基于极限学习机与子空间追踪的人脸识别算法

极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果。该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类。在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快。...

Full description

Saved in:
Bibliographic Details
Published in计算机工程 Vol. 42; no. 1; pp. 168 - 173
Main Author 张建明 刘阳春 吴宏林
Format Journal Article
LanguageChinese
Published 长沙理工大学计算机与通信工程学院,长沙,410114 2016
Subjects
Online AccessGet full text
ISSN1000-3428
DOI10.3969/j.issn.1000-3428.2016.01.030

Cover

Abstract 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果。该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类。在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快。
AbstractList TP18; 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中.ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高.针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果.该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类.在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快.
极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果。该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类。在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快。
Author 张建明 刘阳春 吴宏林
AuthorAffiliation 长沙理工大学计算机与通信工程学院,长沙410114
AuthorAffiliation_xml – name: 长沙理工大学计算机与通信工程学院,长沙,410114
Author_FL ZHANG Jianming
WU Honglin
LIU Yangchun
Author_FL_xml – sequence: 1
  fullname: ZHANG Jianming
– sequence: 2
  fullname: LIU Yangchun
– sequence: 3
  fullname: WU Honglin
Author_xml – sequence: 1
  fullname: 张建明 刘阳春 吴宏林
BookMark eNo9j8tKw0AYhWdRwVr7EiLuEv-ZSeYCbqR4g4Kb7ss0mdYEnWqDiEuhiKvSTSmKqCtBpbrQRQ2IL5O06VsYqbg6cPg4h28JFUzbaIRWMdhUMrke2kEUGRsDgEUdImwCmNmAbaBQQMX_fhGVoyhogIspdzkVRbSR3sdJ3JvcXcyu--noMfl8mNzGybiXjvrTp3g2_Mi-v7Lx8_Smm8Rx1h1nb5fp1cv0dTh5HyyjhaY6jHT5L0uotr1Vq-xa1f2dvcpm1fJcAZbkri-Illz5FHyXESW0y5WWFCvPafhUasm4gCbzlPCUxqShlCCO1pxwBoyW0Np89kyZpjKtetg-7Zj8sB5GYcv7dQWcm-bgyhz0DtqmdRLk6HEnOFKd8zpjnEkqhUN_APyobyM
ClassificationCodes TP18
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1000-3428.2016.01.030
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Face Recognition Algorithm Based on Extreme Learning Machine and Subspace Pursuit
DocumentTitle_FL Face Recognition Algorithm Based on Extreme Learning Machine and Subspace Pursuit
EndPage 173
ExternalDocumentID jsjgc201601030
667693984
GrantInformation_xml – fundername: 国家自然科学青年基金资助项目; 湖南省教育厅优秀青年基金资助项目; 湖南省交通运输厅科技计划基金资助项目; 2015年湖南省研究生科研创新基金资助项目
  funderid: (61202439); (12B003); (201334); (CX2015B369)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c580-975d82e97ad30d562a8e57ae931ac4bd39e96780f6ca8cae12baa824ee7276063
ISSN 1000-3428
IngestDate Thu May 29 04:21:01 EDT 2025
Wed Feb 14 10:25:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 极限学习机
稀疏编码
子空间追踪
face recognition
Subspace Pursuit (SP)
人脸识别
sparse coding
稀疏表示
Extreme Learning Machine (ELM)
sparse representation
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c580-975d82e97ad30d562a8e57ae931ac4bd39e96780f6ca8cae12baa824ee7276063
Notes 31-1289/TP
ZHANG Jianming,LIU Yangchun,WU Honglin ( School of Computer & Communication Engineering, Changsha University of Science & Technology, Changsha 410114, China)
face recognition; Extreme Learning Machine(ELM); sparse representation; sparse coding; Subspace Pursuit(SP)
Extreme Learning Machine(ELM) and Sparse Representation based Classification(SRC) algorithm are applied to face recognition widely.ELM has speed advantage while it can not handle noise well /whereas SRC shows significant robustness to noise while it suffers high computational cost.According to the advantages and disadvantages of two algorithms,this paper proposes a hybrid approach combining extreme learning machine and Subspace Pursuit(SP) for face recognition,which incorporates their respective advantages and uses subspace pursuit method to optimize solving sparse representation coefficients in SRC.According to the analysis of ELM actual output to estimate whether the test sample is a noisy image,clean image directly uses ELM actual output
PageCount 6
ParticipantIDs wanfang_journals_jsjgc201601030
chongqing_primary_667693984
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 计算机工程
PublicationTitleAlternate Computer Engineering
PublicationTitle_FL Computer Engineering
PublicationYear 2016
Publisher 长沙理工大学计算机与通信工程学院,长沙,410114
Publisher_xml – name: 长沙理工大学计算机与通信工程学院,长沙,410114
SSID ssib051375738
ssib017479294
ssj0042200
ssib001102934
ssib023646288
Score 2.0476832
Snippet 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的...
TP18; 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中.ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高.针对上述2种算法...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 168
SubjectTerms 人脸识别
子空间追踪
极限学习机
稀疏编码
稀疏表示
Title 基于极限学习机与子空间追踪的人脸识别算法
URI http://lib.cqvip.com/qk/95200X/201601/667693984.html
https://d.wanfangdata.com.cn/periodical/jsjgc201601030
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1000-3428
  databaseCode: DOA
  dateStart: 20160101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0042200
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA9rBdGD-Im1fvTQnGTqfGUmAS8z21mKoKcVelvmc0sPW7XbS29CEU-lFymKqCdBpXrQwzog4v-yX_0vfC_JjluVosIS8vGSl-TNJr_M5L1HyEJuSQ1rZhQOzwwXtjRDmAk34sQquFm4WSaNJN256y3fc2-vsJVa7fvUraXNbrKYbv1Rr-R_pAp5IFfUkv0HyVaNQgbEQb4QgoQh_CsZ04hR0aBhQCMXQx7RyKMiAnhII0EF_EykCZZo4EkaQQNT0tQntbisJWmQ2KeBkEVQ16ehSyNOQ2CxJCOcBgHSCODlaqZIzDEJpRAJGpR72CCHeCgbjLApYBo6VLm6nKBhSR_RwDpEpvvGaAiZTBZB-9WnIVlSl-OASChpoRKO44bmCwnsP0eOqixgsgxGiENiyIw39GSpm7uTVx9KJ1Ov06gQ77har1wv5K792wOrVmVLee7RG7ylfKf8unc4whNy70AGixUDvP3nScuu-vvRYevcypmk4O4xctz2AexMneolIgUAJ35a4IPznw-AtEqj-X50-DxJM8vxmbSIp8CEa9umMqihu3OCLOi-3jyqp2gpZHW9034A-Eeqo3WKuNOeQk7NM-S0PvLMB-r5PUtqW6vnyKkpQ5jnya3Bq7Jf7gxfPjp4tjvYf9P_8nr4ouz3dgb7u6O35cHe5_G3r-Peu9Hz7X5Zjrd744-PB0_ejz7sDT89vUCajahZXza0Xw8jZdw0hM8ybufCjzPHzAB_xzxnfpwLx4pTN8kckQuAUGbhpTFPY1hNkjjmtpvngLXhvO1cJDOd9U5-icwjeC9YHlt5BstKwRKWe4XIMjij-2hIbpbMVdPQuq_Mt7Qqkc2S63piWvpPvdFa21hrpziR6P_EvHxk_TlyEinVC7krZKb7cDO_ChC1m1yTD8EP5ARyiA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%9E%81%E9%99%90%E5%AD%A6%E4%B9%A0%E6%9C%BA%E4%B8%8E%E5%AD%90%E7%A9%BA%E9%97%B4%E8%BF%BD%E8%B8%AA%E7%9A%84%E4%BA%BA%E8%84%B8%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B&rft.au=%E5%BC%A0%E5%BB%BA%E6%98%8E+%E5%88%98%E9%98%B3%E6%98%A5+%E5%90%B4%E5%AE%8F%E6%9E%97&rft.date=2016&rft.issn=1000-3428&rft.volume=42&rft.issue=1&rft.spage=168&rft.epage=173&rft_id=info:doi/10.3969%2Fj.issn.1000-3428.2016.01.030&rft.externalDocID=667693984
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F95200X%2F95200X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjgc%2Fjsjgc.jpg