Microglia Induce PDGFRB Expression in Glioma Cells to Enhance Their Migratory Capacity

High-grade gliomas (HGGs) are the most aggressive and invasive primary brain tumors. The platelet-derived growth factor (PDGF) signaling pathway drives HGG progression, and enhanced expression of PDGF receptors (PDGFRs) is a well-established aberration in a subset of glioblastomas (GBMs). PDGFRA is...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 9; pp. 71 - 83
Main Authors Wallmann, Tatjana, Zhang, Xing-Mei, Wallerius, Majken, Bolin, Sara, Joly, Anne-Laure, Sobocki, Caroline, Leiss, Lina, Jiang, Yiwen, Bergh, Jonas, Holland, Eric C., Enger, Per Ø., Andersson, John, Swartling, Fredrik J., Miletic, Hrvoje, Uhrbom, Lene, Harris, Robert A., Rolny, Charlotte
Format Journal Article
LanguageEnglish
Published United States Elsevier 30.11.2018
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2018.10.011

Cover

Abstract High-grade gliomas (HGGs) are the most aggressive and invasive primary brain tumors. The platelet-derived growth factor (PDGF) signaling pathway drives HGG progression, and enhanced expression of PDGF receptors (PDGFRs) is a well-established aberration in a subset of glioblastomas (GBMs). PDGFRA is expressed in glioma cells, whereas PDGFRB is mostly restricted to the glioma-associated stroma. Here we show that the spatial location of TAMMs correlates with the expansion of a subset of tumor cells that have acquired expression of PDGFRB in both mouse and human low-grade glioma and HCGs. Furthermore, M2-polarized microglia but not bone marrow (BM)-derived macrophages (BMDMs) induced PDGFRB expression in glioma cells and stimulated their migratory capacity. These findings illustrate a heterotypic cross-talk between microglia and glioma cells that may enhance the migratory and invasive capacity of the latter by inducing PDGFRB.
AbstractList High-grade gliomas (HGGs) are the most aggressive and invasive primary brain tumors. The platelet-derived growth factor (PDGF) signaling pathway drives HGG progression, and enhanced expression of PDGF receptors (PDGFRs) is a well-established aberration in a subset of glioblastomas (GBMs). PDGFRA is expressed in glioma cells, whereas PDGFRB is mostly restricted to the glioma-associated stroma. Here we show that the spatial location of TAMMs correlates with the expansion of a subset of tumor cells that have acquired expression of PDGFRB in both mouse and human low-grade glioma and HCGs. Furthermore, M2-polarized microglia but not bone marrow (BM)-derived macrophages (BMDMs) induced PDGFRB expression in glioma cells and stimulated their migratory capacity. These findings illustrate a heterotypic cross-talk between microglia and glioma cells that may enhance the migratory and invasive capacity of the latter by inducing PDGFRB.High-grade gliomas (HGGs) are the most aggressive and invasive primary brain tumors. The platelet-derived growth factor (PDGF) signaling pathway drives HGG progression, and enhanced expression of PDGF receptors (PDGFRs) is a well-established aberration in a subset of glioblastomas (GBMs). PDGFRA is expressed in glioma cells, whereas PDGFRB is mostly restricted to the glioma-associated stroma. Here we show that the spatial location of TAMMs correlates with the expansion of a subset of tumor cells that have acquired expression of PDGFRB in both mouse and human low-grade glioma and HCGs. Furthermore, M2-polarized microglia but not bone marrow (BM)-derived macrophages (BMDMs) induced PDGFRB expression in glioma cells and stimulated their migratory capacity. These findings illustrate a heterotypic cross-talk between microglia and glioma cells that may enhance the migratory and invasive capacity of the latter by inducing PDGFRB.
High-grade gliomas (HGGs) are the most aggressive and invasive primary brain tumors. The platelet-derived growth factor (PDGF) signaling pathway drives HGG progression, and enhanced expression of PDGF receptors (PDGFRs) is a well-established aberration in a subset of glioblastomas (GBMs). PDGFRA is expressed in glioma cells, whereas PDGFRB is mostly restricted to the glioma-associated stroma. Here we show that the spatial location of TAMMs correlates with the expansion of a subset of tumor cells that have acquired expression of PDGFRB in both mouse and human low-grade glioma and HCGs. Furthermore, M2-polarized microglia but not bone marrow (BM)-derived macrophages (BMDMs) induced PDGFRB expression in glioma cells and stimulated their migratory capacity. These findings illustrate a heterotypic cross-talk between microglia and glioma cells that may enhance the migratory and invasive capacity of the latter by inducing PDGFRB.
High-grade gliomas (HGGs) are the most aggressive and invasive primary brain tumors. The platelet-derived growth factor (PDGF) signaling pathway drives HGG progression, and enhanced expression of PDGF receptors (PDGFRs) is a well-established aberration in a subset of glioblastomas (GBMs). PDGFRA is expressed in glioma cells, whereas PDGFRB is mostly restricted to the glioma-associated stroma. Here we show that the spatial location of TAMMs correlates with the expansion of a subset of tumor cells that have acquired expression of PDGFRB in both mouse and human low-grade glioma and HCGs. Furthermore, M2-polarized microglia but not bone marrow (BM)-derived macrophages (BMDMs) induced PDGFRB expression in glioma cells and stimulated their migratory capacity. These findings illustrate a heterotypic cross-talk between microglia and glioma cells that may enhance the migratory and invasive capacity of the latter by inducing PDGFRB. : Pathophysiology; Molecular Mechanism of Behavior; Immunology; Cancer Subject Areas: Pathophysiology, Molecular Mechanism of Behavior, Immunology, Cancer
High-grade gliomas (HGGs) are the most aggressive and invasive primary brain tumors. The platelet-derived growth factor (PDGF) signaling pathway drives HGG progression, and enhanced expression of PDGF receptors (PDGFRs) is a well-established aberration in a subset of glioblastomas (GBMs). PDGFRA is expressed in glioma cells, whereas PDGFRB is mostly restricted to the glioma-associated stroma. Here we show that the spatial location of TAMMs correlates with the expansion of a subset of tumor cells that have acquired expression of PDGFRB in both mouse and human low-grade glioma and HCGs. Furthermore, M2-polarized microglia but not bone marrow (BM)-derived macrophages (BMDMs) induced PDGFRB expression in glioma cells and stimulated their migratory capacity. These findings illustrate a heterotypic cross-talk between microglia and glioma cells that may enhance the migratory and invasive capacity of the latter by inducing PDGFRB. • PDGFRB + glioma cells are in physical contact with IBA1 + TAMMs in mouse and human glioma • Aggregation of PDGFRB + glioma cells correlated with the accumulation of IBA1 + TAMMs • Microglia but not bone marrow-derived macrophages induced PDGFRB expression in vitro • M2-polarized microglia stimulated glioma cell migration dependent on PDGFRB Pathophysiology; Molecular Mechanism of Behavior; Immunology; Cancer
Author Bolin, Sara
Jiang, Yiwen
Rolny, Charlotte
Wallmann, Tatjana
Andersson, John
Bergh, Jonas
Joly, Anne-Laure
Harris, Robert A.
Enger, Per Ø.
Miletic, Hrvoje
Wallerius, Majken
Leiss, Lina
Uhrbom, Lene
Swartling, Fredrik J.
Zhang, Xing-Mei
Holland, Eric C.
Sobocki, Caroline
AuthorAffiliation 9 Division of Human Biology, Solid Tumor and Translational Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
1 Karolinska Institutet, Department of Oncology-Pathology, CCK, R8:01, 171 76 Stockholm, Sweden
3 Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, 751 85 Uppsala, Sweden
5 Neuro Clinic, Haukeland University Hospital, Bergen, Norway
7 Karolinska Institutet, Department of Medical Biochemistry and Biophysics, 17177 Stockholm, Sweden
10 Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
11 Department of Pathology, Haukeland University Hospital, Bergen, Norway
4 Karolinska Institutet, Department of Medicine, CMM, 171 76 Stockholm, Sweden
12 Department of Biomedicine, University of Bergen, Bergen, Norway
6 Oncomatrix Research Lab, University of Bergen, Bergen, Norway
2 Karolinska Institutet, Department of Clinical Neuroscience, Karolinska Hospital at Solna, CMM, 171 76 Stockholm,
AuthorAffiliation_xml – name: 10 Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
– name: 1 Karolinska Institutet, Department of Oncology-Pathology, CCK, R8:01, 171 76 Stockholm, Sweden
– name: 12 Department of Biomedicine, University of Bergen, Bergen, Norway
– name: 9 Division of Human Biology, Solid Tumor and Translational Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
– name: 11 Department of Pathology, Haukeland University Hospital, Bergen, Norway
– name: 4 Karolinska Institutet, Department of Medicine, CMM, 171 76 Stockholm, Sweden
– name: 6 Oncomatrix Research Lab, University of Bergen, Bergen, Norway
– name: 7 Karolinska Institutet, Department of Medical Biochemistry and Biophysics, 17177 Stockholm, Sweden
– name: 3 Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, 751 85 Uppsala, Sweden
– name: 5 Neuro Clinic, Haukeland University Hospital, Bergen, Norway
– name: 8 Radiumhemmet, Karolinska University Hospital, 171 76 Stockholm, Sweden
– name: 2 Karolinska Institutet, Department of Clinical Neuroscience, Karolinska Hospital at Solna, CMM, 171 76 Stockholm, Sweden
Author_xml – sequence: 1
  givenname: Tatjana
  surname: Wallmann
  fullname: Wallmann, Tatjana
– sequence: 2
  givenname: Xing-Mei
  surname: Zhang
  fullname: Zhang, Xing-Mei
– sequence: 3
  givenname: Majken
  surname: Wallerius
  fullname: Wallerius, Majken
– sequence: 4
  givenname: Sara
  surname: Bolin
  fullname: Bolin, Sara
– sequence: 5
  givenname: Anne-Laure
  surname: Joly
  fullname: Joly, Anne-Laure
– sequence: 6
  givenname: Caroline
  surname: Sobocki
  fullname: Sobocki, Caroline
– sequence: 7
  givenname: Lina
  surname: Leiss
  fullname: Leiss, Lina
– sequence: 8
  givenname: Yiwen
  surname: Jiang
  fullname: Jiang, Yiwen
– sequence: 9
  givenname: Jonas
  surname: Bergh
  fullname: Bergh, Jonas
– sequence: 10
  givenname: Eric C.
  surname: Holland
  fullname: Holland, Eric C.
– sequence: 11
  givenname: Per Ø.
  surname: Enger
  fullname: Enger, Per Ø.
– sequence: 12
  givenname: John
  surname: Andersson
  fullname: Andersson, John
– sequence: 13
  givenname: Fredrik J.
  surname: Swartling
  fullname: Swartling, Fredrik J.
– sequence: 14
  givenname: Hrvoje
  surname: Miletic
  fullname: Miletic, Hrvoje
– sequence: 15
  givenname: Lene
  surname: Uhrbom
  fullname: Uhrbom, Lene
– sequence: 16
  givenname: Robert A.
  surname: Harris
  fullname: Harris, Robert A.
– sequence: 17
  givenname: Charlotte
  surname: Rolny
  fullname: Rolny, Charlotte
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30384135$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-7942$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-373244$$DView record from Swedish Publication Index
BookMark eNqFkl1v0zAYhSM0xMbYH-AC-RIJWvwVf9wgja4rlTaB0Nit5dhO6iqNOzsB-u9x1jGtXIBsydbr5xzbes_L4qgLnSuK1whOEUTsw3rqk_FTDJHIhSlE6FlxgkshJxBSfPRkf1ycpbSGEOI8qWQvimMCiaCIlCfF7bU3MTSt12DZ2cE48PVicfntE5j_2kaXkg8d8B1YtD5sNJi5tk2gD2DerXSX4ZuV8xFc-ybqPsQdmOmtNr7fvSqe17pN7uxhPS2-X85vZp8nV18Wy9n51cSUXPaTyhoma6MNl7LUlrHa8lLXumTUUQkNrvNARFNEBS8xghIKXHFeMsEc45KcFsu9rw16rbbRb3TcqaC9ui-E2Cgde29ap4Qh1GgLDSclJRZXTthKWG4kYraGInu933uln247VAduF_72_N5tGBThBFOa8Xf_xxu_UlxSnOmPezqjG2eN6_qo2wPR4UmXlU34oRjOfyfjT98-GMRwN7jUq00OQO6H7lwYksIIy5IIKMaXvXl61-Mlf7qeAbwHcutTiq5-RBBUY7rUWo3pUmO6xlpOVxaJv0S50brPAcnv9e2_pL8BYS7VtQ
CitedBy_id crossref_primary_10_1016_j_imu_2019_100250
crossref_primary_10_1002_btm2_10716
crossref_primary_10_1371_journal_pone_0260252
crossref_primary_10_3390_biomedicines10092292
crossref_primary_10_3389_fendo_2021_785050
crossref_primary_10_3390_ijms25094947
crossref_primary_10_1146_annurev_pathmechdis_051122_110348
crossref_primary_10_3389_fgene_2021_827444
crossref_primary_10_1186_s13046_021_02082_7
crossref_primary_10_1016_j_canlet_2025_217640
crossref_primary_10_3390_brainsci13121667
crossref_primary_10_3389_fcell_2025_1536320
crossref_primary_10_12677_ACRPO_2021_101001
crossref_primary_10_1093_narcan_zcab042
crossref_primary_10_1016_j_neuron_2019_08_028
crossref_primary_10_3390_cancers13225799
crossref_primary_10_1016_j_stem_2018_12_009
crossref_primary_10_3389_fped_2021_693145
crossref_primary_10_3390_cancers14174114
crossref_primary_10_1016_j_vascn_2023_107468
crossref_primary_10_3389_fonc_2023_1236268
crossref_primary_10_1007_s10555_022_10051_5
crossref_primary_10_1016_j_brainresbull_2023_110664
crossref_primary_10_3390_biom11030403
crossref_primary_10_3389_fonc_2023_1254694
crossref_primary_10_1159_000531040
crossref_primary_10_2174_0115748936346422240930081839
crossref_primary_10_3390_brainsci12040505
crossref_primary_10_1186_s40478_021_01156_z
crossref_primary_10_1093_neuonc_noab130
crossref_primary_10_1016_j_immuni_2021_09_014
crossref_primary_10_3389_fimmu_2022_958620
crossref_primary_10_1093_noajnl_vdaa075
crossref_primary_10_3390_ijms23052509
crossref_primary_10_3390_cancers14041092
crossref_primary_10_3389_fimmu_2021_746621
crossref_primary_10_1016_j_it_2021_02_004
crossref_primary_10_3389_fonc_2020_603495
crossref_primary_10_1016_j_wneu_2021_06_121
Cites_doi 10.1016/j.wneu.2016.07.082
10.1016/j.cell.2013.02.021
10.1101/gad.193565.112
10.1038/onc.2009.76
10.1200/JCO.2012.43.2229
10.1182/blood-2004-06-2246
10.1016/j.ccr.2010.11.009
10.1158/0008-5472.CAN-16-2310
10.1016/j.cell.2009.01.020
10.1016/j.celrep.2016.10.052
10.1177/019262330002800122
10.1158/0008-5472.CAN-15-2596
10.1016/j.cell.2013.09.034
10.1038/ni.3423
10.1016/j.ccell.2016.03.027
10.1016/j.ccell.2017.02.009
10.1038/nn2014
10.1038/nrclinonc.2016.204
10.1038/nn.4185
10.1126/science.284.5422.1994
10.1593/neo.11314
10.1016/j.gene.2017.03.003
10.1038/nature13989
10.1016/j.celrep.2017.01.003
10.1038/sj.onc.1210455
10.1007/978-0-387-69259-3_5
10.1056/NEJMoa1402121
10.1016/j.ccell.2014.10.006
10.1073/pnas.95.3.1218
10.1038/nm.3337
10.1016/S0002-9440(10)63540-7
10.1111/nan.12428
10.1016/j.humpath.2013.03.013
10.1093/jnci/djj070
10.1111/j.1432-1033.1997.t01-2-00142.x
10.1126/science.aad3018
10.1007/s00401-016-1545-1
10.1023/A:1015701232589
10.1002/glia.22643
10.1371/journal.pone.0008536
10.1096/fj.13-245837
10.1016/j.trecan.2015.10.009
10.1016/j.ccr.2014.06.005
10.1038/ni.3585
10.1056/NEJMoa1407279
10.1016/j.neuroscience.2013.11.029
ContentType Journal Article
Copyright Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
2018 The Author(s) 2018
Copyright_xml – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Author(s) 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
ADFMZ
ADTPV
AOWAS
D8T
DF1
ZZAVC
ACNBI
DF2
DOA
DOI 10.1016/j.isci.2018.10.011
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Gymnastik- och idrottshögskolan full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Gymnastik- och idrottshögskolan
SwePub Articles full text
SWEPUB Uppsala universitet full text
SWEPUB Uppsala universitet
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
EndPage 83
ExternalDocumentID oai_doaj_org_article_8c34cad0c73543d2be8db8d7c916df08
oai_DiVA_org_uu_373244
oai_DiVA_org_gih_7942
PMC6214839
30384135
10_1016_j_isci_2018_10_011
Genre Journal Article
GroupedDBID 0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
OK1
ROL
RPM
SSZ
AACTN
NPM
7X8
5PM
ADFMZ
ADTPV
AOWAS
D8T
DF1
ZZAVC
ACNBI
DF2
ID FETCH-LOGICAL-c579t-bdc69fcac7995ad66fd75afa564e490c2f2f213a4148752109082b775686e6793
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:31:24 EDT 2025
Thu Aug 21 06:52:02 EDT 2025
Thu Sep 18 03:29:20 EDT 2025
Thu Aug 21 14:36:56 EDT 2025
Fri Jul 11 08:10:22 EDT 2025
Mon Mar 03 15:04:21 EST 2025
Tue Jul 01 01:03:24 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Immunology
Molecular Mechanism of Behavior
Pathophysiology
Cancer
Language English
License Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-bdc69fcac7995ad66fd75afa564e490c2f2f213a4148752109082b775686e6793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://doaj.org/article/8c34cad0c73543d2be8db8d7c916df08
PMID 30384135
PQID 2129538084
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_8c34cad0c73543d2be8db8d7c916df08
swepub_primary_oai_DiVA_org_uu_373244
swepub_primary_oai_DiVA_org_gih_7942
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6214839
proquest_miscellaneous_2129538084
pubmed_primary_30384135
crossref_primary_10_1016_j_isci_2018_10_011
crossref_citationtrail_10_1016_j_isci_2018_10_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-30
PublicationDateYYYYMMDD 2018-11-30
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2018
Publisher Elsevier
Publisher_xml – name: Elsevier
References Brennan (10.1016/j.isci.2018.10.011_bib4) 2013; 155
Jain (10.1016/j.isci.2018.10.011_bib21) 2014; 26
Jiang (10.1016/j.isci.2018.10.011_bib22) 2011; 13
Eckel-Passow (10.1016/j.isci.2018.10.011_bib11) 2015; 372
Molander (10.1016/j.isci.2018.10.011_bib33) 2001; 28
Zhang (10.1016/j.isci.2018.10.011_bib47) 2014; 62
Quail (10.1016/j.isci.2018.10.011_bib37) 2017; 31
Ajami (10.1016/j.isci.2018.10.011_bib1) 2007; 10
Louis (10.1016/j.isci.2018.10.011_bib28) 2016; 131
Reifenberger (10.1016/j.isci.2018.10.011_bib38) 2016; 14
Rolny (10.1016/j.isci.2018.10.011_bib39) 2011; 19
Brat (10.1016/j.isci.2018.10.011_bib6) 2015; 372
Lu (10.1016/j.isci.2018.10.011_bib29) 2016; 29
Gomez Perdiguero (10.1016/j.isci.2018.10.011_bib13) 2015; 518
Mitew (10.1016/j.isci.2018.10.011_bib31) 2014; 276
Wallerius (10.1016/j.isci.2018.10.011_bib46) 2016; 76
Mazzone (10.1016/j.isci.2018.10.011_bib30) 2009; 136
Skalli (10.1016/j.isci.2018.10.011_bib40) 2013; 44
Moeton (10.1016/j.isci.2018.10.011_bib32) 2014; 28
Burton (10.1016/j.isci.2018.10.011_bib5) 2001; 42
Jiang (10.1016/j.isci.2018.10.011_bib23) 2017; 18
Baluk (10.1016/j.isci.2018.10.011_bib2) 2003; 163
Quail (10.1016/j.isci.2018.10.011_bib36) 2016; 352
Holland (10.1016/j.isci.2018.10.011_bib17) 2000; 28
Sorensen (10.1016/j.isci.2018.10.011_bib41) 2017; 44
van den Bent (10.1016/j.isci.2018.10.011_bib44) 2013; 31
Uhrbom (10.1016/j.isci.2018.10.011_bib43) 2002; 62
Kazlauskas (10.1016/j.isci.2018.10.011_bib25) 2017; 614
Verhaak (10.1016/j.isci.2018.10.011_bib45) 2010; 145
Karrlander (10.1016/j.isci.2018.10.011_bib24) 2009; 4
Buttgereit (10.1016/j.isci.2018.10.011_bib48) 2016; 17
Dreher (10.1016/j.isci.2018.10.011_bib10) 2006; 98
Holland (10.1016/j.isci.2018.10.011_bib18) 1998; 95
Criscuoli (10.1016/j.isci.2018.10.011_bib9) 2005; 105
Bowman (10.1016/j.isci.2018.10.011_bib3) 2016; 17
Hambardzumyan (10.1016/j.isci.2018.10.011_bib14) 2015; 1
Pyonteck (10.1016/j.isci.2018.10.011_bib35) 2013; 19
Cheng (10.1016/j.isci.2018.10.011_bib8) 2013; 153
Holash (10.1016/j.isci.2018.10.011_bib16) 1999; 284
Hoshide (10.1016/j.isci.2018.10.011_bib19) 2016; 94
Ozawa (10.1016/j.isci.2018.10.011_bib34) 2014; 26
Ishisaki (10.1016/j.isci.2018.10.011_bib20) 1997; 246
Goldmann (10.1016/j.isci.2018.10.011_bib12) 2016; 17
Hambardzumyan (10.1016/j.isci.2018.10.011_bib15) 2016; 19
Kim (10.1016/j.isci.2018.10.011_bib26) 2012; 26
Lindberg (10.1016/j.isci.2018.10.011_bib27) 2009; 28
Tchougounova (10.1016/j.isci.2018.10.011_bib42) 2007; 26
Chen (10.1016/j.isci.2018.10.011_bib7) 2017; 77
25117714 - Cancer Cell. 2014 Aug 11;26(2):288-300
25517747 - Cancer Cell. 2014 Nov 10;26(5):605-22
24696300 - FASEB J. 2014 Jul;28(7):2942-54
24056773 - Nat Med. 2013 Oct;19(10):1264-72
23791210 - Hum Pathol. 2013 Oct;44(10):2081-8
21677873 - Neoplasia. 2011 Jun;13(6):492-503
19217150 - Cell. 2009 Mar 6;136(5):839-851
12153142 - Mol Biol Rep. 2001;28(4):223-33
28267575 - Gene. 2017 May 30;614:1-7
9210476 - Eur J Biochem. 1997 May 15;246(1):142-6
9448312 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1218-23
27157931 - Acta Neuropathol. 2016 Jun;131(6):803-20
23071237 - J Clin Oncol. 2013 Jan 20;31(3):344-50
12359767 - Cancer Res. 2002 Oct 1;62(19):5551-8
27088132 - Trends Cancer. 2015 Dec;1(4):252-265
22661233 - Genes Dev. 2012 Jun 1;26(11):1247-62
27476688 - World Neurosurg. 2016 Oct;94:561-562
26061751 - N Engl J Med. 2015 Jun 25;372(26):2481-98
20046875 - PLoS One. 2009 Dec 31;4(12):e8536
19421151 - Oncogene. 2009 Jun 11;28(23):2266-75
25470051 - Nature. 2015 Feb 26;518(7540):547-51
24120142 - Cell. 2013 Oct 10;155(2):462-77
27197153 - Cancer Res. 2016 Jun 1;76(11):3166-78
15486073 - Blood. 2005 Feb 15;105(4):1508-14
28292436 - Cancer Cell. 2017 Mar 13;31(3):326-341
16507830 - J Natl Cancer Inst. 2006 Mar 1;98(5):335-44
28235764 - Cancer Res. 2017 May 1;77(9):2266-2278
21215706 - Cancer Cell. 2011 Jan 18;19(1):31-44
14578181 - Am J Pathol. 2003 Nov;163(5):1801-15
23540695 - Cell. 2013 Mar 28;153(1):139-52
17438529 - Oncogene. 2007 Sep 20;26(43):6289-96
28122246 - Cell Rep. 2017 Jan 24;18(4):977-990
26061753 - N Engl J Med. 2015 Jun 25;372(26):2499-508
27840052 - Cell Rep. 2016 Nov 22;17(9):2445-2459
28767130 - Neuropathol Appl Neurobiol. 2018 Feb;44(2):185-206
28031556 - Nat Rev Clin Oncol. 2017 Jul;14(7):434-452
11887400 - Acta Vet Scand. 2001;42(3):407-24
18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43
10669005 - Toxicol Pathol. 2000 Jan-Feb;28(1):171-7
10373119 - Science. 1999 Jun 18;284(5422):1994-8
27776109 - Nat Immunol. 2016 Dec;17(12):1397-1406
27135602 - Nat Immunol. 2016 Jul;17(7):797-805
26713745 - Nat Neurosci. 2016 Jan;19(1):20-7
27199435 - Science. 2016 May 20;352(6288):aad3018
27165742 - Cancer Cell. 2016 May 9;29(5):669-683
20306246 - Cancer Treat Res. 2010;145:67-83
24677019 - Glia. 2014 May;62(5):804-17
24275321 - Neuroscience. 2014 Sep 12;276:29-47
References_xml – volume: 94
  start-page: 561
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib19
  article-title: 2016 world health organization classification of central nervous system tumors: an era of molecular biology
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2016.07.082
– volume: 153
  start-page: 139
  year: 2013
  ident: 10.1016/j.isci.2018.10.011_bib8
  article-title: Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.021
– volume: 26
  start-page: 1247
  year: 2012
  ident: 10.1016/j.isci.2018.10.011_bib26
  article-title: Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity
  publication-title: Genes Dev.
  doi: 10.1101/gad.193565.112
– volume: 28
  start-page: 2266
  year: 2009
  ident: 10.1016/j.isci.2018.10.011_bib27
  article-title: Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma
  publication-title: Oncogene
  doi: 10.1038/onc.2009.76
– volume: 31
  start-page: 344
  year: 2013
  ident: 10.1016/j.isci.2018.10.011_bib44
  article-title: Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2012.43.2229
– volume: 105
  start-page: 1508
  year: 2005
  ident: 10.1016/j.isci.2018.10.011_bib9
  article-title: Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability
  publication-title: Blood
  doi: 10.1182/blood-2004-06-2246
– volume: 19
  start-page: 31
  year: 2011
  ident: 10.1016/j.isci.2018.10.011_bib39
  article-title: HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.11.009
– volume: 77
  start-page: 2266
  year: 2017
  ident: 10.1016/j.isci.2018.10.011_bib7
  article-title: Cellular and molecular identity of tumor-associated macrophages in glioblastoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2310
– volume: 136
  start-page: 839
  year: 2009
  ident: 10.1016/j.isci.2018.10.011_bib30
  article-title: Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.020
– volume: 17
  start-page: 2445
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib3
  article-title: Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.10.052
– volume: 28
  start-page: 171
  year: 2000
  ident: 10.1016/j.isci.2018.10.011_bib17
  article-title: A mouse model for glioma: biology, pathology, and therapeutic opportunities
  publication-title: Toxicol. Pathol.
  doi: 10.1177/019262330002800122
– volume: 76
  start-page: 3166
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib46
  article-title: Guidance molecule SEMA3A restricts tumor growth by differentially regulating the proliferation of tumor-associated macrophages
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-2596
– volume: 155
  start-page: 462
  year: 2013
  ident: 10.1016/j.isci.2018.10.011_bib4
  article-title: The somatic genomic landscape of glioblastoma
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.034
– volume: 17
  start-page: 797
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib12
  article-title: Origin, fate and dynamics of macrophages at central nervous system interfaces
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3423
– volume: 29
  start-page: 669
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib29
  article-title: Olig2-dependent reciprocal shift in PDGF and EGF receptor signaling regulates tumor phenotype and mitotic growth in malignant glioma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.03.027
– volume: 31
  start-page: 326
  year: 2017
  ident: 10.1016/j.isci.2018.10.011_bib37
  article-title: The microenvironmental landscape of brain tumors
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.02.009
– volume: 10
  start-page: 1538
  year: 2007
  ident: 10.1016/j.isci.2018.10.011_bib1
  article-title: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2014
– volume: 14
  start-page: 434
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib38
  article-title: Advances in the molecular genetics of gliomas - implications for classification and therapy
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.204
– volume: 19
  start-page: 20
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib15
  article-title: The role of microglia and macrophages in glioma maintenance and progression
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4185
– volume: 284
  start-page: 1994
  year: 1999
  ident: 10.1016/j.isci.2018.10.011_bib16
  article-title: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF
  publication-title: Science
  doi: 10.1126/science.284.5422.1994
– volume: 13
  start-page: 492
  year: 2011
  ident: 10.1016/j.isci.2018.10.011_bib22
  article-title: PDGF-B Can sustain self-renewal and tumorigenicity of experimental glioma-derived cancer-initiating cells by preventing oligodendrocyte differentiation
  publication-title: Neoplasia
  doi: 10.1593/neo.11314
– volume: 614
  start-page: 1
  year: 2017
  ident: 10.1016/j.isci.2018.10.011_bib25
  article-title: PDGFs and their receptors
  publication-title: Gene
  doi: 10.1016/j.gene.2017.03.003
– volume: 518
  start-page: 547
  year: 2015
  ident: 10.1016/j.isci.2018.10.011_bib13
  article-title: Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
  publication-title: Nature
  doi: 10.1038/nature13989
– volume: 18
  start-page: 977
  year: 2017
  ident: 10.1016/j.isci.2018.10.011_bib23
  article-title: Glioblastoma cell malignancy and drug sensitivity are affected by the cell of origin
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.01.003
– volume: 26
  start-page: 6289
  year: 2007
  ident: 10.1016/j.isci.2018.10.011_bib42
  article-title: Loss of Arf causes tumor progression of PDGFB-induced oligodendroglioma
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210455
– volume: 62
  start-page: 5551
  year: 2002
  ident: 10.1016/j.isci.2018.10.011_bib43
  article-title: Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt
  publication-title: Cancer Res.
– volume: 145
  start-page: 67
  year: 2010
  ident: 10.1016/j.isci.2018.10.011_bib45
  article-title: Genes predictive of outcome and novel molecular classification schemes in adult acute myeloid leukemia
  publication-title: Cancer Treat. Res.
  doi: 10.1007/978-0-387-69259-3_5
– volume: 372
  start-page: 2481
  year: 2015
  ident: 10.1016/j.isci.2018.10.011_bib6
  article-title: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1402121
– volume: 26
  start-page: 605
  year: 2014
  ident: 10.1016/j.isci.2018.10.011_bib21
  article-title: Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.10.006
– volume: 95
  start-page: 1218
  year: 1998
  ident: 10.1016/j.isci.2018.10.011_bib18
  article-title: Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.95.3.1218
– volume: 19
  start-page: 1264
  year: 2013
  ident: 10.1016/j.isci.2018.10.011_bib35
  article-title: CSF-1R inhibition alters macrophage polarization and blocks glioma progression
  publication-title: Nat. Med.
  doi: 10.1038/nm.3337
– volume: 163
  start-page: 1801
  year: 2003
  ident: 10.1016/j.isci.2018.10.011_bib2
  article-title: Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)63540-7
– volume: 44
  start-page: 185
  year: 2017
  ident: 10.1016/j.isci.2018.10.011_bib41
  article-title: Tumor-associated microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive tumor subtype
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/nan.12428
– volume: 44
  start-page: 2081
  year: 2013
  ident: 10.1016/j.isci.2018.10.011_bib40
  article-title: Astrocytoma grade IV (glioblastoma multiforme) displays 3 subtypes with unique expression profiles of intermediate filament proteins
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2013.03.013
– volume: 98
  start-page: 335
  year: 2006
  ident: 10.1016/j.isci.2018.10.011_bib10
  article-title: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djj070
– volume: 246
  start-page: 142
  year: 1997
  ident: 10.1016/j.isci.2018.10.011_bib20
  article-title: Nuclear factor Y controls the basal transcription activity of the mouse platelet-derived-growth-factor beta-receptor gene
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1997.t01-2-00142.x
– volume: 352
  start-page: aad3018
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib36
  article-title: The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas
  publication-title: Science
  doi: 10.1126/science.aad3018
– volume: 131
  start-page: 803
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib28
  article-title: The 2016 world health organization classification of tumors of the central nervous system: a summary
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-016-1545-1
– volume: 28
  start-page: 223
  year: 2001
  ident: 10.1016/j.isci.2018.10.011_bib33
  article-title: Sp1 is a key regulator of the PDGF beta-receptor transcription
  publication-title: Mol. Biol. Rep.
  doi: 10.1023/A:1015701232589
– volume: 62
  start-page: 804
  year: 2014
  ident: 10.1016/j.isci.2018.10.011_bib47
  article-title: Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice
  publication-title: Glia
  doi: 10.1002/glia.22643
– volume: 4
  start-page: e8536
  year: 2009
  ident: 10.1016/j.isci.2018.10.011_bib24
  article-title: Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008536
– volume: 28
  start-page: 2942
  year: 2014
  ident: 10.1016/j.isci.2018.10.011_bib32
  article-title: Silencing GFAP isoforms in astrocytoma cells disturbs laminin-dependent motility and cell adhesion
  publication-title: FASEB J.
  doi: 10.1096/fj.13-245837
– volume: 1
  start-page: 252
  year: 2015
  ident: 10.1016/j.isci.2018.10.011_bib14
  article-title: Glioblastoma: defining tumor niches
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2015.10.009
– volume: 26
  start-page: 288
  year: 2014
  ident: 10.1016/j.isci.2018.10.011_bib34
  article-title: Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.06.005
– volume: 42
  start-page: 407
  year: 2001
  ident: 10.1016/j.isci.2018.10.011_bib5
  article-title: An immunogenomics approach to understanding periparturient immunosuppression and mastitis susceptibility in dairy cows
  publication-title: Acta Vet. Scand.
– volume: 17
  start-page: 1397
  year: 2016
  ident: 10.1016/j.isci.2018.10.011_bib48
  article-title: Sall1 is a transcriptional regulator defining microglia identity and function
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3585
– volume: 372
  start-page: 2499
  year: 2015
  ident: 10.1016/j.isci.2018.10.011_bib11
  article-title: Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1407279
– volume: 276
  start-page: 29
  year: 2014
  ident: 10.1016/j.isci.2018.10.011_bib31
  article-title: Mechanisms regulating the development of oligodendrocytes and central nervous system myelin
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2013.11.029
– reference: 14578181 - Am J Pathol. 2003 Nov;163(5):1801-15
– reference: 25470051 - Nature. 2015 Feb 26;518(7540):547-51
– reference: 12153142 - Mol Biol Rep. 2001;28(4):223-33
– reference: 26713745 - Nat Neurosci. 2016 Jan;19(1):20-7
– reference: 25117714 - Cancer Cell. 2014 Aug 11;26(2):288-300
– reference: 27199435 - Science. 2016 May 20;352(6288):aad3018
– reference: 27135602 - Nat Immunol. 2016 Jul;17(7):797-805
– reference: 24677019 - Glia. 2014 May;62(5):804-17
– reference: 26061753 - N Engl J Med. 2015 Jun 25;372(26):2499-508
– reference: 27840052 - Cell Rep. 2016 Nov 22;17(9):2445-2459
– reference: 28292436 - Cancer Cell. 2017 Mar 13;31(3):326-341
– reference: 27157931 - Acta Neuropathol. 2016 Jun;131(6):803-20
– reference: 18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43
– reference: 16507830 - J Natl Cancer Inst. 2006 Mar 1;98(5):335-44
– reference: 27088132 - Trends Cancer. 2015 Dec;1(4):252-265
– reference: 21215706 - Cancer Cell. 2011 Jan 18;19(1):31-44
– reference: 24696300 - FASEB J. 2014 Jul;28(7):2942-54
– reference: 28031556 - Nat Rev Clin Oncol. 2017 Jul;14(7):434-452
– reference: 19421151 - Oncogene. 2009 Jun 11;28(23):2266-75
– reference: 27776109 - Nat Immunol. 2016 Dec;17(12):1397-1406
– reference: 23540695 - Cell. 2013 Mar 28;153(1):139-52
– reference: 10373119 - Science. 1999 Jun 18;284(5422):1994-8
– reference: 28235764 - Cancer Res. 2017 May 1;77(9):2266-2278
– reference: 19217150 - Cell. 2009 Mar 6;136(5):839-851
– reference: 28122246 - Cell Rep. 2017 Jan 24;18(4):977-990
– reference: 24120142 - Cell. 2013 Oct 10;155(2):462-77
– reference: 26061751 - N Engl J Med. 2015 Jun 25;372(26):2481-98
– reference: 28767130 - Neuropathol Appl Neurobiol. 2018 Feb;44(2):185-206
– reference: 27165742 - Cancer Cell. 2016 May 9;29(5):669-683
– reference: 25517747 - Cancer Cell. 2014 Nov 10;26(5):605-22
– reference: 23791210 - Hum Pathol. 2013 Oct;44(10):2081-8
– reference: 10669005 - Toxicol Pathol. 2000 Jan-Feb;28(1):171-7
– reference: 15486073 - Blood. 2005 Feb 15;105(4):1508-14
– reference: 22661233 - Genes Dev. 2012 Jun 1;26(11):1247-62
– reference: 28267575 - Gene. 2017 May 30;614:1-7
– reference: 9210476 - Eur J Biochem. 1997 May 15;246(1):142-6
– reference: 23071237 - J Clin Oncol. 2013 Jan 20;31(3):344-50
– reference: 11887400 - Acta Vet Scand. 2001;42(3):407-24
– reference: 27197153 - Cancer Res. 2016 Jun 1;76(11):3166-78
– reference: 24275321 - Neuroscience. 2014 Sep 12;276:29-47
– reference: 17438529 - Oncogene. 2007 Sep 20;26(43):6289-96
– reference: 9448312 - Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1218-23
– reference: 12359767 - Cancer Res. 2002 Oct 1;62(19):5551-8
– reference: 27476688 - World Neurosurg. 2016 Oct;94:561-562
– reference: 21677873 - Neoplasia. 2011 Jun;13(6):492-503
– reference: 20046875 - PLoS One. 2009 Dec 31;4(12):e8536
– reference: 24056773 - Nat Med. 2013 Oct;19(10):1264-72
– reference: 20306246 - Cancer Treat Res. 2010;145:67-83
SSID ssj0002002496
Score 2.2800179
Snippet High-grade gliomas (HGGs) are the most aggressive and invasive primary brain tumors. The platelet-derived growth factor (PDGF) signaling pathway drives HGG...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 71
Title Microglia Induce PDGFRB Expression in Glioma Cells to Enhance Their Migratory Capacity
URI https://www.ncbi.nlm.nih.gov/pubmed/30384135
https://www.proquest.com/docview/2129538084
https://pubmed.ncbi.nlm.nih.gov/PMC6214839
https://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-7942
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-373244
https://doaj.org/article/8c34cad0c73543d2be8db8d7c916df08
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15KS5rWfaFCeipu_ZAl-ZhsdhMCW0pJQm5Cz42D4y3NLuTnd8byLjEN6SX4JktYnhlpRtKnbwjZDwXTWXAhLYTArRsdUp1pk3ofuBeO56Hf75j_4Cfn7PSyuryX6gsxYZEeOAruu7Qls9plVpQVK11hvHRGOmEhrnEhXvMFN3ZvMXXdH68hFV6fWa5CTBCY5nBjJoK78MYr4rrkN4R25fnIK_Xk_Q9FnP8CJ0f0or1Lmr0kL4ZYkh7Ef3hFnvlul1zMEWK3aBtNMS2H9fTn0fHs1yGd3g2Y1442HT1um-WNphPftrd0taTT7gr1T8_w4IDOm0U8fqcTcKYWIvXX5Hw2PZucpEPyhNRWol6lxlleB6stMr5px3lwotJBV5x5Vme2CPDkpWY5LlkKxGfKwghRcck9h1G7R3a6ZeffEmpcCNLmGtazsJA23HjwaUHqurZGl5YnJN8IT9mBWRwTXLRqAyG7VihwhQLHMhB4Qr5u2_yOvBqP1j5EnWxrIid2XwCWogZLUf-zlIR83mhUwRjCgxHd-eX6VoH7rmHizyRLyJuo4e2nwMVLcPRVQsRI96O-jN90zVXP080LkG1ZJ2Q_WsmoyVFzcdB3fwG1YVIsEvLlsWrrtSoFRL_s3VPI4j15juKNHJYfyM7qz9p_hOhqZT71A-kvuBojzA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglia+Induce+PDGFRB+Expression+in+Glioma+Cells+to+Enhance+Their+Migratory+Capacity&rft.jtitle=iScience&rft.au=Wallmann%2C+Tatjana&rft.au=Zhang%2C+Xing-Mei&rft.au=Wallerius%2C+Majken&rft.au=Bolin%2C+Sara&rft.date=2018-11-30&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=9&rft.spage=71&rft_id=info:doi/10.1016%2Fj.isci.2018.10.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon