Formation of a protein corona on the surface of extracellular vesicles in blood plasma
In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium‐sized nascent EVs of THP1 cells as well as of Optiprep‐purified platelets, and incubated them in EV‐depleted blood plasma from healthy subjects and from patients with rh...
Saved in:
Published in | Journal of extracellular vesicles Vol. 10; no. 11; pp. e12140 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.09.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2001-3078 2001-3078 |
DOI | 10.1002/jev2.12140 |
Cover
Abstract | In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium‐sized nascent EVs of THP1 cells as well as of Optiprep‐purified platelets, and incubated them in EV‐depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein‐coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α‐chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF‐α, IL‐6, CD83, CD86 and HLA‐DR of human monocyte‐derived dendritic cells, EV‐free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein ‘contamination’ of EV preparations and may add a new perspective to EV research. |
---|---|
AbstractList | Abstract In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium‐sized nascent EVs of THP1 cells as well as of Optiprep‐purified platelets, and incubated them in EV‐depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein‐coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α‐chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF‐α, IL‐6, CD83, CD86 and HLA‐DR of human monocyte‐derived dendritic cells, EV‐free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein ‘contamination’ of EV preparations and may add a new perspective to EV research. In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium‐sized nascent EVs of THP1 cells as well as of Optiprep‐purified platelets, and incubated them in EV‐depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein‐coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α‐chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF‐α, IL‐6, CD83, CD86 and HLA‐DR of human monocyte‐derived dendritic cells, EV‐free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein ‘contamination’ of EV preparations and may add a new perspective to EV research. In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium-sized nascent EVs of THP1 cells as well as of Optiprep-purified platelets, and incubated them in EV-depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein-coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α-chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF-α, IL-6, CD83, CD86 and HLA-DR of human monocyte-derived dendritic cells, EV-free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein 'contamination' of EV preparations and may add a new perspective to EV research.In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium-sized nascent EVs of THP1 cells as well as of Optiprep-purified platelets, and incubated them in EV-depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein-coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α-chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF-α, IL-6, CD83, CD86 and HLA-DR of human monocyte-derived dendritic cells, EV-free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein 'contamination' of EV preparations and may add a new perspective to EV research. |
Author | Sódar, Barbara W. Försönits, András I. Buzás, Edit I. Tóth, Eszter Á. Bácsi, Attila Drahos, László Szabó‐Taylor, Katalin É. Sebestyén, Anna Dénes, Ádám Komlósi, Zsolt Gho, Yong Song Visnovitz, Tamás Nagy, György Mázló, Anett Petővári, Gábor Turiák, Lilla Kittel, Ágnes Cserép, Csaba |
AuthorAffiliation | 4 Laboratory of Neuroimmunology Institute of Experimental Medicine Eötvös Loránd Research Network Budapest Hungary 9 Department of Rheumatology & Clinical Immunology Semmelweis University Budapest Hungary 6 HCEMM‐SE Extracellular Vesicles Research Group Budapest Hungary 7 Tumour Biology Tumour Metabolism Research Group 1st Department of Pathology and Experimental Cancer Research Semmelweis University Budapest Hungary 1 Department of Genetics Cell‐ and Immunobiology Semmelweis University Budapest Hungary 2 ELKH‐SE Immune‐Proteogenomics Extracellular Vesicle Research Group Budapest Hungary 8 Institute of Experimental Medicine Eötvös Loránd Research Network Budapest Hungary 5 Department of Immunology Faculty of Medicine University of Debrecen Debrecen Hungary 10 Department of Life Sciences Pohang University of Science and Technology (POSTECH) Pohang Republic of Korea 3 MS Proteomics Research Group Research Centre for Natural Sciences Eötvös Loránd Research Network Budapest Hungary |
AuthorAffiliation_xml | – name: 1 Department of Genetics Cell‐ and Immunobiology Semmelweis University Budapest Hungary – name: 5 Department of Immunology Faculty of Medicine University of Debrecen Debrecen Hungary – name: 6 HCEMM‐SE Extracellular Vesicles Research Group Budapest Hungary – name: 3 MS Proteomics Research Group Research Centre for Natural Sciences Eötvös Loránd Research Network Budapest Hungary – name: 2 ELKH‐SE Immune‐Proteogenomics Extracellular Vesicle Research Group Budapest Hungary – name: 7 Tumour Biology Tumour Metabolism Research Group 1st Department of Pathology and Experimental Cancer Research Semmelweis University Budapest Hungary – name: 8 Institute of Experimental Medicine Eötvös Loránd Research Network Budapest Hungary – name: 9 Department of Rheumatology & Clinical Immunology Semmelweis University Budapest Hungary – name: 10 Department of Life Sciences Pohang University of Science and Technology (POSTECH) Pohang Republic of Korea – name: 4 Laboratory of Neuroimmunology Institute of Experimental Medicine Eötvös Loránd Research Network Budapest Hungary |
Author_xml | – sequence: 1 givenname: Eszter Á. surname: Tóth fullname: Tóth, Eszter Á. organization: Semmelweis University – sequence: 2 givenname: Lilla surname: Turiák fullname: Turiák, Lilla organization: Eötvös Loránd Research Network – sequence: 3 givenname: Tamás surname: Visnovitz fullname: Visnovitz, Tamás organization: Semmelweis University – sequence: 4 givenname: Csaba surname: Cserép fullname: Cserép, Csaba organization: Eötvös Loránd Research Network – sequence: 5 givenname: Anett surname: Mázló fullname: Mázló, Anett organization: University of Debrecen – sequence: 6 givenname: Barbara W. surname: Sódar fullname: Sódar, Barbara W. organization: HCEMM‐SE Extracellular Vesicles Research Group – sequence: 7 givenname: András I. surname: Försönits fullname: Försönits, András I. organization: Semmelweis University – sequence: 8 givenname: Gábor surname: Petővári fullname: Petővári, Gábor organization: Semmelweis University – sequence: 9 givenname: Anna surname: Sebestyén fullname: Sebestyén, Anna organization: Semmelweis University – sequence: 10 givenname: Zsolt surname: Komlósi fullname: Komlósi, Zsolt organization: Semmelweis University – sequence: 11 givenname: László surname: Drahos fullname: Drahos, László organization: Eötvös Loránd Research Network – sequence: 12 givenname: Ágnes surname: Kittel fullname: Kittel, Ágnes organization: Eötvös Loránd Research Network – sequence: 13 givenname: György surname: Nagy fullname: Nagy, György organization: Semmelweis University – sequence: 14 givenname: Attila surname: Bácsi fullname: Bácsi, Attila organization: University of Debrecen – sequence: 15 givenname: Ádám surname: Dénes fullname: Dénes, Ádám organization: Eötvös Loránd Research Network – sequence: 16 givenname: Yong Song surname: Gho fullname: Gho, Yong Song organization: Pohang University of Science and Technology (POSTECH) – sequence: 17 givenname: Katalin É. surname: Szabó‐Taylor fullname: Szabó‐Taylor, Katalin É. organization: Semmelweis University – sequence: 18 givenname: Edit I. orcidid: 0000-0002-3744-206X surname: Buzás fullname: Buzás, Edit I. email: buzas.edit@med.semmelweis-univ.hu organization: HCEMM‐SE Extracellular Vesicles Research Group |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34520123$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1P3DAQhq0KVChw6Q-oIvVSIS0df2SdXCpVCFoQUi-Fq2U7E_DKibd2si3_HmdDEaCqc_Fo_Myr-XpHdvrQIyHvKZxQAPZ5hRt2QhkV8IbsMwC64CCrnWf-HjlKaQXZakHLqn5L9rgoGVDG98nNeYidHlzoi9AWuljHMKDrCxti6HWRw8MdFmmMrbY4IfhniNn1fvQ6FhtMznpMRU4xPoSmWHudOn1IdlvtEx49vgfk-vzs5-n3xdWPbxenX68WtqwAFm3bWia40ZJZ0QhKDTQVogULvDGScrQVB0QprJHWUhRGIxgrJVCZG-QH5GLWbYJeqXV0nY73KmintoEQb5WOw1Siapd6aWpoqNBULBkzbVk2UlopqM6KVdb6MmutR9NhY7HPnfoXoi9_enenbsNGVYLXrJqK-fQoEMOvEdOgOpemUekew5gUKyUrWb0sWUY_vkJXYYx9HpXiUDMustWZ-vC8oqdS_q4vA8czYGNIKWL7hFBQ03mo6TzU9jwyDK9g64bt6nM3zv87hc4pv53H-_-Iq8uzGzbnPADNVsvx |
CitedBy_id | crossref_primary_10_1007_s11095_024_03757_4 crossref_primary_10_1002_jev2_12459 crossref_primary_10_1002_jev2_12339 crossref_primary_10_1016_j_bbih_2023_100597 crossref_primary_10_1002_pmic_202400074 crossref_primary_10_3390_cells13090754 crossref_primary_10_1186_s40779_023_00472_w crossref_primary_10_1002_jev2_12346 crossref_primary_10_1080_14737159_2023_2215927 crossref_primary_10_3390_cells14060408 crossref_primary_10_1038_s41598_024_62689_6 crossref_primary_10_1016_j_jconrel_2022_12_025 crossref_primary_10_1186_s12979_024_00472_x crossref_primary_10_1016_j_ejcb_2022_151227 crossref_primary_10_1016_j_addr_2024_115461 crossref_primary_10_1016_j_ymthe_2023_05_012 crossref_primary_10_34067_KID_0001892022 crossref_primary_10_1002_pmic_202300211 crossref_primary_10_1016_j_jpha_2024_101004 crossref_primary_10_3389_fvets_2022_894189 crossref_primary_10_1002_jex2_48 crossref_primary_10_1002_jev2_12358 crossref_primary_10_1002_jev2_12479 crossref_primary_10_1002_jev2_12238 crossref_primary_10_3390_pharmaceutics15092236 crossref_primary_10_1002_jex2_49 crossref_primary_10_14791_btrt_2022_0031 crossref_primary_10_3389_fnagi_2023_1184435 crossref_primary_10_1016_j_ijpharm_2024_124921 crossref_primary_10_1002_adhm_202401370 crossref_primary_10_1038_s41417_024_00759_7 crossref_primary_10_1002_jex2_70004 crossref_primary_10_3390_nano13243094 crossref_primary_10_1002_jex2_34 crossref_primary_10_1002_jev2_12368 crossref_primary_10_1080_14737159_2023_2277373 crossref_primary_10_1002_jev2_12369 crossref_primary_10_1016_j_cca_2022_12_021 crossref_primary_10_1039_D4NH00320A crossref_primary_10_3389_fimmu_2024_1355845 crossref_primary_10_1134_S1819712423040220 crossref_primary_10_1111_imr_13127 crossref_primary_10_1111_acel_14356 crossref_primary_10_1002_adhm_202400293 crossref_primary_10_1016_j_bios_2024_116381 crossref_primary_10_1002_jev2_12376 crossref_primary_10_1186_s44330_024_00007_2 crossref_primary_10_1021_jacs_4c00691 crossref_primary_10_3390_pharmaceutics16060709 crossref_primary_10_31857_S1027813324030108 crossref_primary_10_1002_jev2_70021 crossref_primary_10_1016_j_jconrel_2022_09_045 crossref_primary_10_1002_jex2_70020 crossref_primary_10_1002_prca_202300014 crossref_primary_10_3389_fimmu_2022_1013236 crossref_primary_10_1002_jex2_70027 crossref_primary_10_1093_clinchem_hvad189 crossref_primary_10_1128_spectrum_04702_22 crossref_primary_10_1038_s41401_022_00902_w crossref_primary_10_1002_jev2_12388 crossref_primary_10_1007_s00018_022_04222_4 crossref_primary_10_1038_s41598_024_67229_w crossref_primary_10_3390_ijms25105219 crossref_primary_10_1016_j_brs_2024_03_014 crossref_primary_10_1038_s44222_024_00255_5 crossref_primary_10_1016_j_regen_2022_100066 crossref_primary_10_3389_fcell_2021_790722 crossref_primary_10_1002_jev2_70011 crossref_primary_10_3389_fcimb_2023_1079991 crossref_primary_10_3390_jox14030047 crossref_primary_10_1002_jev2_12260 crossref_primary_10_1002_jev2_70017 crossref_primary_10_1002_jex2_70019 crossref_primary_10_1002_jex2_70017 crossref_primary_10_3390_biom14060626 crossref_primary_10_1002_jev2_12399 crossref_primary_10_3390_cells10113185 crossref_primary_10_3892_ijmm_2022_5182 crossref_primary_10_3389_fcvm_2024_1493290 crossref_primary_10_1371_journal_ppat_1011052 crossref_primary_10_1038_s43586_023_00240_z crossref_primary_10_3389_fimmu_2024_1408415 crossref_primary_10_1093_function_zqae012 crossref_primary_10_1002_jev2_12270 crossref_primary_10_1002_jev2_70008 crossref_primary_10_3390_ijms23147986 crossref_primary_10_1016_j_mam_2024_101269 crossref_primary_10_3390_jpm12060949 crossref_primary_10_3390_cancers14122987 crossref_primary_10_1021_acsbiomaterials_3c00678 crossref_primary_10_1186_s12964_023_01089_1 crossref_primary_10_3390_ijms24032810 crossref_primary_10_1016_j_carbpol_2022_120036 crossref_primary_10_1186_s12929_024_01072_z crossref_primary_10_1002_adhm_202303941 crossref_primary_10_3390_ijms24043704 crossref_primary_10_3762_bjnano_15_130 crossref_primary_10_1021_acs_nanolett_3c03579 crossref_primary_10_3390_ijms232416052 crossref_primary_10_1080_10408398_2024_2388888 crossref_primary_10_1021_acs_jproteome_4c00417 crossref_primary_10_3389_fmolb_2024_1278955 crossref_primary_10_1021_acssensors_4c00315 crossref_primary_10_1002_pmic_202300063 crossref_primary_10_1002_pmic_202300180 crossref_primary_10_1038_s44222_025_00286_6 crossref_primary_10_1007_s00018_024_05137_y crossref_primary_10_1038_s44400_024_00002_y crossref_primary_10_3390_proteomes13010012 crossref_primary_10_1186_s13287_022_02824_0 crossref_primary_10_3390_microorganisms10122435 crossref_primary_10_1002_jev2_12298 crossref_primary_10_1016_j_bbrep_2023_101635 crossref_primary_10_1039_D3NA00280B crossref_primary_10_1002_jev2_12502 crossref_primary_10_20517_evcna_2024_16 crossref_primary_10_1016_j_apsb_2022_11_014 crossref_primary_10_3390_biomedicines10020238 crossref_primary_10_1111_pcn_13679 crossref_primary_10_1038_s44321_024_00045_x crossref_primary_10_1371_journal_pone_0315743 crossref_primary_10_3389_fcell_2022_864022 crossref_primary_10_1002_jex2_170 crossref_primary_10_3390_cimb45040216 crossref_primary_10_1242_jcs_259166 crossref_primary_10_1021_acsnano_4c16854 crossref_primary_10_1021_acsami_4c03869 crossref_primary_10_1038_s41580_022_00460_3 crossref_primary_10_1038_s41598_023_27916_6 crossref_primary_10_1002_jev2_12513 crossref_primary_10_1186_s13287_024_03755_8 crossref_primary_10_3390_ijms241310480 crossref_primary_10_1016_j_jcis_2024_09_244 crossref_primary_10_1002_adhm_202201989 crossref_primary_10_1016_j_vesic_2024_100056 crossref_primary_10_1016_j_colsurfb_2023_113627 crossref_primary_10_1002_jev2_70048 crossref_primary_10_1002_jev2_12400 crossref_primary_10_1002_jex2_159 crossref_primary_10_1002_jex2_158 crossref_primary_10_1038_s41598_023_44050_5 crossref_primary_10_3390_cancers14164020 crossref_primary_10_1002_jev2_12520 crossref_primary_10_1002_jev2_12404 crossref_primary_10_1002_jev2_12408 crossref_primary_10_1038_s41565_023_01585_y crossref_primary_10_3390_cimb46050264 crossref_primary_10_1007_s00018_021_03969_6 crossref_primary_10_1080_21688370_2024_2347062 crossref_primary_10_1016_j_bbagen_2021_130069 crossref_primary_10_1002_jev2_70034 crossref_primary_10_1080_17425247_2022_2110064 crossref_primary_10_20517_evcna_2024_34 crossref_primary_10_3390_cancers15092601 crossref_primary_10_1111_bph_17336 crossref_primary_10_1007_s11259_022_10052_3 crossref_primary_10_1038_s42003_022_04349_x crossref_primary_10_1002_jex2_63 crossref_primary_10_1002_jex2_66 crossref_primary_10_31857_S1027813323040222 crossref_primary_10_1186_s12933_024_02459_w crossref_primary_10_3390_cancers14030532 crossref_primary_10_1021_acs_molpharmaceut_3c01084 crossref_primary_10_1016_j_biomaterials_2022_121830 crossref_primary_10_1016_j_actbio_2025_02_028 crossref_primary_10_1136_lupus_2024_001243 crossref_primary_10_1038_s41556_022_00983_z crossref_primary_10_1002_jex2_137 crossref_primary_10_1002_jex2_57 crossref_primary_10_1002_jnr_25231 crossref_primary_10_3389_fbioe_2024_1479516 crossref_primary_10_3390_cells11111845 crossref_primary_10_3390_pharmaceutics14010016 crossref_primary_10_1021_acsbiomaterials_4c02304 crossref_primary_10_1002_jev2_12308 crossref_primary_10_1159_000538197 crossref_primary_10_3390_membranes13040431 crossref_primary_10_1016_j_nantod_2023_101998 crossref_primary_10_3389_fendo_2022_971313 crossref_primary_10_1093_jbmrpl_ziae168 crossref_primary_10_1002_jex2_130 crossref_primary_10_1002_jex2_60 crossref_primary_10_1016_j_surfin_2024_104380 crossref_primary_10_1515_medgen_2023_2062 crossref_primary_10_1186_s40364_022_00404_1 crossref_primary_10_1158_0008_5472_CAN_23_3998 crossref_primary_10_1016_j_jcyt_2023_04_011 crossref_primary_10_1039_D1NR06580G crossref_primary_10_3390_cells13110945 crossref_primary_10_1038_s41584_023_01010_7 crossref_primary_10_1002_jev2_12435 crossref_primary_10_3390_genes14040853 crossref_primary_10_1038_s41598_021_04225_4 crossref_primary_10_2147_IJN_S413831 crossref_primary_10_1002_advs_202407850 crossref_primary_10_3390_ijms251910401 crossref_primary_10_1016_j_mcpro_2025_100944 crossref_primary_10_1002_smll_202309616 crossref_primary_10_3389_fmed_2022_1059028 crossref_primary_10_1016_j_jconrel_2022_03_056 crossref_primary_10_1007_s00216_023_04725_4 crossref_primary_10_1002_jev2_12202 crossref_primary_10_1002_jex2_78 crossref_primary_10_1038_s41565_023_01522_z crossref_primary_10_1002_jev2_12207 crossref_primary_10_3390_nano14100823 crossref_primary_10_3390_cells13242054 crossref_primary_10_1111_andr_13729 crossref_primary_10_1016_j_addr_2023_114974 crossref_primary_10_1002_pmic_202400128 crossref_primary_10_1007_s00018_021_04125_w crossref_primary_10_20517_evcna_2024_78 crossref_primary_10_1016_j_pneurobio_2023_102437 crossref_primary_10_3390_biomedicines11051400 crossref_primary_10_1134_S1819712424700089 crossref_primary_10_3390_cancers16030520 |
Cites_doi | 10.1186/s12951-020-00722-2 10.1039/C6BM00921B 10.1080/20013078.2018.1535750 10.1016/j.actbio.2012.06.001 10.3389/fphys.2018.01479 10.1002/jms.4464 10.3402/jev.v3.24858 10.1186/s12859-015-0611-3 10.1016/j.freeradbiomed.2017.03.016 10.1371/journal.pone.0145686 10.1093/nar/gky1106 10.1039/C5OB01451D 10.1371/journal.pone.0121184 10.1073/pnas.0608582104 10.1016/j.actbio.2020.07.041 10.1111/jth.14009 10.1039/C5NR08116E 10.1016/j.jprot.2011.05.023 10.3402/jev.v3.24692 10.1007/s00281-018-0682-0 10.1038/s41467-019-11642-7 10.1016/j.molimm.2007.11.021 10.1080/20013078.2017.1321455 10.1038/s41598-017-02908-5 10.1038/srep36338 10.1002/pmic.201400515 10.1039/C8EN00161H 10.1016/j.thromres.2013.11.010 10.1038/srep24316 10.1080/20013078.2019.1565263 10.1039/C7NR08696B 10.1038/s41467-019-10192-2 10.1039/C7NR07450F 10.1007/s00216-018-1145-0 10.1080/20013078.2020.1722433 10.1016/j.actbio.2018.02.036 10.3389/fbioe.2020.00491 10.1021/acsnano.5b04215 10.1073/pnas.1816911116 10.1002/jps.21566 10.1073/pnas.1521230113 10.1038/ncb1596 10.1038/nmeth.4185 10.1039/D0NR03439H 10.1111/j.1742-4658.2009.07062.x 10.1038/s41598-017-08392-1 10.1016/j.actbio.2018.05.057 10.1080/20013078.2019.1635420 10.1021/nn300626q 10.3402/jev.v2i0.20384 10.1182/blood-2010-09-307595 10.1371/journal.pbio.1001450 10.1080/20013078.2017.1348885 10.1038/srep33935 10.1038/ncomms8164 10.1093/nar/gkaa1100 10.1371/journal.pone.0236439 10.1073/pnas.1605146113 10.1039/D0NR02788J 10.1016/j.ijpharm.2018.10.011 10.1186/s12896-016-0262-0 10.1371/journal.pone.0049726 10.3402/jev.v3.26913 10.1007/s00018-014-1618-z 10.1016/j.bbrc.2018.05.107 10.1016/j.talanta.2019.120487 10.3402/jev.v4.26373 10.3402/jev.v3.24783 10.1111/jth.12207 10.1007/s00018-018-2773-4 10.1016/j.colsurfb.2020.111053 10.1002/art.27584 10.1007/s00018-011-0689-3 10.1093/nar/gky1131 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles – notice: 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7X8 5PM DOA |
DOI | 10.1002/jev2.12140 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Calcium & Calcified Tissue Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | TÓTH et al |
EISSN | 2001-3078 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_f6a6b90d14a14622bf55d77c741abc78 PMC8439280 34520123 10_1002_jev2_12140 JEV212140 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EU's Horizon 2020 research and innovation program funderid: 739593 – fundername: Hungarian Academy of Sciences: János Bolyai Research Scholarship and “Momentum” funderid: LP2016‐4/2016 – fundername: National Research, Development and Innovation Office NKFIH, Hungary funderid: OTKA11958; OTKA120237; OTKA125337; OTKA K 131479; OTKA PD 121187; OTKA FK 131603; OTKA 131762; NVKP_16‐1‐2016‐0017 – fundername: European Research Council funderid: ERC‐CoG 724994; H2020‐ITN‐2018‐813294‐ENTRAIN – fundername: Higher Education Institutional Excellence Program – Therapeutic development funderid: ÚNKP‐19‐3‐I‐SE‐45; ÚNKP‐20‐5 – fundername: Ministry for National Economy of Hungary funderid: VEKOP‐2.3.2‐16‐2016‐00002; VEKOP‐2.3.3‐15‐2016‐00016; EFOP‐3.6.3‐VEKOP‐16‐2017‐00009 – fundername: New National Excellence Program of the Ministry for Innovation and Technology – fundername: Az orvos‐, egészségtudományi‐ és gyógyszerészképzés tudományos műhelyeinek fejlesztése – fundername: European Commission funderid: H2020‐MSCA‐ITN‐2017‐722148 TRAIN EV – fundername: European Research Council grantid: ERC-CoG 724994 – fundername: European Research Council grantid: H2020-ITN-2018-813294-ENTRAIN – fundername: National Research, Development and Innovation Office NKFIH, Hungary grantid: OTKA11958; OTKA120237; OTKA125337; OTKA K 131479; OTKA PD 121187; OTKA FK 131603; OTKA 131762; NVKP_16‐1‐2016‐0017 – fundername: ; grantid: H2020‐MSCA‐ITN‐2017‐722148 TRAIN EV – fundername: EU's Horizon 2020 research and innovation program grantid: 739593 – fundername: Higher Education Institutional Excellence Program – Therapeutic development grantid: ÚNKP‐19‐3‐I‐SE‐45; ÚNKP‐20‐5 – fundername: Hungarian Academy of Sciences: János Bolyai Research Scholarship and “Momentum” grantid: LP2016‐4/2016 – fundername: ; grantid: ERC‐CoG 724994; H2020‐ITN‐2018‐813294‐ENTRAIN – fundername: Ministry for National Economy of Hungary grantid: VEKOP‐2.3.2‐16‐2016‐00002; VEKOP‐2.3.3‐15‐2016‐00016; EFOP‐3.6.3‐VEKOP‐16‐2017‐00009 |
GroupedDBID | 0R~ 0YH 1OC 24P 53G 5VS 8FE 8FH AAHJG AAMMB ABDBF ABMDY ABQXS ACCMX ACESK ACGFS ACPRK ACUHS ADBBV ADRAZ AEFGJ AEGXH AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AQTUD BAWUL BBNVY BCNDV BENPR BHPHI CCPQU DIK EBS EJD GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IHR INH IPNFZ ITC KQ8 LK8 M48 M4Z M7P M~E OK1 PHGZM PHGZT PQGLB PROAC PUEGO RIG RNS RPM TDBHL TFW WIN AAYXX CITATION 8WT AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM PIMPY 7QP 7X8 5PM |
ID | FETCH-LOGICAL-c5800-fffc243ba72c4d411b0d8eec0c03db713ec830ee74cb7cc1e4bae0bc770172003 |
IEDL.DBID | DOA |
ISSN | 2001-3078 |
IngestDate | Wed Aug 27 00:49:27 EDT 2025 Thu Aug 21 18:18:17 EDT 2025 Thu Sep 04 19:58:33 EDT 2025 Wed Aug 13 06:18:17 EDT 2025 Wed Feb 19 02:08:57 EST 2025 Wed Oct 01 04:36:37 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Sun Sep 21 06:19:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | mass spectrometry aggregation extracellular vesicles blood plasma protein corona |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5800-fffc243ba72c4d411b0d8eec0c03db713ec830ee74cb7cc1e4bae0bc770172003 |
Notes | Katalin É Szabó‐Taylor and Edit I Buzás contributed equally. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3744-206X |
OpenAccessLink | https://doaj.org/article/f6a6b90d14a14622bf55d77c741abc78 |
PMID | 34520123 |
PQID | 3092344449 |
PQPubID | 2030046 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6a6b90d14a14622bf55d77c741abc78 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8439280 proquest_miscellaneous_2572529652 proquest_journals_3092344449 pubmed_primary_34520123 crossref_primary_10_1002_jev2_12140 crossref_citationtrail_10_1002_jev2_12140 wiley_primary_10_1002_jev2_12140_JEV212140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Abingdon – name: Hoboken |
PublicationTitle | Journal of extracellular vesicles |
PublicationTitleAlternate | J Extracell Vesicles |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 5 2007; 104 2017; 6 2017; 7 2011; 117 2013; 2 2019; 10 2009; 276 2020; 15 2018; 40 2020; 12 2020; 55 2014; 133 2012; 10 2010; 62 2020; 18 2020; 209 2020; 8 2018; 7 2018; 9 2014; 3 2009; 98 2018; 5 2018; 410 2020; 9 2016; 113 2007; 9 2019; 116 2011; 68 2018; 71 2018; 76 2018; 75 2014; 10 2019; 8 2015; 13 2021; 49 2015; 15 2015; 6 2015; 16 2015; 4 2018; 501 2015; 10 2011; 74 2015; 9 2016; 16 2017; 108 2016; 6 2017; 14 2020; 192 2018; 552 2019; 47 2008; 45 2014 2020; 114 2013 2012; 6 2012; 7 2018; 10 2014; 71 2016; 8 2018; 16 2012; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 Cvjetkovic A. (e_1_2_7_16_1) 2016; 6 Busatto S. (e_1_2_7_8_1) 2020; 18 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 Lötvall J. (e_1_2_7_39_1) 2014 e_1_2_7_42_1 e_1_2_7_63_1 Papp K. (e_1_2_7_51_1) 2008; 45 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Lacroix R. (e_1_2_7_36_1) 2013 e_1_2_7_72_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_38_1 Buzas E. I. (e_1_2_7_9_1) 2014; 10 |
References_xml | – volume: 3 year: 2014 article-title: Importance of exosome depletion protocols to eliminate functional and RNA‐containing extracellular vesicles from fetal bovine serum publication-title: Journal of Extracellular Vesicles – volume: 192 year: 2020 article-title: Size measurement of extracellular vesicles and synthetic liposomes: The impact of the hydration shell and the protein corona publication-title: Colloids and Surfaces. B, Biointerfaces – volume: 55 issue: 7 year: 2020 article-title: Widespread presence of bovine proteins in human cell lines publication-title: Journal of Mass Spectrometry – volume: 209 year: 2020 article-title: A comprehensive analysis of liposomal biomolecular corona upon human plasma incubation: The evolution towards the lipid corona publication-title: Talanta – volume: 6 start-page: 7164 issue: 1 year: 2015 article-title: Directional cell movement through tissues is controlled by exosome secretion publication-title: Nature Communications – volume: 9 start-page: 11872 issue: 12 year: 2015 end-page: 11885 article-title: Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition publication-title: ACS Nano – volume: 8 start-page: 491 year: 2020 end-page: 491 article-title: Personalized graphene oxide‐protein corona in the human plasma of pancreatic cancer patients publication-title: Frontiers in Bioengineering and Biotechnology – volume: 10 start-page: 2331 issue: 1 year: 2019 article-title: The viral protein corona directs viral pathogenesis and amyloid aggregation publication-title: Nature Communications – volume: 10 issue: 12 year: 2012 article-title: Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation publication-title: Plos Biology – volume: 108 start-page: 56 year: 2017 end-page: 65 article-title: Monocyte activation drives preservation of membrane thiols by promoting release of oxidised membrane moieties via extracellular vesicles publication-title: Free Radical Biology and Medicine – volume: 133 start-page: 285 issue: 2 year: 2014 end-page: 292 article-title: Improved circulating microparticle analysis in acid‐citrate dextrose (ACD) anticoagulant tube publication-title: Thrombosis Research – volume: 10 start-page: 4246 issue: 9 year: 2018 end-page: 4257 article-title: Analysis of nanoparticle biomolecule complexes publication-title: Nanoscale – volume: 98 start-page: 2909 issue: 9 year: 2009 end-page: 2934 article-title: Protein aggregation: Pathways, induction factors and analysis publication-title: Journal of Pharmaceutical Sciences – volume: 9 start-page: 654 issue: 6 year: 2007 end-page: 659 article-title: Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nature Cell Biology – volume: 62 start-page: 2569 issue: 9 year: 2010 end-page: 2581 article-title: Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative publication-title: Arthritis and Rheumatism – volume: 5 start-page: 378 issue: 3 year: 2017 end-page: 387 article-title: Personalized protein corona on nanoparticles and its clinical implications [10.1039/C6BM00921B] publication-title: Biomaterials Science – volume: 116 issue: 21 year: 2019 article-title: Extracellular vesicle fibrinogen induces encephalitogenic CD8+ T cells in a mouse model of multiple sclerosis publication-title: Pnas – volume: 74 start-page: 2025 issue: 10 year: 2011 end-page: 2033 article-title: Proteomic characterization of thymocyte‐derived microvesicles and apoptotic bodies in BALB/c mice publication-title: Journal of Proteomics – volume: 3 year: 2014 article-title: Isolation and characterization of platelet‐derived extracellular vesicles publication-title: Journal of Extracellular Vesicles – volume: 6 start-page: 1348885 issue: 1 year: 2017 end-page: 1348885 article-title: A rigorous method to enrich for exosomes from brain tissue publication-title: Journal of Extracellular Vesicles – volume: 75 start-page: 2873 issue: 15 year: 2018 end-page: 2886 article-title: Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins publication-title: Cellular and Molecular Life Sciences – volume: 7 start-page: 8202 issue: 1 year: 2017 article-title: Antibiotic‐induced release of small extracellular vesicles (exosomes) with surface‐associated DNA publication-title: Scientific Reports – volume: 4 start-page: 26373 year: 2015 end-page: 26373 article-title: Extracellular vesicle‐depleted fetal bovine and human sera have reduced capacity to support cell growth publication-title: Journal of Extracellular Vesicles – volume: 68 start-page: 2667 issue: 16 year: 2011 end-page: 2688 article-title: Membrane vesicles, current state‐of‐the‐art: Emerging role of extracellular vesicles publication-title: Cellular and Molecular Life Sciences – volume: 113 start-page: E968 issue: 8 year: 2016 end-page: E977 article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes publication-title: PNAS – volume: 71 start-page: 4055 issue: 20 year: 2014 end-page: 4067 article-title: Critical role of extracellular vesicles in modulating the cellular effects of cytokines publication-title: Cellular and Molecular Life Sciences – volume: 8 start-page: 1635420 issue: 1 year: 2019 end-page: 1635420 article-title: Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma publication-title: Journal of Extracellular Vesicles – volume: 113 start-page: 9155 issue: 33 year: 2016 article-title: Extracellular vesicles and viruses: Are they close relatives? publication-title: Proceedings of the National Academy of Sciences – volume: 16 start-page: 1236 issue: 6 year: 2018 end-page: 1245 article-title: Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation publication-title: Journal of Thrombosis and Haemostasis – volume: 5 start-page: 1420 issue: 6 year: 2018 end-page: 1427 article-title: Identification and characterization of small organic compounds within the corona formed around engineered nanoparticles publication-title: Environmental Science: Nano – volume: 18 start-page: 162 issue: 1 year: 2020 article-title: Brain metastases‐derived extracellular vesicles induce binding and aggregation of low‐density lipoprotein publication-title: Journal Nanobiotechnology – volume: 10 start-page: 356 issue: 6 year: 2014 end-page: 364 article-title: Emerging role of extracellular vesicles in inflammatory diseases publication-title: Nature Clinical Practice Rheumatology – volume: 10 issue: 3 year: 2015 article-title: Improved characterization of EV preparations based on protein to lipid ratio and lipid properties publication-title: Plos One – volume: 49 start-page: D480 issue: D1 year: 2021 end-page: D489 article-title: UniProt: The universal protein knowledgebase in 2021 publication-title: Nucleic Acids Research – volume: 76 start-page: 217 year: 2018 end-page: 224 article-title: Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins publication-title: Acta Biomaterialia – volume: 2 year: 2013 article-title: EVpedia: An integrated database of high‐throughput data for systemic analyses of extracellular vesicles publication-title: Journal of Extracellular Vesicles – volume: 6 issue: 1 year: 2016 article-title: Low‐density lipoprotein mimics blood plasma‐derived exosomes and microvesicles during isolation and detection publication-title: Scientific Reports – volume: 104 start-page: 2050 issue: 7 year: 2007 end-page: 2055 article-title: Understanding the nanoparticle‐protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 15 issue: 8 year: 2020 article-title: Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo‐Implications for biomarker discovery publication-title: Plos One – volume: 117 start-page: e39 issue: 4 year: 2011 end-page: 48 article-title: Detection and isolation of cell‐derived microparticles are compromised by protein complexes resulting from shared biophysical parameters publication-title: Blood – volume: 13 start-page: 9775 issue: 38 year: 2015 end-page: 9782 article-title: Differential detergent sensitivity of extracellular vesicle subpopulations publication-title: Organic & Biomolecular Chemistry – volume: 8 issue: 1 year: 2019 article-title: An improved 96 well plate format lipid quantification assay for standardisation of experiments with extracellular vesicles publication-title: Journal of Extracellular Vesicles – volume: 410 start-page: 6155 issue: 24 year: 2018 end-page: 6164 article-title: Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography‐tandem mass spectrometry publication-title: Analytical and Bioanalytical Chemistry – volume: 9 start-page: 1479 year: 2018 end-page: 1479 article-title: Isolation of high‐purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind‐elute chromatography from blood plasma publication-title: Front Physiology – volume: 3 year: 2014 article-title: The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling publication-title: Journal of Extracellular Vesicles – volume: 12 start-page: 16697 issue: 32 year: 2020 end-page: 16704 article-title: A protein corona sensor array detects breast and prostate cancers [10.1039/D0NR03439H] publication-title: Nanoscale – volume: 6 issue: 1 year: 2016 article-title: A novel affinity‐based method for the isolation of highly purified extracellular vesicles publication-title: Scientific Reports – volume: 47 start-page: D607 issue: D1 year: 2019 end-page: D613 article-title: STRING v11: Protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets publication-title: Nucleic Acids Research – volume: 501 start-page: 1055 issue: 4 year: 2018 end-page: 1059 article-title: Membrane proteins significantly restrict exosome mobility publication-title: Biophysical Research Communications – start-page: 1190 year: 2013 end-page: 1193 article-title: The ISTH SSC Workshop. Standardization of pre‐analytical variables in plasma microparticle determination: Results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop publication-title: Journal of Thrombosis and Haemostasis – volume: 12 start-page: 10240 issue: 18 year: 2020 end-page: 10253 article-title: Protein corona fingerprinting to differentiate sepsis from non‐infectious systemic inflammation [10.1039/D0NR02788J] publication-title: Nanoscale – volume: 45 start-page: 2343 issue: 8 year: 2008 end-page: 2351 article-title: B lymphocytes and macrophages release cell membrane deposited C3‐fragments on exosomes with T cell response‐enhancing capacity publication-title: Molecular Immunology – volume: 7 issue: 11 year: 2012 article-title: Improved flow cytometric assessment reveals distinct microvesicle (cell‐derived microparticle) signatures in joint diseases publication-title: Plos One – volume: 14 start-page: 228 issue: 3 year: 2017 end-page: 232 article-title: EV‐TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research publication-title: Nature Methods – volume: 6 issue: 1 year: 2017 article-title: A novel community driven software for functional enrichment analysis of extracellular vesicles data publication-title: Journal of Extracellular Vesicles – volume: 7 start-page: 2558 issue: 1 year: 2017 end-page: 2558 article-title: Serum extracellular vesicle depletion processes affect release and infectivity of HIV‐1 in culture publication-title: Scientific Reports – volume: 552 start-page: 328 issue: 1‐2 year: 2018 end-page: 339 article-title: The impact of protein corona on the behavior and targeting capability of nanoparticle‐based delivery system publication-title: International Journal of Pharmaceutics – volume: 47 start-page: D442 issue: D1 year: 2019 end-page: D450 article-title: The PRIDE database and related tools and resources in 2019: Improving support for quantification data publication-title: Nucleic Acids Research – volume: 114 start-page: 333 year: 2020 end-page: 342 article-title: Preparation of the protein corona: How washing shapes the proteome and influences cellular uptake of nanocarriers publication-title: Acta Biomaterialia – volume: 276 start-page: 3372 issue: 12 year: 2009 end-page: 3381 article-title: Complete high‐density lipoproteins in nanoparticle corona publication-title: The Febs Journal – volume: 16 start-page: 32 year: 2016 end-page: 32 article-title: Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro publication-title: Bmc Biotechnology [Electronic Resource] – volume: 10 start-page: 4167 issue: 9 year: 2018 end-page: 4172 article-title: Clinically approved liposomal nanomedicines: Lessons learned from the biomolecular corona publication-title: Nanoscale – volume: 40 start-page: 453 issue: 5 year: 2018 end-page: 464 article-title: Molecular interactions at the surface of extracellular vesicles publication-title: Seminars in Immunopathology – volume: 8 start-page: 3618 issue: 10 year: 2012 end-page: 3628 article-title: Chemistry‐dependent adsorption of serum proteins onto polyanhydride microparticles differentially influences dendritic cell uptake and activation publication-title: Acta Biomaterialia – volume: 10 issue: 12 year: 2015 article-title: Isolation of exosomes from blood plasma: Qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods publication-title: PLoS One – volume: 10 start-page: 3686 issue: 1 year: 2019 end-page: 3686 article-title: Interplay of protein corona and immune cells controls blood residency of liposomes publication-title: Nature Communications – volume: 16 start-page: 169 issue: 1 year: 2015 article-title: InteractiVenn: A web‐based tool for the analysis of sets through Venn diagrams publication-title: BMC Bioinformatics – volume: 8 start-page: 5537 issue: 10 year: 2016 end-page: 5545 article-title: Fatty acids and small organic compounds bind to mineralo‐organic nanoparticles derived from human body fluids as revealed by metabolomic analysis publication-title: Nanoscale – volume: 6 issue: 1 year: 2016 article-title: Detailed analysis of protein topology of extracellular vesicles–evidence of unconventional membrane protein orientation publication-title: Scientific Reports – volume: 9 issue: 1 year: 2020 article-title: Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation publication-title: Journal of Extracellular Vesicles – volume: 71 start-page: 420 year: 2018 end-page: 431 article-title: Beyond the protein corona ‐ lipids matter for biological response of nanocarriers publication-title: Acta Biomaterialia – volume: 15 start-page: 2597 issue: 15 year: 2015 end-page: 2601 article-title: FunRich: An open access standalone functional enrichment and interaction network analysis tool publication-title: Proteomics – volume: 7 issue: 1 year: 2018 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: Journal of Extracellular Vesicles – year: 2014 article-title: Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles publication-title: Journal Extracellular Vesicles – volume: 6 start-page: 4147 issue: 5 year: 2012 end-page: 4156 article-title: Adsorption of surfactant lipids by single‐walled carbon nanotubes in mouse lung upon pharyngeal aspiration publication-title: ACS Nano – volume: 18 start-page: 162 issue: 1 year: 2020 ident: e_1_2_7_8_1 article-title: Brain metastases‐derived extracellular vesicles induce binding and aggregation of low‐density lipoprotein publication-title: Journal Nanobiotechnology doi: 10.1186/s12951-020-00722-2 – ident: e_1_2_7_14_1 doi: 10.1039/C6BM00921B – ident: e_1_2_7_65_1 doi: 10.1080/20013078.2018.1535750 – ident: e_1_2_7_12_1 doi: 10.1016/j.actbio.2012.06.001 – ident: e_1_2_7_46_1 doi: 10.3389/fphys.2018.01479 – ident: e_1_2_7_60_1 doi: 10.1002/jms.4464 – ident: e_1_2_7_70_1 doi: 10.3402/jev.v3.24858 – ident: e_1_2_7_27_1 doi: 10.1186/s12859-015-0611-3 – ident: e_1_2_7_63_1 doi: 10.1016/j.freeradbiomed.2017.03.016 – ident: e_1_2_7_5_1 doi: 10.1371/journal.pone.0145686 – ident: e_1_2_7_54_1 doi: 10.1093/nar/gky1106 – ident: e_1_2_7_48_1 doi: 10.1039/C5OB01451D – ident: e_1_2_7_47_1 doi: 10.1371/journal.pone.0121184 – ident: e_1_2_7_13_1 doi: 10.1073/pnas.0608582104 – ident: e_1_2_7_7_1 doi: 10.1016/j.actbio.2020.07.041 – ident: e_1_2_7_68_1 doi: 10.1111/jth.14009 – ident: e_1_2_7_41_1 doi: 10.1039/C5NR08116E – ident: e_1_2_7_66_1 doi: 10.1016/j.jprot.2011.05.023 – ident: e_1_2_7_2_1 doi: 10.3402/jev.v3.24692 – ident: e_1_2_7_10_1 doi: 10.1007/s00281-018-0682-0 – ident: e_1_2_7_21_1 doi: 10.1038/s41467-019-11642-7 – volume: 45 start-page: 2343 issue: 8 year: 2008 ident: e_1_2_7_51_1 article-title: B lymphocytes and macrophages release cell membrane deposited C3‐fragments on exosomes with T cell response‐enhancing capacity publication-title: Molecular Immunology doi: 10.1016/j.molimm.2007.11.021 – ident: e_1_2_7_53_1 doi: 10.1080/20013078.2017.1321455 – ident: e_1_2_7_38_1 doi: 10.1038/s41598-017-02908-5 – volume: 6 start-page: 36338 issue: 1 year: 2016 ident: e_1_2_7_16_1 article-title: Detailed analysis of protein topology of extracellular vesicles–evidence of unconventional membrane protein orientation publication-title: Scientific Reports doi: 10.1038/srep36338 – ident: e_1_2_7_52_1 doi: 10.1002/pmic.201400515 – ident: e_1_2_7_55_1 doi: 10.1039/C8EN00161H – ident: e_1_2_7_24_1 doi: 10.1016/j.thromres.2013.11.010 – ident: e_1_2_7_59_1 doi: 10.1038/srep24316 – ident: e_1_2_7_73_1 doi: 10.1080/20013078.2019.1565263 – ident: e_1_2_7_22_1 doi: 10.1039/C7NR08696B – ident: e_1_2_7_20_1 doi: 10.1038/s41467-019-10192-2 – ident: e_1_2_7_11_1 doi: 10.1039/C7NR07450F – ident: e_1_2_7_37_1 doi: 10.1007/s00216-018-1145-0 – ident: e_1_2_7_15_1 doi: 10.1080/20013078.2020.1722433 – ident: e_1_2_7_42_1 doi: 10.1016/j.actbio.2018.02.036 – ident: e_1_2_7_17_1 doi: 10.3389/fbioe.2020.00491 – ident: e_1_2_7_56_1 doi: 10.1021/acsnano.5b04215 – ident: e_1_2_7_75_1 doi: 10.1073/pnas.1816911116 – ident: e_1_2_7_40_1 doi: 10.1002/jps.21566 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.1521230113 – ident: e_1_2_7_67_1 doi: 10.1038/ncb1596 – ident: e_1_2_7_69_1 doi: 10.1038/nmeth.4185 – ident: e_1_2_7_18_1 doi: 10.1039/D0NR03439H – ident: e_1_2_7_28_1 doi: 10.1111/j.1742-4658.2009.07062.x – ident: e_1_2_7_44_1 doi: 10.1038/s41598-017-08392-1 – ident: e_1_2_7_74_1 doi: 10.1016/j.actbio.2018.05.057 – ident: e_1_2_7_29_1 doi: 10.1080/20013078.2019.1635420 – ident: e_1_2_7_31_1 doi: 10.1021/nn300626q – ident: e_1_2_7_33_1 doi: 10.3402/jev.v2i0.20384 – ident: e_1_2_7_23_1 doi: 10.1182/blood-2010-09-307595 – ident: e_1_2_7_30_1 doi: 10.1371/journal.pbio.1001450 – ident: e_1_2_7_72_1 doi: 10.1080/20013078.2017.1348885 – ident: e_1_2_7_43_1 doi: 10.1038/srep33935 – ident: e_1_2_7_61_1 doi: 10.1038/ncomms8164 – ident: e_1_2_7_6_1 doi: 10.1093/nar/gkaa1100 – ident: e_1_2_7_49_1 doi: 10.1371/journal.pone.0236439 – ident: e_1_2_7_45_1 doi: 10.1073/pnas.1605146113 – ident: e_1_2_7_50_1 doi: 10.1039/D0NR02788J – ident: e_1_2_7_76_1 doi: 10.1016/j.ijpharm.2018.10.011 – ident: e_1_2_7_4_1 doi: 10.1186/s12896-016-0262-0 – ident: e_1_2_7_26_1 doi: 10.1371/journal.pone.0049726 – start-page: 26913 year: 2014 ident: e_1_2_7_39_1 article-title: Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles publication-title: Journal Extracellular Vesicles doi: 10.3402/jev.v3.26913 – ident: e_1_2_7_62_1 doi: 10.1007/s00018-014-1618-z – ident: e_1_2_7_58_1 doi: 10.1016/j.bbrc.2018.05.107 – ident: e_1_2_7_35_1 doi: 10.1016/j.talanta.2019.120487 – ident: e_1_2_7_19_1 doi: 10.3402/jev.v4.26373 – volume: 10 start-page: 356 issue: 6 year: 2014 ident: e_1_2_7_9_1 article-title: Emerging role of extracellular vesicles in inflammatory diseases publication-title: Nature Clinical Practice Rheumatology – ident: e_1_2_7_57_1 doi: 10.3402/jev.v3.24783 – start-page: 1190 year: 2013 ident: e_1_2_7_36_1 article-title: The ISTH SSC Workshop. Standardization of pre‐analytical variables in plasma microparticle determination: Results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop publication-title: Journal of Thrombosis and Haemostasis doi: 10.1111/jth.12207 – ident: e_1_2_7_32_1 doi: 10.1007/s00018-018-2773-4 – ident: e_1_2_7_71_1 doi: 10.1016/j.colsurfb.2020.111053 – ident: e_1_2_7_3_1 doi: 10.1002/art.27584 – ident: e_1_2_7_25_1 doi: 10.1007/s00018-011-0689-3 – ident: e_1_2_7_64_1 doi: 10.1093/nar/gky1131 |
SSID | ssj0000941589 |
Score | 2.6037414 |
Snippet | In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium‐sized nascent EVs of THP1... In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium-sized nascent EVs of THP1... Abstract In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium‐sized nascent EVs... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e12140 |
SubjectTerms | Acids aggregation Apolipoprotein E Blood blood plasma Blood platelets CD83 antigen CD86 antigen Cell culture Centrifugation Confocal microscopy Dendritic cells Electron microscopy Extracellular vesicles Extracellular Vesicles - metabolism Female Fibrinogen Flow cytometry Humans Labeling Male mass spectrometry Mass Spectrometry - methods Mass spectroscopy Monocytes Nanoparticles Plasma Plasma - metabolism Plasma proteins Protein composition protein corona Protein Corona - metabolism Proteins Rheumatoid arthritis Rheumatology Ultracentrifugation |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB9KRfBF_Ha1SkRfFFY32ewl-yCi0qMU9MkrfQtJNtGWulf3esX-985kP-jh4ZP7tCQTSCaZ5Deb2d8AvBKUwLrSMa8KYemaUeZaO7pl50TuYvHQT2yfX2cHC3l4XB3vwJi_c1DgaqtrR_mkFt3Z29-_rj6gwb8fCETfnYZLQSwJEl33G3giCVrdXwaYf9pHz_FK1xM76fUmG-dRou3fhjX_Dpm8DmXTWTS_A7cHEMk-9rN-F3ZCew9u9mklr-7D0Xz8I5EtI7MscTGctMwTW4FlWIyoj63WXbQ-kAhu0J2lT_gUk8ouwyrFyjFskuLa2TlC7J_2ASzm-98-H-RD_oTcV4gD8xijF7J0VgkvG8m5Kxodgi98QazKvAxel0UISnqnvOdBOhsK55UixxDN_SHstss2PAYWS22l0k2tXZS1so6jJ8RLFxFw2VDXGbwetWj8QC5OOS7OTE-LLAxp3CSNZ_Bykj3vKTW2Sn2iyZgkiAY7FSy772awKhNndubqouHS4o4vBPWnUcojTLI4Dp3B3jiVZlxapiwQ1Ep8sNcvpmq0KtKzbcNyvTK4kQm6ka5EBo_6mZ96UspKEBLNQG2siY2ubta0Jz8Sc7dG-Cc0ju1NWj3_GL453D8S6e3J_1DEU7glKBgnBcftwe5Ftw7PEE1duOfJVP4AA7odew priority: 102 providerName: Scholars Portal – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSx0xEB9EKfRSrPZjrUqkvbSwuMlmX7LgxRYf4qH0UMVbSLJJq7T75K1P6H_fmey-tY-K4J6WZAL5muQ3yeQ3AB8EBbCudMyrQli6ZpS51o5u2TmRu1jc9BPb59fJ6bk8u6wu1-Bo-Ram54cYD9xIM9J6TQpuXXd4Txp6He4EcSNINNg3OG37xOssv40nLGi48CrFwEt-QziZ9chPKg7vi6_sSIm4_yG0-b_T5L9gNu1G0014McBIdtyP-0tYC-0WPOsDS_7Zhovp8k0im0VmWWJjuGqZJ74CyzAZcR_rFvNofSARXKLnlg7xySuV3YUuecsxLJI829kNguzf9hWcT0--fznNhwgKua8QCeYxRi9k6awSXjaSc1c0OgRf-IJ4lXkZvC6LEJT0TnnPg3Q2FM4rRaYhKvxrWG9nbXgLLJbaSqWbWrsoa2UdR1uIly4i5LKhrjP4uOxF4wd6cYpy8cv0xMjCUI-b1OMZvB9lb3pSjQelPtNgjBJEhJ0SZvMfZtArEyd24uqi4dLimi8E1adRyiNQstgOncHucijNoJ2dKQuEtRI_rPXBmI16Rf1s2zBbdAaXMkF30pXI4E0_8mNNSlkJwqIZqJU5sVLV1Zz26mfi7tYIAIXGtn1Ks-eR5puzkwuR_naeIvwOngtyu0lucLuwfjtfhD3ETbduP6nHX6m4EOg priority: 102 providerName: Wiley-Blackwell |
Title | Formation of a protein corona on the surface of extracellular vesicles in blood plasma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjev2.12140 https://www.ncbi.nlm.nih.gov/pubmed/34520123 https://www.proquest.com/docview/3092344449 https://www.proquest.com/docview/2572529652 https://pubmed.ncbi.nlm.nih.gov/PMC8439280 https://doaj.org/article/f6a6b90d14a14622bf55d77c741abc78 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2001-3078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: ABDBF dateStart: 20130901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: GX1 dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2001-3078 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: M48 dateStart: 20120101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2001-3078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941589 issn: 2001-3078 databaseCode: 24P dateStart: 20120101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB60IPgiWn-t1hLRF4Wlm2xyyT6q9CwFxQdb7i0k2QRbdK_c9Qr-985k95Y7WuxL92FZdrMwmczsfElmvwF4L6iAtTKpVJVwtM0oS2M87bJzIndxGPQz2-f3ydGJPJ6p2UapL8oJ6-mBe8UdpImb-KZquXTo1EL4pFSrdcBI6HzQ-TdfDGMbk6nzPl-OK9OMfKTi4DxeCaJSoFWOjQiUifpvQpfXkyQ3wWuOPtPH8GiAjexTL-4TuBe7XXjQF5L8-xROp-t_ENk8Mccy-8JZxwLxEziGtxHnseVqkVyI1AQ_yQtHi_aUhcqu4jJnxzF8JWeyswsE1X_cMziZHv78clQOFRPKoBD5lSmlIGTtnRZBtpJzX7UmxlCFiniUeR2DqasYtQxeh8Cj9C5WqEZNU0F08Oew0827-BJYqo2T2rSN8Uk22nmOcx9ek_q5i01TwIe1Fm0Y6MSpqsVv2xMhC0sat1njBbwb2170JBo3tvpMgzG2IOLrfAPNwQ7mYG8zhwL21kNpB29c2rpCGCvxQKnfjo_Rj0jProvz1dLip0vQHrQSBbzoR36UpJZKEPYsQG_ZxJao20-6s1-Zq9sg4BMG-_YxW89_um-PD09Fvnp1F4p4DQ8Fpd_kdLg92LlcrOIbxE-Xfh_uC_ljPzsMnr_OOJ6_SfMPkR4Ztg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9SEX0Rv12tGtEXhaXJbPaSfVTpcdZafGhL30KSTbSie-WuV_C_dya7t_WwCO7TkkwgX5P8Mpn8hrHXQAGsa5PKWoCja0ZVGuPpll0SuYvDTT-zfR5MZkdq76Q-GXxz6C1Mzw8xGtxIM_J6TQpOBumdS9bQ7_ECiBxB4Yn9upqAoEkN6stoYsGTi6xzELzsOISz2YwEpbBzWXxjS8rM_VfBzb-9Jv9Es3k7mt5htwccyd_1A3-XXYvdPXajjyz56z47nq4fJfJ54o5nOobTjgciLHAckxH48eVqkVyIJIJr9MKRFZ_cUvlFXGZ3OY5Fsms7P0OU_dM9YEfT3cMPs3IIoVCGGqFgmVIKoCrvNATVKim9aE2MQQRBxMqyisFUIkatgtchyKi8i8IHrelsiBr_kG118y4-ZjxVxilt2sb4pBrtvMTDkKx8QszlYtMU7M26F20Y-MUpzMUP2zMjg6Uet7nHC_ZqlD3rWTWulHpPgzFKEBN2TpgvvtpBsWyauIlvRCuVw0UfgOrTah0QKTlshynY9noo7aCeS1sJxLUKP6z1yzEbFYv62XVxvlpaXMuALqVrKNijfuTHmlSqBgKjBdMbc2Kjqps53em3TN5tEAGCwba9zbPnH823e7vHkP-e_I_wC3Zzdvh53-5_PPj0lN0C8sHJPnHbbOt8sYrPEESd--dZVX4DaS8UVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9Ki-JLqd-rVSP6orB0k81esuCLHz1qldIHW_oWkmxSK3bvuOsV-t93Jru39bAI7tOSTCBfk_wmmfwG4K2gANaVjnlVCEvXjDLX2tEtOydyF4ubfmL7PBjtHcn9k-pkDT4s38J0_BDDgRtpRlqvScGnTdy5IQ39FS4FcSNINNg3JHG2EK-zPBxOWNBw4VWKgZf8hnAy64GfVOzcFF_ZkRJx_21o82-nyT_BbNqNxluw2cNI9rEb9_uwFtoHcKcLLHn1EI7HyzeJbBKZZYmN4axlnvgKLMNkxH1svphF6wOJ4BI9s3SIT16p7DLMk7ccwyLJs51NEWSf20dwNN798Xkv7yMo5L5CJJjHGL2QpbNKeNlIzl3R6BB84QviVeZl8LosQlDSO-U9D9LZUDivFJmGqPCPYb2dtOEpsFhqK5Vuau2irJV1HG0hXrqIkMuGus7g3bIXje_pxSnKxW_TESMLQz1uUo9n8GaQnXakGrdKfaLBGCSICDslTGanptcrE0d25Oqi4dLimi8E1adRyiNQstgOncH2cihNr51zUxYIayV-WOvXQzbqFfWzbcNkMTe4lAm6k65EBk-6kR9qUspKEBbNQK3MiZWqrua0Zz8Td7dGACg0tu19mj3_aL7Z3z0W6e_Z_wi_gruHX8bm-9eDb8_hniAPnOQRtw3rF7NFeIEQ6sK9TJpyDbszE4k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+a+protein+corona+on+the+surface+of+extracellular+vesicles+in+blood+plasma&rft.jtitle=Journal+of+extracellular+vesicles&rft.au=Eszter+%C3%81.+T%C3%B3th&rft.au=Lilla+Turi%C3%A1k&rft.au=Tam%C3%A1s+Visnovitz&rft.au=Csaba+Cser%C3%A9p&rft.date=2021-09-01&rft.pub=Wiley&rft.eissn=2001-3078&rft.volume=10&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fjev2.12140&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f6a6b90d14a14622bf55d77c741abc78 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-3078&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-3078&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-3078&client=summon |