Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis

This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acqu...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 89; pp. 530 - 539
Main Authors Sun, Wenqing, Zheng, Bin, Qian, Wei
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2017.04.006

Cover

Abstract This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists’ markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well.
AbstractList This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well.This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well.
This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists’ markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well.
Abstract This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists’ markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well.
Author Sun, Wenqing
Qian, Wei
Zheng, Bin
Author_xml – sequence: 1
  givenname: Wenqing
  surname: Sun
  fullname: Sun, Wenqing
  organization: College of Engineering, University of Texas at El Paso, El Paso, TX, United States
– sequence: 2
  givenname: Bin
  surname: Zheng
  fullname: Zheng, Bin
  organization: College of Engineering, University of Oklahoma, Norman, OK, United States
– sequence: 3
  givenname: Wei
  surname: Qian
  fullname: Qian, Wei
  email: wqian@utep.edu
  organization: College of Engineering, University of Texas at El Paso, El Paso, TX, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28473055$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1r3DAQhk1JaTZp_0IR9NLLbkeWZMuX0DT0IxAI9OMstPJ4o60sbSWrkNIfX5lNCCwU9iId9M4zo_eds-rEB49VRSisKNDm3XZlwrhb2zBiv6qBtivgK4DmWbWgsu2WIBg_qRYAFJZc1uK0OktpCwAcGLyoTmvJWwZCLKq_l3kKo56sIQPqKUckDnX01m9ITvM5Zlde77T36MjX22uy1gl7EjzpEXckTTGbua4n2m1CtNPdmMgQIplHzBNG-6e8uVxQRnuDkfRWb3xINr2sng_aJXz1cJ9XPz59_H71ZXlz-_n66vJmaYSEadnrBrjhWvOOI28aLmhfc4aikXVnNF0LioNoOy5lP0hKBRNcc2MYslYzI9l59XbP3cXwK2Oa1GiTQee0x5CTorIrHaARrEjfHEi3IUdfplO0E5w1reBdUb1-UOV1iUDtoh11vFePvhbBxV5gYkgp4qCMnYrLwU9RW6coqDlItVVPQao5SAVclSALQB4AHnscUfphX4rF0t8Wo0rGYnG-txHNpPpgj4FcHECMs94a7X7iPaYnU1SqFahv86rNm0bL_6GrZ8D7_wOOm-EfgZvqXQ
CitedBy_id crossref_primary_10_1007_s11042_023_17502_3
crossref_primary_10_4103_jmss_jmss_127_21
crossref_primary_10_1016_j_media_2020_101840
crossref_primary_10_1007_s11548_020_02121_2
crossref_primary_10_1002_mp_16430
crossref_primary_10_1109_TNNLS_2023_3315271
crossref_primary_10_1371_journal_pone_0273445
crossref_primary_10_1007_s10916_019_1455_6
crossref_primary_10_1088_1361_6560_aaa610
crossref_primary_10_3389_fonc_2023_1140635
crossref_primary_10_32725_jab_2018_007
crossref_primary_10_3390_bioengineering8030035
crossref_primary_10_1109_ACCESS_2020_3010800
crossref_primary_10_1515_jisys_2022_0062
crossref_primary_10_1016_j_acra_2019_11_006
crossref_primary_10_1016_j_compbiomed_2018_05_018
crossref_primary_10_3390_s21030748
crossref_primary_10_1007_s11042_022_13566_9
crossref_primary_10_1148_radiol_2018180547
crossref_primary_10_1016_j_compbiomed_2018_08_006
crossref_primary_10_1007_s00521_018_3773_x
crossref_primary_10_1371_journal_pone_0274522
crossref_primary_10_3389_fphar_2023_1295511
crossref_primary_10_1109_ACCESS_2025_3543838
crossref_primary_10_1007_s11042_024_19098_8
crossref_primary_10_3390_app8081213
crossref_primary_10_1007_s11042_021_11748_5
crossref_primary_10_1080_21681163_2023_2258998
crossref_primary_10_2991_jaims_d_210428_002
crossref_primary_10_1155_2019_6212759
crossref_primary_10_1007_s11682_022_00631_y
crossref_primary_10_1109_ACCESS_2022_3150924
crossref_primary_10_1007_s10916_019_1327_0
crossref_primary_10_1155_2022_1139587
crossref_primary_10_1016_j_compbiomed_2024_109494
crossref_primary_10_1109_TMI_2022_3232572
crossref_primary_10_1002_mp_17266
crossref_primary_10_1016_j_knosys_2024_112659
crossref_primary_10_1080_20479700_2022_2102223
crossref_primary_10_53065_kaznmu_2024_71_4_004
crossref_primary_10_1109_ACCESS_2019_2958663
crossref_primary_10_1016_j_imu_2018_06_006
crossref_primary_10_1016_j_patcog_2021_107942
crossref_primary_10_1109_ACCESS_2020_3007939
crossref_primary_10_3390_diagnostics13162617
crossref_primary_10_1016_j_eswa_2021_115081
crossref_primary_10_1007_s00330_019_06168_x
crossref_primary_10_1016_j_asoc_2019_105934
crossref_primary_10_1016_j_lungcan_2017_10_008
crossref_primary_10_1016_j_dsp_2024_104908
crossref_primary_10_1016_j_imu_2020_100391
crossref_primary_10_47542_sauied_1394746
crossref_primary_10_31590_ejosat_878552
crossref_primary_10_3390_bioengineering8120193
crossref_primary_10_3390_bioengineering11030252
crossref_primary_10_1007_s40747_021_00474_y
crossref_primary_10_1007_s10278_022_00747_z
crossref_primary_10_3390_diagnostics9010029
crossref_primary_10_1016_j_bspc_2022_104104
crossref_primary_10_1016_j_compbiomed_2021_104209
crossref_primary_10_1007_s10278_019_00306_z
crossref_primary_10_3233_XST_17349
crossref_primary_10_1016_j_compmedimag_2019_02_003
crossref_primary_10_1016_j_mtcomm_2023_105592
crossref_primary_10_1007_s11831_025_10239_2
crossref_primary_10_1016_j_jbi_2020_103627
crossref_primary_10_1007_s00521_023_09130_7
crossref_primary_10_1016_j_engappai_2022_105490
crossref_primary_10_3390_cancers16223879
crossref_primary_10_1016_j_ejmp_2019_06_003
crossref_primary_10_3233_IDT_190083
