvr16Ur7-XD4eHoyelXv7X4fDwy8fyw8vLpN2K243Vz13WImXSc1gnTaFzMEb51nYDQqZqm6XpQKAJ2mWFzxIcYtLynORmlwxnecJ0xomJ9M8zfwiuELm-pv94ipZzHMRKgNl4Rei4Czt8tDPU-iVyyQIg3myMBl3Z6vKSdNRynCJh0fMk1tuJjrun2q7c9Rq1_4osUDOIF29abxO5gYPd4ob4HsP0pvW0j8A6rubpg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%87%AA%E9%80%82%E5%BA%94%E5%A2%9E%E5%BC%BA%E7%9A%84%E5%9B%BE%E5%83%8F%E4%BA%8C%E5%80%BC%E6%8F%8F%E8%BF%B0%E5%AD%90&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E5%8D%A2%E6%9D%A5&rft.au=%E7%8E%8B%E5%86%9B%E6%B0%91&rft.au=%E8%8C%83%E9%94%90&rft.date=2016&rft.pub=%E5%B9%BF%E4%B8%9C%E6%B5%B7%E6%B4%8B%E5%A4%A7%E5%AD%A6%E5%AF%B8%E9%87%91%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C%E6%B9%9B%E6%B1%9F%2C524094%25%E5%B9%BF%E4%B8%9C%E6%B5%B7%E6%B4%8B%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E4%B8%9C%E6%B9%9B%E6%B1%9F%2C524088&rft.issn=1000-3428&rft.volume=42&rft.issue=6&rft.spage=230&rft.epage=240&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2016.06.041&rft.externalDocID=jsjgc201606041 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg |