Research of fetal ECG extraction using wavelet analysis and adaptive filtering

Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algo...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 43; no. 10; pp. 1622 - 1627
Main Authors Wu, Shuicai, Shen, Yanni, Zhou, Zhuhuang, Lin, Lan, Zeng, Yanjun, Gao, Xiaofeng
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2013
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2013.07.028

Cover

Abstract Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.
AbstractList Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.
Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.
Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.
Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively bySNRcalculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.
Abstract Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction based on wavelet analysis, the least mean square (LMS) adaptive filtering algorithm, and the spatially selective noise filtration (SSNF) algorithm. First, abdominal signals and thoracic signals were processed by stationary wavelet transform (SWT), and the wavelet coefficients at each scale were obtained. For each scale, the detail coefficients were processed by the LMS algorithm. The coefficient of the abdominal signal was taken as the original input of the LMS adaptive filtering system, and the coefficient of the thoracic signal as the reference input. Then, correlations of the processed wavelet coefficients were computed. The threshold was set and noise components were removed with the SSNF algorithm. Finally, the processed wavelet coefficients were reconstructed by inverse SWT to obtain fetal ECG. Twenty cases of simulated data and 12 cases of clinical data were used. Experimental results showed that the proposed method outperforms the LMS algorithm: (1) it shows improvement in case of superposition R-peaks of fetal ECG and maternal ECG; (2) noise disturbance is eliminated by incorporating the SSNF algorithm and the extracted waveform is more stable; and (3) the performance is proven quantitatively by SNR calculation. The results indicated that the proposed algorithm can be used for extracting fetal ECG from abdominal signals.
Author Zhou, Zhuhuang
Wu, Shuicai
Shen, Yanni
Lin, Lan
Gao, Xiaofeng
Zeng, Yanjun
Author_xml – sequence: 1
  givenname: Shuicai
  surname: Wu
  fullname: Wu, Shuicai
  email: wushuicai@bjut.edu.cn
  organization: Biomedical Engineering Center, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
– sequence: 2
  givenname: Yanni
  surname: Shen
  fullname: Shen, Yanni
  organization: Biomedical Engineering Center, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
– sequence: 3
  givenname: Zhuhuang
  surname: Zhou
  fullname: Zhou, Zhuhuang
  organization: Biomedical Engineering Center, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
– sequence: 4
  givenname: Lan
  surname: Lin
  fullname: Lin, Lan
  organization: Biomedical Engineering Center, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
– sequence: 5
  givenname: Yanjun
  surname: Zeng
  fullname: Zeng, Yanjun
  email: yjzeng@bjut.edu.cn
  organization: Biomedical Engineering Center, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
– sequence: 6
  givenname: Xiaofeng
  surname: Gao
  fullname: Gao, Xiaofeng
  organization: MedEx (Beijing) Technology Limited Corporation, Beijing 100085, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24034754$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1v1DAQhi1URLeFv4AiceGyYfyR2Lkg6KoUpAokPs6W44zBizdZ7GRh_z0OW1qpEmo5zRyeeTWaZ07IUT_0SEhBoaRA6xfr0g6bbeuHDXYlA8pLkCUw9YAsqJLNEioujsgCgMJSKFYdk5OU1gAggMMjcsxyFbISC_L-IyY00X4rBlc4HE0ozlcXBf4ao7GjH_piSr7_Wvw0Oww4FqY3YZ98yk1XmM5sR7_DwvkwYszcY_LQmZDwyVU9JV_enH9evV1efrh4t3p9ubSVgjHvVPHGMWycsq5Cqhga5TrBlGhbycEBqta21GLFaqNaXvMWkTfCUSOFa_gpeX7I3cbhx4Rp1BufLIZgehympKkUNa9YI-XdaM1kIxVV9d2o4JzVomY0o89uoethivk4fyhGK1XDTD29oqY2q9Lb6Dcm7vXf-2dAHQAbh5QiumuEgp5V67W-Ua1n1Rqkzqrz6Mtbo9aPZlaW1flwn4CzQwBmUTuPUSfrsbfY-Yh21N3g_2OL6xAbfO-tCd9xj-nmKDoxDfrT_JLzR1IOwIDxHPDq3wH32-E34Kj0ww
CODEN CBMDAW
CitedBy_id crossref_primary_10_1016_j_bspc_2022_104191
crossref_primary_10_3390_s22072788
crossref_primary_10_1016_j_jvcir_2018_12_030
crossref_primary_10_1016_j_array_2023_100302
crossref_primary_10_1007_s00500_020_05447_w
crossref_primary_10_2478_jsiot_2024_0020
crossref_primary_10_3389_fphys_2017_00764
crossref_primary_10_3390_su141912605
crossref_primary_10_17776_csj_407424
crossref_primary_10_56294_dm202384
crossref_primary_10_1038_s41598_017_04837_9
crossref_primary_10_3390_s16071020
crossref_primary_10_1016_j_compbiomed_2015_06_022
crossref_primary_10_25046_aj060235
crossref_primary_10_3390_electronics13071264
crossref_primary_10_1109_TIM_2023_3338655
crossref_primary_10_1088_1361_6579_abf7db
crossref_primary_10_1109_ACCESS_2023_3308409
crossref_primary_10_1016_j_cmpb_2020_105558
crossref_primary_10_1016_j_jksuci_2022_07_002
crossref_primary_10_1088_1361_6579_abc4c7
crossref_primary_10_1186_s12938_015_0118_1
crossref_primary_10_3390_s22103705
crossref_primary_10_3390_s17061456
crossref_primary_10_3233_THC_161224
crossref_primary_10_1007_s11517_018_1862_8
crossref_primary_10_1049_htl_2020_0016
crossref_primary_10_1615_CritRevBiomedEng_2022044778
crossref_primary_10_1515_jisys_2017_0031
crossref_primary_10_1088_1742_6596_1621_1_012019
crossref_primary_10_1186_1475_925X_13_163
crossref_primary_10_1016_j_irbm_2019_12_002
crossref_primary_10_1109_ACCESS_2021_3058733
crossref_primary_10_3390_technologies8020033
crossref_primary_10_3390_bioengineering11040367
crossref_primary_10_1186_s12884_023_05349_3
crossref_primary_10_4028_www_scientific_net_AMM_644_650_4415
crossref_primary_10_1016_j_bspc_2024_106277
crossref_primary_10_1371_journal_pone_0266807
crossref_primary_10_1088_0967_3334_37_2_238
crossref_primary_10_1109_ACCESS_2025_3526586
crossref_primary_10_3390_app10165634
crossref_primary_10_1155_2018_7061456
crossref_primary_10_35940_ijrte_C4560_118419
crossref_primary_10_1177_00202940211064827
crossref_primary_10_1371_journal_pone_0117509
crossref_primary_10_1088_1674_1056_26_11_118702
crossref_primary_10_1109_RBME_2019_2938061
crossref_primary_10_1109_ACCESS_2019_2933717
crossref_primary_10_3390_s20040970
crossref_primary_10_3390_s19030446
crossref_primary_10_1109_TEMC_2017_2656896
crossref_primary_10_1016_j_bspc_2018_08_023
crossref_primary_10_1007_s10916_017_0868_3
crossref_primary_10_1007_s00034_021_01870_y
crossref_primary_10_4015_S1016237219500273
crossref_primary_10_1016_j_asoc_2021_107940
crossref_primary_10_3390_s17051154
crossref_primary_10_1109_ACCESS_2018_2848201
Cites_doi 10.2478/v10048-012-0007-8
10.1109/TBME.2004.842958
10.1109/ICBBE.2008.899
10.1109/CISP.2009.5304666
10.1007/s11517-007-0235-5
10.1109/ISSPIT.2006.270782
10.1049/iet-spr.2010.0263
10.1088/0031-9155/51/1/010
10.1515/BMT.2007.011
10.4103/0377-2063.67097
10.1007/s11432-009-0163-0
10.1109/83.336245
10.1109/LSP.2011.2104415
10.1016/j.ndteint.2013.01.014
10.1007/978-3-540-89208-3_286
10.1109/18.119727
10.1109/TBME.1986.325695
10.1016/j.compbiomed.2004.11.004
10.1109/18.382009
10.1016/j.cam.2008.01.031
10.1109/10.841326
10.1109/BMEI.2010.5639886
10.1109/34.142909
10.1109/10.828150
10.1109/TBME.2010.2059703
10.1109/10.553712
10.1007/978-1-4612-2544-7_17
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Elsevier Ltd
2013 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Oct 2013
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: Elsevier Ltd
– notice: 2013 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Oct 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
7S9
L.6
DOI 10.1016/j.compbiomed.2013.07.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
Engineering Research Database
Research Library Prep

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 1627
ExternalDocumentID 3070872671
24034754
10_1016_j_compbiomed_2013_07_028
S0010482513002023
1_s2_0_S0010482513002023
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
UKHRP
WOW
Z5R
~G-
~HD
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
AGQPQ
AIGII
APXCP
CITATION
PUEGO
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
7S9
L.6
ID FETCH-LOGICAL-c580t-48539f2e9f8cf5e182ea8fd4284bb730f0e8bcb1ce526a8b363bee394f1a74f93
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 20:48:10 EDT 2025
Tue Oct 07 08:14:21 EDT 2025
Wed Oct 01 14:17:48 EDT 2025
Tue Oct 07 06:38:58 EDT 2025
Mon Jul 21 05:56:33 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Oct 01 04:07:17 EDT 2025
Fri Feb 23 02:24:55 EST 2024
Sun Feb 23 10:19:11 EST 2025
Tue Oct 14 19:33:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Adaptive filtering
Wavelet analysis
Stationary wavelet transform
Fetal electrocardiogram
Least mean square
Language English
License 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c580t-48539f2e9f8cf5e182ea8fd4284bb730f0e8bcb1ce526a8b363bee394f1a74f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24034754
PQID 1432158601
PQPubID 1226355
PageCount 6
ParticipantIDs proquest_miscellaneous_1746352977
proquest_miscellaneous_1627978186
proquest_miscellaneous_1433264621
proquest_journals_1432158601
pubmed_primary_24034754
crossref_primary_10_1016_j_compbiomed_2013_07_028
crossref_citationtrail_10_1016_j_compbiomed_2013_07_028
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2013_07_028
elsevier_clinicalkeyesjournals_1_s2_0_S0010482513002023
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2013_07_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Hasan, Reaz (bib13) 2012; 12
L. Lathauwer, DaIsy: Database for the Identification of Systems: Biomedical Systems
Kumar, Agnihotri (bib22) 2010; 56
Mallat (bib28) 1992; 14
Lathauwer, Moor, Vandewalle (bib2) 2000; 47
N.J. Outram, Intelligent pattern analysis of the foetal electrocardiogram, (Ph.D. Thesis), University of Plymouth, England, October 1997.
Khoa, Tam, Toi (bib16) 2012
W. Jia, S. Wu, Y. Bai, Fetal ECG extraction based on wavelet transform modulus maximum algorithm, in: 5th International Conference on Cooperation and Promotion of Information Resources in Science and Technology, Beijing, China, 27–29 November 2010, pp. 528–532.
Ungureanu, Bergmans, Oei, Strungaru (bib5) 2007; 52
Kanjilal, Palit, Saha (bib9) 1997; 44
Nason, Silverman (bib23) 1995; 103
K. Assaleh, Adaptive neuro-fuzzy inference systems for extracting fetal electrocardiogram, in: International Symposium on Signal Processing and Information Technology, Vancouver, BC, August 2006, pp. 122–126.
C. Guo, M. Li, An improved image denoising algorithm based on wavelet transform modulus maximum, in: International Conference on Computer Application and System Modeling, Taiyuan, China, 22–24 October 2010, pp. 296–299.
Martin-Clemente, Camargo-Olivares, Hornillo-Mellado, Elena, Román (bib17) 2011; 58
Puthusserypady (bib4) 2007; 45
W. Jia, C. Yang, G. Zhong, M. Zhou, S. Wu, Fetal ECG extraction based on adaptive linear neural network, in: 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010, pp. 889–902.
Jafari, Chambers (bib25) 2005; 52
L. She, G. Wang, S. Zhang, J. Zhao, An adaptive threshold algorithm combining shifting window difference and forward-backward difference in real-time R-wave detection, in: 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009, pp. 1–4.
Zhang, Shi, Guo, Feng (bib6) 2009; 223
Al-Zaben, Al-Smadi (bib8) 2006; 51
Camargo-Olivares, Martin-Clemente, Hornillo-Mellado, Elena, Román (bib11) 2011; 18
Hamilton, Tompkins (bib35) 1986; 33
Khamene, Negahdaripour (bib24) 2000; 47
Kim, Hsu, Barnard (bib21) 2013; 56
Donoho (bib32) 1995; 41
Y. Yue, The application of a new threshold function in wavelet denoising, (M.E. Thesis), Changchun University of Technology, China, April 2011.
Najafabadi, Zahedi, Mohd Ali (bib12) 2006; 36
Mallat, Hwang (bib30) 1992; 38
Wei, Hongxing, Jianchun (bib15) 2010; 6
Tompkins (bib37) 1993
Y. Zeng, S. Liu, J. Zhong, Extraction of fetal ECG signal via adaptive noise cancellation approach, in: 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16–18 May 2008, pp. 2270–2273.
Jin, Wang, Wang (bib33) 2007; 26
Ye, Sheu, Zeng, Wang, Lu (bib7) 2009; 52
2000-10-10/2011-3-8.
Jafari, Chambers (bib18) 2005; 52
Xu, Weaver, Healy, Lu (bib31) 1994; 3
Senim, Atasoy (bib10) 2011; 19
Pu, Zeng, Chen, Yu, Han, Cheng (bib14) 2009; 32
D. Tarălungă, W. Wolf, R. Strungaru, M. Ungureanu, Abdominal signal processing: fetal ECG extraction by combining ESC and ICA methods, in: 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium, 23–27 November 2008, pp. 1196–1199.
Puthusserypady (10.1016/j.compbiomed.2013.07.028_bib4) 2007; 45
Senim (10.1016/j.compbiomed.2013.07.028_bib10) 2011; 19
Jafari (10.1016/j.compbiomed.2013.07.028_bib18) 2005; 52
Mallat (10.1016/j.compbiomed.2013.07.028_bib28) 1992; 14
Xu (10.1016/j.compbiomed.2013.07.028_bib31) 1994; 3
10.1016/j.compbiomed.2013.07.028_bib34
Camargo-Olivares (10.1016/j.compbiomed.2013.07.028_bib11) 2011; 18
Donoho (10.1016/j.compbiomed.2013.07.028_bib32) 1995; 41
Jin (10.1016/j.compbiomed.2013.07.028_bib33) 2007; 26
Tompkins (10.1016/j.compbiomed.2013.07.028_bib37) 1993
Ungureanu (10.1016/j.compbiomed.2013.07.028_bib5) 2007; 52
Lathauwer (10.1016/j.compbiomed.2013.07.028_bib2) 2000; 47
Kumar (10.1016/j.compbiomed.2013.07.028_bib22) 2010; 56
Kanjilal (10.1016/j.compbiomed.2013.07.028_bib9) 1997; 44
Al-Zaben (10.1016/j.compbiomed.2013.07.028_bib8) 2006; 51
Zhang (10.1016/j.compbiomed.2013.07.028_bib6) 2009; 223
Nason (10.1016/j.compbiomed.2013.07.028_bib23) 1995; 103
Khamene (10.1016/j.compbiomed.2013.07.028_bib24) 2000; 47
10.1016/j.compbiomed.2013.07.028_bib27
10.1016/j.compbiomed.2013.07.028_bib26
Wei (10.1016/j.compbiomed.2013.07.028_bib15) 2010; 6
Khoa (10.1016/j.compbiomed.2013.07.028_bib16) 2012
10.1016/j.compbiomed.2013.07.028_bib29
10.1016/j.compbiomed.2013.07.028_bib20
Najafabadi (10.1016/j.compbiomed.2013.07.028_bib12) 2006; 36
10.1016/j.compbiomed.2013.07.028_bib1
Hasan (10.1016/j.compbiomed.2013.07.028_bib13) 2012; 12
10.1016/j.compbiomed.2013.07.028_bib3
Pu (10.1016/j.compbiomed.2013.07.028_bib14) 2009; 32
Kim (10.1016/j.compbiomed.2013.07.028_bib21) 2013; 56
Mallat (10.1016/j.compbiomed.2013.07.028_bib30) 1992; 38
Hamilton (10.1016/j.compbiomed.2013.07.028_bib35) 1986; 33
Ye (10.1016/j.compbiomed.2013.07.028_bib7) 2009; 52
Martin-Clemente (10.1016/j.compbiomed.2013.07.028_bib17) 2011; 58
10.1016/j.compbiomed.2013.07.028_bib36
Jafari (10.1016/j.compbiomed.2013.07.028_bib25) 2005; 52
10.1016/j.compbiomed.2013.07.028_bib38
10.1016/j.compbiomed.2013.07.028_bib19
References_xml – start-page: 13
  year: 2012
  ident: bib16
  article-title: Extracting fetal electrocardiogram from being pregnancy based on nonlinear projection
  publication-title: Math. Probl. Eng.
– volume: 3
  start-page: 747
  year: 1994
  end-page: 758
  ident: bib31
  article-title: Wavelet transform domain filters: a spatially selective noise filtration technique
  publication-title: IEEE Trans. Image Process.
– reference: Y. Yue, The application of a new threshold function in wavelet denoising, (M.E. Thesis), Changchun University of Technology, China, April 2011.
– volume: 47
  start-page: 507
  year: 2000
  end-page: 516
  ident: bib24
  article-title: A new method for the extraction of fetal ECG from the composite abdominal signal
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 51
  start-page: 137
  year: 2006
  end-page: 143
  ident: bib8
  article-title: Extraction of foetal ECG by combination of singular value decomposition and neuro-fuzzy inference system
  publication-title: Phys. Med. Biol.
– volume: 12
  start-page: 52
  year: 2012
  end-page: 55
  ident: bib13
  article-title: Hardware prototyping of neural network based fetal electrocardiogram extraction
  publication-title: Meas. Sci. Rev.
– volume: 223
  start-page: 409
  year: 2009
  end-page: 420
  ident: bib6
  article-title: Semi-blind source extraction algorithm for fetal electrocardiogram based on generalized autocorrelations and reference signals
  publication-title: J. Comput. Appl. Math.
– volume: 103
  start-page: 281
  year: 1995
  end-page: 299
  ident: bib23
  article-title: The stationary wavelet transform and some statistical applications in wavelet and statistics
  publication-title: Lect. Notes Stat.
– reference: W. Jia, C. Yang, G. Zhong, M. Zhou, S. Wu, Fetal ECG extraction based on adaptive linear neural network, in: 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010, pp. 889–902.
– volume: 14
  start-page: 710
  year: 1992
  end-page: 732
  ident: bib28
  article-title: Characterization of signals from multiscale edges
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: K. Assaleh, Adaptive neuro-fuzzy inference systems for extracting fetal electrocardiogram, in: International Symposium on Signal Processing and Information Technology, Vancouver, BC, August 2006, pp. 122–126.
– reference: L. She, G. Wang, S. Zhang, J. Zhao, An adaptive threshold algorithm combining shifting window difference and forward-backward difference in real-time R-wave detection, in: 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009, pp. 1–4.
– start-page: 342
  year: 1993
  end-page: 345
  ident: bib37
  article-title: Biomedical Digital Signal Processing
– reference: C. Guo, M. Li, An improved image denoising algorithm based on wavelet transform modulus maximum, in: International Conference on Computer Application and System Modeling, Taiyuan, China, 22–24 October 2010, pp. 296–299.
– volume: 38
  start-page: 617
  year: 1992
  end-page: 643
  ident: bib30
  article-title: Singularity detection and processing with wavelets
  publication-title: IEEE Trans. Inf. Theory
– volume: 33
  start-page: 1157
  year: 1986
  end-page: 1165
  ident: bib35
  article-title: Quantitive investigation of QRS detection rules using the MIT/BIH arrhythmia database
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 47
  start-page: 567
  year: 2000
  end-page: 572
  ident: bib2
  article-title: Fetal electrocardiogram extraction by blind source subspace separation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 19
  start-page: 657
  year: 2011
  end-page: 666
  ident: bib10
  article-title: Performance evaluation of nonparametric ICA algorithm for fetal ECG extraction
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– reference: Y. Zeng, S. Liu, J. Zhong, Extraction of fetal ECG signal via adaptive noise cancellation approach, in: 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16–18 May 2008, pp. 2270–2273.
– volume: 52
  start-page: 390
  year: 2005
  end-page: 400
  ident: bib18
  article-title: Fetal electrocardiogram extraction by sequential source separation in the wavelet domain
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 52
  start-page: 56
  year: 2007
  end-page: 60
  ident: bib5
  article-title: Fetal ECG extraction during labor using an adaptive maternal beat subtraction technique
  publication-title: Biomed. Tech. (Berl.)
– reference: L. Lathauwer, DaIsy: Database for the Identification of Systems: Biomedical Systems,
– volume: 44
  start-page: 51
  year: 1997
  end-page: 59
  ident: bib9
  article-title: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 18
  start-page: 161
  year: 2011
  end-page: 164
  ident: bib11
  article-title: The maternal abdominal ECG as input to MICA in the fetal ECG extraction problem
  publication-title: IEEE Signal Process. Lett.
– volume: 58
  start-page: 227
  year: 2011
  end-page: 230
  ident: bib17
  article-title: Fast technique for noninvasive fetal ECG extraction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 52
  start-page: 390
  year: 2005
  end-page: 400
  ident: bib25
  article-title: Fetal electrocardiogram extraction by sequential source separation in the wavelet domain
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 32
  start-page: 111
  year: 2009
  end-page: 115
  ident: bib14
  article-title: Fetal electrocardiogram extraction based on radial basis function neural networks
  publication-title: J. Chongqing Univ.
– volume: 36
  start-page: 241
  year: 2006
  end-page: 252
  ident: bib12
  article-title: Fetal heart rate monitoring based on independent component analysis
  publication-title: Comput. Biol. Med.
– reference: D. Tarălungă, W. Wolf, R. Strungaru, M. Ungureanu, Abdominal signal processing: fetal ECG extraction by combining ESC and ICA methods, in: 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium, 23–27 November 2008, pp. 1196–1199.
– volume: 45
  start-page: 927
  year: 2007
  end-page: 937
  ident: bib4
  article-title: Extraction of fetal electrocardiogram using H(infinity) adaptive algorithms
  publication-title: Med. Biol. Eng. Comput.
– volume: 26
  start-page: 261
  year: 2007
  end-page: 264
  ident: bib33
  article-title: A wavelet space based approach for Doppler ultrasound blood signals separation
  publication-title: Chin. J. Acoust.
– reference: N.J. Outram, Intelligent pattern analysis of the foetal electrocardiogram, (Ph.D. Thesis), University of Plymouth, England, October 1997.
– reference: W. Jia, S. Wu, Y. Bai, Fetal ECG extraction based on wavelet transform modulus maximum algorithm, in: 5th International Conference on Cooperation and Promotion of Information Resources in Science and Technology, Beijing, China, 27–29 November 2010, pp. 528–532.
– reference: , 2000-10-10/2011-3-8.
– volume: 41
  start-page: 617
  year: 1995
  end-page: 627
  ident: bib32
  article-title: De-noising by soft-threshoding
  publication-title: IEEE Trans. Inf. Theory
– volume: 6
  start-page: 171
  year: 2010
  end-page: 177
  ident: bib15
  article-title: Adaptive filtering in phase space for foetal electrocardiogram estimation from an abdominal electrocardiogram signal and a thoracic electrocardiogram signal
  publication-title: IET Signal Process.
– volume: 52
  start-page: 1863
  year: 2009
  end-page: 1874
  ident: bib7
  article-title: An efficient semi-blind source extraction algorithm and its applications to biomedical signal extraction
  publication-title: Sci. China Ser. F
– volume: 56
  start-page: 10
  year: 2013
  end-page: 16
  ident: bib21
  article-title: Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal
  publication-title: NDT E Int.
– volume: 56
  start-page: 132
  year: 2010
  end-page: 138
  ident: bib22
  article-title: Biosignal denoising via wavelet thresholds
  publication-title: IETE J. Res.
– volume: 12
  start-page: 52
  year: 2012
  ident: 10.1016/j.compbiomed.2013.07.028_bib13
  article-title: Hardware prototyping of neural network based fetal electrocardiogram extraction
  publication-title: Meas. Sci. Rev.
  doi: 10.2478/v10048-012-0007-8
– volume: 52
  start-page: 390
  year: 2005
  ident: 10.1016/j.compbiomed.2013.07.028_bib18
  article-title: Fetal electrocardiogram extraction by sequential source separation in the wavelet domain
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.842958
– ident: 10.1016/j.compbiomed.2013.07.028_bib38
– volume: 32
  start-page: 111
  year: 2009
  ident: 10.1016/j.compbiomed.2013.07.028_bib14
  article-title: Fetal electrocardiogram extraction based on radial basis function neural networks
  publication-title: J. Chongqing Univ.
– ident: 10.1016/j.compbiomed.2013.07.028_bib20
  doi: 10.1109/ICBBE.2008.899
– ident: 10.1016/j.compbiomed.2013.07.028_bib36
– start-page: 342
  year: 1993
  ident: 10.1016/j.compbiomed.2013.07.028_bib37
– ident: 10.1016/j.compbiomed.2013.07.028_bib34
  doi: 10.1109/CISP.2009.5304666
– volume: 45
  start-page: 927
  year: 2007
  ident: 10.1016/j.compbiomed.2013.07.028_bib4
  article-title: Extraction of fetal electrocardiogram using H(infinity) adaptive algorithms
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-007-0235-5
– ident: 10.1016/j.compbiomed.2013.07.028_bib3
  doi: 10.1109/ISSPIT.2006.270782
– volume: 6
  start-page: 171
  year: 2010
  ident: 10.1016/j.compbiomed.2013.07.028_bib15
  article-title: Adaptive filtering in phase space for foetal electrocardiogram estimation from an abdominal electrocardiogram signal and a thoracic electrocardiogram signal
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2010.0263
– volume: 51
  start-page: 137
  year: 2006
  ident: 10.1016/j.compbiomed.2013.07.028_bib8
  article-title: Extraction of foetal ECG by combination of singular value decomposition and neuro-fuzzy inference system
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/1/010
– volume: 52
  start-page: 56
  year: 2007
  ident: 10.1016/j.compbiomed.2013.07.028_bib5
  article-title: Fetal ECG extraction during labor using an adaptive maternal beat subtraction technique
  publication-title: Biomed. Tech. (Berl.)
  doi: 10.1515/BMT.2007.011
– volume: 56
  start-page: 132
  year: 2010
  ident: 10.1016/j.compbiomed.2013.07.028_bib22
  article-title: Biosignal denoising via wavelet thresholds
  publication-title: IETE J. Res.
  doi: 10.4103/0377-2063.67097
– volume: 26
  start-page: 261
  year: 2007
  ident: 10.1016/j.compbiomed.2013.07.028_bib33
  article-title: A wavelet space based approach for Doppler ultrasound blood signals separation
  publication-title: Chin. J. Acoust.
– volume: 52
  start-page: 1863
  year: 2009
  ident: 10.1016/j.compbiomed.2013.07.028_bib7
  article-title: An efficient semi-blind source extraction algorithm and its applications to biomedical signal extraction
  publication-title: Sci. China Ser. F
  doi: 10.1007/s11432-009-0163-0
– start-page: 13
  year: 2012
  ident: 10.1016/j.compbiomed.2013.07.028_bib16
  article-title: Extracting fetal electrocardiogram from being pregnancy based on nonlinear projection
  publication-title: Math. Probl. Eng.
– ident: 10.1016/j.compbiomed.2013.07.028_bib27
– ident: 10.1016/j.compbiomed.2013.07.028_bib29
– volume: 3
  start-page: 747
  year: 1994
  ident: 10.1016/j.compbiomed.2013.07.028_bib31
  article-title: Wavelet transform domain filters: a spatially selective noise filtration technique
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.336245
– volume: 18
  start-page: 161
  year: 2011
  ident: 10.1016/j.compbiomed.2013.07.028_bib11
  article-title: The maternal abdominal ECG as input to MICA in the fetal ECG extraction problem
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2011.2104415
– volume: 56
  start-page: 10
  year: 2013
  ident: 10.1016/j.compbiomed.2013.07.028_bib21
  article-title: Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2013.01.014
– volume: 19
  start-page: 657
  year: 2011
  ident: 10.1016/j.compbiomed.2013.07.028_bib10
  article-title: Performance evaluation of nonparametric ICA algorithm for fetal ECG extraction
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– ident: 10.1016/j.compbiomed.2013.07.028_bib19
  doi: 10.1007/978-3-540-89208-3_286
– volume: 38
  start-page: 617
  year: 1992
  ident: 10.1016/j.compbiomed.2013.07.028_bib30
  article-title: Singularity detection and processing with wavelets
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.119727
– volume: 33
  start-page: 1157
  year: 1986
  ident: 10.1016/j.compbiomed.2013.07.028_bib35
  article-title: Quantitive investigation of QRS detection rules using the MIT/BIH arrhythmia database
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1986.325695
– volume: 36
  start-page: 241
  year: 2006
  ident: 10.1016/j.compbiomed.2013.07.028_bib12
  article-title: Fetal heart rate monitoring based on independent component analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2004.11.004
– volume: 41
  start-page: 617
  year: 1995
  ident: 10.1016/j.compbiomed.2013.07.028_bib32
  article-title: De-noising by soft-threshoding
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.382009
– volume: 223
  start-page: 409
  year: 2009
  ident: 10.1016/j.compbiomed.2013.07.028_bib6
  article-title: Semi-blind source extraction algorithm for fetal electrocardiogram based on generalized autocorrelations and reference signals
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.01.031
– volume: 47
  start-page: 567
  year: 2000
  ident: 10.1016/j.compbiomed.2013.07.028_bib2
  article-title: Fetal electrocardiogram extraction by blind source subspace separation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.841326
– volume: 52
  start-page: 390
  year: 2005
  ident: 10.1016/j.compbiomed.2013.07.028_bib25
  article-title: Fetal electrocardiogram extraction by sequential source separation in the wavelet domain
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.842958
– ident: 10.1016/j.compbiomed.2013.07.028_bib1
  doi: 10.1109/BMEI.2010.5639886
– ident: 10.1016/j.compbiomed.2013.07.028_bib26
– volume: 14
  start-page: 710
  year: 1992
  ident: 10.1016/j.compbiomed.2013.07.028_bib28
  article-title: Characterization of signals from multiscale edges
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.142909
– volume: 47
  start-page: 507
  year: 2000
  ident: 10.1016/j.compbiomed.2013.07.028_bib24
  article-title: A new method for the extraction of fetal ECG from the composite abdominal signal
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.828150
– volume: 58
  start-page: 227
  year: 2011
  ident: 10.1016/j.compbiomed.2013.07.028_bib17
  article-title: Fast technique for noninvasive fetal ECG extraction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2059703
– volume: 44
  start-page: 51
  year: 1997
  ident: 10.1016/j.compbiomed.2013.07.028_bib9
  article-title: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.553712
– volume: 103
  start-page: 281
  year: 1995
  ident: 10.1016/j.compbiomed.2013.07.028_bib23
  article-title: The stationary wavelet transform and some statistical applications in wavelet and statistics
  publication-title: Lect. Notes Stat.
  doi: 10.1007/978-1-4612-2544-7_17
SSID ssj0004030
Score 2.3153024
Snippet Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG extraction...
Abstract Extracting clean fetal electrocardiogram (ECG) signals is very important in fetal monitoring. In this paper, we proposed a new method for fetal ECG...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1622
SubjectTerms Abdomen
Adaptive filtering
Algorithms
Computer Simulation
electrocardiography
Electrocardiography - methods
Female
Fetal electrocardiogram
Fetal Monitoring - methods
Fetus - physiology
Humans
Internal Medicine
Least mean square
Microprocessors
Models, Cardiovascular
monitoring
Other
Pregnancy
Stationary wavelet transform
Studies
wavelet
Wavelet Analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFcSXUr_TVlnB12CyX9kgUmq5WoQeohb6tuwmu6LI3dm74r_vTLLJvdTj3gK3Q5LJ7Mxvbn8zA_A2irpsQuvz2pQil00MeV23OtfOqVhyNBFOtcNXM315LT_fqJs9mA21MESrHHxi56jbRUP_kb_DuI7RyWD-cLr8k9PUKDpdHUZouDRaof3QtRh7APucOmNNYP_jdPbl66ZSshB9UQp6H4nJUeL29IwvInH3Re9E-RJdU0-a0n5_wPofIO0C08UhHCREyc56E3gMe2H-BB5epTPzpzAbyHVsEVkMCLbZ9PwTQ6d82xc1MOK-_2B_Hc2gWDOX2pTgRctc65bkEFn8ScfquO4ZXF9Mv59f5mmKQt4oU6zxNZWoIw91NE1UAfOJ4ExsMe2Q3uP-jkUwvvH4xRTXznihhQ9B1DKWrpKxFs9hMl_Mw0tgvlLetNzpKJVEZOQwG6tMERuUkLpoM6gGVdkmtRinSRe_7cAl-2U3SrakZFtUFpWcQTlKLvs2GzvI1MPXsEMZKTo-i7FgB9nqPtmwSjt4ZUu74raw37oGRlTfKwhZc5HB-1EygZQefOx435PBbOzmVqNpZ_Bm_Bm3OZ3duHlY3HVrEGhLzbet0byiFmZGb1lTSYSYHFF_Bi96sx0VTq0ZZaXk0faHPIZH9EY9o_EEJuvbu_AKkdnav07b7R8b3zff
  priority: 102
  providerName: ProQuest
Title Research of fetal ECG extraction using wavelet analysis and adaptive filtering
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482513002023
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482513002023
https://dx.doi.org/10.1016/j.compbiomed.2013.07.028
https://www.ncbi.nlm.nih.gov/pubmed/24034754
https://www.proquest.com/docview/1432158601
https://www.proquest.com/docview/1433264621
https://www.proquest.com/docview/1627978186
https://www.proquest.com/docview/1746352977
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbGXse95a4sGe_VqS7Iks6c2JM02GsZYIW9CsqWRMZLQpPStf_vuLDmhrCuBvThfdzg-n86_Q7-7I-RD4HXZ-NbltS55Lprg87puZS6trULJwEUY1g5fTOT4UnyZVtM9MuhrYZBWmWJ_jOldtE7fnCRrnixnM6zxhVQCKy85Yh6GHT-FUDjF4OPtluYhCh7LUCDeoHRi80SOF9K2Y5k7krx418YT57Lf_4j6FwTtHkWjp-RJwpD0NP7NZ2TPz5-TRxdpl_wFmfR0OroINHiA13Q4OKcQhq9iGQNFtvtPemNx6sSa2tSYBN601LZ2iSGQhhlupIPcS3I5Gv4YjPM0NyFvKl2s4TIrXgfm66CbUHnIILzVoYVEQzgHKzoUXrvGwT2qmLTaccmd97wWobRKhJq_Ivvzxdy_IdSpyumWWRlEJQALWci_lC5CAxpCFm1GVG8q06Sm4jjb4rfp2WO_zNbIBo1sCmXAyBkpN5rL2FhjB526vxumLxyFUGcg-u-gq-7T9au0ZlemNCtmCvOXX2Xk00bzjmvueN7D3m3M9lSCA9TSkAxn5P3mZ1jYuFtj535x3ckAtBaSPSQjmcKmZVo-IKMEgEoGOD8jr6PbbgyOzRiFqsTb_7rEd-QxfooUx0Oyv7669kcA1dbuuFuLcFRTBUc9Oj8mB6efv44n8Ho2nHz7_gfQKkGe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTQJeEL8JDDASPEYktuM4QhOC0dGxtUKwSXvz7NhGTFNb1k4T_xx_G3eJk76Mqi97i1SfklzOd9_V990R8ibwKq-9s2mlcp6KOvi0qpxMpTFFyBmYCEPu8Ggsh8fi60lxskH-dlwYLKvsfGLjqN20xv_I30Fch-ikIH_4MPud4tQoPF3tRmiYOFrB7TQtxiKx48D_uYIUbr6z_xm-91vG9gZHu8M0ThlI60Jli1RAwKoC81VQdSg84G1vVHAAy4W1YP8h88rWFt6oYNIoyyW33vNKhNyUImAzJggBW4KLCpK_rU-D8bfvS2ZmxlsSDHg7AclYrCVqK8ywaLwl2WOJGW-aiOJU-OsD5P8AcBMI9-6RuxHB0o-tyd0nG37ygNwaxTP6h2TcFfPRaaDBA7ing90vFILARUuioFhr_5NeGZx5saAmtkWBC0eNMzN0wDT8wmN8WPeIHN-IPh-Tzcl04p8SasvCKseMDKIQgMQMZH-lykINEkJmLiFlpypdx5bmOFnjXHe1a2d6qWSNStZZqUHJCcl7yVnb1mMNmar7GrqjrYKj1RB71pAtr5P18-gx5jrXc6Yz_aNpmIR8Yo5InvGEvO8lIyhqwc6a993uzEYvb9VvpYS87n8Gt4JnRWbip5fNGgD2QrJVayQrsWWakivWlAIgLYMsIyFPWrPtFY6tIEVZiGerH_IVuT08Gh3qw_3xwXNyB9-urabcJpuLi0v_AlDhwr6MW4-S05ve7f8AZ1Z17Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamIU28IH4TGGAkeIyW2I7tCCGEtpWNsQoJJvXN2Ik9gVBb1k4T_xp_HXexk76Mqi97i1SfklzOd9_V390R8jrwumx86_JalzwXTfB5Xbcyl9ZWoWRgIgxrh0_H8uhMfJpUky3yt6-FQVpl7xM7R93OGvyPfA_iOkQnDfnDXki0iC8Ho_fz3zlOkMKT1n6cRjSRE__nCtK3xbvjA_jWbxgbHX7bP8rThIG8qXSxzAUEqzowXwfdhMoD1vZWhxYguXAObD8UXrvGwdtUTFrtuOTOe16LUFolAjZiAvd_S3FeI51QTdSqJrPgsfwF_JyANCyxiCK3DOnisbweyWW8ax-K8-CvD43_g75dCBzdJXcSdqUforHdI1t-ep_snKbT-Qdk3NP46CzQ4AHW08P9jxR0eBHLJyiy7M_plcVpF0tqU0MUuGipbe0cXS8NP_AAH9Y9JGc3os1HZHs6m_onhDpVOd0yK4OoBGAwC3mf0kVoQELIos2I6lVlmtTMHGdq_DI9a-2nWSnZoJJNoQwoOSPlIDmPDT02kKn7r2H6glVwsQaizgay6jpZv0i-YmFKs2CmMF-7VklYScwRwzOekbeDZIJDEeZseN_d3mzM6lbDJsrIq-FncCh4SmSnfnbZrQFILyRbt0Yyhc3StFyzRgkAswzyi4w8jmY7KBybQApViafrH_Il2YE9bj4fj0-ekdv4cpFGuUu2lxeX_jnAwaV70e07Sr7f9Eb_By58c4c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+of+fetal+ECG+extraction+using+wavelet+analysis+and+adaptive+filtering&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Wu%2C+Shuicai&rft.au=Shen%2C+Yanni&rft.au=Zhou%2C+Zhuhuang&rft.au=Lin%2C+Lan&rft.date=2013-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=43&rft.issue=10&rft.spage=1622&rft.epage=1627&rft_id=info:doi/10.1016%2Fj.compbiomed.2013.07.028&rft.externalDocID=S0010482513002023
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482513X00101%2Fcov150h.gif