crossref_primary_10_1002_jemt_24682
crossref_primary_10_1186_s12938_018_0529_x
crossref_primary_10_3233_XST_221301
crossref_primary_10_1007_s11277_020_07732_1
crossref_primary_10_1093_bib_bbae042
crossref_primary_10_1088_1361_6501_ad38d2
crossref_primary_10_1109_JBHI_2022_3198509
crossref_primary_10_3390_bioengineering10080981
crossref_primary_10_1016_j_compbiomed_2020_104135
crossref_primary_10_1088_1361_6560_acef8c
crossref_primary_10_1109_ACCESS_2020_3016780
crossref_primary_10_2174_1872212117666230130100048
crossref_primary_10_3390_biomedicines11030679
crossref_primary_10_1007_s44163_023_00049_5
crossref_primary_10_1200_CCI_20_00072
crossref_primary_10_1007_s00432_019_03098_5
crossref_primary_10_3390_life13091911
crossref_primary_10_1002_mp_13592
crossref_primary_10_1016_j_compbiomed_2021_104304
crossref_primary_10_1097_MD_0000000000016119
crossref_primary_10_1007_s00521_020_04787_w
crossref_primary_10_1109_MSP_2019_2900993
crossref_primary_10_3390_diagnostics13081406
crossref_primary_10_1007_s00521_018_3518_x
crossref_primary_10_1016_j_cmpb_2017_11_019
crossref_primary_10_1016_j_compbiomed_2020_103795
crossref_primary_10_1038_s41598_020_69817_y
crossref_primary_10_1007_s10278_020_00372_8
crossref_primary_10_1007_s40745_024_00537_0
crossref_primary_10_1016_j_bspc_2023_105263
crossref_primary_10_1109_ACCESS_2020_2992645
crossref_primary_10_1002_ima_22394
crossref_primary_10_1088_1742_6596_1471_1_012043
crossref_primary_10_1109_JBHI_2020_2990529
crossref_primary_10_3233_XST_180490
crossref_primary_10_1002_mp_14512
crossref_primary_10_1155_2022_5905230
crossref_primary_10_12677_BIPHY_2021_92006
crossref_primary_10_1007_s00330_021_07794_0
crossref_primary_10_1007_s42979_021_00708_3
crossref_primary_10_1007_s11227_021_04263_9
crossref_primary_10_1097_CM9_0000000000000372
crossref_primary_10_3233_XST_180409
crossref_primary_10_1002_acm2_70061
crossref_primary_10_1038_s41698_024_00656_0
crossref_primary_10_1007_s13721_023_00417_2
crossref_primary_10_1088_1361_6560_ac5297
crossref_primary_10_1088_1361_6560_ab2544
crossref_primary_10_32604_cmc_2022_027896
crossref_primary_10_1109_JSAC_2020_3020657
Cites_doi 10.1016/S0893-6080(00)00026-5
10.1118/1.4919772
10.1016/j.acra.2007.07.008
10.1109/CRV.2015.25
10.1118/1.3013555
10.1118/1.3140589
10.1109/TAC.1974.1100705
10.1586/17434440.2015.1068115
10.1016/j.acra.2007.01.012
10.1109/5.726791
10.1561/2200000006
10.1007/978-3-319-19992-4_46
10.1162/neco.1989.1.4.541
10.1145/1390156.1390294
10.1162/neco.2006.18.7.1527
10.1145/2001269.2001295
10.1118/1.4967345
10.1117/12.811569
10.1016/j.mri.2012.06.010
10.1016/j.neunet.2014.09.003
10.1016/j.compmedimag.2014.03.001
10.1118/1.3528204
10.1214/aos/1176344136
10.1186/s40537-014-0007-7
10.1186/2047-2501-2-3
10.1007/978-3-319-41546-8_48
10.21437/Interspeech.2011-242
10.1118/1.598531
10.3109/0284186X.2013.812798
10.1148/radiol.2281020489
10.1016/j.cmpb.2016.07.017
10.1118/1.2207129
10.1007/s10278-013-9622-7
10.2214/AJR.04.1225
10.1118/1.597287
10.1109/TMI.2016.2526687
ContentType Journal Article
Copyright 2017
Copyright © 2017. Published by Elsevier Ltd.
Copyright Elsevier Limited Oct 1, 2017
Copyright_xml – notice: 2017
– notice: Copyright © 2017. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Oct 1, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2017.04.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (via ProQuest)
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Research Library Prep

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 539
ExternalDocumentID 28473055
10_1016_j_compbiomed_2017_04_006
S0010482517300926
1_s2_0_S0010482517300926
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UKHRP
WOW
Z5R
~G-
~HD
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
SV3
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
AGQPQ
AIGII
APXCP
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c580t-da604c4aa494e466451d243e56829ca1b51ef579488df8115354a4cc3e37a3c83
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Mon Sep 29 04:38:51 EDT 2025
Tue Oct 07 06:19:13 EDT 2025
Thu Apr 03 07:08:13 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Wed Oct 01 04:07:23 EDT 2025
Fri Feb 23 02:24:55 EST 2024
Tue Feb 25 20:10:54 EST 2025
Tue Oct 14 19:33:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Unsupervised feature learning
Big data
Computer aided diagnosis
Lung cancer
Language English
License Copyright © 2017. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-da604c4aa494e466451d243e56829ca1b51ef579488df8115354a4cc3e37a3c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28473055
PQID 1954367549
PQPubID 1226355
PageCount 10
ParticipantIDs proquest_miscellaneous_1896040653
proquest_journals_1954367549
pubmed_primary_28473055
crossref_citationtrail_10_1016_j_compbiomed_2017_04_006
crossref_primary_10_1016_j_compbiomed_2017_04_006
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_04_006
elsevier_clinicalkeyesjournals_1_s2_0_S0010482517300926
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_04_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References A. Bordes, X. Glorot, J. Weston, Y. Bengio, Joint learning of words and meaning representations for open-text semantic parsing, Int. …, vol. 22, 2012, pp. 127–135.
Dean, Corrado, Monga, Chen, Devin, Mao, aurelio Ranzato, Senior, Tucker, Yang, Le, Ng (bib10) 2012
Cireşan, Giusti, Gambardella, Schmidhuber (bib11) 2013
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bib40) 1989; 1
Nishikawa, Giger, Doi, Metz, Yin, Vyborny, Schmidt (bib32) 1994; 21
Leijenaar, Carvalho, Velazquez, van Elmpt, Parmar, Hoekstra, Hoekstra, Boellaard, Dekker, Gillies, Aerts, Lambin (bib33) 2013; 52
Giger, Chan, Boone (bib17) 2008; 35
Armato, McLennan, Hawkins, Bidaut, McNitt-Gray, Meyer, Reeves, Zhao, Aberle, Henschke, a Hoffman, a Kazerooni, MacMahon, Beeke, Yankelevitz, Biancardi, Bland, Brown, Engelmann, Laderach, Max, Pais, Qing, Roberts, Smith, Starkey, Batrah, Caligiuri, Farooqi, Gladish, Jude, Munden, Petkovska, Quint, Schwartz, Sundaram, Dodd, Fenimore, Gur, Petrick, Freymann, Kirby, Hughes, Casteele, Gupte, Sallamm, Heath, Kuhn, Dharaiya, Burns, Fryd, Salganicoff, Anand, Shreter, Vastagh, Croft, Clarke (bib37) 2011; 38
Sun, (Bill) Tseng, Qian, Zhang, Saltzstein, Zheng, Lure, Yu, Zhou (bib26) 2015; 42
S. Lohr, The Age of Big Data, New York Times, 2012, pp. 1–5.
Sun, Zheng, Lure, Wu, Zhang, Wang, Saltzstein, Qian (bib27) 2014; 38
Schwarz (bib47) 1978; 6
Zheng, Hardesty, Poller, Sumkin, Golla (bib31) 2003; 228
Qian, Li, Clarke (bib21) 1999; 26
Krizhevsky, Sutskever, Hinton (bib6) 2012
Leader, Warfel, Fuhrman, Golla, Weissfeld, Avila, Turner, Zheng (bib30) 2005; 185
Clark, Vendt, Smith, Freymann, Kirby, Koppel, Moore, Phillips, Maffitt, Pringle, Tarbox, Prior (bib38) 2013; 26
Sun, Huang, Tseng, Zhang, Qian (bib29) 2016; 9785
Qian, Song, Lei, Sankar, Eikman (bib20) 2007; 14
Way, Sahiner, Chan, Hadjiiski, Cascade, Chughtai, Bogot, Kazerooni (bib24) 2009; 36
Wiemker, Bergtholdt, Dharaiya, Kabus, Lee (bib50) 2009; 7260
Roth, Lu, Liu, Yao, Seff, Cherry, Kim, Summers (bib23) 2015; 35
Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bib3) 2015; 2
Armato, McNitt-Gray, Reeves, Meyer, McLennan, Aberle, Kazerooni (bib39) 2007; 14
Bengio (bib2) 2009; 2
D. Kumar, A. Wong, D.A. Clausi, Lung Nodule classification using deep features in CT images, in: Proceedings of the 12th Conference on Computer and Robot Vision, 2015, pp. 133–138.
Palm (bib45) 2012; 25
Hinton, Osindero, Teh (bib1) 2006; 18
Qian, Sun, Zheng (bib18) 2015; 12
Way, Hadjiiski, Sahiner, Chan, Cascade, Kazerooni, Bogot, Zhou (bib25) 2006; 33
Shen, Zhou, Yang, Yang, Tian (bib12) 2015
Mikolov, Deoras, Kombrink, Burget, Cernocký (bib7) 2011
van Tulder, de Bruijne (bib34) 2016; 35
LeCun, Bottou, Bengio, Haffner (bib41) 1998; 86
Hyvarinen, Oja (bib42) 2000; 13
Socher, Huang, Pennington (bib8) 2011
Raghupathi, Raghupathi (bib15) 2014; 2
P. Vincent, H. Larochelle, Y. Bengio, P.-.A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1096–1103.
Kumar, Gu, Basu, Berglund, Eschrich, Schabath, Forster, Aerts, Dekker, Fenstermacher, Goldgof, Hall, Lambin, Balagurunathan, Gatenby, Gillies (bib16) 2012; 30
Lee, Grosse, Ranganath, Ng (bib43) 2011; 54
Akaike (bib46) 1974; 19
W. Sun, T.-.L. (Bill) Tseng, B. Zheng, W. Qian, A Preliminary study on breast cancer risk analysis using deep neural Network, in: Proceedings of the International Workshop on Digital Mammography, 2016, pp. 385–391.
Sun, (Bill) Tseng, Zhang, Qian (bib19) 2016; 135
Schmidhuber (bib48) 2015; 61
Sun, Tseng, Zheng, Zhang, Qian (bib22) 2015; 9414
W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in: Procceedings of the International Conference on Information Processing in Medical Imaging, 2015, pp. 588–599.
Bengio, Lamblin, Popovici, Larochelle (bib5) 2007; 19
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib51) 2015
Cottle, Hoover, Kanwal, Kohn, Strome, Treister (bib14) 2013
Bellman (bib49) 1957; 70
Samala, Chan, Hadjiiski, Helvie, Wei, Cha (bib35) 2016; 43
Qian (10.1016/j.compbiomed.2017.04.006_bib18) 2015; 12
Roth (10.1016/j.compbiomed.2017.04.006_bib23) 2015; 35
Clark (10.1016/j.compbiomed.2017.04.006_bib38) 2013; 26
Bengio (10.1016/j.compbiomed.2017.04.006_bib2) 2009; 2
Sun (10.1016/j.compbiomed.2017.04.006_bib27) 2014; 38
10.1016/j.compbiomed.2017.04.006_bib13
10.1016/j.compbiomed.2017.04.006_bib4
Mikolov (10.1016/j.compbiomed.2017.04.006_bib7) 2011
Dean (10.1016/j.compbiomed.2017.04.006_bib10) 2012
Wiemker (10.1016/j.compbiomed.2017.04.006_bib50) 2009; 7260
Schwarz (10.1016/j.compbiomed.2017.04.006_bib47) 1978; 6
Bengio (10.1016/j.compbiomed.2017.04.006_bib5) 2007; 19
van Tulder (10.1016/j.compbiomed.2017.04.006_bib34) 2016; 35
Sun (10.1016/j.compbiomed.2017.04.006_bib19) 2016; 135
Schmidhuber (10.1016/j.compbiomed.2017.04.006_bib48) 2015; 61
10.1016/j.compbiomed.2017.04.006_bib44
Way (10.1016/j.compbiomed.2017.04.006_bib24) 2009; 36
Palm (10.1016/j.compbiomed.2017.04.006_bib45) 2012; 25
Sun (10.1016/j.compbiomed.2017.04.006_bib29) 2016; 9785
Leijenaar (10.1016/j.compbiomed.2017.04.006_bib33) 2013; 52
Cireşan (10.1016/j.compbiomed.2017.04.006_bib11) 2013
Zheng (10.1016/j.compbiomed.2017.04.006_bib31) 2003; 228
Lee (10.1016/j.compbiomed.2017.04.006_bib43) 2011; 54
Qian (10.1016/j.compbiomed.2017.04.006_bib20) 2007; 14
Qian (10.1016/j.compbiomed.2017.04.006_bib21) 1999; 26
Way (10.1016/j.compbiomed.2017.04.006_bib25) 2006; 33
Samala (10.1016/j.compbiomed.2017.04.006_bib35) 2016; 43
Krizhevsky (10.1016/j.compbiomed.2017.04.006_bib6) 2012
Shen (10.1016/j.compbiomed.2017.04.006_bib12) 2015
Hyvarinen (10.1016/j.compbiomed.2017.04.006_bib42) 2000; 13
Szegedy (10.1016/j.compbiomed.2017.04.006_bib51) 2015
10.1016/j.compbiomed.2017.04.006_bib36
Sun (10.1016/j.compbiomed.2017.04.006_bib22) 2015; 9414
Cottle (10.1016/j.compbiomed.2017.04.006_bib14) 2013
Bellman (10.1016/j.compbiomed.2017.04.006_bib49) 1957; 70
Nishikawa (10.1016/j.compbiomed.2017.04.006_bib32) 1994; 21
LeCun (10.1016/j.compbiomed.2017.04.006_bib40) 1989; 1
Socher (10.1016/j.compbiomed.2017.04.006_bib8) 2011
Akaike (10.1016/j.compbiomed.2017.04.006_bib46) 1974; 19
Leader (10.1016/j.compbiomed.2017.04.006_bib30) 2005; 185
Sun (10.1016/j.compbiomed.2017.04.006_bib26) 2015; 42
LeCun (10.1016/j.compbiomed.2017.04.006_bib41) 1998; 86
10.1016/j.compbiomed.2017.04.006_bib28
Raghupathi (10.1016/j.compbiomed.2017.04.006_bib15) 2014; 2
10.1016/j.compbiomed.2017.04.006_bib9
Kumar (10.1016/j.compbiomed.2017.04.006_bib16) 2012; 30
Armato (10.1016/j.compbiomed.2017.04.006_bib37) 2011; 38
Giger (10.1016/j.compbiomed.2017.04.006_bib17) 2008; 35
Armato (10.1016/j.compbiomed.2017.04.006_bib39) 2007; 14
Hinton (10.1016/j.compbiomed.2017.04.006_bib1) 2006; 18
Najafabadi (10.1016/j.compbiomed.2017.04.006_bib3) 2015; 2
References_xml – volume: 38
  start-page: 915
  year: 2011
  end-page: 931
  ident: bib37
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
– start-page: 605
  year: 2011
  end-page: 608
  ident: bib7
  article-title: Empirical evaluation and combination of advanced language modeling techniques
  publication-title: Interspeech
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib48
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.-.A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1096–1103.
– volume: 26
  start-page: 402
  year: 1999
  ident: bib21
  article-title: Image feature extraction for mass detection in digital mammography: influence of wavelet analysis
  publication-title: Med. Phys.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib1
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– reference: W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in: Procceedings of the International Conference on Information Processing in Medical Imaging, 2015, pp. 588–599.
– start-page: 1
  year: 2012
  end-page: 9
  ident: bib6
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2013
  ident: bib14
  article-title: Transforming health care through big data strategies for leveraging big data in the health care industry
  publication-title: Inst. Heal. Technol. Transform
– reference: D. Kumar, A. Wong, D.A. Clausi, Lung Nodule classification using deep features in CT images, in: Proceedings of the 12th Conference on Computer and Robot Vision, 2015, pp. 133–138.
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: bib46
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bib47
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 228
  start-page: 58
  year: 2003
  end-page: 62
  ident: bib31
  article-title: Mammography with computer-aided detection: reproducibility assessment – initial experience
  publication-title: Radiology
– volume: 36
  start-page: 3086
  year: 2009
  end-page: 3098
  ident: bib24
  article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features
  publication-title: Med. Phys.
– volume: 70
  year: 1957
  ident: bib49
  publication-title: Dyn. Program.
– volume: 38
  start-page: 348
  year: 2014
  end-page: 357
  ident: bib27
  article-title: Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms
  publication-title: Comput. Med. Imaging Graph.
– volume: 2
  start-page: 1
  year: 2015
  ident: bib3
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
– volume: 14
  start-page: 530
  year: 2007
  end-page: 538
  ident: bib20
  article-title: Computer-aided mass detection based on ipsilateral multiview mammograms
  publication-title: Acad. Radiol.
– volume: 30
  start-page: 1234
  year: 2012
  end-page: 1248
  ident: bib16
  article-title: Radiomics: the process and the challenges
  publication-title: Magn. Reson. Imaging
– start-page: 588
  year: 2015
  end-page: 599
  ident: bib12
  article-title: Multi-scale convolutional neural networks for lung nodule classification
  publication-title: Inf. Process. Med. Imaging
– volume: 185
  start-page: 973
  year: 2005
  end-page: 978
  ident: bib30
  article-title: Pulmonary nodule detection with low-dose CT of the lung: agreement among radiologists
  publication-title: Am. J. Roentgenol.
– volume: 54
  start-page: 95
  year: 2011
  end-page: 103
  ident: bib43
  article-title: Unsupervised learning of hierarchical representations with convolutional deep belief networks
  publication-title: Commun. ACM
– volume: 7260
  start-page: 72600H
  year: 2009
  ident: bib50
  article-title: Agreement of CAD features with expert observer ratings for characterization of pulmonary nodules in CT using the LIDC-IDRI database
  publication-title: Med. Imaging 2009 Comput. Diagn.
– volume: 33
  start-page: 2323
  year: 2006
  end-page: 2337
  ident: bib25
  article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours
  publication-title: Med. Phys.
– start-page: 1223
  year: 2012
  end-page: 1231
  ident: bib10
  article-title: Large scale distributed deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: W. Sun, T.-.L. (Bill) Tseng, B. Zheng, W. Qian, A Preliminary study on breast cancer risk analysis using deep neural Network, in: Proceedings of the International Workshop on Digital Mammography, 2016, pp. 385–391.
– volume: 9414
  start-page: 941422
  year: 2015
  ident: bib22
  article-title: A new breast cancer risk analysis approach using features extracted from multiple sub-regions on bilateral mammograms
  publication-title: SPIE Med. Imaging Int. Soc. Opt. Photonics
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: bib40
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib2
  article-title: Learning Deep Architectures for AI
  publication-title: Found. Trends® Mach. Learn.
– reference: A. Bordes, X. Glorot, J. Weston, Y. Bengio, Joint learning of words and meaning representations for open-text semantic parsing, Int. …, vol. 22, 2012, pp. 127–135.
– volume: 43
  start-page: 6654
  year: 2016
  end-page: 6666
  ident: bib35
  article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography
  publication-title: Med. Phys.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2323
  ident: bib41
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: bib38
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J. Digit. Imaging
– reference: S. Lohr, The Age of Big Data, New York Times, 2012, pp. 1–5.
– volume: 42
  start-page: 2853
  year: 2015
  end-page: 2862
  ident: bib26
  article-title: Using multiscale texture and density features for near-term breast cancer risk analysis
  publication-title: Med. Phys.
– start-page: 801
  year: 2011
  end-page: 809
  ident: bib8
  article-title: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 1
  year: 2015
  ident: bib23
  article-title: Improving computer-aided detection using convolutional neural networks and random view aggregation
  publication-title: IEEE Trans. Med. Imaging
– volume: 9785
  start-page: 978538
  year: 2016
  ident: bib29
  article-title: Computerized lung cancer malignancy level analysis using 3D texture features
  publication-title: SPIE Med. Imaging
– volume: 14
  start-page: 1409
  year: 2007
  end-page: 1421
  ident: bib39
  article-title: The Lung Image Database Consortium (LIDC): an evaluation of radiologist variability in the identification of lung nodules on CT scans
  publication-title: Acad. Radiol.
– volume: 35
  start-page: 1262
  year: 2016
  end-page: 1272
  ident: bib34
  article-title: Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines
  publication-title: IEEE Trans. Med. Imaging
– volume: 52
  start-page: 1391
  year: 2013
  end-page: 1397
  ident: bib33
  article-title: Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability
  publication-title: Acta Oncol
– start-page: 411
  year: 2013
  end-page: 418
  ident: bib11
  article-title: Mitosis detection in breast cancer histology images with deep neural networks
  publication-title: Med. Image Comput. Comput.-Assist. Interv.
– volume: 12
  start-page: 497
  year: 2015
  end-page: 499
  ident: bib18
  article-title: “Improving the efficacy of mammography screening: the potential and challenge of developing new computer-aided detection approaches
  publication-title: Expert Rev. Med. Devices
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib42
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
– volume: 35
  start-page: 5799
  year: 2008
  end-page: 5820
  ident: bib17
  article-title: Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM
  publication-title: Med. Phys.
– volume: 135
  start-page: 77
  year: 2016
  end-page: 88
  ident: bib19
  article-title: Computerized breast cancer analysis system using three stage semi-supervised learning method
  publication-title: Comput. Methods Prog. Biomed.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib51
  article-title: Going deeper with convolutions
  publication-title: Proc. IEEE Conf. Comput. Vision. Pattern Recognit.
– volume: 19
  start-page: 153
  year: 2007
  ident: bib5
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2
  start-page: 3
  year: 2014
  ident: bib15
  article-title: Big data analytics in healthcare: promise and potential
  publication-title: Heal. Inf. Sci. Syst.
– volume: 25
  year: 2012
  ident: bib45
  article-title: Prediction as a candidate for learning deep hierarchical models of data
  publication-title: Tech. Univ. Den.
– volume: 21
  start-page: 265
  year: 1994
  end-page: 269
  ident: bib32
  article-title: Effect of case selection on the performance of computer-aided detection schemes
  publication-title: Med. Phys.
– volume: 35
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2017.04.006_bib23
  article-title: Improving computer-aided detection using convolutional neural networks and random view aggregation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 588
  year: 2015
  ident: 10.1016/j.compbiomed.2017.04.006_bib12
  article-title: Multi-scale convolutional neural networks for lung nodule classification
  publication-title: Inf. Process. Med. Imaging
– volume: 13
  start-page: 411
  issue: 4–5
  year: 2000
  ident: 10.1016/j.compbiomed.2017.04.006_bib42
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 42
  start-page: 2853
  issue: 6
  year: 2015
  ident: 10.1016/j.compbiomed.2017.04.006_bib26
  article-title: Using multiscale texture and density features for near-term breast cancer risk analysis
  publication-title: Med. Phys.
  doi: 10.1118/1.4919772
– volume: 70
  issue: 2
  year: 1957
  ident: 10.1016/j.compbiomed.2017.04.006_bib49
  publication-title: Dyn. Program.
– volume: 14
  start-page: 1409
  issue: 11
  year: 2007
  ident: 10.1016/j.compbiomed.2017.04.006_bib39
  article-title: The Lung Image Database Consortium (LIDC): an evaluation of radiologist variability in the identification of lung nodules on CT scans
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2007.07.008
– start-page: 411
  year: 2013
  ident: 10.1016/j.compbiomed.2017.04.006_bib11
  article-title: Mitosis detection in breast cancer histology images with deep neural networks
  publication-title: Med. Image Comput. Comput.-Assist. Interv.
– ident: 10.1016/j.compbiomed.2017.04.006_bib13
  doi: 10.1109/CRV.2015.25
– volume: 35
  start-page: 5799
  issue: 12
  year: 2008
  ident: 10.1016/j.compbiomed.2017.04.006_bib17
  article-title: Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM
  publication-title: Med. Phys.
  doi: 10.1118/1.3013555
– start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2017.04.006_bib51
  article-title: Going deeper with convolutions
  publication-title: Proc. IEEE Conf. Comput. Vision. Pattern Recognit.
– volume: 36
  start-page: 3086
  issue: 7
  year: 2009
  ident: 10.1016/j.compbiomed.2017.04.006_bib24
  article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features
  publication-title: Med. Phys.
  doi: 10.1118/1.3140589
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  ident: 10.1016/j.compbiomed.2017.04.006_bib46
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– volume: 12
  start-page: 497
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2017.04.006_bib18
  article-title: “Improving the efficacy of mammography screening: the potential and challenge of developing new computer-aided detection approaches
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/17434440.2015.1068115
– volume: 14
  start-page: 530
  year: 2007
  ident: 10.1016/j.compbiomed.2017.04.006_bib20
  article-title: Computer-aided mass detection based on ipsilateral multiview mammograms
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2007.01.012
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.compbiomed.2017.04.006_bib41
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2017.04.006_bib2
  article-title: Learning Deep Architectures for AI
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000006
– volume: 9785
  start-page: 978538
  year: 2016
  ident: 10.1016/j.compbiomed.2017.04.006_bib29
  article-title: Computerized lung cancer malignancy level analysis using 3D texture features
  publication-title: SPIE Med. Imaging
– ident: 10.1016/j.compbiomed.2017.04.006_bib36
  doi: 10.1007/978-3-319-19992-4_46
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.compbiomed.2017.04.006_bib40
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– ident: 10.1016/j.compbiomed.2017.04.006_bib44
  doi: 10.1145/1390156.1390294
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.compbiomed.2017.04.006_bib1
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 54
  start-page: 95
  issue: 10
  year: 2011
  ident: 10.1016/j.compbiomed.2017.04.006_bib43
  article-title: Unsupervised learning of hierarchical representations with convolutional deep belief networks
  publication-title: Commun. ACM
  doi: 10.1145/2001269.2001295
– ident: 10.1016/j.compbiomed.2017.04.006_bib4
– volume: 43
  start-page: 6654
  issue: 12
  year: 2016
  ident: 10.1016/j.compbiomed.2017.04.006_bib35
  article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography
  publication-title: Med. Phys.
  doi: 10.1118/1.4967345
– volume: 7260
  start-page: 72600H
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2017.04.006_bib50
  article-title: Agreement of CAD features with expert observer ratings for characterization of pulmonary nodules in CT using the LIDC-IDRI database
  publication-title: Med. Imaging 2009 Comput. Diagn.
  doi: 10.1117/12.811569
– volume: 30
  start-page: 1234
  year: 2012
  ident: 10.1016/j.compbiomed.2017.04.006_bib16
  article-title: Radiomics: the process and the challenges
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.06.010
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.compbiomed.2017.04.006_bib48
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 38
  start-page: 348
  issue: 5
  year: 2014
  ident: 10.1016/j.compbiomed.2017.04.006_bib27
  article-title: Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2014.03.001
– volume: 9414
  start-page: 941422
  year: 2015
  ident: 10.1016/j.compbiomed.2017.04.006_bib22
  article-title: A new breast cancer risk analysis approach using features extracted from multiple sub-regions on bilateral mammograms
  publication-title: SPIE Med. Imaging Int. Soc. Opt. Photonics
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  ident: 10.1016/j.compbiomed.2017.04.006_bib37
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– year: 2013
  ident: 10.1016/j.compbiomed.2017.04.006_bib14
  article-title: Transforming health care through big data strategies for leveraging big data in the health care industry
  publication-title: Inst. Heal. Technol. Transform
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.compbiomed.2017.04.006_bib47
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 25
  year: 2012
  ident: 10.1016/j.compbiomed.2017.04.006_bib45
  article-title: Prediction as a candidate for learning deep hierarchical models of data
  publication-title: Tech. Univ. Den.
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2017.04.006_bib3
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 2
  start-page: 3
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2017.04.006_bib15
  article-title: Big data analytics in healthcare: promise and potential
  publication-title: Heal. Inf. Sci. Syst.
  doi: 10.1186/2047-2501-2-3
– ident: 10.1016/j.compbiomed.2017.04.006_bib9
– ident: 10.1016/j.compbiomed.2017.04.006_bib28
  doi: 10.1007/978-3-319-41546-8_48
– start-page: 605
  year: 2011
  ident: 10.1016/j.compbiomed.2017.04.006_bib7
  article-title: Empirical evaluation and combination of advanced language modeling techniques
  publication-title: Interspeech
  doi: 10.21437/Interspeech.2011-242
– volume: 26
  start-page: 402
  year: 1999
  ident: 10.1016/j.compbiomed.2017.04.006_bib21
  article-title: Image feature extraction for mass detection in digital mammography: influence of wavelet analysis
  publication-title: Med. Phys.
  doi: 10.1118/1.598531
– volume: 19
  start-page: 153
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2017.04.006_bib5
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 52
  start-page: 1391
  year: 2013
  ident: 10.1016/j.compbiomed.2017.04.006_bib33
  article-title: Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability
  publication-title: Acta Oncol
  doi: 10.3109/0284186X.2013.812798
– start-page: 801
  year: 2011
  ident: 10.1016/j.compbiomed.2017.04.006_bib8
  article-title: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 228
  start-page: 58
  issue: 1
  year: 2003
  ident: 10.1016/j.compbiomed.2017.04.006_bib31
  article-title: Mammography with computer-aided detection: reproducibility assessment – initial experience
  publication-title: Radiology
  doi: 10.1148/radiol.2281020489
– volume: 135
  start-page: 77
  year: 2016
  ident: 10.1016/j.compbiomed.2017.04.006_bib19
  article-title: Computerized breast cancer analysis system using three stage semi-supervised learning method
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2016.07.017
– volume: 33
  start-page: 2323
  issue: 7
  year: 2006
  ident: 10.1016/j.compbiomed.2017.04.006_bib25
  article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours
  publication-title: Med. Phys.
  doi: 10.1118/1.2207129
– start-page: 1223
  year: 2012
  ident: 10.1016/j.compbiomed.2017.04.006_bib10
  article-title: Large scale distributed deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 26
  start-page: 1045
  issue: 6
  year: 2013
  ident: 10.1016/j.compbiomed.2017.04.006_bib38
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 185
  start-page: 973
  issue: 4
  year: 2005
  ident: 10.1016/j.compbiomed.2017.04.006_bib30
  article-title: Pulmonary nodule detection with low-dose CT of the lung: agreement among radiologists
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.04.1225
– start-page: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2017.04.006_bib6
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 21
  start-page: 265
  issue: 2
  year: 1994
  ident: 10.1016/j.compbiomed.2017.04.006_bib32
  article-title: Effect of case selection on the performance of computer-aided detection schemes
  publication-title: Med. Phys.
  doi: 10.1118/1.597287
– volume: 35
  start-page: 1262
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2017.04.006_bib34
  article-title: Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2526687
SSID ssj0004030
Score 2.546129
Snippet This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and...
Abstract This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 530
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Big Data
Cancer
Computed tomography
Computer aided diagnosis
Consortia
Data processing
Deep learning
Design
Detectors
Diagnosis
Feature extraction
Female
Humans
Image acquisition
Image analysis
Image databases
Image processing
Image Processing, Computer-Assisted
Internal Medicine
Learning algorithms
Lung cancer
Lung Neoplasms - diagnostic imaging
Lung nodules
Machine Learning
Male
Medical diagnosis
Medical imaging
Morphology
Neural networks
Neural Networks (Computer)
Nodules
Noise reduction
Other
Predictive Value of Tests
Preprocessing
Researchers
Social networks
Tomography, X-Ray Computed
Unsupervised feature learning
SummonAdditionalLinks – databaseName: ProQuest Central (via ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VVEJcEN-ElspIXFfsh3djC1VVQa1apAZUqNSb5djeUBR2A5teED--M7Z3c2mrnNeTjTzjmZf4zRuA93VeC26zWaKd5QmvUp0IMZOJlKZAkxqLIDUKn02rkwv-5bK83IJp3wtDtMo-J_pEbVtD_5F_IGWyAtEtlwfLPwlNjaLb1X6Eho6jFey-lxh7ANs5KWONYPvT0fTb-bpTMi1CUwpmH44_jiK3JzC-iMQdmt6J8jXxEqg0Cen2gnUXIPWF6fgJPI6Ikh2GEHgKW655Bg_P4p35c_h_eL1qvTArq52X8WRxVMScEet9zjypkDqAG7dg519PGZU2y9qGWeeWLEjMop1lejHHPVn9_N0xBLvMxJEQV__w2QLTBjMURH-ZDQS-q-4FXBwf_fh8ksSZC4kpRbpKrK5SbrjWXHJH0vNlZnP0V1mJXBqdzcrM1SUeYiFsLRBOFiXX3JjCFRNdGFG8hFHTNu41sErgwpQ7xBSWOyl0WdcOl6TOy46JMUz6jVUmCpLTXIyF6plnv9TaJYpcolKu0CVjyAbLZRDl2MBG9r5TfdMppkmFlWMD28lttq6L571TmepylarvXu6IuoFpDIDM0fLjYBkhTYAqG753tw8ytX7VcBDG8G54jEmBbnp049prXCNIc4dkh8fwKgTnsFGER0jm7c39H74Dj-ibBN7iLoww1NxbxF-r2V48VDfT0zFv
  priority: 102
  providerName: ProQuest
Title Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517300926
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482517300926
https://dx.doi.org/10.1016/j.compbiomed.2017.04.006
https://www.ncbi.nlm.nih.gov/pubmed/28473055
https://www.proquest.com/docview/1954367549
https://www.proquest.com/docview/1896040653
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7GXse957YoGe_XqD8mW2FNWmqUbzUZZIW9CkeTUI7NDnb6Usb99d5acMNZBYC82tnXY6E53J_y73xHytsoqwWw6j7WzLGZFomMh5jKW0uQgUkEQxELh82kxuWSfZny2R06GWhiEVQbf7316763DneMwm8erusYaX9hKYOUlUq7LDGm3GSuxi8G7X1uYB0tyX4YC_gZHBzSPx3ghbNuXuSPIq-xJT7H30d0h6l8paB-Kxo_Iw5BD0pH_zMdkzzVPyP3z8Jf8Kfk5ulm3PRUrrVxP3ElDc4gFRZz7gvYwQqz5bdySXnw5oxjMLG0bap1bUU8qC3KW6uWiva7XVz86CuktNaEJRH0Lz5bgKKhBs7mm1kP26u4ZuRyffjuZxKHLQmy4SNax1UXCDNOaSeaQbJ6nNgMN8UJk0uh0zlNXcVi2QthKQAKZc6aZMbnLS50bkT8n-03buJeEFgIGJsxBFmGZk0LzqnIwJHE90ZiISDlMrDKBghw7YSzVgDX7rrYqUagSlTAFKolIupFceRqOHWTkoDs1lJmCY1QQK3aQLe-SdV1Y4Z1KVZepRP1lhRF5v5H8w5B3fO_hYGRq-yrJWQ4bOyYj8mbzGNwA_tvRjWtvYIxAlh0kGo7IC2-cm4nCDASJ3V7916cdkAd45YGMh2QfLNG9hoRsPT_qVxwcy1kJRzH-eETujc4-T6Zw_nA6_XrxG4v8OxA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJgEviN8UBhgJHiOS2EltoQkN2NSytaCxSXvzXNspm7qkkE4IxN_G38Zd7KQvA_Vlz_E5ke989zm--46Ql0VaCG6TSaSd5RHPYx0JMZGRlIaBSAFBEAuFR-N8cMQ_HmfHa-RPWwuDaZWtT2wcta0M_iN_jcxkDNAtl2_n3yLsGoW3q20LDR1aK9ithmIsFHbsuZ8_4AhXbw0_gL5fpenuzuH7QRS6DEQmE_EisjqPueFac8kdkq1niU3hC7NcpNLoZJIlrsjAbIWwhQAAxTKuuTHMsb5mRjCY9xrZ4IxLOPxtvNsZfz5YVmbGzBfBgLfjcBgLuUQ-wwyTxn2RPaaY9RvKVey8dHmA_BcAbgLh7m1yKyBYuu1N7g5Zc-Vdcn0U7ujvkd_bF4uqIYKlhWtoQ2loTTGlmGU_pU0SI1Ycl25GDz4NKYZSS6uSWufm1FPagpylejYFHSy-ntcUwDU1oQXF6S94NgM3RQ0a7XdqfcLgaX2fHF3J6j8g62VVukeE5gIGxtwBhrHcSaGzonAwJHYNzZnokX67sMoEAnTswzFTbabbmVqqRKFKVMwVqKRHkk5y7klAVpCRre5UW-QKbllBpFpBtn-ZrKuDf6lVoupUxepLQ6-E1cfYdkCmIPmmkwwQykOjFd-72RqZWr6q23g98qJ7DE4Ib5Z06aoLGCOQ4wdpjnvkoTfObqEQ_yCt3OP_T_6c3BgcjvbV_nC894TcxK_yOZObZB3Mzj0F7LeYPAsbjJKTq97TfwFOFm0Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkSouFd9sKWAkOEZNYiexVVWooqy6lBYEVNqb8drO0mqbLGQrBOKX8euYiZ3spaC99BxPEtnjmZf4zRtCXpRpKbhNJpF2lkc8j3UkxERGUhoGJiUkQSwUPj7JD0_523E2XiN_uloYpFV2MbEN1LY2-I98B5XJGKBbLnfKQIv4cDB8Nf8WYQcpPGnt2ml4FzlyP3_A51uzNzqAtX6ZpsM3n18fRqHDQGQyES8iq_OYG641l9yh0HqW2BTeLstFKo1OJlniygxcVghbCgBPLOOaG8McKzQzgsF9b5CbBWMS6YTFuFjWZMbMl79AnOPwGRZYRJ5bhnRxX16P5LKiFVvFnktXp8Z_Qd82BQ5vk82AXem-d7Y7ZM1Vd8nGcTidv0d-718u6lYClpauFQyloSnFlCK_fkpb-iLWGlduRj--H1FMopbWFbXOzakXswU7S_VsCjO--HrRUIDV1ITmE2e_4NoMAhQ16K7fqfVUwbPmPjm9lrl_QNarunKPCM0FDIy5A_RiuZNCZ2XpYEjsWoEzMSBFN7HKBOlz7MAxUx3H7Vwtl0ThkqiYK1iSAUl6y7mX_1jBRnZrp7ryVgjICnLUCrbFVbauCZGlUYlqUhWrT62wEtYdY8MBmYLlbm8ZwJMHRSs-d7tzMrV8VL_lBuR5fxnCD54p6crVlzBGoLoPChwPyEPvnP1EIfJBQbmt_9_8GdmAnazejU6OHpNb-FKeLLlN1sHr3BMAfYvJ03Z3UfLlurfzX060arM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+feature+learning+using+multichannel+ROI+based+on+deep+structured+algorithms+for+computerized+lung+cancer+diagnosis&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Sun%2C+Wenqing&rft.au=Zheng%2C+Bin&rft.au=Qian%2C+Wei&rft.date=2017-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=89&rft.spage=530&rft.epage=539&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.04.006&rft.externalDocID=S0010482517300926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon