基于极限学习机与子空间追踪的人脸识别算法
极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果。该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类。在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快。...
Saved in:
Published in | 计算机工程 Vol. 42; no. 1; pp. 168 - 173 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
长沙理工大学计算机与通信工程学院,长沙,410114
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-3428 |
DOI | 10.3969/j.issn.1000-3428.2016.01.030 |
Cover
Abstract | 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果。该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类。在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快。 |
---|---|
AbstractList | TP18; 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中.ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高.针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果.该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类.在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快. 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果。该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类。在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快。 |
Author | 张建明 刘阳春 吴宏林 |
AuthorAffiliation | 长沙理工大学计算机与通信工程学院,长沙410114 |
AuthorAffiliation_xml | – name: 长沙理工大学计算机与通信工程学院,长沙,410114 |
Author_FL | ZHANG Jianming WU Honglin LIU Yangchun |
Author_FL_xml | – sequence: 1 fullname: ZHANG Jianming – sequence: 2 fullname: LIU Yangchun – sequence: 3 fullname: WU Honglin |
Author_xml | – sequence: 1 fullname: 张建明 刘阳春 吴宏林 |
BookMark | eNo9j8tKw0AYhWdRwVr7EiLuEv-ZSeYCbqR4g4Kb7ss0mdYEnWqDiEuhiKvSTSmKqCtBpbrQRQ2IL5O06VsYqbg6cPg4h28JFUzbaIRWMdhUMrke2kEUGRsDgEUdImwCmNmAbaBQQMX_fhGVoyhogIspdzkVRbSR3sdJ3JvcXcyu--noMfl8mNzGybiXjvrTp3g2_Mi-v7Lx8_Smm8Rx1h1nb5fp1cv0dTh5HyyjhaY6jHT5L0uotr1Vq-xa1f2dvcpm1fJcAZbkri-Illz5FHyXESW0y5WWFCvPafhUasm4gCbzlPCUxqShlCCO1pxwBoyW0Np89kyZpjKtetg-7Zj8sB5GYcv7dQWcm-bgyhz0DtqmdRLk6HEnOFKd8zpjnEkqhUN_APyobyM |
ClassificationCodes | TP18 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1000-3428.2016.01.030 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Face Recognition Algorithm Based on Extreme Learning Machine and Subspace Pursuit |
DocumentTitle_FL | Face Recognition Algorithm Based on Extreme Learning Machine and Subspace Pursuit |
EndPage | 173 |
ExternalDocumentID | jsjgc201601030 667693984 |
GrantInformation_xml | – fundername: 国家自然科学青年基金资助项目; 湖南省教育厅优秀青年基金资助项目; 湖南省交通运输厅科技计划基金资助项目; 2015年湖南省研究生科研创新基金资助项目 funderid: (61202439); (12B003); (201334); (CX2015B369) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c580-975d82e97ad30d562a8e57ae931ac4bd39e96780f6ca8cae12baa824ee7276063 |
ISSN | 1000-3428 |
IngestDate | Thu May 29 04:21:01 EDT 2025 Wed Feb 14 10:25:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 极限学习机 稀疏编码 子空间追踪 face recognition Subspace Pursuit (SP) 人脸识别 sparse coding 稀疏表示 Extreme Learning Machine (ELM) sparse representation |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c580-975d82e97ad30d562a8e57ae931ac4bd39e96780f6ca8cae12baa824ee7276063 |
Notes | 31-1289/TP ZHANG Jianming,LIU Yangchun,WU Honglin ( School of Computer & Communication Engineering, Changsha University of Science & Technology, Changsha 410114, China) face recognition; Extreme Learning Machine(ELM); sparse representation; sparse coding; Subspace Pursuit(SP) Extreme Learning Machine(ELM) and Sparse Representation based Classification(SRC) algorithm are applied to face recognition widely.ELM has speed advantage while it can not handle noise well /whereas SRC shows significant robustness to noise while it suffers high computational cost.According to the advantages and disadvantages of two algorithms,this paper proposes a hybrid approach combining extreme learning machine and Subspace Pursuit(SP) for face recognition,which incorporates their respective advantages and uses subspace pursuit method to optimize solving sparse representation coefficients in SRC.According to the analysis of ELM actual output to estimate whether the test sample is a noisy image,clean image directly uses ELM actual output |
PageCount | 6 |
ParticipantIDs | wanfang_journals_jsjgc201601030 chongqing_primary_667693984 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 计算机工程 |
PublicationTitleAlternate | Computer Engineering |
PublicationTitle_FL | Computer Engineering |
PublicationYear | 2016 |
Publisher | 长沙理工大学计算机与通信工程学院,长沙,410114 |
Publisher_xml | – name: 长沙理工大学计算机与通信工程学院,长沙,410114 |
SSID | ssib051375738 ssib017479294 ssj0042200 ssib001102934 ssib023646288 |
Score | 2.0476832 |
Snippet | 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的... TP18; 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中.ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高.针对上述2种算法... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 168 |
SubjectTerms | 人脸识别 子空间追踪 极限学习机 稀疏编码 稀疏表示 |
Title | 基于极限学习机与子空间追踪的人脸识别算法 |
URI | http://lib.cqvip.com/qk/95200X/201601/667693984.html https://d.wanfangdata.com.cn/periodical/jsjgc201601030 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1000-3428 databaseCode: DOA dateStart: 20160101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0042200 providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA9rBdGD-Im1fvTQnGTqfGUmAS8z21mKoKcVelvmc0sPW7XbS29CEU-lFymKqCdBpXrQwzog4v-yX_0vfC_JjluVosIS8vGSl-TNJr_M5L1HyEJuSQ1rZhQOzwwXtjRDmAk34sQquFm4WSaNJN256y3fc2-vsJVa7fvUraXNbrKYbv1Rr-R_pAp5IFfUkv0HyVaNQgbEQb4QgoQh_CsZ04hR0aBhQCMXQx7RyKMiAnhII0EF_EykCZZo4EkaQQNT0tQntbisJWmQ2KeBkEVQ16ehSyNOQ2CxJCOcBgHSCODlaqZIzDEJpRAJGpR72CCHeCgbjLApYBo6VLm6nKBhSR_RwDpEpvvGaAiZTBZB-9WnIVlSl-OASChpoRKO44bmCwnsP0eOqixgsgxGiENiyIw39GSpm7uTVx9KJ1Ov06gQ77har1wv5K792wOrVmVLee7RG7ylfKf8unc4whNy70AGixUDvP3nScuu-vvRYevcypmk4O4xctz2AexMneolIgUAJ35a4IPznw-AtEqj-X50-DxJM8vxmbSIp8CEa9umMqihu3OCLOi-3jyqp2gpZHW9034A-Eeqo3WKuNOeQk7NM-S0PvLMB-r5PUtqW6vnyKkpQ5jnya3Bq7Jf7gxfPjp4tjvYf9P_8nr4ouz3dgb7u6O35cHe5_G3r-Peu9Hz7X5Zjrd744-PB0_ejz7sDT89vUCajahZXza0Xw8jZdw0hM8ybufCjzPHzAB_xzxnfpwLx4pTN8kckQuAUGbhpTFPY1hNkjjmtpvngLXhvO1cJDOd9U5-icwjeC9YHlt5BstKwRKWe4XIMjij-2hIbpbMVdPQuq_Mt7Qqkc2S63piWvpPvdFa21hrpziR6P_EvHxk_TlyEinVC7krZKb7cDO_ChC1m1yTD8EP5ARyiA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%9E%81%E9%99%90%E5%AD%A6%E4%B9%A0%E6%9C%BA%E4%B8%8E%E5%AD%90%E7%A9%BA%E9%97%B4%E8%BF%BD%E8%B8%AA%E7%9A%84%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E5%BC%A0%E5%BB%BA%E6%98%8E+%E5%88%98%E9%98%B3%E6%98%A5+%E5%90%B4%E5%AE%8F%E6%9E%97&rft.date=2016&rft.issn=1000-3428&rft.volume=42&rft.issue=1&rft.spage=168&rft.epage=173&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2016.01.030&rft.externalDocID=667693984 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg |