Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis
This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acqu...
        Saved in:
      
    
          | Published in | Computers in biology and medicine Vol. 89; pp. 530 - 539 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.10.2017
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4825 1879-0534 1879-0534  | 
| DOI | 10.1016/j.compbiomed.2017.04.006 | 
Cover
| Abstract | This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists’ markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. | 
    
|---|---|
| AbstractList | This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well.This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists’ markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Abstract This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists’ markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well.  | 
    
| Author | Sun, Wenqing Qian, Wei Zheng, Bin  | 
    
| Author_xml | – sequence: 1 givenname: Wenqing surname: Sun fullname: Sun, Wenqing organization: College of Engineering, University of Texas at El Paso, El Paso, TX, United States – sequence: 2 givenname: Bin surname: Zheng fullname: Zheng, Bin organization: College of Engineering, University of Oklahoma, Norman, OK, United States – sequence: 3 givenname: Wei surname: Qian fullname: Qian, Wei email: wqian@utep.edu organization: College of Engineering, University of Texas at El Paso, El Paso, TX, United States  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28473055$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkk1r3DAQhk1JaTZp_0IR9NLLbkeWZMuX0DT0IxAI9OMstPJ4o60sbSWrkNIfX5lNCCwU9iId9M4zo_eds-rEB49VRSisKNDm3XZlwrhb2zBiv6qBtivgK4DmWbWgsu2WIBg_qRYAFJZc1uK0OktpCwAcGLyoTmvJWwZCLKq_l3kKo56sIQPqKUckDnX01m9ITvM5Zlde77T36MjX22uy1gl7EjzpEXckTTGbua4n2m1CtNPdmMgQIplHzBNG-6e8uVxQRnuDkfRWb3xINr2sng_aJXz1cJ9XPz59_H71ZXlz-_n66vJmaYSEadnrBrjhWvOOI28aLmhfc4aikXVnNF0LioNoOy5lP0hKBRNcc2MYslYzI9l59XbP3cXwK2Oa1GiTQee0x5CTorIrHaARrEjfHEi3IUdfplO0E5w1reBdUb1-UOV1iUDtoh11vFePvhbBxV5gYkgp4qCMnYrLwU9RW6coqDlItVVPQao5SAVclSALQB4AHnscUfphX4rF0t8Wo0rGYnG-txHNpPpgj4FcHECMs94a7X7iPaYnU1SqFahv86rNm0bL_6GrZ8D7_wOOm-EfgZvqXQ | 
    
| CitedBy_id | crossref_primary_10_1007_s11042_023_17502_3 crossref_primary_10_4103_jmss_jmss_127_21 crossref_primary_10_1016_j_media_2020_101840 crossref_primary_10_1007_s11548_020_02121_2 crossref_primary_10_1002_mp_16430 crossref_primary_10_1109_TNNLS_2023_3315271 crossref_primary_10_1371_journal_pone_0273445 crossref_primary_10_1007_s10916_019_1455_6 crossref_primary_10_1088_1361_6560_aaa610 crossref_primary_10_3389_fonc_2023_1140635 crossref_primary_10_32725_jab_2018_007 crossref_primary_10_3390_bioengineering8030035 crossref_primary_10_1109_ACCESS_2020_3010800 crossref_primary_10_1515_jisys_2022_0062 crossref_primary_10_1016_j_acra_2019_11_006 crossref_primary_10_1016_j_compbiomed_2018_05_018 crossref_primary_10_3390_s21030748 crossref_primary_10_1007_s11042_022_13566_9 crossref_primary_10_1148_radiol_2018180547 crossref_primary_10_1016_j_compbiomed_2018_08_006 crossref_primary_10_1007_s00521_018_3773_x crossref_primary_10_1371_journal_pone_0274522 crossref_primary_10_3389_fphar_2023_1295511 crossref_primary_10_1109_ACCESS_2025_3543838 crossref_primary_10_1007_s11042_024_19098_8 crossref_primary_10_3390_app8081213 crossref_primary_10_1007_s11042_021_11748_5 crossref_primary_10_1080_21681163_2023_2258998 crossref_primary_10_2991_jaims_d_210428_002 crossref_primary_10_1155_2019_6212759 crossref_primary_10_1007_s11682_022_00631_y crossref_primary_10_1109_ACCESS_2022_3150924 crossref_primary_10_1007_s10916_019_1327_0 crossref_primary_10_1155_2022_1139587 crossref_primary_10_1016_j_compbiomed_2024_109494 crossref_primary_10_1109_TMI_2022_3232572 crossref_primary_10_1002_mp_17266 crossref_primary_10_1016_j_knosys_2024_112659 crossref_primary_10_1080_20479700_2022_2102223 crossref_primary_10_53065_kaznmu_2024_71_4_004 crossref_primary_10_1109_ACCESS_2019_2958663 crossref_primary_10_1016_j_imu_2018_06_006 crossref_primary_10_1016_j_patcog_2021_107942 crossref_primary_10_1109_ACCESS_2020_3007939 crossref_primary_10_3390_diagnostics13162617 crossref_primary_10_1016_j_eswa_2021_115081 crossref_primary_10_1007_s00330_019_06168_x crossref_primary_10_1016_j_asoc_2019_105934 crossref_primary_10_1016_j_lungcan_2017_10_008 crossref_primary_10_1016_j_dsp_2024_104908 crossref_primary_10_1016_j_imu_2020_100391 crossref_primary_10_47542_sauied_1394746 crossref_primary_10_31590_ejosat_878552 crossref_primary_10_3390_bioengineering8120193 crossref_primary_10_3390_bioengineering11030252 crossref_primary_10_1007_s40747_021_00474_y crossref_primary_10_1007_s10278_022_00747_z crossref_primary_10_3390_diagnostics9010029 crossref_primary_10_1016_j_bspc_2022_104104 crossref_primary_10_1016_j_compbiomed_2021_104209 crossref_primary_10_1007_s10278_019_00306_z crossref_primary_10_3233_XST_17349 crossref_primary_10_1016_j_compmedimag_2019_02_003 crossref_primary_10_1016_j_mtcomm_2023_105592 crossref_primary_10_1007_s11831_025_10239_2 crossref_primary_10_1016_j_jbi_2020_103627 crossref_primary_10_1007_s00521_023_09130_7 crossref_primary_10_1016_j_engappai_2022_105490 crossref_primary_10_3390_cancers16223879 crossref_primary_10_1016_j_ejmp_2019_06_003 crossref_primary_10_3233_IDT_190083 crossref_primary_10_1002_jemt_24682 crossref_primary_10_1186_s12938_018_0529_x crossref_primary_10_3233_XST_221301 crossref_primary_10_1007_s11277_020_07732_1 crossref_primary_10_1093_bib_bbae042 crossref_primary_10_1088_1361_6501_ad38d2 crossref_primary_10_1109_JBHI_2022_3198509 crossref_primary_10_3390_bioengineering10080981 crossref_primary_10_1016_j_compbiomed_2020_104135 crossref_primary_10_1088_1361_6560_acef8c crossref_primary_10_1109_ACCESS_2020_3016780 crossref_primary_10_2174_1872212117666230130100048 crossref_primary_10_3390_biomedicines11030679 crossref_primary_10_1007_s44163_023_00049_5 crossref_primary_10_1200_CCI_20_00072 crossref_primary_10_1007_s00432_019_03098_5 crossref_primary_10_3390_life13091911 crossref_primary_10_1002_mp_13592 crossref_primary_10_1016_j_compbiomed_2021_104304 crossref_primary_10_1097_MD_0000000000016119 crossref_primary_10_1007_s00521_020_04787_w crossref_primary_10_1109_MSP_2019_2900993 crossref_primary_10_3390_diagnostics13081406 crossref_primary_10_1007_s00521_018_3518_x crossref_primary_10_1016_j_cmpb_2017_11_019 crossref_primary_10_1016_j_compbiomed_2020_103795 crossref_primary_10_1038_s41598_020_69817_y crossref_primary_10_1007_s10278_020_00372_8 crossref_primary_10_1007_s40745_024_00537_0 crossref_primary_10_1016_j_bspc_2023_105263 crossref_primary_10_1109_ACCESS_2020_2992645 crossref_primary_10_1002_ima_22394 crossref_primary_10_1088_1742_6596_1471_1_012043 crossref_primary_10_1109_JBHI_2020_2990529 crossref_primary_10_3233_XST_180490 crossref_primary_10_1002_mp_14512 crossref_primary_10_1155_2022_5905230 crossref_primary_10_12677_BIPHY_2021_92006 crossref_primary_10_1007_s00330_021_07794_0 crossref_primary_10_1007_s42979_021_00708_3 crossref_primary_10_1007_s11227_021_04263_9 crossref_primary_10_1097_CM9_0000000000000372 crossref_primary_10_3233_XST_180409 crossref_primary_10_1002_acm2_70061 crossref_primary_10_1038_s41698_024_00656_0 crossref_primary_10_1007_s13721_023_00417_2 crossref_primary_10_1088_1361_6560_ac5297 crossref_primary_10_1088_1361_6560_ab2544 crossref_primary_10_32604_cmc_2022_027896 crossref_primary_10_1109_JSAC_2020_3020657  | 
    
| Cites_doi | 10.1016/S0893-6080(00)00026-5 10.1118/1.4919772 10.1016/j.acra.2007.07.008 10.1109/CRV.2015.25 10.1118/1.3013555 10.1118/1.3140589 10.1109/TAC.1974.1100705 10.1586/17434440.2015.1068115 10.1016/j.acra.2007.01.012 10.1109/5.726791 10.1561/2200000006 10.1007/978-3-319-19992-4_46 10.1162/neco.1989.1.4.541 10.1145/1390156.1390294 10.1162/neco.2006.18.7.1527 10.1145/2001269.2001295 10.1118/1.4967345 10.1117/12.811569 10.1016/j.mri.2012.06.010 10.1016/j.neunet.2014.09.003 10.1016/j.compmedimag.2014.03.001 10.1118/1.3528204 10.1214/aos/1176344136 10.1186/s40537-014-0007-7 10.1186/2047-2501-2-3 10.1007/978-3-319-41546-8_48 10.21437/Interspeech.2011-242 10.1118/1.598531 10.3109/0284186X.2013.812798 10.1148/radiol.2281020489 10.1016/j.cmpb.2016.07.017 10.1118/1.2207129 10.1007/s10278-013-9622-7 10.2214/AJR.04.1225 10.1118/1.597287 10.1109/TMI.2016.2526687  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Copyright © 2017. Published by Elsevier Ltd. Copyright Elsevier Limited Oct 1, 2017  | 
    
| Copyright_xml | – notice: 2017 – notice: Copyright © 2017. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Oct 1, 2017  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8  | 
    
| DOI | 10.1016/j.compbiomed.2017.04.006 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (via ProQuest) Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1879-0534 | 
    
| EndPage | 539 | 
    
| ExternalDocumentID | 28473055 10_1016_j_compbiomed_2017_04_006 S0010482517300926 1_s2_0_S0010482517300926  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- ~HD .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX AGQPQ AIGII APXCP CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c580t-da604c4aa494e466451d243e56829ca1b51ef579488df8115354a4cc3e37a3c83 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0010-4825 1879-0534  | 
    
| IngestDate | Mon Sep 29 04:38:51 EDT 2025 Tue Oct 07 06:19:13 EDT 2025 Thu Apr 03 07:08:13 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Wed Oct 01 04:07:23 EDT 2025 Fri Feb 23 02:24:55 EST 2024 Tue Feb 25 20:10:54 EST 2025 Tue Oct 14 19:33:05 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Deep learning Unsupervised feature learning Big data Computer aided diagnosis Lung cancer  | 
    
| Language | English | 
    
| License | Copyright © 2017. Published by Elsevier Ltd. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c580t-da604c4aa494e466451d243e56829ca1b51ef579488df8115354a4cc3e37a3c83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 28473055 | 
    
| PQID | 1954367549 | 
    
| PQPubID | 1226355 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_1896040653 proquest_journals_1954367549 pubmed_primary_28473055 crossref_citationtrail_10_1016_j_compbiomed_2017_04_006 crossref_primary_10_1016_j_compbiomed_2017_04_006 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_04_006 elsevier_clinicalkeyesjournals_1_s2_0_S0010482517300926 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_04_006  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-10-01 | 
    
| PublicationDateYYYYMMDD | 2017-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Computers in biology and medicine | 
    
| PublicationTitleAlternate | Comput Biol Med | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | A. Bordes, X. Glorot, J. Weston, Y. Bengio, Joint learning of words and meaning representations for open-text semantic parsing, Int. …, vol. 22, 2012, pp. 127–135. Dean, Corrado, Monga, Chen, Devin, Mao, aurelio Ranzato, Senior, Tucker, Yang, Le, Ng (bib10) 2012 Cireşan, Giusti, Gambardella, Schmidhuber (bib11) 2013 LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bib40) 1989; 1 Nishikawa, Giger, Doi, Metz, Yin, Vyborny, Schmidt (bib32) 1994; 21 Leijenaar, Carvalho, Velazquez, van Elmpt, Parmar, Hoekstra, Hoekstra, Boellaard, Dekker, Gillies, Aerts, Lambin (bib33) 2013; 52 Giger, Chan, Boone (bib17) 2008; 35 Armato, McLennan, Hawkins, Bidaut, McNitt-Gray, Meyer, Reeves, Zhao, Aberle, Henschke, a Hoffman, a Kazerooni, MacMahon, Beeke, Yankelevitz, Biancardi, Bland, Brown, Engelmann, Laderach, Max, Pais, Qing, Roberts, Smith, Starkey, Batrah, Caligiuri, Farooqi, Gladish, Jude, Munden, Petkovska, Quint, Schwartz, Sundaram, Dodd, Fenimore, Gur, Petrick, Freymann, Kirby, Hughes, Casteele, Gupte, Sallamm, Heath, Kuhn, Dharaiya, Burns, Fryd, Salganicoff, Anand, Shreter, Vastagh, Croft, Clarke (bib37) 2011; 38 Sun, (Bill) Tseng, Qian, Zhang, Saltzstein, Zheng, Lure, Yu, Zhou (bib26) 2015; 42 S. Lohr, The Age of Big Data, New York Times, 2012, pp. 1–5. Sun, Zheng, Lure, Wu, Zhang, Wang, Saltzstein, Qian (bib27) 2014; 38 Schwarz (bib47) 1978; 6 Zheng, Hardesty, Poller, Sumkin, Golla (bib31) 2003; 228 Qian, Li, Clarke (bib21) 1999; 26 Krizhevsky, Sutskever, Hinton (bib6) 2012 Leader, Warfel, Fuhrman, Golla, Weissfeld, Avila, Turner, Zheng (bib30) 2005; 185 Clark, Vendt, Smith, Freymann, Kirby, Koppel, Moore, Phillips, Maffitt, Pringle, Tarbox, Prior (bib38) 2013; 26 Sun, Huang, Tseng, Zhang, Qian (bib29) 2016; 9785 Qian, Song, Lei, Sankar, Eikman (bib20) 2007; 14 Way, Sahiner, Chan, Hadjiiski, Cascade, Chughtai, Bogot, Kazerooni (bib24) 2009; 36 Wiemker, Bergtholdt, Dharaiya, Kabus, Lee (bib50) 2009; 7260 Roth, Lu, Liu, Yao, Seff, Cherry, Kim, Summers (bib23) 2015; 35 Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (bib3) 2015; 2 Armato, McNitt-Gray, Reeves, Meyer, McLennan, Aberle, Kazerooni (bib39) 2007; 14 Bengio (bib2) 2009; 2 D. Kumar, A. Wong, D.A. Clausi, Lung Nodule classification using deep features in CT images, in: Proceedings of the 12th Conference on Computer and Robot Vision, 2015, pp. 133–138. Palm (bib45) 2012; 25 Hinton, Osindero, Teh (bib1) 2006; 18 Qian, Sun, Zheng (bib18) 2015; 12 Way, Hadjiiski, Sahiner, Chan, Cascade, Kazerooni, Bogot, Zhou (bib25) 2006; 33 Shen, Zhou, Yang, Yang, Tian (bib12) 2015 Mikolov, Deoras, Kombrink, Burget, Cernocký (bib7) 2011 van Tulder, de Bruijne (bib34) 2016; 35 LeCun, Bottou, Bengio, Haffner (bib41) 1998; 86 Hyvarinen, Oja (bib42) 2000; 13 Socher, Huang, Pennington (bib8) 2011 Raghupathi, Raghupathi (bib15) 2014; 2 P. Vincent, H. Larochelle, Y. Bengio, P.-.A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1096–1103. Kumar, Gu, Basu, Berglund, Eschrich, Schabath, Forster, Aerts, Dekker, Fenstermacher, Goldgof, Hall, Lambin, Balagurunathan, Gatenby, Gillies (bib16) 2012; 30 Lee, Grosse, Ranganath, Ng (bib43) 2011; 54 Akaike (bib46) 1974; 19 W. Sun, T.-.L. (Bill) Tseng, B. Zheng, W. Qian, A Preliminary study on breast cancer risk analysis using deep neural Network, in: Proceedings of the International Workshop on Digital Mammography, 2016, pp. 385–391. Sun, (Bill) Tseng, Zhang, Qian (bib19) 2016; 135 Schmidhuber (bib48) 2015; 61 Sun, Tseng, Zheng, Zhang, Qian (bib22) 2015; 9414 W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in: Procceedings of the International Conference on Information Processing in Medical Imaging, 2015, pp. 588–599. Bengio, Lamblin, Popovici, Larochelle (bib5) 2007; 19 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib51) 2015 Cottle, Hoover, Kanwal, Kohn, Strome, Treister (bib14) 2013 Bellman (bib49) 1957; 70 Samala, Chan, Hadjiiski, Helvie, Wei, Cha (bib35) 2016; 43 Qian (10.1016/j.compbiomed.2017.04.006_bib18) 2015; 12 Roth (10.1016/j.compbiomed.2017.04.006_bib23) 2015; 35 Clark (10.1016/j.compbiomed.2017.04.006_bib38) 2013; 26 Bengio (10.1016/j.compbiomed.2017.04.006_bib2) 2009; 2 Sun (10.1016/j.compbiomed.2017.04.006_bib27) 2014; 38 10.1016/j.compbiomed.2017.04.006_bib13 10.1016/j.compbiomed.2017.04.006_bib4 Mikolov (10.1016/j.compbiomed.2017.04.006_bib7) 2011 Dean (10.1016/j.compbiomed.2017.04.006_bib10) 2012 Wiemker (10.1016/j.compbiomed.2017.04.006_bib50) 2009; 7260 Schwarz (10.1016/j.compbiomed.2017.04.006_bib47) 1978; 6 Bengio (10.1016/j.compbiomed.2017.04.006_bib5) 2007; 19 van Tulder (10.1016/j.compbiomed.2017.04.006_bib34) 2016; 35 Sun (10.1016/j.compbiomed.2017.04.006_bib19) 2016; 135 Schmidhuber (10.1016/j.compbiomed.2017.04.006_bib48) 2015; 61 10.1016/j.compbiomed.2017.04.006_bib44 Way (10.1016/j.compbiomed.2017.04.006_bib24) 2009; 36 Palm (10.1016/j.compbiomed.2017.04.006_bib45) 2012; 25 Sun (10.1016/j.compbiomed.2017.04.006_bib29) 2016; 9785 Leijenaar (10.1016/j.compbiomed.2017.04.006_bib33) 2013; 52 Cireşan (10.1016/j.compbiomed.2017.04.006_bib11) 2013 Zheng (10.1016/j.compbiomed.2017.04.006_bib31) 2003; 228 Lee (10.1016/j.compbiomed.2017.04.006_bib43) 2011; 54 Qian (10.1016/j.compbiomed.2017.04.006_bib20) 2007; 14 Qian (10.1016/j.compbiomed.2017.04.006_bib21) 1999; 26 Way (10.1016/j.compbiomed.2017.04.006_bib25) 2006; 33 Samala (10.1016/j.compbiomed.2017.04.006_bib35) 2016; 43 Krizhevsky (10.1016/j.compbiomed.2017.04.006_bib6) 2012 Shen (10.1016/j.compbiomed.2017.04.006_bib12) 2015 Hyvarinen (10.1016/j.compbiomed.2017.04.006_bib42) 2000; 13 Szegedy (10.1016/j.compbiomed.2017.04.006_bib51) 2015 10.1016/j.compbiomed.2017.04.006_bib36 Sun (10.1016/j.compbiomed.2017.04.006_bib22) 2015; 9414 Cottle (10.1016/j.compbiomed.2017.04.006_bib14) 2013 Bellman (10.1016/j.compbiomed.2017.04.006_bib49) 1957; 70 Nishikawa (10.1016/j.compbiomed.2017.04.006_bib32) 1994; 21 LeCun (10.1016/j.compbiomed.2017.04.006_bib40) 1989; 1 Socher (10.1016/j.compbiomed.2017.04.006_bib8) 2011 Akaike (10.1016/j.compbiomed.2017.04.006_bib46) 1974; 19 Leader (10.1016/j.compbiomed.2017.04.006_bib30) 2005; 185 Sun (10.1016/j.compbiomed.2017.04.006_bib26) 2015; 42 LeCun (10.1016/j.compbiomed.2017.04.006_bib41) 1998; 86 10.1016/j.compbiomed.2017.04.006_bib28 Raghupathi (10.1016/j.compbiomed.2017.04.006_bib15) 2014; 2 10.1016/j.compbiomed.2017.04.006_bib9 Kumar (10.1016/j.compbiomed.2017.04.006_bib16) 2012; 30 Armato (10.1016/j.compbiomed.2017.04.006_bib37) 2011; 38 Giger (10.1016/j.compbiomed.2017.04.006_bib17) 2008; 35 Armato (10.1016/j.compbiomed.2017.04.006_bib39) 2007; 14 Hinton (10.1016/j.compbiomed.2017.04.006_bib1) 2006; 18 Najafabadi (10.1016/j.compbiomed.2017.04.006_bib3) 2015; 2  | 
    
| References_xml | – volume: 38 start-page: 915 year: 2011 end-page: 931 ident: bib37 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans publication-title: Med. Phys. – start-page: 605 year: 2011 end-page: 608 ident: bib7 article-title: Empirical evaluation and combination of advanced language modeling techniques publication-title: Interspeech – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib48 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. – reference: P. Vincent, H. Larochelle, Y. Bengio, P.-.A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 1096–1103. – volume: 26 start-page: 402 year: 1999 ident: bib21 article-title: Image feature extraction for mass detection in digital mammography: influence of wavelet analysis publication-title: Med. Phys. – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bib1 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – reference: W. Shen, M. Zhou, F. Yang, C. Yang, J. Tian, Multi-scale convolutional neural networks for lung nodule classification, in: Procceedings of the International Conference on Information Processing in Medical Imaging, 2015, pp. 588–599. – start-page: 1 year: 2012 end-page: 9 ident: bib6 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2013 ident: bib14 article-title: Transforming health care through big data strategies for leveraging big data in the health care industry publication-title: Inst. Heal. Technol. Transform – reference: D. Kumar, A. Wong, D.A. Clausi, Lung Nodule classification using deep features in CT images, in: Proceedings of the 12th Conference on Computer and Robot Vision, 2015, pp. 133–138. – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: bib46 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: bib47 article-title: Estimating the dimension of a model publication-title: Ann. Stat. – volume: 228 start-page: 58 year: 2003 end-page: 62 ident: bib31 article-title: Mammography with computer-aided detection: reproducibility assessment – initial experience publication-title: Radiology – volume: 36 start-page: 3086 year: 2009 end-page: 3098 ident: bib24 article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features publication-title: Med. Phys. – volume: 70 year: 1957 ident: bib49 publication-title: Dyn. Program. – volume: 38 start-page: 348 year: 2014 end-page: 357 ident: bib27 article-title: Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms publication-title: Comput. Med. Imaging Graph. – volume: 2 start-page: 1 year: 2015 ident: bib3 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data – volume: 14 start-page: 530 year: 2007 end-page: 538 ident: bib20 article-title: Computer-aided mass detection based on ipsilateral multiview mammograms publication-title: Acad. Radiol. – volume: 30 start-page: 1234 year: 2012 end-page: 1248 ident: bib16 article-title: Radiomics: the process and the challenges publication-title: Magn. Reson. Imaging – start-page: 588 year: 2015 end-page: 599 ident: bib12 article-title: Multi-scale convolutional neural networks for lung nodule classification publication-title: Inf. Process. Med. Imaging – volume: 185 start-page: 973 year: 2005 end-page: 978 ident: bib30 article-title: Pulmonary nodule detection with low-dose CT of the lung: agreement among radiologists publication-title: Am. J. Roentgenol. – volume: 54 start-page: 95 year: 2011 end-page: 103 ident: bib43 article-title: Unsupervised learning of hierarchical representations with convolutional deep belief networks publication-title: Commun. ACM – volume: 7260 start-page: 72600H year: 2009 ident: bib50 article-title: Agreement of CAD features with expert observer ratings for characterization of pulmonary nodules in CT using the LIDC-IDRI database publication-title: Med. Imaging 2009 Comput. Diagn. – volume: 33 start-page: 2323 year: 2006 end-page: 2337 ident: bib25 article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours publication-title: Med. Phys. – start-page: 1223 year: 2012 end-page: 1231 ident: bib10 article-title: Large scale distributed deep networks publication-title: Adv. Neural Inf. Process. Syst. – reference: W. Sun, T.-.L. (Bill) Tseng, B. Zheng, W. Qian, A Preliminary study on breast cancer risk analysis using deep neural Network, in: Proceedings of the International Workshop on Digital Mammography, 2016, pp. 385–391. – volume: 9414 start-page: 941422 year: 2015 ident: bib22 article-title: A new breast cancer risk analysis approach using features extracted from multiple sub-regions on bilateral mammograms publication-title: SPIE Med. Imaging Int. Soc. Opt. Photonics – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: bib40 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bib2 article-title: Learning Deep Architectures for AI publication-title: Found. Trends® Mach. Learn. – reference: A. Bordes, X. Glorot, J. Weston, Y. Bengio, Joint learning of words and meaning representations for open-text semantic parsing, Int. …, vol. 22, 2012, pp. 127–135. – volume: 43 start-page: 6654 year: 2016 end-page: 6666 ident: bib35 article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography publication-title: Med. Phys. – volume: 86 start-page: 2278 year: 1998 end-page: 2323 ident: bib41 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: bib38 article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository publication-title: J. Digit. Imaging – reference: S. Lohr, The Age of Big Data, New York Times, 2012, pp. 1–5. – volume: 42 start-page: 2853 year: 2015 end-page: 2862 ident: bib26 article-title: Using multiscale texture and density features for near-term breast cancer risk analysis publication-title: Med. Phys. – start-page: 801 year: 2011 end-page: 809 ident: bib8 article-title: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 1 year: 2015 ident: bib23 article-title: Improving computer-aided detection using convolutional neural networks and random view aggregation publication-title: IEEE Trans. Med. Imaging – volume: 9785 start-page: 978538 year: 2016 ident: bib29 article-title: Computerized lung cancer malignancy level analysis using 3D texture features publication-title: SPIE Med. Imaging – volume: 14 start-page: 1409 year: 2007 end-page: 1421 ident: bib39 article-title: The Lung Image Database Consortium (LIDC): an evaluation of radiologist variability in the identification of lung nodules on CT scans publication-title: Acad. Radiol. – volume: 35 start-page: 1262 year: 2016 end-page: 1272 ident: bib34 article-title: Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines publication-title: IEEE Trans. Med. Imaging – volume: 52 start-page: 1391 year: 2013 end-page: 1397 ident: bib33 article-title: Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability publication-title: Acta Oncol – start-page: 411 year: 2013 end-page: 418 ident: bib11 article-title: Mitosis detection in breast cancer histology images with deep neural networks publication-title: Med. Image Comput. Comput.-Assist. Interv. – volume: 12 start-page: 497 year: 2015 end-page: 499 ident: bib18 article-title: “Improving the efficacy of mammography screening: the potential and challenge of developing new computer-aided detection approaches publication-title: Expert Rev. Med. Devices – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: bib42 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. – volume: 35 start-page: 5799 year: 2008 end-page: 5820 ident: bib17 article-title: Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM publication-title: Med. Phys. – volume: 135 start-page: 77 year: 2016 end-page: 88 ident: bib19 article-title: Computerized breast cancer analysis system using three stage semi-supervised learning method publication-title: Comput. Methods Prog. Biomed. – start-page: 1 year: 2015 end-page: 9 ident: bib51 article-title: Going deeper with convolutions publication-title: Proc. IEEE Conf. Comput. Vision. Pattern Recognit. – volume: 19 start-page: 153 year: 2007 ident: bib5 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 2 start-page: 3 year: 2014 ident: bib15 article-title: Big data analytics in healthcare: promise and potential publication-title: Heal. Inf. Sci. Syst. – volume: 25 year: 2012 ident: bib45 article-title: Prediction as a candidate for learning deep hierarchical models of data publication-title: Tech. Univ. Den. – volume: 21 start-page: 265 year: 1994 end-page: 269 ident: bib32 article-title: Effect of case selection on the performance of computer-aided detection schemes publication-title: Med. Phys. – volume: 35 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.compbiomed.2017.04.006_bib23 article-title: Improving computer-aided detection using convolutional neural networks and random view aggregation publication-title: IEEE Trans. Med. Imaging – start-page: 588 year: 2015 ident: 10.1016/j.compbiomed.2017.04.006_bib12 article-title: Multi-scale convolutional neural networks for lung nodule classification publication-title: Inf. Process. Med. Imaging – volume: 13 start-page: 411 issue: 4–5 year: 2000 ident: 10.1016/j.compbiomed.2017.04.006_bib42 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 42 start-page: 2853 issue: 6 year: 2015 ident: 10.1016/j.compbiomed.2017.04.006_bib26 article-title: Using multiscale texture and density features for near-term breast cancer risk analysis publication-title: Med. Phys. doi: 10.1118/1.4919772 – volume: 70 issue: 2 year: 1957 ident: 10.1016/j.compbiomed.2017.04.006_bib49 publication-title: Dyn. Program. – volume: 14 start-page: 1409 issue: 11 year: 2007 ident: 10.1016/j.compbiomed.2017.04.006_bib39 article-title: The Lung Image Database Consortium (LIDC): an evaluation of radiologist variability in the identification of lung nodules on CT scans publication-title: Acad. Radiol. doi: 10.1016/j.acra.2007.07.008 – start-page: 411 year: 2013 ident: 10.1016/j.compbiomed.2017.04.006_bib11 article-title: Mitosis detection in breast cancer histology images with deep neural networks publication-title: Med. Image Comput. Comput.-Assist. Interv. – ident: 10.1016/j.compbiomed.2017.04.006_bib13 doi: 10.1109/CRV.2015.25 – volume: 35 start-page: 5799 issue: 12 year: 2008 ident: 10.1016/j.compbiomed.2017.04.006_bib17 article-title: Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM publication-title: Med. Phys. doi: 10.1118/1.3013555 – start-page: 1 year: 2015 ident: 10.1016/j.compbiomed.2017.04.006_bib51 article-title: Going deeper with convolutions publication-title: Proc. IEEE Conf. Comput. Vision. Pattern Recognit. – volume: 36 start-page: 3086 issue: 7 year: 2009 ident: 10.1016/j.compbiomed.2017.04.006_bib24 article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features publication-title: Med. Phys. doi: 10.1118/1.3140589 – volume: 19 start-page: 716 issue: 6 year: 1974 ident: 10.1016/j.compbiomed.2017.04.006_bib46 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – volume: 12 start-page: 497 issue: 5 year: 2015 ident: 10.1016/j.compbiomed.2017.04.006_bib18 article-title: “Improving the efficacy of mammography screening: the potential and challenge of developing new computer-aided detection approaches publication-title: Expert Rev. Med. Devices doi: 10.1586/17434440.2015.1068115 – volume: 14 start-page: 530 year: 2007 ident: 10.1016/j.compbiomed.2017.04.006_bib20 article-title: Computer-aided mass detection based on ipsilateral multiview mammograms publication-title: Acad. Radiol. doi: 10.1016/j.acra.2007.01.012 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.compbiomed.2017.04.006_bib41 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.compbiomed.2017.04.006_bib2 article-title: Learning Deep Architectures for AI publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000006 – volume: 9785 start-page: 978538 year: 2016 ident: 10.1016/j.compbiomed.2017.04.006_bib29 article-title: Computerized lung cancer malignancy level analysis using 3D texture features publication-title: SPIE Med. Imaging – ident: 10.1016/j.compbiomed.2017.04.006_bib36 doi: 10.1007/978-3-319-19992-4_46 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.compbiomed.2017.04.006_bib40 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – ident: 10.1016/j.compbiomed.2017.04.006_bib44 doi: 10.1145/1390156.1390294 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.compbiomed.2017.04.006_bib1 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 54 start-page: 95 issue: 10 year: 2011 ident: 10.1016/j.compbiomed.2017.04.006_bib43 article-title: Unsupervised learning of hierarchical representations with convolutional deep belief networks publication-title: Commun. ACM doi: 10.1145/2001269.2001295 – ident: 10.1016/j.compbiomed.2017.04.006_bib4 – volume: 43 start-page: 6654 issue: 12 year: 2016 ident: 10.1016/j.compbiomed.2017.04.006_bib35 article-title: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography publication-title: Med. Phys. doi: 10.1118/1.4967345 – volume: 7260 start-page: 72600H issue: 1 year: 2009 ident: 10.1016/j.compbiomed.2017.04.006_bib50 article-title: Agreement of CAD features with expert observer ratings for characterization of pulmonary nodules in CT using the LIDC-IDRI database publication-title: Med. Imaging 2009 Comput. Diagn. doi: 10.1117/12.811569 – volume: 30 start-page: 1234 year: 2012 ident: 10.1016/j.compbiomed.2017.04.006_bib16 article-title: Radiomics: the process and the challenges publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.06.010 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.compbiomed.2017.04.006_bib48 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 38 start-page: 348 issue: 5 year: 2014 ident: 10.1016/j.compbiomed.2017.04.006_bib27 article-title: Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2014.03.001 – volume: 9414 start-page: 941422 year: 2015 ident: 10.1016/j.compbiomed.2017.04.006_bib22 article-title: A new breast cancer risk analysis approach using features extracted from multiple sub-regions on bilateral mammograms publication-title: SPIE Med. Imaging Int. Soc. Opt. Photonics – volume: 38 start-page: 915 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2017.04.006_bib37 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans publication-title: Med. Phys. doi: 10.1118/1.3528204 – year: 2013 ident: 10.1016/j.compbiomed.2017.04.006_bib14 article-title: Transforming health care through big data strategies for leveraging big data in the health care industry publication-title: Inst. Heal. Technol. Transform – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.compbiomed.2017.04.006_bib47 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 25 year: 2012 ident: 10.1016/j.compbiomed.2017.04.006_bib45 article-title: Prediction as a candidate for learning deep hierarchical models of data publication-title: Tech. Univ. Den. – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2017.04.006_bib3 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: 2 start-page: 3 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2017.04.006_bib15 article-title: Big data analytics in healthcare: promise and potential publication-title: Heal. Inf. Sci. Syst. doi: 10.1186/2047-2501-2-3 – ident: 10.1016/j.compbiomed.2017.04.006_bib9 – ident: 10.1016/j.compbiomed.2017.04.006_bib28 doi: 10.1007/978-3-319-41546-8_48 – start-page: 605 year: 2011 ident: 10.1016/j.compbiomed.2017.04.006_bib7 article-title: Empirical evaluation and combination of advanced language modeling techniques publication-title: Interspeech doi: 10.21437/Interspeech.2011-242 – volume: 26 start-page: 402 year: 1999 ident: 10.1016/j.compbiomed.2017.04.006_bib21 article-title: Image feature extraction for mass detection in digital mammography: influence of wavelet analysis publication-title: Med. Phys. doi: 10.1118/1.598531 – volume: 19 start-page: 153 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2017.04.006_bib5 article-title: Greedy layer-wise training of deep networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 52 start-page: 1391 year: 2013 ident: 10.1016/j.compbiomed.2017.04.006_bib33 article-title: Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability publication-title: Acta Oncol doi: 10.3109/0284186X.2013.812798 – start-page: 801 year: 2011 ident: 10.1016/j.compbiomed.2017.04.006_bib8 article-title: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection publication-title: Adv. Neural Inf. Process. Syst. – volume: 228 start-page: 58 issue: 1 year: 2003 ident: 10.1016/j.compbiomed.2017.04.006_bib31 article-title: Mammography with computer-aided detection: reproducibility assessment – initial experience publication-title: Radiology doi: 10.1148/radiol.2281020489 – volume: 135 start-page: 77 year: 2016 ident: 10.1016/j.compbiomed.2017.04.006_bib19 article-title: Computerized breast cancer analysis system using three stage semi-supervised learning method publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2016.07.017 – volume: 33 start-page: 2323 issue: 7 year: 2006 ident: 10.1016/j.compbiomed.2017.04.006_bib25 article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours publication-title: Med. Phys. doi: 10.1118/1.2207129 – start-page: 1223 year: 2012 ident: 10.1016/j.compbiomed.2017.04.006_bib10 article-title: Large scale distributed deep networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 26 start-page: 1045 issue: 6 year: 2013 ident: 10.1016/j.compbiomed.2017.04.006_bib38 article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – volume: 185 start-page: 973 issue: 4 year: 2005 ident: 10.1016/j.compbiomed.2017.04.006_bib30 article-title: Pulmonary nodule detection with low-dose CT of the lung: agreement among radiologists publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.04.1225 – start-page: 1 year: 2012 ident: 10.1016/j.compbiomed.2017.04.006_bib6 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 21 start-page: 265 issue: 2 year: 1994 ident: 10.1016/j.compbiomed.2017.04.006_bib32 article-title: Effect of case selection on the performance of computer-aided detection schemes publication-title: Med. Phys. doi: 10.1118/1.597287 – volume: 35 start-page: 1262 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2017.04.006_bib34 article-title: Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2526687  | 
    
| SSID | ssj0004030 | 
    
| Score | 2.546129 | 
    
| Snippet | This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and... Abstract This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 530 | 
    
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Big Data Cancer Computed tomography Computer aided diagnosis Consortia Data processing Deep learning Design Detectors Diagnosis Feature extraction Female Humans Image acquisition Image analysis Image databases Image processing Image Processing, Computer-Assisted Internal Medicine Learning algorithms Lung cancer Lung Neoplasms - diagnostic imaging Lung nodules Machine Learning Male Medical diagnosis Medical imaging Morphology Neural networks Neural Networks (Computer) Nodules Noise reduction Other Predictive Value of Tests Preprocessing Researchers Social networks Tomography, X-Ray Computed Unsupervised feature learning  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central (via ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VVEJcEN-ElspIXFfsh3djC1VVQa1apAZUqNSb5djeUBR2A5teED--M7Z3c2mrnNeTjTzjmZf4zRuA93VeC26zWaKd5QmvUp0IMZOJlKZAkxqLIDUKn02rkwv-5bK83IJp3wtDtMo-J_pEbVtD_5F_IGWyAtEtlwfLPwlNjaLb1X6Eho6jFey-lxh7ANs5KWONYPvT0fTb-bpTMi1CUwpmH44_jiK3JzC-iMQdmt6J8jXxEqg0Cen2gnUXIPWF6fgJPI6Ikh2GEHgKW655Bg_P4p35c_h_eL1qvTArq52X8WRxVMScEet9zjypkDqAG7dg519PGZU2y9qGWeeWLEjMop1lejHHPVn9_N0xBLvMxJEQV__w2QLTBjMURH-ZDQS-q-4FXBwf_fh8ksSZC4kpRbpKrK5SbrjWXHJH0vNlZnP0V1mJXBqdzcrM1SUeYiFsLRBOFiXX3JjCFRNdGFG8hFHTNu41sErgwpQ7xBSWOyl0WdcOl6TOy46JMUz6jVUmCpLTXIyF6plnv9TaJYpcolKu0CVjyAbLZRDl2MBG9r5TfdMppkmFlWMD28lttq6L571TmepylarvXu6IuoFpDIDM0fLjYBkhTYAqG753tw8ytX7VcBDG8G54jEmBbnp049prXCNIc4dkh8fwKgTnsFGER0jm7c39H74Dj-ibBN7iLoww1NxbxF-r2V48VDfT0zFv priority: 102 providerName: ProQuest  | 
    
| Title | Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517300926 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482517300926 https://dx.doi.org/10.1016/j.compbiomed.2017.04.006 https://www.ncbi.nlm.nih.gov/pubmed/28473055 https://www.proquest.com/docview/1954367549 https://www.proquest.com/docview/1896040653  | 
    
| Volume | 89 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7GXse957YoGe_XqD8mW2FNWmqUbzUZZIW9CkeTUI7NDnb6Usb99d5acMNZBYC82tnXY6E53J_y73xHytsoqwWw6j7WzLGZFomMh5jKW0uQgUkEQxELh82kxuWSfZny2R06GWhiEVQbf7316763DneMwm8erusYaX9hKYOUlUq7LDGm3GSuxi8G7X1uYB0tyX4YC_gZHBzSPx3ghbNuXuSPIq-xJT7H30d0h6l8paB-Kxo_Iw5BD0pH_zMdkzzVPyP3z8Jf8Kfk5ulm3PRUrrVxP3ElDc4gFRZz7gvYwQqz5bdySXnw5oxjMLG0bap1bUU8qC3KW6uWiva7XVz86CuktNaEJRH0Lz5bgKKhBs7mm1kP26u4ZuRyffjuZxKHLQmy4SNax1UXCDNOaSeaQbJ6nNgMN8UJk0uh0zlNXcVi2QthKQAKZc6aZMbnLS50bkT8n-03buJeEFgIGJsxBFmGZk0LzqnIwJHE90ZiISDlMrDKBghw7YSzVgDX7rrYqUagSlTAFKolIupFceRqOHWTkoDs1lJmCY1QQK3aQLe-SdV1Y4Z1KVZepRP1lhRF5v5H8w5B3fO_hYGRq-yrJWQ4bOyYj8mbzGNwA_tvRjWtvYIxAlh0kGo7IC2-cm4nCDASJ3V7916cdkAd45YGMh2QfLNG9hoRsPT_qVxwcy1kJRzH-eETujc4-T6Zw_nA6_XrxG4v8OxA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJgEviN8UBhgJHiOS2EltoQkN2NSytaCxSXvzXNspm7qkkE4IxN_G38Zd7KQvA_Vlz_E5ke989zm--46Ql0VaCG6TSaSd5RHPYx0JMZGRlIaBSAFBEAuFR-N8cMQ_HmfHa-RPWwuDaZWtT2wcta0M_iN_jcxkDNAtl2_n3yLsGoW3q20LDR1aK9ithmIsFHbsuZ8_4AhXbw0_gL5fpenuzuH7QRS6DEQmE_EisjqPueFac8kdkq1niU3hC7NcpNLoZJIlrsjAbIWwhQAAxTKuuTHMsb5mRjCY9xrZ4IxLOPxtvNsZfz5YVmbGzBfBgLfjcBgLuUQ-wwyTxn2RPaaY9RvKVey8dHmA_BcAbgLh7m1yKyBYuu1N7g5Zc-Vdcn0U7ujvkd_bF4uqIYKlhWtoQ2loTTGlmGU_pU0SI1Ycl25GDz4NKYZSS6uSWufm1FPagpylejYFHSy-ntcUwDU1oQXF6S94NgM3RQ0a7XdqfcLgaX2fHF3J6j8g62VVukeE5gIGxtwBhrHcSaGzonAwJHYNzZnokX67sMoEAnTswzFTbabbmVqqRKFKVMwVqKRHkk5y7klAVpCRre5UW-QKbllBpFpBtn-ZrKuDf6lVoupUxepLQ6-E1cfYdkCmIPmmkwwQykOjFd-72RqZWr6q23g98qJ7DE4Ib5Z06aoLGCOQ4wdpjnvkoTfObqEQ_yCt3OP_T_6c3BgcjvbV_nC894TcxK_yOZObZB3Mzj0F7LeYPAsbjJKTq97TfwFOFm0Z | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkSouFd9sKWAkOEZNYiexVVWooqy6lBYEVNqb8drO0mqbLGQrBOKX8euYiZ3spaC99BxPEtnjmZf4zRtCXpRpKbhNJpF2lkc8j3UkxERGUhoGJiUkQSwUPj7JD0_523E2XiN_uloYpFV2MbEN1LY2-I98B5XJGKBbLnfKQIv4cDB8Nf8WYQcpPGnt2ml4FzlyP3_A51uzNzqAtX6ZpsM3n18fRqHDQGQyES8iq_OYG641l9yh0HqW2BTeLstFKo1OJlniygxcVghbCgBPLOOaG8McKzQzgsF9b5CbBWMS6YTFuFjWZMbMl79AnOPwGRZYRJ5bhnRxX16P5LKiFVvFnktXp8Z_Qd82BQ5vk82AXem-d7Y7ZM1Vd8nGcTidv0d-718u6lYClpauFQyloSnFlCK_fkpb-iLWGlduRj--H1FMopbWFbXOzakXswU7S_VsCjO--HrRUIDV1ITmE2e_4NoMAhQ16K7fqfVUwbPmPjm9lrl_QNarunKPCM0FDIy5A_RiuZNCZ2XpYEjsWoEzMSBFN7HKBOlz7MAxUx3H7Vwtl0ThkqiYK1iSAUl6y7mX_1jBRnZrp7ryVgjICnLUCrbFVbauCZGlUYlqUhWrT62wEtYdY8MBmYLlbm8ZwJMHRSs-d7tzMrV8VL_lBuR5fxnCD54p6crVlzBGoLoPChwPyEPvnP1EIfJBQbmt_9_8GdmAnazejU6OHpNb-FKeLLlN1sHr3BMAfYvJ03Z3UfLlurfzX060arM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+feature+learning+using+multichannel+ROI+based+on+deep+structured+algorithms+for+computerized+lung+cancer+diagnosis&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Sun%2C+Wenqing&rft.au=Zheng%2C+Bin&rft.au=Qian%2C+Wei&rft.date=2017-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=89&rft.spage=530&rft.epage=539&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.04.006&rft.externalDocID=S0010482517300926 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |