基于卷积神经网络的变压器故障诊断方法

变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力。文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优。文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分...

Full description

Saved in:
Bibliographic Details
Published in电测与仪表 Vol. 54; no. 13; pp. 62 - 67
Main Author 贾京龙 余涛 吴子杰 程小华
Format Journal Article
LanguageChinese
Published 华南理工大学 电力学院,广州,510640 2017
Subjects
Online AccessGet full text
ISSN1001-1390

Cover

Abstract 变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力。文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优。文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分类效果的影响进行了探讨。
AbstractList TM407; 变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展.油中溶解气体分析(Dissolved Gas Analysis, DGA)是分析变压器故障类别的重要手段.卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力.文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优.文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分类效果的影响进行了探讨.
变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网络是深度学习的一种模型,广泛应用于图像识别、语音处理等领域,具有非常好的分类能力。文章选取了变压器的五种油中溶解气体含量作为模型输入量,在借鉴传统浅层BP神经网络油中气体分析方法的基础上,针对BP神经网络表达能力不足以及容易过拟合的缺点,将卷积神经网络应用于变压器故障诊断,并与BP神经网络的分类效果进行了对比,通过算例研究证明了卷积神经网络的效果更优。文章也对卷积神经网络的卷积核个数、卷积核大小以及采样宽度对分类效果的影响进行了探讨。
Abstract_FL Transformer is an important equipment in power system, its security and stability directly affect the healthy development of the national economy.Dissolved gas analysis (DGA) is a key method of transformer fault analysis.The convolutional neural network, as an important model of deep learning, has strong classification ability, which is widely used in image recognition, speech processing, and so on.The content of five kinds of dissolved gases is selected as the input of the model in this paper.On the basic of analysis method of dissolved gases by using BP neural network, according to the shortcomings that BP neural network is insufficient in expression ability and easy to over-fitting, the application of convolutional neural network is proposed to diagnose transformer fault in this paper.Moreover, its simulation proves that the proposed method has a better performance compared with BP neural network.Additionally, the effect of convolution kernel number, kernel size and sampling width of convolutional neural network on the classification results is discussed in this paper.
Author 贾京龙 余涛 吴子杰 程小华
AuthorAffiliation 华南理工大学电力学院,广州510640
AuthorAffiliation_xml – name: 华南理工大学 电力学院,广州,510640
Author_FL Yu Tao
Jia Jinglong
Wu Zijie
Cheng Xiaohua
Author_FL_xml – sequence: 1
  fullname: Jia Jinglong
– sequence: 2
  fullname: Yu Tao
– sequence: 3
  fullname: Wu Zijie
– sequence: 4
  fullname: Cheng Xiaohua
Author_xml – sequence: 1
  fullname: 贾京龙 余涛 吴子杰 程小华
BookMark eNotzbtKA0EAheEpIphEX8LCbmEumVspwRsEbNIvO7MzMUFndReR9NooJlgkxBC0Em0khYWY4Nu4O_oWLsTqNB_nr4GKS5ypgCqCEAWISLgOalnWg5BILlEVsPxp8b0Y5Hcf_mXunx_9cui_7v1y5qdX-XCSD27zh9didP07nf3Mb4rxWzH-LN5HG2DNRieZ2fzfOmjv7babB0HraP-wudMKNBVlL8bSKs00ldpojpCSjPGGjDmPqcTGCB0RjoVR1CohVUQYZNZybAS1ljJSB9ur28vI2ch1wl5ykboyGMa631cYIo4IRKiEWyuojxPXOe-W9CztnkZpP2QcM0EpbpA_wK1hOw
ClassificationCodes TM407
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Fault diagnosis method of transformer based on convolutional neural network
DocumentTitle_FL Fault diagnosis method of transformer based on convolutional neural network
EndPage 67
ExternalDocumentID dcyyb201713011
672685524
GrantInformation_xml – fundername: 国家重点基础研究发展计划(973计划); 国家自然科学基金资助项目
  funderid: (2013CB228205); (51477055)
GroupedDBID -03
2B.
2C0
2RA
5XA
5XD
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CQIGP
CW9
TCJ
TGT
U1G
U5M
W92
~WA
4A8
93N
ABJNI
ADMLS
GROUPED_DOAJ
PSX
ID FETCH-LOGICAL-c581-1d29fbc6c59cec711b966749d77d592ee8ca3728eb5fb89ba3606ff72e85ff563
ISSN 1001-1390
IngestDate Thu May 29 04:07:58 EDT 2025
Wed Feb 14 09:59:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords 变压器
fault diagnosis
卷积神经网络
故障诊断
油中溶解气体分析
convolutional neural network
transformer
dissolved gas analysis
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c581-1d29fbc6c59cec711b966749d77d592ee8ca3728eb5fb89ba3606ff72e85ff563
Notes 23-1202/TH
transformer, dissolved gas analysis, fault diagnosis, convolutional neural network
Jia Jinglong, Yu Tao, Wu Zijie, Cheng Xiaohua (School of Electric Power, South China University of Technology, Guangzhou 510640, China)
Transformer is an important equipment in power system, its security and stability directly affect the healthy development of the national economy. Dissolved gas analysis (DGA) is a key method of transformer fault analysis. The convolutional neural network, as an important model of deep learning, has strong classification ability, which is widely used in image recognition, speech processing, and so on. The content of five kinds of dissolved gases is selected as the input of the model in this paper. On the basic of analysis method of dissolved gases by using BP neural net- work, according to the shortcomings that BP neural network is insufficient in expression ability and easy to over-fit- ting, the application of convolutional neural network is proposed to diagnose transformer fault in t
PageCount 6
ParticipantIDs wanfang_journals_dcyyb201713011
chongqing_primary_672685524
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 电测与仪表
PublicationTitleAlternate Electrical Measurement & Instrumentation
PublicationTitle_FL Electrical Measurement & Instrumentation
PublicationYear 2017
Publisher 华南理工大学 电力学院,广州,510640
Publisher_xml – name: 华南理工大学 电力学院,广州,510640
SSID ssj0039791
ssib001129792
ssib051374602
ssib017479537
Score 2.0887446
Snippet 变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展。油中溶解气体分析(Dissolved Gas Analysis,DGA)是分析变压器故障类别的重要手段。卷积神经网...
TM407; 变压器是电力系统中的重要设备,其安全与稳定直接影响着国民经济的健康发展.油中溶解气体分析(Dissolved Gas Analysis, DGA)是分析变压器故障类别的重要手段.卷积神...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 62
SubjectTerms 卷积神经网络
变压器
故障诊断
油中溶解气体分析
Title 基于卷积神经网络的变压器故障诊断方法
URI http://lib.cqvip.com/qk/92179X/201713/672685524.html
https://d.wanfangdata.com.cn/periodical/dcyyb201713011
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1001-1390
  databaseCode: DOA
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0039791
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR25btRAdBRSQYE4RQhHCoYGLfI1V2nvehVRUC1SupXHR1JtODZFUkMDIhFFIogiqBA0KAUFIhF_w67hL3jv2btrEBKHtLKe38y8c-x5MzvzzNgNJ_VEkuV-S0CA3wqKwLaMU-iWn-S-1rm1JqFdvnfl8r3gzopYmTtxs7FraWNob6dbvz1X8j9eBRz4FU_J_oNnp0QBATD4F67gYbj-lY95LLjp8ijkcYBXHSNGd3ikeKx4CL8uAVAtRiCKuCZM1OHGrTGmjYCB5gE173KjCYi5joiF4SFgJDeAFDw2WBlbaaSvQyqSPOzUQGQQiHxefdhyEvsSF5BTUKkg4nCrSewAJQlDoukCu0lHQEQEhXGtYthG_nBrzKxKQPpUXEGCaFYCwjvYHgAQD2CUEOzjzKooVK5SNHLIPGRCHTcXRKqTn9R5p-U1YMjWQFpLokHmRn4BOqBiHMpbDe0F2sxE0zKyKNjYg_5OJEDBbk3L4G5VeKPJKt1UPX7gDjUIqp3mAFNlyZ48SH5juKgHoirwqD5L8kv27yzd3LSopYtvYgg1IKB0GisHFPVCzKZmf44L11eBdKZZ1PCfW1p3mMiGaUTW1gerDyA4orNqgyIZrDbCqt4ZdrqeDy2FVec-y-a21s6xU40smeeZHL05-nq0PXr-qXx3WL59XR7vlF9elMcH5f7j0c7L0faz0av3490n3_cPvh0-He99GO99Hn_cvcB63bjXXm7Vn_topUKDZJlnCpvKVJg0T5XrWpiJq8BkSmXCeHmu08RXHrw_RGG1sYkPc--iUF6uRVEI6V9k84P1QX6JLTlQR6WZzaVNApEq6yTawsTF-NZYRyULbHFqgP79KqtLXypPaiG8YIFdr03Sr5_1R_2f3XD5jzUW2UmEq7W6K2x--HAjvwrR69BeI9_9ACHhdqM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E5%8F%98%E5%8E%8B%E5%99%A8%E6%95%85%E9%9A%9C%E8%AF%8A%E6%96%AD%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E8%B4%BE%E4%BA%AC%E9%BE%99&rft.au=%E4%BD%99%E6%B6%9B&rft.au=%E5%90%B4%E5%AD%90%E6%9D%B0&rft.au=%E7%A8%8B%E5%B0%8F%E5%8D%8E&rft.date=2017&rft.pub=%E5%8D%8E%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E7%94%B5%E5%8A%9B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E5%B7%9E%2C510640&rft.issn=1001-1390&rft.volume=54&rft.issue=13&rft.spage=62&rft.epage=67&rft.externalDocID=dcyyb201713011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F92179X%2F92179X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg